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1. Introduction.
Shape memory alloys are mixtures of many martensites and of austenite. The composition 

of the mixture varies : the matensites and the austenite transform into one another. These phase 
changes can be produced either by thermal actions or by mechanical actions. The striking and well 
known properties of shape memory alloys results from these links between mechanical and thermal 
actions [4], [ 1 5], [26]. 

Shape memory alloys can be studied at the microscopic level by describing the 
microstructures of the constitutive crystals, [7], [ 1 7], [28]. They can also be studied by using 
statistical thermodynamics of a lattice of particles [3] [23]. 

Thermodynamics involving internal quantities is an other tool to study shape memory alloys 
at the macroscopic level, [l], [2], [5], [6], [9], [ 1 8], [ 1 9], [22] [25], [27], [29]. It is the one we have 
chosen [ 1 0], [11]. It gives a macroscopic theory which can be used for engineering purposes, for 
example to describe the evolution of structures made of shape memory alloys . The internal 
quantities we choose, the phase volume fractions, are submitted to constraints (for instance their 
actual value is between 0 and 1 ). We show that most of the properties of shape memory alloys 
result from a careful treatment of these constraints [ 10], [ 12]. 

The first paragraphs 1 to 8 describe the thermodynamical quantities, the free energy and the 
pseudo-potential of dissipation. They give also the basic tools for macroscopic modelling. The 
p�agraph 9 is devoted to the macroscopic description of shape memory alloys. 

Basic definitions and properties of convex analysis are given in the appendix 12. 

2. Description of a material . The state quantities . 
The state quantities are the basic quantities which describe the equilibrium and the evolution 

of a material. Their choice depends on the sophistication of the model we are searching for. Thus 
their choice depends on the scientist or the engineer concerned. 

When the state quantities are constant with respect to the time, we say that the material is at 
an equilibrium. Thus the notion of equilibrium is subjective : it depends on the sophistication of the 
description. 

The set of the state quantities is denoted by E. It usually contains quantities describing the
deformations and the ·temperature. The other quantities of E are often called internal quantities. 

3. Principle of Virtual Pf;iwer without micoscopic velocities . 
This is the classical situation . Let ? be the linear space of the macroscopic virtual

velocities ,  n be the domain of R3 occupied by the structure we consider at the time t. The principle
of virtual power [ 14] is 

(1), '1 D c. Q, 'VVEV, A(D,V) = P;(D,V) + Pe(D,V). 
where D is a subdomain of n. The virtual power of the acceleration forces is

A(D,V) = JpyVdQ, 

where y is the acceleration and p the density. The virtual power of the internal forces is 

P;(D,V) = -Jcr:D(V)dQ, 
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where D(V) = (Dij(V) = �Vi,j+Yj,i)) are the strain rates and cr = (crij) the stresses. The virtual

power of the external forces is the sum of the power of the at a distance forces, 

Jr.Vd.Q,

where f is the volumetric external force, and of the power of the contact forces

fT.Vdr,
CJD 

where T is the contact external force. The virtual power of the external forces is

Pe(D,V) = fr.vctn + JT.Vdr.D CJD 
It is classical [ 14] to get the equations of the movement from the principle ( 1 )  , 

(2), P'Y = divcr + f, in D, 
(3), cr.N = T, in CJD, 
where N is the outwards normal unit vector to D. 

4. Principle of Virtual Power with microscopic velocities. 
When the state quantities include internal quantities, the evolution of those quantities can 

result from microscopic movements .  We think that the power of the microscopic movements can be 
taken into account in the power of the internal forces [13 ] .  Let � be an internal quantity, for 
instance a volumetric proportion of austenite in a shape memory alloy, the volumetric proportion of 
a constituent in a mixture, the damage in a piece of concrete [13], the intensity of adhesion between 
two pieces [16] , [32 ] ,  the volume fraction of unfrozen water in a soil in winter . . .  The only 

macroscopic quantity which is related to the micoscopic movements or velocities is � which

describes their macroscopic effects i .e. the evolution of �· Thus we choose as actual power of the
internal forces 

and as virtual power of the internal forces, 

V'(V,c)eVxC, Pi(D,V,c) = -J cr:D(V)d.Q -J {Be+ ff.grade }d.Q,

where C is the linear space of the virtual microscopic velocities. The elements (V ,c) of VxC are
function of x, (V (x),c(x)). 
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The gradient of the velocity of � takes into account the influence of the neighbourhood of a 
point onto this point. The two quantities B and H are new internal forces. The force B is a work and 
H is a work flux vector (if � is a volumetric proportion) . Their physical meaning will be given by 
the equations of movement as the physical meaning of the stress tensor is given by (3). We will see 
that H like cr drescribes the effects of the neighbourhood of a point onto this point. The power of 
the internal forces has to satisfy the virtual power axiom [ 14]: 

the power of the internal forces is zero for any rigid body movement. 

A rigid body movement is such that the distance of two material points remains constant. It 
results that D(U) = 0 for a rigid body movement with macroscopic velocity U. Because the distance
of two points remains constant in a rigid body velocity there is no microscopic movement and the 

value of � remains constant. It results that�= 0 and Pi(D,V.� ) = 0. The virtual power is then

satisfied by the power of the internal forces Pi· 

It is natural to choose a new power of the external forces P e(D,lJ�) depending on � . It is
the sum of 

the power of the at a distance external actions, and of the power of the external contact forces 

JT.Udr+ Ja�r. 
oD 'OD 

where A is the volumic work provided from the exterior and a the surfacic work provided by 
contact to D. Thus the new power of the external forces we choose is 

'V(V,c)eVxC,Pe(D,V,c) = fr.VdQ + fAcdQ + JT.Vdr + Jacdr. D D CJD CJD 

We decide not to change the power of the acceleration forces. The principle of virtual power 
becomes [1 2], 

(4), 'VD c Q, 'V(V,c)eVxC, A(D,V,c) = Pi(D,V,c) + Pe(D,V,c). 

By letting c = 0 in (4), we get the classical equations of movement, 

(2), PY= divcr + f, in D, 
(3). cr.N = T. in oD.

By letting V = 0 in (4), an easy computation gives,

(5), 0 = divH - B +A, in D, 

(6), H.N =a , in 'OD. 
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The equation (6) gives the physical meaning of H. It is a work flux vector : H.N is the 
amount of work provided to the body through the surface with normal N (for an analoguous 
situation think of the heat flux vector) . 

