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Abstract

Several well-studied online resource allocation problems can be abstracted in

terms of an infinite, increasing sequence, where each element is associated

with a corresponding allocation value. In Theoretical Computer Science, one

such abstraction is known as online bidding, in which an algorithm must

submit “bids" until an unknown threshold is reached. Another abstraction

that has been studied extensively in Artificial Intelligence is known as con-

tract scheduling: in this formulation, an algorithm is repeatedly executed

with increasing processing times so as to obtain a system with interruptible

capabilities.

We study such problems under the query prediction model, in which the

designer elicits a prediction on the instance via responses to k binary queries

so as to improve the algorithm’s performance. The queries are answered

by an imperfect oracle, and the objective is to obtain efficient algorithms
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that are also robust to query errors. We first focus on consistency-robustness

tradeoffs, in which the query responses are either error-free or are generated

by a (malicious) adversary: here, we prove a tight information-theoretic lower

bound that establishes Pareto-optimality with respect to the consistency and

the robustness. Next, we consider the more general setting in which some of

the query responses can be erroneous: here, we present and analyze an effi-

cient and robust algorithm based on adaptive queries. Specifically, we show

that small increments in the number of queries lead to substantial improve-

ment in robustness to query errors, in that the performance of our solution

approaches the ideal performance of the Pareto-optimal schedule very quickly

as k grows, even if as many as k/4 − o(k) responses are adversarially erro-

neous. Our techniques have applications outside the query model: Namely,

we show how to obtain an optimal schedule for a generalization of the fault

tolerant contract scheduling problem in a multi-processor system, which gen-

eralizes the setting of [Kupavskii and Welzl, Distr. Comp. 2019].

Keywords: Competitive analysis, algorithms with predictions, consistency,

robustness, query models.

1. Introduction1

Resilience to interruptions is a central requirement in the design of real-2

time and intelligence systems. For instance, applications such as medical3

diagnostic systems, robot motion planning, and financial planning and trad-4

ing require that the system be capable of outputting a reasonably efficient5

solution at all times [1]. This raises the important issue of designing an in-6

terruptible system given, as a building component, an algorithm that does7
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not necessarily have interruptible capabilities.8

The seminal work of Russell and Zilberstein [2] was the first to provide a9

methodology for the design of interruptible systems using contract algorithms10

as components. The latter are algorithms which, unlike the interruptible11

ones, require the amount of computational time to be known in advance.12

Specifically, if a contract algorithm is allowed an execution time that is at13

least as large as this “contract” time, then its output is guaranteed to be14

correct; however, if the algorithm is interrupted at any point prior to the15

contract time, then its output may be totally meaningless. A typical ex-16

ample is algorithms based on dynamic programming (DP); if the algorithm17

fails to fill the entire DP table, the output may be entirely useless. Despite18

this lack of flexibility, contract algorithms are often easier to implement and19

maintain and use relatively simpler data structures [3], which makes them of-20

ten excellent components for the design of more complex, real-time systems.21

Note that interruptible and contract algorithms are members of the broader22

class of anytime algorithms, i.e., algorithms whose performance improves as23

a function of the available computational time.24

The approach of [2] is based on iterative deepening and consists of re-25

peatedly executing the contract algorithm with increasing contract times26

(also called lengths). To illustrate with an example, consider a simple dou-27

bling rule in which the i-th execution has length 2i. In this case, even if28

an interruption occurs at a worst-case time instance T (namely, right before29

an execution is about to terminate), an execution of length at least T/4 has30

been completed. The factor 4 measures the performance of this doubling rule31

and describes the tradeoff between resilience to interruptions and processor32
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speed. That is, a system A based on doubling contract lengths, and with33

processor speed equal to 4, is at least as efficient as any system B of unit34

speed, even if B knows beforehand the interruption time (and could thus use35

only a single execution with contract time T ).36

More generally, given a contract algorithm A, a contract schedule can37

be described as an increasing sequence (xi)i≥0, in which xi is the length of38

the i-th execution of A. The work [2] introduced a worst-case, theoretical39

measure, akin to the competitive ratio, for evaluating the performance of X,40

which relates an interruption time T to the largest contract length completed41

by time T . This measure is called the acceleration ratio of X. Formally,42

acc(X) = sup
T

T

ℓ(X,T )
, (1)

where ℓ(X,T ) denotes the length of the largest contract completed in X by43

time T .44

Contract scheduling is a classic resource-allocation problem that has been45

studied in many settings. For the standard version described above, it is46

straightforward to show that the doubling rule yields a schedule of optimal47

acceleration ratio equal to 4, however the problem becomes substantially48

more involved under more complex settings. We review some related results.49

Schedules for multi-processor systems were first obtained in [4]. The work [5]50

studied the setting in which there are several problem instances that must51

be solved concurrently on a single processor, and [3] as well as [6] provided52

optimal acceleration ratios for the multi-instance/multi-processor generaliza-53

tion. A study of the setting in which the interruption is not a hard deadline54

(and the system is allowed some additional time to wrap up its execution was55

given in [7], whereas [8] introduced performance measures alternative to the56
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acceleration ratio. [9] considered a setting in which the schedule is deemed57

complete once a length-related guarantee is reached on its last completed58

contract. Connections between contract scheduling and searching for a hid-59

den target under the competitive ratio were shown in [3, 10]. We emphasize60

that all of the above works establish theoretical upper and lower bounds on61

the acceleration ratio.62

Contract scheduling can be considered as an application of a general se-63

quencing formulation, in which we seek an increasing sequence that optimizes64

a given performance measure. Another sequencing problem that has been65

well studied within TCS is online bidding [11, 12, 13, 14, 15, 16]. Here, the66

objective is to find an increasing sequence X = (xi)i≥0 of positive numbers67

of minimum competitive ratio, defined formally as68

sup
u≥0

∑i
j=1 xj

u
: xi−1 < u ≤ xi, (2)

where u represents an unknown target value. Online bidding has applications69

in problems such as clustering [12], searching on the infinite line [17] and70

latency minimization [18], see e.g., the survey [11]. The doubling strategy71

X = (2i)i≥0 achieves once again an optimal competitive ratio equal to 4.72

1.1. Competitive sequencing with queries73

Recently, contract scheduling was studied under a model in which the74

scheduler leverages predictions on the interruption time, in the form of re-75

sponses to k binary queries, for some given k ∈ N+ [19]. For example, a query76

may be of the form “will the interruption occur before time t = 100?”, or may77

be more complex, e.g., “will the interruption occur in ∪i odd[2
i, 2i+1]?”. For-78

mally, a query maps a statement concerning the interruption time to {0, 1}.79
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As explained in [19], queries can help improve resource planning in many80

settings. For instance, in a medical-diagnostic system, the end user may81

know that the system is likely to be consulted at some critical intervals, e.g.,82

around some anticipated surgery slots, or that it may be more likely that a83

diagnosis would be needed on a weekday rather than on a weekend.84

Figure 1 illustrates an example for the simple case of a single query. Note85

that in the context of sequencing problems such as contract scheduling and86

online bidding, the query responses are powerful enough to encode interval87

information about the interruption or the target. Such information cannot88

be captured by simpler prediction oracles that provide a single value that89

corresponds to the anticipated interruption or target. The queries are an-90

swered by an imperfect oracle; namely, η ≤ k queries may receive erroneous91

responses. We refer to η as the query error, and we note that η is not known92

to the system designer ahead of time.93

time

…�S1

�S2 …

Figure 1: An illustration of the query-based setting for k = 1. Here, a single query may

answer whether the interruption is in the yellow (lighter) or in the blue (darker) partition.

The decision-maker may use the query response to choose one of the schedules S1 and S2.

