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Abstract: LiNbO3 thin films are grown on a c-plane (0001) sapphire wafer at a relatively low substrate
temperature by chemical beam vapor deposition (CBVD) in Sybilla equipment. Raman measurements
only evidence the LiNbO3 phase, while HR-XRD diffractograms demonstrate a c-axis-oriented growth
with only (006) and (0012) planes measured. The rocking curve is symmetric, with a full width at
half maximum (FWHM) of 0.04◦. The morphology and topography observed by SEM and AFM
show very low roughness, with rms equaling 2.0 nm. The optical properties are investigated by a
guided-wave technique using prism coupling. The ordinary refractive index (no) and extraordinary
refractive index (ne) at different wavelengths totally match with the LiNbO3 bulk, showing the high
microstructural quality of the film. The film composition is estimated by Raman and bi-refringence
and shows a congruent or near-stoichiometric LiNbO3.

Keywords: LiNbO3; CBE; thin film; photonics; guided wave

1. Introduction

Lithium niobate (LiNbO3, LN) is an excellent ferroelectric material due to its piezoelec-
tric and electro-optical properties, high Curie temperature (1210 ◦C), significant resistivity,
and high piezo-response. Research regarding the first growth of bulk LiNbO3 crystals by
the Czochralski technique [1] was published in 1965, and LiNbO3 is widely used in modula-
tors, resonators and switch manufacturing. However, LiNbO3 bulk has shown its limits in
the technology development roadmap, mainly in relation to further device miniaturization
and integration as well as difficulties in manufacturing complex architectures (multi-layers,
tandem devices, etc.) [2]. The thin film approach is considered as a solution to lift these
limits and bottlenecks, in parallel to the ion-slicing technique [3] that enables the production
of a high-quality thin-film lithium niobate (TFLN) but presents the drawbacks of high film
thickness (>300 nm) and high manufacturing costs. Many techniques have been explored
to directly deposit LN thin films (a recent review by B. Zivasatienraj et al. [4]), including
sputtering [5–9], sol–gel [10–12], vapor transport equilibration (VTE) [13,14], pulsed laser
deposition (PLD) [15–17], molecular beam epitaxy (MBE) [18,19], Liquid Phase Epitaxy
(LPE) [20–22] and chemical vapor deposition (CVD) [23–28]. Among these, LN films de-
posited by chemical beam vapor deposition (CBVD) at 650 ◦C showed very promising
results [29,30].

A further challenge remains to grow high-quality LiNbO3 thin films to match the bulk
LiNbO3 quality, but also with the required thicknesses, high growth rates and with a process
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scalable to mass production. Depending on the method, LiNbO3 films can be fabricated
at temperatures ranging from 400 ◦C to over 1000 ◦C. Substrate selection also plays an
important role in the fabrication of high-quality LiNbO3 films; c-plane sapphire is widely
used in the growth of c-axis-oriented LiNbO3. The common substrate temperature used
to achieve the high crystallinity of LiNbO3 thin films on c-plane sapphire is higher than
700 ◦C, for example, 710 ◦C for metal–organic chemical vapor deposition (MOCVD) [31],
1000 ◦C for LPE [18], etc. These high-temperature processes inflate manufacturing costs,
lead to cracks or the delamination of the film due to thermal mismatches between LiNbO3
and c-sapphire and favor Li interdiffusion between different layers [32].

LiNbO3 material is a holistic solution for many applications in the photonic and
acoustic industry, such as waveguide-based optical devices, surface acoustic wave devices
(SAWs), memory units, and neuromorphic systems [33]. The thickness of LiNbO3 is
a crucial factor in applications. Normally, 300 to 600 nm of TFLN is used in photonic
applications [34]. In acoustic wave technology, the large electromechanical coupling (k2) of
bulk acoustic wave (BAW) resonators can reach 39% at 2.99 GHz when using 600 nm X-cut
LiNbO3 [35] and 25% at 4.8 GHz when using 400 nm Z-cut LiNbO3 [36]. The selection of
suitable bottom electrodes for the application or fabrication of multilayer materials may be
hindered by high temperatures during the deposition process.