When the power of the internal forces does not depend on grad� the principle of virtual

power gives 

(5 bis), 0 = - B + A, in D. 
Of course this equation can be obtained by letting H = 0 in (5).

5. The eneniY balance. 

The conservation of energy is for any subdomain D, 

where e is the volumic internal energy, K the kinetic energy, q the heat flux vector and r the
volumic rate of heat production. By using the kinetic energy theorem, i.e. the principle of virtual 
power with the actual velocities, we get for any D. 

This equation gives, 

(7), �� + edivU + divq = r + cr:D(U) + B� + H.grad� . in Q,

(8), -q.N = 7t, in an. 
where 7t is the rate of heat provided to the stucture n by contact actions.

6. The second principle of thennodynamjcs. 
It is for any domainD, 

�rlsdt?! J1:Ndr+jfrit. 
oD 

where s is the volumic entropy and T the temperature. It gives, 

9 
ds 

d' U d' g_ > r
( ). dt + s IV + IVT - T' 

This equation is the second principle basic relation. It is to be satisfied like the balance 
equations by any actual evolution. The equation (9) multiplied by the temperature assumed to be 
positive and the energy balance equation give, 
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de ds . . dp dP --q.gradT (10), dt -T dt + (e-Ts)d1vU S cr.D(U) + B dt + H.graddt + T ,

by letting 'I' = e-Ts the volumic free energy, we get

d'I' dT . dp dP --q .gradT 
( 11), dt + s dt $ ( cr - '1'1) .D(U) + B dt + H.grad 

dt + T ,

which is the Claudius-Duhem relation (1 is the identiy tensor) . This inequality is to be satisfied by
any actual evolution. 

7. Constitutive laws when there are no constraint on the internal quantities . 
Let us assume that the internal quantity P can have any value : it is not submitted to any 

constraint. 
From now on, for the sake of simplicity, we make the small perturbation assumption. The 

Clausius-Duhem inequality becomes 

because edivU, sdivU and 'l'divU are negligeable in the small perturbation theory. We assume that 

the state quantities are the small defonnations c:, the internal quantity p, its gradient gradP and the

temperature T: E = (c:,p,gradp,T) . The free energy depends on E: 'l' (E) .  We assume it is
differentiable and let 

(12), 

which is the Helmholtz relation, and define, 

a'P and=-, 
ac: 
<1'1' B"d=-
ap'

( 13), ffnd = <1'1' , 
C1(gradp) 

The stress crnd is the non-dissipative stress, B0d and H 0d are is the generalized non-dissipative
forces. The Clausius-Duhem relation ( 1 1 ) gives 

for any actual evolution of the structure . To achieve the description of the constitutive laws, we 

as sume that there ex i s t  four  func tions cr d, Bd , H d, Q d depending on x, t, E,

SE= {D(U),� ,grad� .gra4 } and other quantities X depending on the history of the material
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such that 

'v'x,t,'v'E, 'v'W = (f,c,g,,p)e SxRxR3xR3, 'v'J.,

( 14), ad(x,t,E,W.x):f + Bd(x,t,E,W.x)c + ffd(x,t.E,W,x).g+ Q<i{x,t,E,W,x).p � o,

where S is the set of symetric tensors. 

The quantity ad is the dissipative stress, Bd and ffd are the dissipative generalized forces and Qd is 
a heat flux. The constitutive laws we choose are, 

( 1 5), cr = crnd(E)+ad(x,t,E,oE,x). 

( 16) ,  B = snd(E)+Bd(x,t,E,oE,J.), 

( 17), H = ffnd(E)+Hd(x,t,E,oE.x). 

( 1 8) , Tq = Qd(x,t,E,oE.x). 

It is very easy to prove that 

Theorem 1. If the relation ( 14) are satisfied, the constitutive laws ( 1 5) to ( 1 8) are such that
the Clausius-Duhem inequality is satisfied. 

fr.QQf. Write the relation ( 14) with actual velocities and use the constitutive laws.

Let us sum up the way we define a material : it is defined by 

the state quantities E, 

the linear spaces V and C, 
the power of the internal forces Pi(D ,V,c), 

the free energy 'P depending on E, 

the functions crd, Bd, ffd, Qd depending on E, OE and other quantities X· 
7 .1. The pseudo-potential of dissipation. 
A very general and powerful method to define the dissipative forces is to introduce a 

pseudo-potential of dissipation as defined by Moreau (2 1 ]. It is a function <I> of E, W and x such

that <I> is a positive function, convex with respect to W (20] and equal to 0 for W = 0. Let us prove,

Theorem 2. Let there be <l>(E. W ,X) such that oE-+ <l>(E,W.x) is convex, <l>(E, W .x) is
positive and <l>(E,0,X) = 0. Let for any W, Ae a<l>(E,W,J.), then we have , 

A.W�O. 

(A.W is the scalar product of A and W and a<l>(E,W,J.) is the subdifferential set of <I> with respect
to W) . 
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Proof. Because W �<t>((E,W,X)) is convex we have for Aea<l>((E,W.x). 

<l>(E,O.x);::: <l>(E,W.x) -A.W, 

which gives 

A.W;::: <l>(E,W,X);::: 0 and A.W;::: 0.

The dissipative forces crd, Bd, ffd, Qd are defined by

( crd(x,t,E,oE.x), B<l(x,t,E,oE.x). ffd(x,t,E,oE.x). Qd(x,t,E,oE,x))e a<l>((E,oE.x). 

It results from the theorem 2 that the inequality ( 14) is satisfied. In the sequel we will always define 
the dissipative forces with a pseudo-potential of dissipation. 