The query prediction model combines two essential aspects of learning-94

augmented optimization: The first aspect is the use of predictions in op-95

timization under uncertainty, in which the (typically online) algorithm is96

augmented with an inherently erroneous prediction oracle, and the objec-97

6



tive is to improve the algorithm’s performance via a robust leveraging of the98

prediction oracle. Such considerations have become very prevalent in recent99

studies of algorithmic performance, starting with the influential works [20]100

and [21], see e.g., the survey [22] and the online repository [23] that lists101

several related works. The second aspect pertains to query-based optimiza-102

tion, in which the algorithm recovers the solution to a problem by asking103

queries. An example is clustering with noisy queries [24, 25], where a query104

asks whether two elements belong in the same cluster, which is useful in105

crowdsourcing applications. Query-based oracles can thus help model parsi-106

monious predictions, and similar models were recently studied in the context107

of secretary problems [26] and online paging [27].108

As in the analysis of learning-augmented algorithms, e.g. [28, 29], we first109

evaluate the performance of the algorithms in two extreme situations with110

respect to the prediction error. In the one extreme, the oracle is perfect,111

thus η = 0: in this case, we refer to the acceleration ratio of a schedule as its112

consistency. In the other extreme, the oracle is malicious (i.e., all responses113

are adversarial): in this case, we refer to the acceleration ratio of a schedule114

as its robustness. Here, the goal is to find Pareto-optimal schedules that115

describe the optimal consistency/robustness tradeoffs, similarly for online116

bidding under the competitive ratio. Pareto-efficient algorithms with respect117

to consistency-robustness tradeoffs have become prominent in the context of118

online optimization problems with untrusted predictions, see e.g., [14, 28, 29,119

30, 31, 32, 33, 34].120

Beyond these two extremes, we are also interested in efficient algorithms121

that are robust to query errors. To this end, [19] introduced a noisy query122
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model, specified as follows. The decision maker defines a parameter τ ≤ k,123

which is interpreted as an anticipated upper bound on the query error or, al-124

ternatively, as the algorithm’s desired tolerance to the error. This parameter125

captures the requirement that the algorithm must perform well if this upper126

bound is met, i.e., if η ≤ τ , but must also have robustness at most r, for some127

specified r ≥ 4, if it so happens that η > τ . Such a parameter is common128

in the analysis of games with a lying responder, e.g., [35], in which an upper129

bound on the erroneous responses is assumed to be known. It is also related130

to the concept of weak predictions, (see, e.g., online knapsack with frequency131

predictions [36], in which the prediction is an upper bound on the number132

of items of a given value in the input). We emphasize that unlike the noisy133

query model of [24], we do not make any probabilistic assumptions on the134

query responses.135

1.2. Contribution136

Results. Our first result (Theorem 13) proves the Pareto-optimal trade-off137

between the consistency c and the robustness r for contract scheduling with138

k queries, for any value of r. This answers the main problem left open in [19],139

which showed a tight tradeoff only for the special case of r = 4. To prove our140

result, we give a tight, information-theoretic lower bound on the consistency141

of r-robust schedules, which matches the known upper bound (Theorem 11).142

This result also establishes properties useful in the other settings we study.143

We also show, using a reduction from contract scheduling to online bidding,144

that the same optimal guarantees carry over to the latter problem as well145

(Theorem 15). This result answers an open question from [14] that gave a146

non-tight lower bound assuming r = 4.147
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Our second result concerns the general query model. Here, given a ro-148

bustness requirement r, we obtain a schedule that is optimal in the ideal149

case that η = 0, remains r-robust for adversarial error (i.e., if η is as high150

as k), and has acceleration ratio that provably degrades gently as a function151

of the anticipated bound on the error τ , as long as η ≤ τ ≤ k/4 − o(k)1152

(Theorem 20). More importantly, we show that as long as the error is not153

prohibitively large, namely for any η ≤ k/4 − o(k), the acceleration ratio154

converges very quickly to the error-free consistency as k increases. In other155

words, we prove that small increments in the number of queries lead to signif-156

icant gains in robustness to errors, even for substantially and unpredictably157

erroneous queries. This is in contrast to [19], where the acceleration ratio158

converges to a much larger and sub-optimal value (Observation 21). Our159

analysis also implies that the scheduler is not constrained by the choice of a160

particular tolerance parameter τ , even if k is a rather small constant. The161

same guarantees can be extended to online bidding.162

To prove the above results, we develop techniques that are also applicable163

to multi-criteria contract scheduling unrelated to the query setting. As an164

example, in our third main result, we introduce and study a robust general-165

ization of parallel, fault-tolerant contract scheduling. In the original problem166

studied by Kupavskii and Welzl [37], the objective is to optimize the acceler-167

ation ratio of a contract schedule in a parallel p-processor system, assuming168

that at most f processors may be faulty, for some given f < p; however, the169

schedule may be arbitrarily bad if the number of faulty processors exceeds f .170

1Here, the term o(k) describes any fixed, and slowly increasing function f(k) ∈ o(k),

e.g., f(k) = log∗(k).
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In our setting, instead, we additionally require that the system remains effi-171

cient if all but a single processor are faulty. We show how to obtain a schedule172

with the best-possible tradeoff between the two performance objectives (The-173

orems 22 and 24). Last, in Section 6 we provide an experimental evaluation174

of our algorithms that demonstrates the performance improvements that are175

attained in practice.176

Techniques. In regards to Pareto-optimality, we give a lower bound on the177

consistency of any r-robust schedule with k queries by treating it as a “vir-178

tual” multi-processor scheduling problem in 2k identical parallel processors,179

where each processor executes an r-robust schedule. The robustness require-180

ment adds significant complexity to our setting, which is more involved than181

the standard multi-processor contract scheduling studied by López-Ortiz et182

al. [6]. Specifically, while the algorithm and the analysis in [6] allow for183

schedules that are non-robust, in our setting, each processor is required to184

implement an r-robust schedule. This necessitates a more careful analysis by185

looking deeper into the linear recurrence relations (equalities and inequali-186

ties) that formulate the concept of robustness, as we will show in Section 3.187

In particular, in order to establish Pareto-optimality, we relate inequalities188

expressed via linear recurrences to the solution of linear recurrence relations189

(e.g., in the statement and proof of Proposition 6) and rely on upper-limit190

calculus (e.g., in the proof of Lemma 9).191

To achieve robustness to query errors, we first define a space of 2k sched-192

ules that include the Pareto-optimal one and which has a “nice” structure:193

namely, there exists an ordering such that if the j-th schedule has the best194

performance (for a given interruption), then we can bound the acceleration195
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ratio of the (j−x)-th schedule in the ordering as a function of x. We then use196

an error-tolerant binary search algorithm inspired by Disser and Kratsch [38]197

based on the query responses, so as to find a schedule close to the best one,198

even in the presence of errors, and without any knowledge of the ordering.199

We emphasize that our approach is based on adaptive queries, in that the200

i-th query is a function of the responses to queries 1 . . . i−1. Adaptive queries201

allow searching an exponential space of candidate schedules, unlike [19] which202

relies on static queries that can only help search a linear space of schedules (as203

a function of the number of queries k). We thus demonstrate that adaptivity204

is important for optimality.205

2. Preliminaries206

We introduce notation for the contract scheduling problem; for online207

bidding, our results carry over via a reduction shown in Theorem 15. In a208

single-processor system, a schedule X is defined as an increasing sequence209

of the form X = (xi)i≥0. We make the standing assumption that the inter-210

ruption occurs after at least the first contract has completed its execution;211

otherwise, no schedule has a bounded acceleration ratio. Without queries, the212

acceleration ratio of X is given by (1). It is well-known that the worst-case213

interruptions that maximize acc(X) are infinitesimally prior to the comple-214

tion times of contracts, namely xi − ϵ, for ϵ → 0. Hence the equivalent215

expression (where x−1 is defined to be equal to 1)216

acc(X) = sup
i

∑i
j=0 xj

xi−1

. (3)

For a schedule X with k queries, [19] defines the consistency of X as217
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its acceleration ratio assuming no response errors, and its robustness as its218

acceleration ratio assuming worst-case, adversarial responses. A schedule is219

r-robust if its robustness is at most r (similarly for consistency), and it is220

Pareto-optimal if its consistency and robustness are in a best-possible rela-221

tion. Note that the robustness of a schedule is equal to its acceleration ratio222

in the standard setting (since both definitions involve worst-case, adversarial223

settings). Hence, it is always the case that r ≥ 4, and we will thus use these224

two terms interchangeably.225

A schedule Gb is called geometric with base b > 1 if it is of the form226

Gb = (bi)i≥0. Geometric schedules are significant since they are often efficient227

for several variants of contract scheduling. It is known that the acceleration228

ratio of Gb is equal to b2/(b − 1) [5], which is minimized for b = 2, thus229

G2 = (2i)i≥0 has optimal acceleration ratio equal to 4. More generally, one230

can easily identify the geometric schedules that are r-robust, for any given r.231

Definition 1. For any given r, define ζ1,r and ζ2,r as the smallest and largest232

real roots, respectively, of the function f(x) = x2

x−1
− r. It also holds that233

1 < ζ1,r ≤ ζ2,r.234

This definition implies the following useful property:235

Property 2. The schedule Gb with b > 1 has acceleration ratio at most236

b2/(b− 1). In particular, for any r ≥ 4, Gb has acceleration ratio at most r237

if and only if b ∈ [ζ1,r, ζ2,r].238

The roots of Definition 1 are easily computable, i.e., ζ1,r = (r−
√
r2 − 4r)/2239

and ζ2,r = (r+
√
r2 − 4r)/2, and are such that ζ1,r ∈ (1, 2], and ζ2,r ≥ 2, for240

any r ≥ 4.241
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Example 3. Suppose that r = 6, then ζ1,6 = 3−
√
3, and ζ2,6 = 3+