The aim of this study is to investigate the crystallinity and optical properties of LiNbO3
films deposited on sapphire by CBVD at a lower deposition temperature than previously
reported. After deposition, the crystalline structure of LiNbO3 thin films is evaluated by
Raman and high-resolution X-ray diffraction (HR-XRD), and the surface morphology is
analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The
refractive index, its bi-refringence and film thickness are then measured by a nondestructive
tool using the guided-wave technique. In addition, the thickness measured by SEM is
compared to the results obtained by optical measurements, highlighting good agreement.

2. Materials and Methods

Lithium niobate films were deposited on a c-axis sapphire substrate by CBVD (chemi-
cal beam vapor deposition), also referred to as CBE (Chemical Beam Epitaxy), using Sybilla
200 equipment from ABCD Technology (see the principle in Figure 1). CBVD is a hybrid
technique between MBE and CVD: its principle is based on chemical precursor flows under
molecular vacuum conditions (meaning no gas-phase collisions, thus resulting in a line-
of-sight deposition technique) [37–40]. The commercial precursors lithium tert-butoxide
(hexameric in vapor phase [Li(OtBu)]6, CAS 1907-33-1) and niobium tetraethoxy dimethy-
laminoethoxide (Nb(OEt)4dmae, CAS 359847-15-7) are used as precursors. The precursor
flows are evaluated theoretically from pre-chamber vapor pressures, which are adjusted
via reservoir temperatures; details are described in our previous report [30]. In the present
study, the Li precursor was positioned on line 1 with a pre-chamber vapor pressure of
6.7 × 10−3 mbar obtained with a reservoir temperature of 89.0 ◦C; and the Nb precursor
was positioned on line 2 with a pre-chamber pressure of 29.0 × 10−3 mbar obtained with
a reservoir temperature of 70.0 ◦C. Every source contained 3 holes that were 1.5 mm in
diameter. Three opposite sources were used for each precursor, and the calculated Li/Nb
precursor flow ratio at the best position was 1.44, (the principle of flow simulation was
described in a previous paper [40]). This value is lower than the previously reported one
by CBVD at 650 ◦C [30]. The substrate was heated with a graphite plate at 660 ◦C, resulting
in an estimated substrate temperature of 400 ◦C evaluated by thermocouples positioned on
the substrate holder. The deposition was carried out for three hours, and the simulation
growth rate reached approximately 115 nm/h (slightly higher than at 650 ◦C for similar
flow conditions). The deposition parameters are summarized in Table 1.
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partments with effusive holes on top. Through line-of-sight trajectories from the Knudsen holes, the 
precursor molecules reach the substrate and decompose due to the substrate heating. 

Table 1. Summary of deposition parameters of LiNbO3 thin film by CBVD. 

Main chamber pressure (10−5 mbar) 1.59 ± 0.27 
[Li(OtBu)]6 reservoir temperature (°C) 89.0 ± 0.1 

[Li(OtBu)]6 pressure (10−3 mbar) 6.17 ± 0.31 
Nb(OEt)4dmae reservoir temperature (°C) 70.0 ± 0.1 

Nb(OEt)4dmae pressure (10−3 mbar) 29.0 ± 0.6 
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Figure 1. Schematic of the CBVD/CBE Sybilla 200 system from ABCD Technology used in LiNbO3

thin film studies. Li precursor is located on line 1, and Nb is located on line 2. A thermostatic
reservoir is employed to evaporate every precursor into a pre-chamber ring that is connected to
6 compartments with effusive holes on top. Through line-of-sight trajectories from the Knudsen
holes, the precursor molecules reach the substrate and decompose due to the substrate heating.

Table 1. Summary of deposition parameters of LiNbO3 thin film by CBVD.

Main chamber pressure (10−5 mbar) 1.59 ± 0.27
[Li(OtBu)]6 reservoir temperature (◦C) 89.0 ± 0.1

[Li(OtBu)]6 pressure (10−3 mbar) 6.17 ± 0.31
Nb(OEt)4dmae reservoir temperature (◦C) 70.0 ± 0.1

Nb(OEt)4dmae pressure (10−3 mbar) 29.0 ± 0.6
T_2.2 (◦C) * 385 ± 5
T_2.3 (◦C) * 402 ± 4

Deposition time (s) 10,805
* Two thermocouples are located on the substrate holder.