8. Constitutive laws when there are constraints on the internal quantities. 

Let us assume that P is a volume fraction or a damage quantity. Because in the following 

paragraphs the P 's will be volume fractions, we choose P to be a damage quantity [ 1 3). The 
damaged quantity can be defined as the quotient of the Young modulus of the damaged material by 

the Young modulus of the undamaged material. Obviously the value of p is between O and 1 :  

(19), o::;p::;1, 

when p = 1 ,  the material we consider is undamaged and when P = 0, the material is completely 

damaged. The internal quantity P is submitted to the internal constraint ( 1 9) .  We think that this 
constraint is a material property . Thus i t  must be taken into account by the elements which define a 
material . Because it is a constraint on the state, it appears convenient to use the free energy. We do 

it  in the following manner: we decide that the free energy is defined for any value of p, even for 

the values which are physically impossible. The value of the free energy is +oo for values of p 

which are physically impossible, i.e. for�!!: [0,1]; its value is the usual physical value \f'(E) when 

Pe [0,1). Thus we have 

'f'(E) = 'f'(E) + I(p),

where '¥ is the extended free energy defined for any value of p, 'P(E) is the usual physical value 

and I is the indicator function of the segment [O, 1), ( l(x) = +oo if xe: [O, 1) and l(x) = 0 if xe [0, 1 )), 
(see the appendix). 

Note The temperature T is submitted to the internal constraint T ;::: 0. For the sake of
simplicity, we assume it is always satisfied. If one does not want to make this assumption, it is 

convenient to add I+(T) to'¥ where I+ is the indicator function of [0,+oo).

Before we go on, let us remark that the time derivatives cannot be assumed to be continuous 

due to the effects of the internal constraint ( 19). For instance� is discontinuous when P decreases

to the value 0 (figure 1). 
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PCt) 

0 

Figure I 
The function P<t) decreases to 0 and remains equal to 0. The derivative � is not a continuous

function. 

Left and right derivative must be investigated. The right derivative 

lim
P(t+�t) - PCt) = d

rp

�t dt 

�t-+ 0 

�t>O 

depends on the future evolution of the material but the left derivative 

lim
PCt) - �Ct-�t) = d

t� 

�t dt 

depends on its past evolution. 

The constitutive laws we are looking for must be determinist, i.e. relations between the state quantities E and the history of the material or its past evolution . The left derivative appears as a 
compulsory choice for any derivative with respect to the time which appears in the constitutive 
laws. Thus in the sequel all the time derivatives we use are left derivative. 

Let us come back at the extended free energy and give one of its properties: 
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Theorem 3. If the function 'l'(i::,p,gradp,T) is smooth, we have for any actual evolution, i .e.
for any evolution such that PCt)e [O, l] at any time t, 

(20), r/Ce ()I(p), 

where the derivatives in the formula (20), ft, are left derivatives.

Proof Because the evolution is an actual evolution, we have I(P(t)) = 0 at any time t. It 
results the first equality of (20) because'¥ is equal to'¥ at any time t. The function 'f'(i::,p,gradp ,T) 
being smooth we have, 

dl'l' (21 ) , '¥ (t) - 'f'(t -6t) = Cf0t) 6t + o(6t)

where the function o(6t)/6t tends to 0 when M tends to 0. Because I is a convex function, we have 

(22), I(P(t)) - I(P(t-6t)):::;; C CP(t)-P(t-6t)), for any Cei1I(P(t)). 

By dividing (2 1 )  and (22) by 6t positive and adding those relations, we get

'l'Ct)-'l'Ct-6t) dl'f' c PCt)-PCt-6t) a(6t) 

6t ::; (It<t) + 6t 
+ ---;;-·

By letting 6t tend towards 0, we have the inequality of (20) . 

Because the free energy '¥ is not differentiable whith respect to the time (it has only a left 
derivative); we decide that all the quantities that are to be derived with respect to the time have left
derivatives. We assume also that they are smooth enougth with respect to x for the calculations to
be coherent. The Clausius-Duhem inequality 

1 d'l' dT dP d� -q.gradT (_3), dt + sdt:::;; cr :D(U) + Bdt + H.graddt + T , 

can be proved like in paragraph 7, the time derivatives beeing left derivatives. The choice of left
derivative we make is in agreement with the necessity for the the basic inequality (9) or the 
equivalent Clausius-Duhem inequality to be satisfied by the past evolution of the material. We 
wish also to keep the role of the Clausius-Duhem inequality as a guide to define the constitutive 
laws which are relations depending on the past evolution. The left derivative are , as we have 
already mentionned, deterministic. On the contrary the right derivative are not deterministic. 

We use the notations of the preeceding paragraphs. We have the Helmholtz relation 

()'¥ 
(24), s(E) = -

()T 
(E).

Let us define the non dissipative forces. We assume that there exist functions crnd, Bnd, Hnd

of E and snctr of (E ,x ,t) which satisfy
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( 13), 
a'I' 

crn<l(E) = oe (E),

( 1 3), sn<l(E) = �; (E),

(25), snctr(E ,x,t)e ol(P(x,t)),

( 1 3), ffn<l(E) =
o'P 

(E). o(grad�) 
With those definitions we can write the Clausius-Duhem inequality as in the previous 

paragraph 

(cr-an<l):D(U) + (B-Bn<l)� + (H-ffnd).grad� + Tq .gra4 � 0.

The relations ( 1 3) ,  (24) and (25) are the state Jaws. It results from the preeceding formulae 
that the smooth part of the extented free energy is differentiable and that the non-smooth part is 
subdifferentiable, i .e .  that the subdifferential set oI(p) is not empty. Let us see how important is
this assumption. The quantity sndr(E,x,t) is the thermodynarnical reaction to the internal constraint 
( 19). It is related to p by the state Jaw (25) .  This one implies that the subdifferential ol(P) is not

empty, thus that p is between 0 and I which means that the internal constraint (19) is satisfied. One
can also say that relation (25) has two meanings, first that the internal constraint ( 19) is satisfied, 
second that there exists a reaction to the internal constraint which is zero for 0 < p < l, positive for

p = I and negative for � = 0. Let us also note that the sum of the reaction sndr and of the reversible 

force and, (Bndr+ and) is a generalized derivative of the free energy 'f' with respect top; and is the 
smooth part and sndr is the non-smooth part of the derivative. If the indicator function I is 
approximated by a smooth function, sndr is approximated by a classical derivative and there is no 
more difference between the smooth part snd and the non-smooth part sndr. In our point of view,
the non-smooth mechanics point of view, the free energy is 'f' and the non-dissipative force

associated to p is Bndr+ Bnd E o'I'. 
Note If we do not assume that the temperature is positive, we replace the relation (24) by : 

the entropy is a function of (E,x,t) which satisfies 

a'f' 
s(E,x,t) E - - (E) + ol+(T).aT 
This relation implies that ol+(T) is not empty. It results that the temperature T is positive. It

shows also that if the temperature is strictly positive the classical Helmholtz relation (24) is 
verified. 