√
3. Any242

geometric schedule Gb, with b ∈ [3−
√
3, 3 +

√
3] is 6-robust.243

The above definitions assume a single processor. In our work, we show244

and exploit connections between single-processor schedules with k queries and245

multi-processor schedules without queries on 2k parallel processors. Hence,246

we present some definitions and notation concerning the setting of p > 1247

parallel processors, labelled {0, . . . , p − 1}. In the p-processor setting, each248

processor j defines its own strategy of the form Xj = (xi,j)i≥0. We call the249

set X = {Xj}p−1
j=0 a p-processor schedule, or equivalently, we say that X is250

defined by the set {Xj}p−1
j=0. The acceleration ratio of a p-processor schedule is251

defined as in (1), with the difference that ℓ(X,T ) denotes the largest contract252

length completed by time T among all p processors [3].253

Let Y = (yi)
∞
i=0 denote a positive sequence, and define αY = lim supn→∞ y

1/n
n .254

E.g., if Y = (2i)∞i=0, then αY = 2. This notion appears in the statement of255

a theorem by Gal [39], which is the basis of the analysis in the multipro-256

cessor setting of [6]. This theorem, informally, gives a lower bound on the257

supremum of a set of functionals by the supremum of these functionals over258

geometrically increasing sequences. Given a set (or sequence) Y of positive259

reals, we denote by Ȳ the sequence of all elements in Y in non-decreasing260

order. We refer to Appendix Appendix A for the formal statement of Gal’s261

theorem, which will not be of direct use in our work, though the notion of αY262

will figure prominently. Table 1 summarizes some important notation used263

throughout this work.264
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Notation Description

T interruption time (unknown to the scheduler)

ℓ(X,T ) largest contract completed in schedule X by time T

acc(X) acceleration ratio of schedule X

k number of queries

Gb geometric strategy with base b > 1, i.e., of the form (bi)∞i=0

r robustness (r ≥ 4)

ζ1,r, ζ1,r the smallest and largest positive roots of the function

f(x) = x2

x−1
− r.

αY lim sup
n→∞

y
1/n
n of the sequence Y = (yi)

∞
i=0

Xb,l the set of strategies {X0, . . . Xl−1}, where

Xi = (bi+jl)∞j=0 (i ∈ [0, 2k − 1]) (see Definition 12.)

η (unknown) number of erroneous query responses (η ≤ k)

τ anticipated upper bound on η, or tolerance

U defined as 2⌊k/2⌋+2τ

c(k, r) consistency of the Pareto-optimal schedule of Theorem 11

R(k, r, τ) acceleration ratio of the schedule RQS of Theorem 18

Table 1: Summary of notation and definitions.

3. Pareto-optimality of contract scheduling and online bidding265

In this section, we give the optimal consistency-robustness tradeoff for266

both sequencing problems, with access to k queries. Our main result is a267

tight information-theoretic lower bound that applies to any schedule with268

information encoded as a k-bit string, which we call the response string.269
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Overview of the proof. We first give an overview and the intuition of270

the proof. The starting observation is that any r-robust schedule X with k271

queries must be selected from a set X of at most 2k r-robust schedules. This272

implies that the consistency of X is the acceleration ratio of the 2k-processor273

schedule defined by X . We can use a lower bound on this acceleration ratio as274

a function of the parameter αX̄ (Lemma 4), and recall that X̄ is the sequence275

of all contract lengths of schedules in X , in non-decreasing order.276

There is, however, a substantial complication, in that it is imperative to277

show that αX̄ is within a certain range in order to establish the tightness of278

the lower bound; this is to capture the requirement that each strategy in X279

must be r-robust. To this end, we show that αX̄ ∈ [ζ
1/2k

1,r , ζ
1/2k

2,r ] (Corollary 10).280

This is accomplished by first showing upper and lower bounds on the contract281

lengths of any r-robust schedule (Theorem 5), then applying the definitions of282

the sorted sequence of contract lengths X̄ and the properties of upper limits283

(Lemma 9). Combining the above yields the lower bound (Theorem 11). The284

tightness of the result will follow by directly comparing to the upper bound285

of [19] (Theorem 13).286

Analysis. We now proceed with the technical analysis. The following lemma287

is due to [6] and is a special case of a more general result that incorporates288

fault tolerance and which we will prove later, namely Lemma 23.289

Lemma 4. [6] Let X be a p-processor schedule, as defined by a set X of p290

single-processor strategies, each of which has a finite acceleration ratio. Then291

acc(X) ≥ αp+1

X̄
αp

X̄−1
.292

In the next step, we show upper and lower bounds on the contract lengths293

of any r-robust schedule. We emphasize that these bounds apply to any294
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schedule of acceleration ratio r without queries. This will be instrumental in295

bounding the range of αX̄ .296

Theorem 5. Let Z = (zi)i≥0 be an r-robust single-processor schedule, for a297

fixed, finite r ≥ 4. Then there exist c, d which are only functions of r, such298

that zi ≤ c·ζ i2,r and zi ≥ d·ζ i1,r, if r > 4. Moreover, zi ≤ c·i·2i and zi ≥ d·2i,299

if r = 4.300

To prove Theorem 5, we first show the following technical result that301

relies on linear recurrence relations. For some intuition, Proposition 6 relates302

a general r-robust strategy X to another r-robust strategy Y , which satisfies303

all constraints with equality. This will be helpful not only in establishing the304

upper bounds in Theorem 5 but, more importantly, the lower bounds, which305

is the harder part.306

Proposition 6. Let (xi)
∞
i=0 and (yi)

∞
i=0 be sequences of positive numbers such307

that308
n∑

i=0

xi ≤ rxn−1 and
n∑

i=0

yi = ryn−1, (4)

for all n ≥ 2, where r ≥ 4 is a fixed constant. If x0 ≥ y0 and x1 ≤ y1, then309

xi ≤ yi, for all i ≥ 2.310

Proof. First, we introduce the sequence of coefficients (At, Bt)
∞
t=1 defined311

recursively by312 At+1

Bt+1

 = M

At

Bt

 ,

where313

M =

r − 1 −1

1 1

 ,
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with initial values (A1, B1) = (r − 1, 1). We claim that314

At, Bt ≥ 0, for every t ≥ 1. (5)

Let us momentarily assume the validity of (5) and complete the proof of the315

proposition. To that end, we show that316

xn ≤ Atxn−t −Bt

n−t−1∑
i=0

xi

and yn = Atyn−t −Bt

n−t−1∑
i=0

yi,

(6)

for all 1 ≤ t < n. This follows from an induction argument on t. Indeed, for317

a given n ≥ 2, the case t = 1 is a mere reformulation of (4). Then, in view318

of (5), assuming that (6) holds for some 1 ≤ t ≤ n− 2, we obtain319

xn ≤ Atxn−t −Bt

n−t−1∑
i=0

xi

≤ At(rxn−t−1 −
n−t−1∑
i=0

xi)−Bt

n−t−1∑
i=0

xi

= (At(r − 1)−Bt)xn−t−1 − (At +Bt)
n−t−2∑
i=0

xi

= At+1xn−t−1 −Bt+1

n−t−2∑
i=0

xi

320

and similarly for yn, thereby establishing (6) for all 1 ≤ t < n.321

Now, observe that setting t = n− 1 in (6) yields322

xn ≤ An−1x1 −Bn−1x0 ≤ An−1y1 −Bn−1y0 = yn, (7)

for all n ≥ 2, which completes the proof.323

324
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Thus, there only remains to justify the bound (5), which will easily follow325

from an explicit representation formula for (At, Bt) based on an eigenvector326

decomposition of M . More precisely, straightforward calculations establish327

that the eigenvalues of M are the two roots ζ1,r ≤ ζ2,r of the characteristic328

polynomial p(ζ) = ζ2 − rζ + r, as defined also in Definition 1. These roots329

are both positive if r ≥ 4 and distinct whenever r > 4. In fact, it is readily330

seen that ζ2,r ≥ ζ1,r > 1. Moreover, it holds that ζ2,r + ζ1,r = r, ζ2,rζ1,r = r331

and (ζ2,r − 1)(ζ1,r − 1) = 1.332

When r > 4, we obtain the eigenvector decomposition333 At

Bt

 =
ζt2,r

ζ2,r − ζ1,r

ζ2,r − 1

1

−
ζt1,r

ζ2,r − ζ1,r

ζ1,r − 1

1

 (8)
334

for every t ≥ 1, which implies (5) because ζ2,r ≥ ζ1,r > 1. Finally, further335

letting r → 4 yields the representation2.336 At

Bt

 =

2t + t2t−1

t2t−1

 (9)