3. Results and Discussion
3.1. Structure and Composition Properties

There is currently no quantitative method that is completely accurate in determining
the Li/Nb ratio. Lithium is a very light element; its atomic mass is 6.941u and its atomic
number is 3. Therefore, Ion Scattering Spectroscopy (ISS) and Energy-Dispersive X-ray
Spectrometry (EDS) cannot detect lithium. The low intensity of the Li1s photoelectron line
makes it difficult to provide accurate measurements by XPS [41,42].

Raman spectroscopy is applied to estimate the chemical compositions of films. Ac-
cording to the difference in active scattering modes, the LiNbO3, LiNb3O8 and Li3NbO4
phases can be identified [43]. In this study, a Raman system was used at 633 nm laser
wavelength with a lens magnification ×100. The Raman spectra of LiNbO3 film on sapphire
and sapphire substrate spectra are presented in Figure 2. Peaks were measured at 152,
238, 270, 328, 428, 578 and 870 cm−1, which correspond to the expected modes of bulk
LiNbO3 [44]. The vibrational modes of LiNb3O8 and Li3NbO4 could not be observed.
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Figure 2. Raman spectra of LiNbO3 thin films on sapphire (black line) and sapphire (orange line).

As reported by U. Schlarb et al. [45], the Li/Nb ratio can be estimated based on the
relationship between the line width (Γ) of the peaks attributed to the E[TO]1 mode at
152 cm−1, the A[LO]4 at 870 cm−1 and the molar percentage of lithium content, which is
described in Equations (1) and (2).

For 152 cm−1: [mol%]Li = 53.03 − 0.4739Γ (cm−1) (1)

For 870 cm−1: [mol%]Li = 53.29 − 0.1837Γ (cm−1) (2)

The line width Γ (or full width at half maximum, FWHM) was determined by fitting
the experimental data with a Lorentzian function (see Figure 3). The extracted FWHMs
were 9.19 cm−1 for 152 cm−1 mode and 24.01 cm−1 for 870 cm−1 mode, corresponding to
Li concentrations [mole%] of 48.68% and 48.88%, respectively. According the results, the
obtained material was congruent LiNbO3.
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The crystal structure of LiNbO3 films was analyzed by high-resolution X-ray diffrac-
tion; the 2θ/ω pattern and rocking curve scan of LN (006) are illustrated in Figure 4. There
were two peaks located at 38.94◦ and 83.92◦ which corresponded, respectively, to (006)
and (0012) orientations of LiNbO3, which belonged to the same family of crystal planes.
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Combined with the Raman spectrum, this result strengthens the evidence for single-phase,
c-axis oriented, LiNbO3 growth. The c lattice constant in this study equaled 13.833 Å;
meanwhile, the c lattice constant of congruent LiNbO3 and stoichiometry LiNbO3 crystal
were 13.864 Å and 13.856 Å, respectively [46], which shows some stresses are present in the
film [47]. The crystalline quality of the layer was estimated by the FWHM of rocking curve
scans on the LN (006) peak; the mosaicity was low at 0.04◦. This value is comparable to
those that were obtained at higher temperatures, such as 0.04◦ for MOCVD at 710 ◦C [31]
and 0.03◦ for MBE at 1000 ◦C [18], and probably compete with 0.003◦ for LiNbO3 bulk [4].
The mosaicity of LiNbO3 films deposited by CBVD at 650 ◦C in a previous report was
identical at 0.04◦ [30]. This result contributes to the ability to fabricate LiNbO3 thin film
by CBVD at lower temperatures while maintaining the same crystal quality. M. Kadota
et al. [28] fabricated a BAW resonator on LiNbO3 film deposited by CVD; the mosaicity of
the LiNbO3 film was 0.4◦, and the k2 equaled 5.8% at 2.9 GHz. Although this study showed
higher mosaicity than bulk by one order of magnitude, it still holds promising potential for
acoustic applications.
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Figure 4. (a) High-resolution X-ray diffraction diffractogram 2θ/ω scan of LiNbO3 from 15◦ to 100◦,
and (b) rocking curve on LN (006).