To complete the description of the constitutive laws, we assume the assumption ( 14) made 
in paragraph 5 is satisfied: there exist four functions of E and of fe S, ce R, ge R3 , pe R3 and other
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quantities X depending on the history of the material: ad, Bd, ffd, and Q<l which satisfy

Vx,t,VE, VW = (f,c,g,p)ESxRxR3xR3, Vx. 

(14), cr<l(x ,t,E,W,x):f + Bd(x,t,E,W.x)c + ffd(x,t,E,W.x).g+ Qd(x,t,E,W,x).p � o.

Then the constitutive laws are defined by the following relations 

( 15), cr = cr<l(x,t,E,oE.X) + cr0d(E), 

(26), B = Bd(x,t,E,oE.X) + B0d(E) + sndr(E,x,t), 

( 17), H = ffd(x,t,E,oE,x)+ H0d(E).

(18), Tq = Qd(x,t,E,oE.x), 
die dip dip 1 

where E = (€,p,gradp,T) et oE = (dt, dt ,graddt ,gradT). 

The functions crd, Bd, ffd and Qd are the dissipative or irreversible forces. Let us note that 
the constitutive laws are obviously deterministic because the time derivatives are left derivatives. 
We must prove that our choice is such that the Clausius-Duhem inequality is satisfied. The 
following theorem shows that we have the expected properties. 

Theorem 4. If the state laws ( 1 3), (24) and (25), the constitutive laws ( 1 5) , (26), (17) and(18) and the inequality (14) are satisfied then, 

(i) the internal constraint ( 19) is satisfied;

(ii) the Clausius-Duhem rellation (23) is satisfied.

Proof We have already seen that the state law (25) implies _that the the internal constraint 
( 19) is satisfied because the subdifferential set ol(�) is not empty. Let us replace W by oE = (�:.d��.gradd��.gra4) in the inequality (14). Let us replace also the dissipative forces by their

expression given by the constitutive laws (15), (26), (17) and (18). We get 

die dip dip 
(cr - cr"d(E)) : dt + (B - B"d(E) - sndr(E,x,t)� +(H- ffnd(E)).graddt 
+ Tq.gra4 � 0.

This relation gives with the state laws (13), (24) and (25),

Because the assumptions of theorem 3 are satisfied, the relation (20) with C = sndr(E,x,t)
gives 
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dl'f' dip dl'f' - - - Bndr(E x t)- < - -
dt ' ' dt - dt .

This inequality and (27) give 

which is the Clausius-Duhem inequality (23) with left derivatives. 

Let us sum up. In this theory, a material is defined by choosing 

the state quantities E, 

the linear spaces V and C,

the power of the internal forces P i(D, V ,c ),

the quantities x. 
the function'¥, 

the functions crd, Bd, ffd and Qd or the pseudo-potential of dissipation <I>. 
8.1. Constitutive laws on discontinuity surfaces.
In this paragraph we do not make the small perturbation assumption. The state quantities or 

the velocities can be discontinuous on some surface. It is easy to prove that the equations of 
movement on those surfaces are, 

m[U] = [ cr.N],

[H.N] =0, 
where m is the mass flux, N is a unit normal vector to the discontinuity line which divides the
spaces into two parts denoted with the indices 1 and 2; [Z] = Z2-Z 1 denotes the discontinuity of the
quantity Z. The energy balance is 

m[e'] - I.[U] -h[b] = [-q.N], 

where e' is the specific internal energy (e = pe', p is the density)

1 
h = H.N, I= ¥T1+T2). Q = -q.N.

Let us recall that b is the actual velocity of p, b = � . By using the mass balance, we get,

where 

m([e'] - IN [l]) -IT.[UT] - h[b] - [Q] = 0,
p 

IN= I.N, IT= I-INN and UT = U - UNN is the tangential velocity.
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The second principle of thermodynamics is 

(28), m[s'] - [�] � 0,

where s' is the specific entropy (s = ps') or 

I 
mTh[s'] - TiiQ[T]- [Q] � 0,

h T . h h 
. 'Tl 1 1 1 w ere his t e armomc average temperature - = �-T + -T )) and Qm the average heat flux (Qmh - I 2 

= �Q1+Q2)). It gives with the energy balance

To describe the evolution of the discontinuity surface constitutive laws are needed. They are 

defined by assuming that there exist four functions of �E = (m,4],[UT ],[b]) and of (x,t), E =

(E 1,E2) and other quantities � depending on the history of the material: yd, Qd, F<l, and h<l which
satisfy 

Vx,t, VE, VW = (f,g,V,c)e  RxRxR2xR,V�.

(29), Y<l(x,t,E,W,�)f + Q<l(x,t,E,W,�)g+ F<l(x,t,E,W,�).V +h<l(x,t,E,W,�)c � 0. 

The constitutive laws are 

[Ths'-e']+ IN[.!..] = Y<l(x,t,E,�E.1;), p 
-ThQm = Q<l(x,t,E.�.�) ,

IT = F<l(x,t,E.�E.9.

It is easy to prove that the preceeding constitutive laws are such that the second principle is 
satisfied: 

Theorem 5 If the inequality (29) is satisfied, the fondamental inequality (28) is satisfied in
any actual evolution such that the temperature is strictly positive. 

Proof. Write the inequality (29) with the actual velocities W = �E = (m,[+],[UT].[b]) and

substract the energy balance to get the fondamental inequality multiplied by the harmonic average 
temperature. 
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Let us sum up again. In this theory, a material is defined by choosing 

the state quantities E, 
the linear spaces V and C, 
the power of the internal forces P;(D,V,c), 

the quantities x. 
the function'¥, 

the functions crd, Bd, Hd and Qd or the pseudo-potential of dissipation <I>, 
the quantities �. 

the functions yd, Qd, Fd, and hd or the pseudo-potential of dissipation on the 
discontinuity surface 

8.1.1. Example of constitutive laws on discontinuity lines. 
We choose pseudo-potential of dissipation <l>5(�E) = IorC�]) where Ior is the indicator

function of Rx { 0} xR2xR. It gives the constitutive laws, 

It results from the second constitutive law that the temperature is continuous. If we assume 
that the density is continuous, the first constitutive law gives 

[Ts'-e'] = -['¥'] = 0. 