337

in the case r = 4, which also validates (5) and thus concludes the proof of338

the proposition.339

Observation 7. Observe from (7), (8) and (9) in the preceding proof that340

one has the convenient representation formulas, for every n ≥ 2,341

2We include in the analysis the case r = 4 so as to demonstrate that the approach

applies to all robustness values.
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yn =
ζn−1
2,r (ζ2,r − 1)− ζn−1

1,r (ζ1,r − 1)

ζ2,r − ζ1,r
y1 −

ζn−1
2,r − ζn−1

1,r

ζ2,r − ζ1,r
y0

= ζn−1
2,r

(ζ2,r − 1)y1 − y0
ζ2,r − ζ1,r

− ζn−1
1,r

(ζ1,r − 1)y1 − y0
ζ2,r − ζ1,r

,

(10)

if r > 4, and
yn = (2n−1 + (n− 1)2n−2)y1 − (n− 1)2n−2y0

= 2n−1y1 + (n− 1)2n−2(y1 − y0),
(11)

342

when r = 4. If one further requires that (4) hold for n = 1, whereby y1 =343

(r − 1)y0, then one finds that344

yn =
ζn2,r(ζ2,r − 1)− ζn1,r(ζ1,r − 1)

ζ2,r − ζ1,r
y0,

if r > 4, and345

yn =
(
3 · 2n−1 + (n− 1)2n−1

)
y0,

when r = 4.346

We are now ready to formally prove Theorem 5.347

Proof of Theorem 5. First, observe that if X = (xi)
∞
i=0 is r-robust, then348

from (3) it follows that
∑n

i=0 xi ≤ rxn−1. The upper bounds then follow349

directly from Proposition 6, with x0 = y0 = z0 and x1 = y1 = z1, and the350

representation formulas (10) and (11).351

The lower bounds, in contrast, are more subtle. In order to establish their352

validity, we define, for any given integer j ≥ 0, an auxiliary sequence (xi)
∞
i=0353

by354

x0 =

j∑
k=0

zk and xi = zj+i, if i ≥ 1.

In particular, it holds that
∑n

i=0 xi ≤ rxn−1, for all n ≥ 2. Therefore, by355

Proposition 6 combined with the formulas for yn from Observation 7 we356
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deduce that, for all n ≥ 2,357

xn ≤ ζn−1
2,r

(ζ2,r − 1)x1 − x0

ζ2,r − ζ1,r
− ζn−1

1,r

(ζ1,r − 1)x1 − x0

ζ2,r − ζ1,r
,

if r > 4, and xn ≤ 2n−1x1 + (n − 1)2n−2(x1 − x0), for r = 4. Since (xi)
∞
i=0358

is also nonnegative and, as n → ∞, the dominant terms above are ζn−1
2,r and359

(n−1)2n−2, we conclude that necessarily x0 ≤ (ζ2,r−1)x1, for all values r ≥ 4.360

In terms of the original sequence (zi)∞i=0, observing that (ζ2,r−1)(ζ1,r−1) = 1,361

this yields that362

(ζ1,r − 1)

j∑
k=0

zk ≤ zj+1,

for every j ≥ 0. In particular, if zi+1 ≥ (ζ1,r − 1)ζ i1,rz0 holds for every363

0 ≤ i ≤ j, then364

zj+2 ≥ (ζ1,r − 1)

j+1∑
k=0

zk ≥ (ζ1,r − 1)z0 + (ζ1,r − 1)2z0

j+1∑
k=1

ζk−1
1,r

= (ζ1,r − 1)z0 + (ζ1,r − 1)2z0
ζj+1
1,r − 1

ζ1,r − 1
= (ζ1,r − 1)ζj+1

1,r z0,

365

366

thereby completing the proof of the lower bounds by induction.367

Observation 8. The bounds of Theorem 5 are asymptotically tight. This is368

because Property 2 states that any geometric schedule Gb with b ∈ [ζ1,r, ζ2,r]369

is r-robust.370

Using the calculus of upper limits, we prove a property of merged se-371

quences which allows us to bound the range of αX̄ . The technical proof is372

given in Appendix Appendix B.373

Lemma 9. Let (x1,i)
∞
i=1, (x2,i)

∞
i=1, . . . , (xN,i)

∞
i=1 be N positive nondecreasing374

sequences satisfying the bounds cAA
i ≤ xj,i ≤ cBiB

i, for all i and j, where375
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cA, cB > 0 and A,B > 1 are given constants. Let (yi)
∞
i=1 be the sequence376

obtained by merging all (xj,i)
∞
i=1 and sorting the resulting set of values in377

nondecreasing order. Then,378

A
1
N ≤ lim inf

i→∞
y

1
i
i ≤ lim sup

i→∞
y

1
i
i ≤ B

1
N .

379

Theorem 5, Lemma 9, and the definition of αX̄ yield:380

Corollary 10. Let X be a p-processor schedule defined by the set X =381

{X0, X1, . . . , Xp−1}, where each Xj is an r-robust strategy, for a given r ≥ 4.382

Then αX̄ ∈ [ζ
1/p
1,r , ζ

1/p
2,r ].383

We now state the main result of this section. Its proof formalizes the384

intuition given at the beginning of the section.385

Theorem 11 (Lower Bound). Any r-robust contract schedule with k queries386

has consistency at least c(k, r), where387

c(k, r) = min
x

x2k+1

x2k − 1
subject to ζ

1/2k

1,r ≤ x ≤ ζ
1/2k

2,r . (12)

388

Proof. Any schedule X with k queries will choose a schedule among a set of at389

most 2k schedules, say X = {X0, . . . , X2k−1}. For X to be r-robust, it must390

be that each Xi, with i ∈ [0, 2k−1] is likewise r-robust; otherwise, maliciously391

generated responses would lead to choosing a schedule of robustness greater392

than r. Note that the consistency of X is identical to the acceleration ratio393

of the 2k-processor schedule that is defined by X . Let X ′ denote this multi-394

processor schedule. From Lemma 4, we have that acc(X ′) ≥ α2k+1
X̄

α2k

X̄ −1
. Last,395
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since every single-processor schedule Xi must be r-robust, from Corollary 10396

it follows that αX̄ ∈ [ζ
1/2k

1,r , ζ
1/2k

2,r ].397

We will argue that the lower bound of Theorem 11 matches the upper398

bound of [19]. Specifically, consider the following class of single-processor399

schedules.400

Definition 12. For given b > 1, and l ∈ N+ define Xb,l as the set of schedules401

{X0, . . . Xl−1}, in which Xi = (bi+jl)j≥0, for every i ∈ [0, l − 1].402

In other words, each schedule Xi in Xb,l is a geometric schedule with base403

bl, whose lengths are multiplied by a factor bi. In [19], a b > 1 is chosen so404

as to guarantee that all strategies in Xb,2k are r-robust, and if the response405

string is error-free, then the acceleration ratio of Xb,2k is at most b2
k+1

b2k−1
. Thus,406

there is an r-robust schedule of consistency at most407

min
b

b2
k+1

b2k − 1
subject to ζ

1/2k

1,r ≤ b ≤ ζ
1/2k

2,r and b > 1. (13)

The tightness of our lower bound follows from directly comparing (13) with408

Theorem 11 and the fact that ζ1,r > 1. We can also express the optimal409

consistency given by (13), and thus obtain the following result.410

Theorem 13 (Pareto-optimality). The optimal consistency of an r-robust411

schedule with k queries is equal to412

c(k, r) =
b2

k+1

b2k − 1
, with b =

ζ
1/2k

2,r , if r ≤ (1+2k)2

2k

(1 + 2k)1/2
k
, otherwise.

(14)

413

Figure 2 depicts the optimal consistency-robustness tradeoff as expressed414

by (14) for various values of k.415
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Figure 2: Illustration of the optimal consistency-robustness tradeoff.