The surface morphology of LiNbO3 films was examined by SEM (see Figure 5a),
but the resolution was too low to identify any grains. However, the film was cracked
in random directions. The cracking of LiNbO3 film on c-plane sapphire is a well-known
phenomenon [32], probably related to the different thermal expansion coefficients of Al2O3
and LiNbO3 perpendicular to the c-axis, 5.0 × 10−6 K−1 [48] and 14.1 × 10−6 K−1 [46],
respectively. Besides that, the film thickness and the thermal processes (substrate tempera-
ture, heating and cooling step) affect the surface quality of LiNbO3 films. According to R. S.
Feigelson [49], when the thickness of LiNbO3 deposited on c-plane sapphire is higher than
200 nm, cracks appear.
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The thickness measured in the SEM cross-section (see Figure 5b) was approx. 357 nm,
and the growth rate equaled 119 nm/h.
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The surface topography of LiNbO3 films has been studied by AFM within the scanned
area of 2 × 2 µm2 and 1 × 1 µm2, which is shown in Figure 6. The root mean square (rms)
was obtained with a small value, equal to 2.0 nm.
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Figure 6. Two-dimensional and three-dimensional AFM images of LiNbO3 thin on c-plane sapphire.

3.2. Optical Properties

The optical waveguide properties have been investigated using the prism coupling
technique [50], which is also known as the m-line spectroscopy technique (system Metricon
2010 Ltd.). This technique provides the mapping of thickness, the refractive indices and
the anisotropy (∆n = ne − no) of LiNbO3 films without destruction of the samples. In
order to investigate the interaction of LiNbO3 films and light energy, different laser beam
sources with wavelengths ranging from UV (450 nm) to near IR (1548 nm) were used. The
laser beam with an incident angle (θ) was coupled into the layer via a right-angle rutile
prism with an angle of 45◦ (code 4344.1 nm); then, the total reflected beam was collected
by a photodetector. In this study, two waveguide modes were measured, the transverse
electric waves (TE polarization) and the transverse magnetic waves (TM polarization). The
returned indices nTE and nTM corresponded, respectively, to the ordinary refractive index
(no) and extraordinary refractive index (ne). By identifying the reflectivity dips, referred
to as propagation modes, the index and the thickness can be determined if at least two
modes of the same polarization are observed. On the contrary, if there is only one mode of
observation and the thickness is measured by other methods, the refractive index can still
be extracted.

The TE- and TM-guided mode spectra at different laser wavelengths are illustrated in
Figure 7. From 449.5 nm to 636.6 nm, two propagation modes are obtained in both TE and
TM polarization. The sharp modes plotted for TE0 and TM0 were observed, indicating a
smooth surface and a good film—substrate interface [51]. At a higher wavelength, there
was only one mode due to the large difference between the thickness and the wavelength.
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The refractive indices and film thickness were extracted by using the calculation
procedure reported by Ulrich and Torge [52]. The mean thickness obtained at 449.5, 520.7
and 636.6 nm of wavelength was 357.7 ± 0.4 nm; this value was in good agreement with the
thickness obtained by SEM cross-section (see Figure 5b). The refractive index dispersion
as a function of the wavelength is summarized in Table 2 and Figure 8, with the values
obtained matching with the literature [53]. The accuracy was 10−3 for the index.

Table 2. The ordinary (nTE) and extraordinary (nTM) indices and the bi-refringence ∆n of LiNbO3

film have been measured at different laser light wavelengths.