The two last laws show that there is no friction and no flux of damage work on the discontinuity 
surface. These constitutive laws are often chosen to describe phase changes occuring in solids. 

9. Shape memory alloys. A macroscopic theory. 

9.1. Introduction. 
This chapter is devoted to the construction of models able to describe at the macroscopic 

level the evolution of a structure made of shape memory alloys. The internal constraints on the state 
quantites will play a major role and account for most of the striking properties of the shape memory 
alloys. 

9.2. The state guantities. 
As already mentionned we deal only with macroscopic phenomenons and macroscopic 

quantities. Thus to describe the deformations of the alloy, we choose the macroscopic deformation 

e. For the sake of simplicity we assume this deformation to be small (a large deformation theory
based on those ideas exists). Of course the temperature T is a  thermodynamical quantity. 

The properties of shape memory alloys results from martensite-austenite phase changes 
produced either by thermal actions (as it is usual) or by mechanical actions. At the macroscopic 
level we need quantities to describe those phase changes. For this purpose we choose as new 
thermodynamical quantities the volume fractions �i of the martensite and austenite. We think that
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this choice is the more simple we can make . Again to be very simple we assume that only two 
martensites exist together with the austenite . The volume fractions of the martensites are p 1 and P2.
The volume fraction of austenite is P3. Those volume fractions are not independant: they satisfy 
constraints, said as usual internal constraints, 

(30), 0 $ �i $ l ,  

because the Ws are volumetric proportions. We assume that no void can appear in the evolutions of

the alloy, i .  e. � 1 +�2+� 3  � 1 and that no interpenetration of the phases can occur, i. e .  

P1+P2+P3 $ 1. Thus the Ws satisfy an other internal constraint, 

We think those internal constraints are physical properties. 
The therrnodynamical macroscopic state quantities we have chosen are E = (£.�i.�2.�3,T) or

E = (£,� 1 .�2.�3,gradP 1 tgradP2.grad�3,T) depending on the sophistication we wish. The second set 

( £,� 1.P2.P3.grad� 1.grad�2.grad�3. T) is chosen if we think that the composition of the alloy at one 

point is influenced by its neighbourhood. We note � the vector (�i)· 
9.3. The free eners;y. 
As already said, we consider a shape memory alloy as a mixture of the three martensite 

austenite phases with volume fractions Pi· The volumetric energy of the mixture we choose is 

3 
(32), qi(E) = LPiqi i(E) +Th(P)

i = 1 
where the qii are the volumetric free energies of the i phases and Th is a free energy describing
interactions between the different phases. We have said that internal constraints are physical 
properties. Being physical properties we decide to take them into account with the two functions 
we have to describe the material, i .e. the free energy qi and the pseudo-potential of dissipation <I>. 
The pseudo-potential describes the kinematic properties, i .e. properties which depend on the 
velocities. The free energy describes the state properties . Obviously the internal constraints (30) 

and (31) are not kinematic properties . Thus we take them into account with the free energy qi. For

this purpose, we assume the qi i to be defined over the whole linear space spanned by the £, Pi and

grad�i and define the extended free energy by 

3 
�(E) = qi(E) +Tio(�) =  qi(E) + Io(P) = �)iqii(E) +Th(�).

i=I 
where lo is the indicator function of the convex set 

and the extended interaction free energy is defined by 
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h< P) = h(p) +Io(P) . 

The more simple choice for h(p) we can make is h (p) = 0. There is no interaction betwween the 

different phases in the mixture. The extended interaction free energy h(P)  = Io C P )  is equal to 0 when 
the mixture is physically possible C P  E C) and to +00 when the mixture is physically impossible 

C P e= C) . Properties of the extended free energies are given in the theorem, 

Theorem 6. If the function 'I'(e,p,gradp,T) is smooth, we have for any actual evolution, i.e. 

for any evolution such that p e C at any time t, 

where the derivatives in the formula (33), fr, are left derivatives.

Proof. It is identical to the proof of theorem 3. 

The vector B is the thermodynamical reaction to the internal constraints (30) and (3 1 ). The 
subdifferential of the indicator function lo is rather easily computed : 

Theorem 7. The subdifferential olo is

oio< P) = < c,c,c ) ,  if p is an internal point of c co < Pi < t for any i) ;

olo(0,�2.�3) = (-a2 + c,c,c), ifO < �i < l for i = 2,3; 
olo(0,0 . 1 ) = (-a2 + c,-b2 + c,c) ;

where a, b and c are real numbers . 

Proof. Let I i be the indicator function of the set { (y1;yz,y3)e R 3 ; O�Yi �l } and l4 the
indicator funct ion of the set { (y1,yz,y3)E R 3 ; /1+12+y3 = 1 } . We have Io(P)  =
11 C P )+I 2(P)+I3 (p) +f4(p). It results from a theorem of convex analysis (see for instance Moreau 
[2 0 ]) that 

(be careful, this result obvious for smooth functions is not always true for convex non-smooth 
functions). 

When 0 < Pi< I for any i, we have oio(P)  = 0I 4(p) = (c,c,c) . 

When P t = 0, 0 < Pi< I for i = 2, 3, we have olo ( P ) = ol1( P )+ol�(�) = (-a2,Q,O)+(c,c,c). 
When P 1 = P2 = 0, we have Olo(P) =oI 1 C P)+oI2 C P )+o4(P ) = (-a2,0,0)+ ( 0,-b2,0)+( c,c,c) .

Note. It is also possible to prove the theorem by using the fact that the thermodynarnical 
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reaction Bis a vector of R3 normal to the convex set C of R3 .

As for the volumic free energies we choose, 

1 
'I' 1(E) = zt".T:K1e+cr1(T)T:e - C1TLogT,

1 'I'2(E) = z€ T:K2£+cr2 T(T) :e - C2TLogT,

l 1 
'l'3(E) = zt".T:K3£- fo<T-To) - C3TLogT,

where Ki are the elastic tensors, Ci the heat capacities of the phases. The stresses cr 1 and cr2 depend
on the temperature T. The quantity la is roughthy the martensite-austenite phase change latent heat 
(see paragraph 9.8.3). We denote crT:e = C1ijEij. 