Example 14. For r = 4, the optimal consistency is 21+
1

2k , thus rapidly416

converging to 2, as function of k. For large values of r, the consistency417

converges to (1 + 2k)1+1/2k/2k. E.g., for k = 4, the consistency converges to418

1.26833, as r → ∞.419

Last, we show that the same Pareto-optimal trade-off can be obtained for420

online bidding via a reduction from contract scheduling.421

Theorem 15. Any r-robust online bidding strategy, with k queries, has con-422

sistency at least c(k, r), as expressed by (14). Furtermore, this result is tight.423

424

Proof. For the lower bound, we will show a reduction from contract schedul-425

ing with k queries. Let T be the unknown interruption time for a given426

contract scheduling instance. Let X be an r-robust, c-consistent bidding427

strategy with k queries, for some given r, c. We will show how to obtain a428

schedule with the same guarantees. To this end, we can interpret X as a set429

of 2k sequences {X0, . . . , X2k−1}, each of which must be r-robust. We define430

the bidding target to be equal to T , and let Y ∈ X be the sequence returned431
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by the query responses for this bidding instance u = T .432

By definition, Y is r-robust. Let m denote the smallest index for which433

ym ≥ T . Since X is also c-consistent, we have
∑i

j=0 yj ≤ ryi−1, for all i, and434 ∑m
j=0 yj ≤ cT. Define Z = (zi)i≥0 such that zi = yi/c. It follows that435

i∑
j=0

zj ≤ rzi−1, for all i, and zm ≥ T

c
,

m∑
j=0

zj ≤ T. (15)

If we interpret Z as a contract schedule, the first equation in (15) shows that436

Z is r-robust, whereas the last two equations show that it is c-consistent.437

Therefore, from Theorem 11, it follows that c ≥ c(k, r).438

Last, we note that [14] gave an explicit strategy for online bidding of439

consistency equal to c(k, r), which establishes the tightness of the result.440

4. Sequencing with noisy queries441

In this section, we extend our study to the noisy query model. We focus442

on contract scheduling, but we note that the same upper bounds can be443

easily extended to online bidding using the same techniques. Recall that444

in this model, η ≤ k query responses may be erroneous, and the scheduler445

specifies a parameter τ ≤ k that describes its desired tolerance to errors or,446

alternatively, an anticipated upper bound on the query error.447

We first discuss the intuition behind our approach. The starting obser-448

vation is that the Pareto-optimal schedule can be found in the class Xb,2k449

(recall Definition 12), as shown in Section 3). This class has a nice structural450

property, as we show in Property 16: if jT is the index of the best schedule451

in this class, for interruption T , then any schedule of index close, but smaller452
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than jT is likewise quite efficient. In the next step, we show how to apply453

an error-tolerant binary-search algorithm, using k binary queries in the pres-454

ence of errors, so as to find a schedule in Xb,2k that has index close to (but no455

larger than) jT ; Property 16 implies that this schedule should also perform456

well. In Theorem 18, we quantify this statement and optimize the choice of457

b. Our main result is Theorem 20: here, we prove that the obtained schedule458

is extremely robust to errors and very close to the Pareto-optimal one as k459

increases. It is worth noting that the resulting schedule is determined by460

adaptive queries since the underlying binary search algorithm builds upon461

adaptive queries. Adaptivity, in particular, helps us find an efficient schedule462

within the exponential-sized class Xb,2k .463

We start with the structural property that follows immediately from Def-464

inition 12. See also Figure 3 for an illustration.465

Property 16. Consider the set Xb,l = {X0, . . . , Xl−1} of the l single-processor466

strategies in Definition 12. For a given interruption time T , let jT ∈ [0, l−1]467

be such that XjT completes a contract of largest length among all schedules468

in Xb,l, and specifically of length L0. Then, for all j ∈ [0, jT ], Xj completes469

a contract of length at least bj−jTL0 by T .470

We emphasize that jT depends on the interruption time T , and is thus471

unknown to the scheduler. We would like to find a schedule of index close, but472

no larger than jT . To model this situation, we define a problem which we call473

MinSearch. The input to this problem is an unknown array A[0 . . . 2k − 1]474

that stores a permutation of {0, . . . , 2k − 1}, such that there exists a j∗ ∈475

[0, 2k − 1] for which A[j∗ − i] = i, for all i ∈ [0, j∗]. For example, A can476

be of the form A = [3, 2, 1, 0, 6, 4, 7, 5], where j∗ = 3. The objective is to477
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�

b1

b2

b3

b4

b5

b6

b7

b8

b11

. . .

. . .

. . .

. . .

T

b0

Figure 3: An illustration of the class of schedules Xb,2k , for k = 2. Given an interruption

T , the schedule that completes the largest contract by time T is X1 (a contract of length

b9) hence jT = 1.

use k binary queries, at most τ of which can receive erroneous responses,478

for a given τ , so as to identify an index i ∈ [0, j∗] such that A[i] is as small479

as possible, without knowing j∗. In [40], an algorithm called Robust Binary480

Interval Search (RBIS) was given in the context of the online time-series481

search problem, based on an algorithm for a related error-tolerant setting482

due to [38]. The same algorithm can be applied to MinSearch:483

Observation 17. There is an algorithm for MinSearch with k binary484

queries that outputs an index i ∈ [0, j∗] such that A[i] ≤ 2⌊k/2⌋+2τ , for all485

τ ≤ k/4, if there are at most τ erroneous query responses.486

Thus, in our schedule, each binary query is of the form “is jT ≤ x?”,487

where x is chosen in [0, 2k − 1]. Note, however, that from the structure of488

Xb,2k , one can express equivalently such query as a partition query of the489

form “is the interruption in A or B?”, where A,B form a disjoint partition of490

the timeline. We refer to [19] for the details on the implementation of such491

partition queries.492

Combining Property 16 and Remark 17, we obtain the following perfor-493
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mance guarantees. Define U = 2⌊k/2⌋+2τ .494

Theorem 18. For any r ≥ 4 and η ≤ τ ≤ k/4, there exists a schedule that495

has acceleration ratio at most496

R(k, r, τ) =
b2

k+U+1

b2k − 1
, (16)

where497

b =

ζ
1/2k

2,r , if r ≤ (1+2k/(1+U))2

2k/(1+U)

(1 + 2k/(1 + U))1/2
k
, otherwise,

and where U = 2⌊k/2⌋+2τ . Otherwise, the acceleration ratio of the schedule is498

at most r.499

Proof. We apply the error-tolerant binary search algorithm of Remark 17 for500

MinSearch on the set of indices of all schedules in Xb,2k , where b > 1 will501

be chosen later. Assuming that η ≤ τ , then the output is the index of a502

strategy in Xb,2k which is ranked at most U among the schedules in Xb,2k ,503

in regards to its largest completed contract (where lower ranking indicates504

better performance). From Property 16, this means that the selected schedule505

has length at least L0/b
U , where L0 is the length of the largest contract506

completed by time T among all schedules in Xb,2k . It is easy to evaluate the507

latter formally (see the details in the proof of Theorem 22), and we infer that508

the acceleration ratio of the selected schedule is at most b2
k+1+U

b2k−1
.509

Furthermore, given the desired robustness r ≥ 4, we require that each510

schedule in Xb,2k must be r-robust. From Property 2, this is equivalent to511

the constraint ζ1,r ≤ b2
k ≤ ζ2,r. Therefore, the acceleration ratio of the512

schedule is equal to513

min
b2

k+1+U

b2k − 1
, subject to ζ1,r ≤ b2

k ≤ ζ2,r.
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Optimizing the above expression yields the result.514

The schedule of Theorem 18 is very robust to query errors. More precisely,515

in Theorem 20, we show that as long as η ≤ τ ≤ k/4−o(k), not only does the516

acceleration ratio degrade gently as a function of τ , but, more importantly, it517

improves rapidly as k increases, and approaches the ideal performance of the518

Pareto-optimal schedule. Recall that c(k, r) and R(k, r, τ) are given by (14)519

and (16), respectively. We first define a function that will help us express520

and prove the performance guarantee.521

Definition 19. For all x ≥ 1, define the function g(x) = (1+x)1+
1
x

x
.522

Note that g is a decreasing function of x and converges to 1 as x → ∞.523

Theorem 20. For all k ∈ N+, r ≥ 4 and η ≤ τ ≤ k/4, it holds that524

R(k, r, τ) ≤ f(k, r, τ) · c(k, r),

where f(k, r, τ) =
g( 2k

1+U
)

g(2k)
· ζ

U

2k

2,r .525

Proof. We consider cases, depending on whether r ≤ (1+2k)2

2k
or not (see (14))526

and whether r ≤ (1+2k/(1+U))2

2k/(1+U)
or not (see (16)). To simplify notation, define527

ρ0 =
(1 + 2k)2

2k
and ρ1 =

(1 + 2k/(1 + U))2

2k/(1 + U)
,

and note that it is always the case ρ0 ≥ ρ1, since the function (1 + x2)/x528

is increasing for all x ≥ 1. In the discussion that follows, recall that the529

function is defined in Definition 19.530

Case 1: r ≤ ρ1 (thus r ≤ ρ0 as well). In this case,531

R(k, r, τ) =
ζ
1+ 1+U

2k

2,r

ζ2,r − 1
, and c(k, r) =

ζ
1+ 1

2k

2,r

ζ2,r − 1
.
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Therefore, we have that R(k, r, τ) = ζ
U