λ (nm) n (TE) n (TM) ∆n

449.5 2.376 2.262 −0.114
520.7 2.326 2.217 −0.109
636.6 2.284 2.175 −0.109
983.9 2.235 2.146 −0.090

1308.1 2.214 2.129 −0.085
1548.4 2.207 2.133 −0.074
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In order to estimate the film composition, optical data could provide some information
as reported in the literature. In 1993, Scharlb and Betzler [54] proposed a general Sellmeier
equation for the ordinary and extraordinary optical index of LiNbO3 single crystals, valid
in the wavelength range of 400–1200 nm and temperature range of 50–300 K and for
Li-deficient LiNbO3 crystals in the range 47 to 50% Li.

The general equation is given as Equation (3), as follows, and the equation parameters
are described in Ref [54], where the index e means extraordinary and the index o ordinary,
with cLi in mol % Li2O, λ in nm, T in ◦C and T0 = 24.5 ◦C:

n2
i =

50 + cLi
100

A0,i

(λ0,i + µ0,iF)
−2 − λ−2

+
50 − cLi

100
A1,i

(λ1,i + µ1,iF)
−2 − λ−2

− AIR,iλ
2 + AUV (3)

With:
F = f (T)− f (T0)

f (T) = (T + 273)2 + 4.0238 × 105
[

coth
(

261.6
T + 273

)
− 1

]
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Schlarb et al. [45] proposed a simple linear equation of the form to determine the
composition cLi as a function of the measured bi-refringence of the LiNbO3 (difference
between the ordinary and extraordinary index).

cLi = a(λ, T) + b(λ, T)× (no − ne) (4)

Based on Equations (3) and (4), values of a and b could be calculated at our measured
wavelengths (it should be noted that we extrapolated values higher than 1200 nm). The
estimated Li content is summarized in Table 3; the value obtained was near stoichiometry,
slightly higher than the composition obtained by Raman. Figure 9 shows the variation in
bi-refringence versus wavelength for different material compositions at 449.5, 520.7 and
983.9 nm, with the experimental data being close to the Schlarb model for 50% of Li content.

Table 3. Estimation of the film composition (% of Li) with the Schlarb model from the experimental
data of Table 2.

λ (nm) ∆n a b % Li

449.5 −0.114 40.11 −85.37 49.86
520.7 −0.109 40.09 −92.94 50.08
636.6 −0.109 40.09 −100.18 51.01
983.9 −0.090 40.16 −108.26 49.85

1308.1 −0.085 40.26 −110.52 48.55
1548.4 −0.074 40.35 −111.30 48.86
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4. Conclusions

Very high quality lithium niobate films were obtained on sapphire c-plane by the
CBVD technique. HR-XRD patterns show a pure LiNbO3 phase and growth along the
z direction, and the LiNbO3 (006) symmetric peak as measured by the rocking curve
technique was 0.04◦ FWHM for 350 nm thick film. The Raman spectrum confirmed the
results of HR-XRD; a composition of LiNbO3 was calculated by the line width (Γ) of the
peaks at 152 cm−1 and 870 cm−1, giving a % of Li of 48.8 ± 0.15%. The refractive indices
and bi-refringence were measured by the m-line spectroscopy technique, allowing another
estimation of film composition and film thickness, which was not in agreement with values
obtained from Raman and SEM.
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The crystallinity of LiNbO3 film presented in this study for deposition at 400 ◦C
matched those previously obtained for deposition at 650 ◦C by CBVD in our previous
paper [30], only slightly reducing the Li/Nb precursor flow ratio to obtain the best films,
and slightly increasing the growth rate. This demonstrates the ability to deposit LiNbO3
films by CBVD at lower temperatures while maintaining the film quality.

Author Contributions: Conceptualization, T.N.K.B.; methodology, G.B., E.W. and W.M.; character-
ization, T.N.K.B. and R.M.; validation, D.R., G.B. and E.H.D.; formal analysis, T.N.K.B. and E.W.;
investigation, T.N.K.B. and R.M.; resources, T.N.K.B.; writing—original draft preparation, T.N.K.B.;
writing—review and editing, D.R., G.B., E.H.D., R.B., B.M., K.D., W.M., E.W. and R.M.; visualization,
T.N.K.B.; supervision, D.R., G.B. and E.H.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by French Gorvenment, Agence Nationale de la Recherche (ANR)

Plan de Relance 2020.
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