For the interaction function we choose 

k k 
Th(E) = lo(P) or Th(E) = lo(P)+2<gradP1)2+2CgradP2)2, 

depending on the sophistication of the model. 

Because we want to describe the main basic f�atures of the shape memory alloys behaviour, 
we assume for the sake of simplicity that the elastic tensors Ki and the heat capacities Ci are the
same for all the phases :  

fo r  i = l, 2 and 3.  

Always for the sake of simplicity we assume that 

cr1 (T) = -cr2<n =-t(T).

Concerning the stress 't(T), we know that at high temperature the .behaviour of the alloy is a 
classical elastic behaviour. Thus we have 't(T) = 0 at high temperature and choose the schematic 
simple expression (always for the sake of simplicity), 

t(T) = (T-Tcll. for T S Tc. 

't(T) = 0, for T � Tc.

with I 11 S 0 and assume the temperature Tc to be greater than To. With those assumption we get

We have the Helmholtz relation 

a'!' 1 
s(E) = - -(E) = <P1-�2)1T:e + p3.!iL

T + C( l+LogT) , for T S Tc.
()T O 

(24), s(E) = - a'!' (E) = �3.!i!..TJ. + C( l+LogT). for T �Tc.
()T o 
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which gives the volumic internal energy, 

1 e(E) = 'P(E)+ Ts(T) = rT:Ke + p3la + CT, for T �Tc.

Note When T =Tc. the energy can be discontinuous. On the discontinuity surface the
equations of paragraph 8.1 apply. If one wants to avoid using them, the free energy function '¥ can 
be smoothed for the value T = Tc to have the entropy continuous.

The non dissipative forces are defined by assuming that there exist functions crnd, Bnd, ffnd 
of E and Bndr of (E,x,t) which satisfy

;w 
( 13), Bnd(E) = - (E) = 

- ap 

-'t(T) T:e 
't(T) T:e 
�(T-T -To O) 

(25), Bndr(E,x,t)e dI(p(x,t)),

To complete the description of the constitutive laws, we assume the assumption ( 14) made 
in paragraph 7 is satisfied: there exist four functions of E and of x,t, fe S, ce R3, ge R3x3 and pe R3

and other quantities x depending on the history of the material : ad, Bd, ffd, and Qd which satisfy,

V'x,t V'E, V'W = (f,c,g,p)E SxR3xR3X3xR3, 'ix.

(14), a<l(x,t,E,W,x):f + Bd(x,t,E,W.x)c + ffd(x,t,E,W,;().g+ Qd(x,t,E,W,;().p � 0. 
Then the constitutive laws are defined by the following relations, 

( 15), cr = crd(x,t,E,oE,X) + crnd(E),

(26), B = Bd(x,t,E,SE,x) + B"d(E) + Bndr(E,x,t), 

( 17), H = ffd(x,t,E,l)E,x)+ ffnd(E),

(18), Tq = Qd(x,t,E,oE.x).
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9.4. The non-dissipative constitutive laws. 

We assume that there is no mechanical dissipation (the functions crd, Bd and ffd are equal to
0) or that the non-thermal part of the pseudo-potential of dissipation is equal to 0. We know that
this is not very realistic but it is a step towards the complete understanting of the constitutive laws. 
The results from this non-dissipative theory will be schematic. The constitutive laws are given by 

(34), cr = cr nd(E) = o'I' (E) ,df. 
(J'I' 

(35) ,  B = BOd(E) = ap (E)+Bndr(E,x,t),

(36), B0dr(E,x,t)e CJlo(P(x,t)),

(37), H = ffnd(E) =
CJ'I' 

(E), 
CJ(gradp) 

(38), Tq = Qd(E,8E.x).

The last constitutive law gives the classical Fourier's law 

q = -A.gradT, 

where A. is the thermal conductivity, by choosing Qd(E,8E.x) = A.T3 gra4.

9.5. Transformation of the equations . Elimination of 63., 
Because of the relation (31), we can select one of the Ws. for instance p3 = ( l-P1-P2) and 

rewrite all the equations with the dissymetric set of state quantities Er = (e,P1.P2,T) or Er =

(e,P1 .P2.gradP 1,gradpz,T). 

Let us define 

and the convex set Cr of R2 by

and note that ye C is equivalent to Yr= (y1,"'(2)E Cr and Y3 = 1 -Y1-Y2 or to Io(Y) = Ir(Yr) = 0, and Y3 =
1 - y1-y2 where Iris the indicator function of Cr. Let us remark that Bndre CJJo(P) is equivalent to

Thus the relation (39) is equivalent to 
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or to 

where Ir is the indicator function of the convex set Cr. Thus the equation (36) is equivalent to 

The power of the internal forces 

becomes 

J j dPr <lPr = - cr:D(U)dQ- {Br·Tt +Hr.gra<fdf }dQ,

with 

The power of the external forces 

becomes 
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with 

We define also 

with 

The expressions of the different powers show that equations of the movement. 

(5) , 0 = divH - B +A, in D ,  

(6), H.N = a. in oD, 

become , 

(Ster),0 = divHr - Br +Ar, in D, 

(6ter), Hr.N = ar , in dD. 
In the case where the power of the internal forces does depend on the gradients the equation 

(5bis) becomes 

(Squatro),O = - Br +Ar. in D. 

The non dissipative internal forces are 
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The constitutive laws (34) to (38 )  give the constitutive laws for cr ,  q and for Br, Hr, 

d d
. 

E d � (
dE dP1 dPz ddP1 ddPz t1l:) ·r h . d" . . epen mg on x,t, r an ucr = dt'dt'dt'gra dt,gra dt,gra_T 1 t ere 1s 1ss1pat10n,

and 

The dissipative forces crrd, Brd, Hrd and Qrd can be defined with the functions crd, Bd, ffd

and Qd, with

and 

H d E s:E • -1 H 1 <l(x,t,E,0E.x)-H3<l(x,t,E,0E.x) Ir (x, t, r. u r• ;() - d , d ' Hz (x,t,E,8E,;()-H3 (x,t,E,oE,;() 

B d( E s:E I B 1 <l(x,t,E,0E.x)-B3<l(x,t,E,8E,x) I . A A A r x,t, r,u r.X) = d , d •with 1-13 = 0-1-1 1-1-12), 
B2 (x,t,E,oE.;()-B3 (x,t,E,oE.x)

with p3 = o-P1...:.Pz), 

or direct ly wi th  funct ions cr rd(x,t,Er.OEr.X) . B rd ( x,t,Er,OEr.X» Hrd(x,t,Er,OEr.X) and

Qrd(x,t,Er,OEr,X) which satisfy the inequality,
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The constitutive laws we have are (40) to (44). Let us one more time emphasis that the 
internal constraints (30) and (31) are part of the constitutive laws. 