2k

2,r c(k, r), and the theorem follows .532

Case 2: r > ρ0 (and thus r > ρ1 as well). In this case,533

R(k, r, τ) = g(2k/(1 + U)), and c(k, r) = g(2k),

therefore we have that534

R(k, r, τ)

c(k, r)
=

g( 2k

1+U
)

g(2k)
,

and the theorem follows.535

Case 3: r ∈ (ρ1, ρ0]. For this case to apply, it must be that536

ζ2,r − 1 ≤ 2k and ζ2,r − 1 ≥ 2k

1 + U
. (17)

We have that537

R(k, r, τ) = g(
2k

1 + U
) and c(k, r, τ) =

ζ
1+ 1

2k

2,r

ζ2,r − 1
, (18)

Define y = 2k

1+U
and z = ζ2,r − 1, then by (17) we have that z ≥ y. Further-538

more, we can express c(k, r) equivalently as539

c(k, r, τ) = g(z)
ζ

1

2k

2,r

ζ
1
z
2,r

. (19)

Combining the above, we obtain540

R(k, r, τ)

c(k, r)
=

g(y)

g(z)
· ζ

1
z
− 1

2k

2,r (From (18) and (19))

=
g(y)

g(z)
· ζ

U

2k

2,r (From (17))

=
g( 2k

1+U
)

g(ζ2,r − 1)
· ζ

U

2k

2,r (def of z, y)

≤
g( 2k

1+U
)

g(2k)
· ζ

U

2k

2,r . (From monotonicity of g and (17))

541
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Theorem 20 leads to interesting conclusions in regard to the robustness of542

the schedule to errors. Specifically, simple calculus shows that the function543

rapidly converges to 1, as k → ∞, even if τ is as large as k/4 − o(k). This544

implies that the scheduler is not constrained by the choice of a particular545

tolerance parameter τ , even if k is a fairly small constant. Namely, even if546

we choose a very pessimistic value for τ such as τ = k/4− o(k), and even if547

the error is as high as k/4− o(k), the schedule has an acceleration ratio very548

close to the ideal case of error-free queries (i.e., as good as its consistency).549

This improves considerably upon the state-of-the-art schedule:550

Observation 21. The schedule of [19] does not exhibit comparable robust-551

ness. To see this, consider the case r = 4, for which their acceleration ratio552

is 21+
1
k
+2 τ

k . Suppose that τ = Θ(k), i.e., τ = c · k for constant c < 1/4, then553

this is equal to 21+
1
k
+2c, which not only can be much larger than the ideal554

consistency, if c is large, but is also practically unaffected by the number of555

queries k.556

5. Robust fault-tolerant contract scheduling557

The techniques we introduced in Sections 3 and 4 can be applied to other558

multi-criteria optimization settings unrelated to query predictions. We il-559

lustrate, using as an example the robust, fault-tolerant contract scheduling560

problem, defined as follows. Suppose we are given a system of p identical561

parallel processors, a robustness requirement r, and a fault-tolerance param-562

eter f < p. The objective is to obtain a schedule of contact algorithms in563

the system of p parallel processors that has a minimum acceleration ratio if564

up to f processors can be faulty but also has an acceleration ratio at most565
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r if all but a single processor are faulty. Here, a fault is byzantine, in that a566

processor may cease to work at any point in time. We denote this problem567

as RFT(r, p, f). We emphasize that there is no concept of predictions in this568

formulation.569

This problem generalizes the fault-tolerant setting studied by Kupavskii570

and Welzl [37]; in their model, there is no robustness requirement, and one571

aims to minimize the acceleration ratio of the system in the presence of at572

most f faults. In our setting, instead, we treat f as a “soft” bound on the573

number of faults that may occur and would still like the schedule to perform574

well if this bound is exceeded. Note that if r = ∞, RFT reduces to the setting575

of [37].576

We first show how to obtain a schedule for RFT(r, p, f) by analyzing an577

explicit schedule. Namely, for a b > 1 to be fixed later, we will use the family578

of schedules Xb,p (recall Definition 12), with each strategy Xi in this collection579

scheduled on processor i. From Property 16, the acceleration ratio of this580

schedule is bp+f+1/(bp − 1), in the presence of at most f faults. Moreover,581

since each Xi is near-geometric, we can enforce the requirement that its582

individual acceleration ratio is at most r by appealing to Property 2. This583

yields the following result.584

Theorem 22. There is a schedule for RFT(r, p, f) of acceleration ratio at585

most586

min
bp+f+1

bp − 1
subject to b ∈ [ζ

1/p
1,r , ζ

1/p
2,r ].

587

Proof. Consider an interruption T that occurs right before the contract of588

length bjp+l terminates, for some j ∈ N, and l ∈ [0, p − 1]. Then, from the589
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definition of Xb,p, a contract of length bjp+l−f−1 has completed, even if f590

processor faults have occurred. We have591

T

bjp+l−f−1
=

∑j
i=0 b

ip+l

bjp+l−f−1
≤ bp+f+1

bp − 1
.

which, together with Property 2 completes the proof.592

We will show that this result is tight, and thus, our schedule is optimal.593

To this end, we need the following generalization of Lemma 4, to the fault-594

tolerant setting. The proof closely follows an approach from [41], which595

studied a fault-tolerant version of the online bidding problem. The technical596

proof is given in Appendix Appendix B for completeness.597

Lemma 23. [Appendix] Let X be a p-processor schedule, as defined by a598

set X of p single-processor strategies, assuming that each strategy in X has599

finite acceleration ratio and that at most f processors may be faulty. Then600

acc(X) ≥ αp+f+1

X̄
αp

X̄−1
.601

We can now show that the upper bound of Theorem 22 is tight.602

Theorem 24. Any schedule for RFT(r, p, f) of acceleration ratio at most603

min
bp+f+1

bp − 1
subject to b ∈ [ζ

1/p
1,r , ζ

1/p
2,r ].

604

Proof. Given a p-processor schedule X, and from the robustness requirement605

of the problem, the schedule of each individual processor must be r-robust.606

Thus, Corollary 10 applies, and in combination with Lemma 23, we obtain607

that the acceleration ratio of any schedule is at least min
αp+f+1

X̄
αp

X̄−1
, subject to608

the condition αX̄ ∈ [ζ
1/p
1,r , ζ

1/p
2,r ], which completes the proof.609
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We can obtain a closed-form expression of the acceleration ratio of The-610

orem 22 along the lines of the result of Theorem 18, by replacing 2k with p,611

and U with f .612

Example 25. Consider RFT(r, p, f) with r = 4, p = 3 and f = 1. Then613

Theorem 22 shows that there is a 3-processor schedule which has acceleration614

ratio 25/3 ≈ 3.175, if at most one processor fault occurs, and has acceleration615

ratio 4 if all but one processor may be faulty.616

5.1. A note on fault-tolerant contract scheduling617

We emphasize that our results provide rigorous proofs not only for RFT,618

but also for the standard fault-tolerant contract scheduling problem intro-619

duced in [37] (recall that in the latter, we have r = ∞). We note that [37] did620

not provide explicit acceleration ratios but gave an optimal strategy for the621

problem of searching for a hidden target in the line in a setting in which there622

are p searchers, f of which may be faulty. The work implies that the same ap-623

proach gives a solution to the problem of fault-tolerant contract scheduling,624

however we argue bellow that the two problems are fundamentally differ-625

ent in multi-processor/multi-searcher settings, and it is not obvious how to626

reduce one to the other.627

Consider first the case f = 0, i.e., no searchers or processors are faulty.628

Then, with only two searchers, the competitive ratio of searching on the line629

is 1: one can dedicate a searcher to each direction of the line. In contrast, [6]630

shows that in any p-processor contract schedule, the acceleration ratio is631

always strictly larger than one. It is also instructive to see that the proof of [6]632

is very much different than, say, [42], which studied multi-robot searching.633
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This observation extends to the fault-tolerant setting: while it is possible634

to explore each of the two branches of the line in an optimal manner, by635

dedicating f + 1 searchers to search that branch exclusively, this action has636

no counterpart in the domain of contract scheduling, since infinite length637

executions of contract algorithms lead to schedules of unbounded acceleration638

ratio. Nevertheless, our results in Section 5 apply not only to robust, fault-639

tolerant contract scheduling but also provide explicit formulas for the vanilla640

fault-tolerant model of [37].641

6. Experimental evaluation642

We present an experimental analysis of the query-based schedule we in-643

troduced in Section 4; we refer to this schedule as Robust Query-based644

Schedule, or RQS for brevity (and recall its analysis in Theorem 18). This645

is the most general setting studied in this work and the only one that incor-646

porates noisy data and randomness.647

We evaluate RQS for interruptions T ∈ (1, 105]. More precisely, we con-648

sider all T of the form T = ⌈1.01i⌉ for i ∈ [1, 1157]. For each such potential649

interruption, there is a unique, error-free bit string of size k, which identi-650

fies the best schedule among the 2k candidates in Xb,2k (b chosen according651

to (16)), and whose bits are responses to binary partition queries, as ex-652

plained in Section 4. Given this string and a tolerance parameter τ ≤ k/4,653

we generate the noisy response to the k queries by choosing η uniformly at654

random in [0, τ ], then flipping η bits, again chosen uniformly at random3.655

3Since RQS is determined by a noisy search over a space of 2k schedules, the experi-
mental evaluation needs to assume a reasonably small value of k.
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(b) τ = 4

Figure 4: Experimental performance ratios of various schedules for the setting r = 4,

k = 16, and τ ∈ {2, 4}.