9.6. The first non-dissipative model. 
A model is a set of partial differential equations able to describe the evolution of a structure 

i .e .  able to compute the state E(x, t) knowing the initial situation at the initial time t = 0 and the 
external actions applied to the structure. In the case of a non dissipative model where gradp is not a

state quantity, E = (E.P1.P2.P3,T) or Er = (E,P1.P2.T) and Th = I or Th r = Ir . In fact we want to
compute (u(x, t).P1(x, t),P2(x, t),T(x, t)) where u is the small displacement. The equations are

(2),  py =  divcr + f,  inn,

(3) ,  cr.N = T, in an , 
(5 quatro),0 = - Br +Ar. inn, 

where n is the domain occupied by the structure. In the sequel we assume the external action Ar to 
be equal to 0 ; 

der . 
D(U) B dPr . ,.... 

(7bis), dt + d1vq = r + cr: + r·Tt, m �"• 

(8) ,  -q.N = 7t, in an ; 

d d'Pr 
cr = cr n  (Er) = - (Er).

ae 

Brnd(Er) =
d'Pr

(Er) = YrCEr) = I '¥1r(Er)-'¥3r(Er) I ·apr '¥2rCEr)-'¥3rCEr) 

(40), Brndr(Er ,X ,t) E dlrCP r.(X,t)) ,

q = - A.gradT,

and 

C45), p3 = o-P1-P2); 

This long list of equation gives a set of partial differential equations for the un1?1owns (u,p 1.P2.:n.
It is completed with boundary conditions and init!al co�ditions �or the equau?ns (2 ) and (7�1s).
This set of partial differential equations can be mvesugated with mathema�1cs and numencal 
methods [8] ,  [30] , [3 1 ], [24], [33]. This model will be the basic model we study m the sequel. 
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9.7. The second non-dissipative model . 
It is the previous model with a new interaction function, 

The equations which are new or different from those of the previous paragrah are: 

the equations of movement, 

(5ter),0 = divHr - Br +Ar, inn,

(6ter) ,  Hr.N = ar. in an; 

the energy balance equation, 

der . d�r � . r. (7ter), dt + d1vq = r + a:D(U) + Br·Tt + Hr.gra dt , m u., 

and the new constitutive law 

The list of equation is a long one! The partial differential equations are (2) , (3) , (Ster), (6ter) and 
(7ter) .  (8) . The constitutive laws are (40), (4 1 )  with crrd = 0, (42) with Brd = 0, (43) with Hrd = 0, 
(44), (45) and (47) .

9 .8 .  An example of non-dissipative evolution. 
Let us consider � unidimendional experiment and assume £ 11 to be the only non zero

deformation. Let us also assume that grad�i = 0 in the second model for the results to apply to both
the two non-dissipative models. Let us focus on the stress cr 1 1  as a function of £ 11 when the 
temperature is fixed. From relation ( 40) we have 

(48), cr1 I = K1111£11+t11(T)(!h-� 1), 

from relations (41), (42) and (43) we get, 

with 

l -t11(T)e11 + .f:<T-To)
YrCEr) = l

o . 
t11(T)e11 + 'fo<T-To)

The relation ( 49) means that the vector -Y r(Er) is normal to the triangle G- at the point �r
(figure 2). 
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�i(t) 

Figure 2 
The vector -Y r(Er) is normal to the triangle Cr. 

9.8. 1 .  Low temperature behaviour CT < Tu1 
The temperature is fixed and low, T < To. We look for 0"11 = cr, �I and 13z as functions of

E t  1 = E. The two components of Yr(Er) Yr 1 (Er) = -t11(T)E +¥o<T-To) and Yr2(Er) = t 1 1(T)E +

1 WT-To), are shown on figure 3 .
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Figure 3 

The coinpo.nents of Y rCEr) versus E = E 11 at low temperature. 

When E = 0, the two component of the vector -Yr(Er) are equal and positive . This vector
can be normal to the triangle Cr only on the

_
side AB (figure 4) . Thus �3 = 0 and.we have a mixture 

of the two martensites. The stress cr can take any value of the segment [-r 1 1 (T), -'t 1 1  (T)] (we have 

-r 1 1 (T) = (T-Tc)I 1 1 > 0  because we have assumed II 1 < 0). 

When £ > 0, we have -Yr 1 (Er) > 0 and -Yr1(Er) > -Yr2(Er) . The only point where -Yr(Er) 
can be normal to the triangle Cr is the vertex A (figure 4). 
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Figure 4 
The vector -Y rCEr) for different deformations E at low temperature. 

Thus � 1 = l: there is only the martensite number one and cr = KE -t 11 (T) (figure 5), (we let K =
K1111). 

When E < 0, we have -Yr2CEr) > 0 and -Yr2CEr) > -Yr1(Er). The vector -¥(Er) is normal to

the triangle Cr at the vertex B (figure 4). Thus �2 = l : there is only the martensite number two and 

cr = KE+'tt 1(T), (figure 5). 
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O' 

Figure 5 
The non-dissipative constitutive low at low temperature. 

We get some of the properties of shape memory alloys : at low temperature there is no 
austensite but mixtures of martensites ; there is a softening of the behaviour when going from 
compression to tension. Of course the behaviour at the origin is not the actual one but it has some 
of its properties. 

9 .8 .2 .  Medium temperature behaviour CTQ < T < Ts;.l.. 
The temperature is fixed and satisfies To ::;; T ::;; Tc· The two components of the vector Y r(Er) 

are shown on figure 6. 
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Figure 6 
The components of Yr(Er) at medium temperature. 

When E = 0 the two components ofYr(Er) are equal and negative. The vector Yr(Er) can be
normal to the triangle Cr only at the vertex 0 (figure 7).
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E=-E1 

Figure 7 
The vector -Y r(Er) for different deformations E at medium temperature. 