For each interruption T and its associated noisy query responses, we656

evaluate the experimental performance ratio, namely the ratio between T657

and the longest contract completed in the schedule at hand by time T . More658

precisely, for each T , we generate 100 random noisy query responses (each659

a k-bit string) as described above, and the longest completed contract in660

the schedule is the average one over these 100 runs. For a given robustness661

guarantee r ≥ 4, we compare RQS against the schedule Robustτ of [19], to662

which we refer as Baseline Robust. We also compare RQS to two oblivious663

schedules that do not rely to queries, namely the geometric schedules with664

base ζ1,r and ζ2,r, respectively. Recall that, from Property 2, these are the665

two extreme base values for which a geometric schedule without queries is666

r-robust, and note that for r = 4, ζ1,4 = ζ2,4 = 2 (i.e., there is a single667

oblivious schedule).668

Figure 4 depicts the experimental performance ratio of the various sched-669

ules for k = 16, r = 4, and τ ∈ {2, 4}. The peaks of the plots are the670

empirical acceleration ratios of the corresponding schedules. RQS improves671
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upon Baseline-Robust and Oblivious in 94.76% and 94.94% of interruption672

times, respectively, for τ = 2, and 95.77% and 94.94%, respectively, for τ = 4.673

For τ = 2, we observe that RQS and Baseline-Robust have experimental ac-674

celeration ratios 2.054 and 2.355, whereas for τ = 4, their acceleration ratios675

are 2.402 and 2.596, respectively.676

The results demonstrate that for small values of error, i.e., for τ = 2, the677

empirical performance ratio of RQS is very close to 2, which is consistent678

with Theorems 11 and 20, since the ideal consistency (assuming no error)679

is equal to 21+
1

2k . As the error increases, i.e., for τ = 4, the performance680

of both schedules becomes more noisy, as expected; however, RQS still per-681

forms better than Baseline-Robust, even for τ = k/4. Hence, as long as the682

query error is not prohibitive, the improvements over Baseline-Robust are683

considerable.684

We refer to Appendix Appendix C for many additional experimental685

results. In particular, we show that the performance improvement becomes686

more pronounced as r increases. For example, for r = 6 and r = 10, RQS687

performs better than Baseline-Robust in at least 98% of interruptions, and688

the acceleration ratio improvement is at least 16%. This is due to the fact689

that RQS has greater leeway to optimize the base b, given that the worst-case690

effect of the query error is less significant than in Baseline-Robust. We also691

show experiments with different numbers of queries, ranges of query errors,692

and query errors either below or beyond the tolerance parameter. These693

results show that, as expected, RQS performs much better than Baseline-694

Robust if η is much smaller than τ , and it is comparable to Baseline-Robust,695

even if η exceeds τ .696

36



7. Discussion697

We studied a classic problem from sequential decision-making in the698

query-based prediction model. Our approach exploits connections between699

the quality of responses, parallelism, error-tolerant search, and fault-tolerance700

at the processor level. We gave Pareto-optimal schedules, and schedules701

based on adaptive queries in which the performance degradation due to error702

is negligible, as the number of queries grows. We also showed that our tech-703

niques are applicable to multi-criteria scheduling beyond the query setting,704

such as the robust, fault-tolerant contract scheduling problem.705

The techniques of Section 3 can be useful in best-of-both-worlds analysis706

and multi-criteria optimization for other problems such as searching for a707

hidden target under the competitive ratio in an unbounded line environment,708

a classic search problem in TCS, AI and OR that has been studied in a variety709

of settings. More precisely, we know from [3, 10] that any contract schedule710

of acceleration ratio r can be interpreted as a search strategy of competitive711

ratio 1+2r, and vice versa. Theorem 5 then solves the following problem: it712

characterizes the (1 + 2r)-competitive strategies whose search lengths are as713

large as possible (the upper bound in the statement of the theorem), or as714

small as possible (the lower bound, respectively). This answers the question715

of finding the most “aggressive” and the most “conservative” strategies for716

any desired competitive ratio. Such characterizations help obtain strategies717

that simultaneously optimize multiple performance measures; see., e.g., [43],718

which answered this question only for the special case r = 9.719

The broader future objective is to obtain learning-augmented algorithms720

in settings in which predictions are elicited via queries. For instance, [11]721
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showed connections between sequencing problems (such as contract schedul-722

ing) and problems such as hierarchical clustering and minimum latency,723

which opens the possibility of applying our approaches to other important724

problems.725
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Appendix857

Appendix A. Statement of Gal’s theorem858

Below, we give the formal statement of Gal’s theorem.859

Theorem 26 (Gal [44]). Let q be a positive integer, and X = (xi)
∞
i=0 a860

sequence of positive numbers with supn≥0 xn+1/xn < ∞ and αX > 0. Suppose861

that Fi is a sequence of functionals that satisfy the following properties:862

(1) Fi(X) depends only on x0, x1, . . . xi+q,863

(2) Fi(X) is continuous in every variable, for all positive sequences X,864

(3) Fi(aX) = Fi(X), for all a > 0,865

(4) Fi(X + Y ) ≤ max(Fi(X), Fi(Y )), for all positive sequences X, Y , and866

(5) Fi+j(X) ≥ Fi(X
+j), for all j ≥ 1, where X+j = (xj, xj+1, . . .).867

Then868

sup
0≤q<∞

Fq(X) ≥ sup
0≤q<∞

Fq(GαX
),

where Ga is defined as the geometric sequence (ai)∞i=0.869
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Appendix B. Omitted proofs870

Proof of Lemma 9. For each j = 1, . . . , N , we define the function fj(t) ∈ N,871

where t > 0, as the number of xj,i’s such that xj,i ≤ t. More precisely, for872

any t > 0, the value fj(t) is the unique nonnegative integer such that873

xj,i ≤ t, for all 1 ≤ i ≤ fj(t) and xj,i > t, for all i > fj(t).

In particular, if cBiB
i ≤ t, then fj(t) ≥ i. Therefore, if cBiB

i ≤ t <874

cB(i+ 1)Bi+1, using that log(i+ 1) ≤
√
i for all i ≥ 0, we conclude that875

fj(t) ≥ i >
log t− log cB

logB
− 1− 1

logB

√
i

≥ log t− log cB
logB

− 1− 1

logB
fj(t)

1
2 .

Similarly, noticing that, if t < cAA
i, then fj(t) < i, we conclude that876

fj(t) < i ≤ log t− log cA
logA

+ 1,

whenever cAA
i−1 ≤ t < cAA

i.877

Now, consider any large t > 0 such that yi ≤ t < yi+1, for some large i.878

It must then hold that879

i =
N∑
j=1

fj(t),

whence880

N

(
log t− log cB

logB
− 1− 1

logB

√
i

)
< i < N

(
log t− log cA

logA
+ 1

)
.

881

In particular, setting t = yi yields that882

cAA
i
N
−1 < yi < cBe

√
iB

i
N
+1,
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which implies883

A
1
N = lim

i→∞
c

1
i
AA

1
N
− 1

i ≤ lim inf
i→∞

y
1
i
i ≤ lim sup

i→∞
y

1
i
i

≤ lim
i→∞

c
1
i
Be

1√
iB

1
N
+ 1

i = B
1
N ,

thereby completing the proof of the lemma.884

Proof of Lemma 23. Consider a schedule X for RFT. For j ∈ [0, . . . p − 1],885

define lX(t, j) as the length of the largest contract in S that has completed in886

processor j by time t. We also define by ℓX,f (t) as the (f + 1)-largest length887

in the set {lX(t, j)}p−1
j=0.888

Following the notation of [6], we denote each contract cj in X as a pair of889

the form (Tj, Dj), where Tj is the start time of cj, and Dj its length (as we890

will see, the specific processor to which the contract is assigned will not be891

significant for our analysis). We also define dj to be equal to ℓX,f (Tj+Dj−ϵ),892

for ϵ → 0. In words, dj is the longest contract length that has been completed893

right before cj is about to terminate, assuming a worst-case scenario in which894

f processors have been faulty, and they also happened to be the processors895

that have completed the longest contracts in the schedule by the said time:896

we call this contract length the (f + 1) length relative to Dj.897

Recall that X̄ denotes the sequence of all contract lengths in X, in non-898

decreasing order. Hence, each contract in X is mapped via its length to an899

element of this sequence (breaking ties arbitrarily).900

Fix a time, say t, at which a contract cj0 = (Tj0 , Dj0) terminates, say on901

processor 0 i.e., t = Tj0 + Dj0 . For all m ∈ [1, p − 1], let cjm = (Tjm , Djm)902

denote the longest contract length that has completed on processor m by903

time t. For every m ∈ [0, p − 1], define Im as the set of indices in N such904
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that i ∈ Im if and only if the contract of length xi has completed by time t905

in processor m. From the definition of the acceleration ratio, we have that906

acc(X) ≥
∑

i∈Im xi

djm
, for all m ∈ [0, p− 1].

Therefore,907

acc(X) ≥ max
0≤m≤p−1

∑
i∈Im xi

djm
,

and using the property max{a/b, c/d} ≥ a+b
c+d

, for all a, b, c, d > 0, we obtain908

that909

acc(X) ≥
∑p−1

m=0

∑
i∈Im xi∑p−1

m=0 djm
. (B.1)

Next, we will bound the numerator of the fraction in (B.1) from below and910

its denominator from above. We begin with a useful observation: we can911

assume, without loss of generality, that by time t (defined earlier), every912

contract of length dj0 or smaller has completed its execution. This follows913

from the definition of dj0 : if X completed a contract of length at most dj0914

later than time t, then one could simply “remove” this contract from X,915

and obtain a schedule of no worse acceleration ratio (in other words, such a916

contract is useless, and one can derive a schedule of no larger acceleration917

ratio than X that does not contain it).918

Using the above observation, it follows that the numerator in (B.1) in-919

cludes, as summands, all contracts of length at most dj0 , as well as at least920

f + 1 contracts that are at least as large as dj0 . Let q denote an index such921

that dj0 = x̄q, then we have that922

p−1∑
m=0

∑
i∈Im

xi ≥
q+f+1∑
i=0

x̄i.
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We now show how to upper-bound the denominator using the monotonicity923

implied in the definition of the (f + 1) length relative to a given contract924

length. Since cj0 is completed no earlier than any other contract cjm , with925

m ∈ [1, p− 1], we have that djm ≤ dj0 . It thus follows that926

p−1∑
m=0

djm ≤
q−(p−1)∑

i=q

x̄i.

Combining the two bounds, it follows that927

acc(S) ≥ sup
0≤q<∞

∑q+f+1
i=0 x̄i∑q−(p−1)
i=q x̄i

.

Define now the functional Fq(X̄) =
∑q+f+1

i=0 x̄i∑q−(p−1)
i=q x̄i

, for every q. The functional928

satisfies the conditions (1)-(5) of Theorem 26 (see Example 7.3 in [45]). More-929

over, supn≥0 x̄n+1/x̄n < ∞, otherwise an infinite contract would be scheduled930

in some processor, which, in turn, would render the corresponding processor931

“useless”, since this contract would never complete. Last, we note that the932

condition αX > 0 is indeed satisfied, from Theorem 5 and Corollary 10.933

By applying Gal’s Theorem (Theorem 26) it follows that934

acc(X) ≥ sup
0≤q<∞

∑q+f+1
i=0 αi

X̄∑q−(p−1)
i=q αi

X̄

.

If αX̄ ≤ 1, then it is easy to show that the above expression shows that935

acc(X) = ∞; see, e.g. [6]. Otherwise, i.e., if αX̄ > 1, after some simple936

calculations along the lines of [6], we arrive at the desired result.937

Appendix C. Additional experimental results938

In this section, we provide additional experimental results concerning the939

RQS schedule.940
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Appendix C.1. Experiments on the robustness r941

In the main paper, we reported experiments for the setting in which942

r = 4.0. Here, we compare RQS against the Oblivious and Baseline-Robust943

schedules for values of r such that r > 4. As before, the number of queries is944

k = 16, and we assume τ = 4 = k/4 (i.e., the largest possible value of error945

the schedule can tolerate). The query error is generated as discussed in the946

main paper.947

Figure C.5 depicts the experimental performance ratio for r ∈ {4, 6, 8, 10}.948

The results show that RQS is consistently better than Oblivious schedules949

and Baseline-Robust, in at least 95% of the possible interruption times.950

We also measured the average percentage improvement of RQS relative to951

Baseline-Robust: this is defined as the average, over all possible interrup-952

tions, of the signed % improvement in each interruption. These improve-953

ments are 11.88, 37.54, 42.96 and 45.48, for r ∈ {4, 6, 8, 10}, respectively.954

The experimental acceleration ratios of RQS are 2.39913, 1.88021, 1.83836,955

and 1.75828, respectively. We observe that the performance gains of RQS956

relative to Baseline-Robust increase as a function of r, as explained in the957

main paper.958

In Figure C.5, we also plotted the minimum and maximum performance959

ratios of RQS, among the 100 random query responses, for each interruption960

time. As expected, the maximum performance ratio is similar to that of961

the Oblivious 1 schedule with a large base ζ1,r, since τ = k/4; however, this962

happens only very rarely, namely when the robust search algorithm finishes963

in a node that is very high up in the search tree. On average, we observe964

that RQS performs very close to the best run.965
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(c) r = 8.00
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Figure C.5: Experimental performance ratios of various schedules for r ∈

{4.00, 6.00, 8.00, 10.00} when k = 16 and τ = 4.

Appendix C.2. Experiments on the query error η966

In the main paper, we considered the setting where the error takes values967

from [0, τ ]. Here, we study a setting in which the maximum query error968

can be either smaller or larger than the tolerance τ . As before, we consider969

r = 4.00, k = 16, and τ = 4. Figure C.6 depicts the performance of schedules970

when η query responses are randomly flipped, and η is uniformly distributed971

in [0, τ/2], [0, τ ], [0, 3τ/2] and [0, 2τ ]. The last two ranges correspond to very972

noisy query responses, for which the theoretical performance guarantees of973
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Theorem 18 do not necessarily hold.974

We observe that, as expected, for relatively small values of τ , and thus975

small values of query error, RQS performs much better than Baseline-Robust.976

This is because the robust search algorithm performs very well, if the error977

is relatively small, and thus the schedule of RQS is very close to the Pareto-978

optimal schedule of Theorem 18. If the error is too large, namely even if η979

exceeds τ , RQS is still experimentally comparable to Baseline-Robust. Re-980

call also our observation at the end of Section 4 concerning the worst-case981

comparison of the two schedules.982
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(a) error ∈ [0, 2]
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(b) error ∈ [0, 4]
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(c) error ∈ [0, 6]
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(d) error ∈ [0, 8]

Figure C.6: Experimental performance ratio of various schedules for different ranges of

error when r = 4.00, k = 16, and τ = 4.
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Appendix C.3. Experiments on the number of queries k983

We report experiments for different values of the number of queries k, for984

the setting in which r = 4.00, τ = ⌊k/4⌋ (note that we consider the high-985

est possible tolerance to errors). Figure C.7 summarizes our findings. We986

observe that RQS is consistently better than Baseline-Robust, and indepen-987

dently on the number of queries, in at least 95% of the possible interruption988

times. The average percentage improvements of RQS relative to Baseline-989

Robust are 8.75, 8.75, 11.50 and 11.51, for k ∈ {8, 10, 12, 14}, respectively.990

The experimental acceleration ratios of RQS are 2.045, 2.043, 2.167, and991

2.164 for k ∈ {8, 10, 12, 14}, respectively. We observe that RQS has a very992

stable performance, which is very close to the theoretically ideal acceleration993

ratio of 2, even for small constant k, in accordance with Theorem 20, and994

the discussion following the theorem in Section 4. For k = 12, both RQS995

and Baseline-Robust are somewhat more noisy: this is because k = 12 is the996

value that maximizes the ratio k/τ in this set of experiments.997
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(a) k = 8.00
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(b) k = 10.00
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(c) k = 12.00
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(d) k = 14.00

Figure C.7: Experimental performance ratio of various schedules for k ∈ {8, 10, 12, 14}

when r = 4.00 and τ = ⌊k/4⌋.
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