Thus p3 = 1 and P 1 =P2=0, there is only austenite. Relation (27) gives cr = 0 for E = 0. When E -:t:. 
0, the vector Yr 1 (Er) is normal to Cr at vertex 0 if its two components are negative i.e. for

_ la(T-To)
:::;; E < la(T-To) =Et. 

T Q't 1 1  (T) T Q't 11 (T) 

Thus for EE ]-E 1.e 1 [. there is only austenite, p3 = l, and from ( 48), cr = Ke (figure 8).
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Figure 8 
The constitutive low at medium temperature. 

For E = E1, we have Yr1(Er) = 0. The vector -Yr(Er) is nonnal to the triangle Cr on the side
OA (figure 7) and � 1 +�3 = l: we have a mixture of austenite and martensite number one. The stress

cr can take any value of the segment [KE 1. KE 1-t 11 (T)] (figure 8). 

For E > E1, we have -Yr1(Er) > 0 and -Yr2(Er) < 0. The vector -Yr(Er) is nonnal to the

triangle Cr at the vertex A (figure 7) and �I = 1 , there is only the martensite number one and the

stress is cr = KE-'t11(T) . 
The increase of deformation produces the martensite-austenite phase change. We have the 

same result when decreasing the deformation: phase change from austenite to martensite number 
two occurs at E = - El· When E < - E 1 there is only martensite number two, P2 = 1, and the stress is

cr = Ke+-c11 (T), (figure 8) .  

9 .8 .3 . Austenite martensite 12hase chan&e latent heat. 
Let us compute 

d'P T 
Tds =-Td( a

T
) = CdT+laTo dp3-1T:E(dP2-<lP1HP2-P1)1T:de

T T 
= Tdsr = CdT -(1T:E+laT0)dP2+(1T:E-la-r0

)dP1-<P2-P1)IT:dE.

31



When phase-change occurs at fixed medium temperature from austenite to martensite 
number one, at the deformation e = £ 1, i .e when going from e slightly lower than E t to e slitghtly

greater than et the reversible heat received by the material is 

T D.Q = -laTo +I1 1 e 1 ,

because D.T = 0, D.p3 = -1, <l P2 = 0, D.P t = 1. We have assumed 1t t < 0. Thus D.Q < 0. The
austenite-martensite phase change is exothermic at medium temperature : when the material is 
deformed heat is  produced. This result is in accordance with experiments ( 1 5 ]. [26 ]. Let us note 
that the quantity la is the martensite austenite volumetric phase change latent heat at temperature To 
of the undeformed material (e t  = 0 when T = To) .  

9 .8 .4. High temperature behaviour CT > T � 
The temperature is fixed and satisfies T > Tc . We have 't t 1 (T) = 0. Thus the two

components of -Yr(Er) are negative, equal and do not depend on e. The vector -Yr(Er) is normal to 

the triangle Cr at the vertex 0. Thus p3 = 1: there is only austenite . The stress is given by ( 48), cr = 
Ke (figure 26). We have the classical elastic behaviour at high temperature in accordance with
experiments. 

Let us conclude that even without dissipation we get some of the important features of the 
behaviour of shape memory alloys : the relatonships ( cr, e) at different temperatures looks l ike the 
actual ones; loading is exothermic at medium temperature, unloading is endothermic ( 1 5 ]. 

Even i f  it is not reasonable to expect a good description of evolutions with this non 
dissipative constitutive law, let us consider a deformed unloaded material at low temperature (e = 

£2 = 't 1 1 (T)
' cr = 0, figure 5) and heat it to high temperature : the material goes back to the

K 
undeformed state (e = 0, cr = 0). This is one kind of shape memory ! 

The results will be much more better with an educated alloy. 

9.9 .  The dissipation . The pseudo-potential of dissipation. 
From experiments it is known that the behaviour of shape memory alloys depends on time, 

i.e the behaviour is diss ipative. It results that the mechanical part of the pseudo-potential of
dissipation <1> is not zero.

Again to deal only with the main features of the behaviour, we assume there is only 

d
. . . . h h api B 1 . (45) . l "  1ss1pat10n wit respect to t e - . ecause re at1on imp 1es 

at

ap3 i1P 1 apz - = -
ot at • at 

we can eliminate the veloci ty 
oP3 in the constitutive laws. As we have already mentionned. we can
at 

also define directly the dissipative internal forces . We choose this way and define a pseudo­
potential of dissipation, 
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0!3 1 0!32 1 (50) , <l>r(T,-,-,gra<Lf) = cat at 
with c � 0 and k � 0. Of course this expression is induced by experimental results :  the first term is 
related to the permanent  deformations exhibited by experiments ; the second term is related to the 
viscous aspect .  It has a smoothing effect. We have also 

where the euclidian norm is

l l0!r l l  =
9 . 1 0. The dissipative constitutive laws .
Following paragraph 9 .5 and assuming there is no quantity , we define the dissipative 

forces, 

B d(oE )E ()<1> ( a13 I 0!32) r r r at , at 
,

where the subdifferential of the non-smooth function <l>r is
Cll3r 

(5 1 ), 

(4 1 ) , 

a13 1 a132 at Cll3r . I lal3r l I... , .... a;-· a.) = I I "!'I I + 'a.· ,, a. • o. 

Cl<l>r(x,t,0,0) e S , if I l()�r l I = 0, with S= { Se R2; llS �  � c } .

The constitutive laws are then 

cr = crr"d(Er), 

Br"d(Er) = ()'Pr (Er) =  Yr(Er) = I 'P I r(Er)-'P3r(Er) I ·ol3r '¥ 2r(Er )-'P 3r(Er) 
( 42), Brndr(Er,X,t) E olr(j3r(X,t) ),
(52 ), Br = Br"d(Er)+Brndr(Er.x.t) + Br<l(x,t, ol3 i ,ol32),at at 
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1
( 1 8) ,  Tq = Qd(Er.OEr) = A.T3gradT or q = -A.gradT.

9 . 1 1 . The dissipative behaviour . 
Although the dissipation is more interesting to describe evolutions of the material, let us 

briefly look for the equilibrium states, i.e find the (cr,£) and �r such that 
d�r 

= 0 in relations (52)
at 

and (5bis) .  We have already assumed that the external action Ar is equal to 0. For the sake of 
simplicity let us also assume that in the sequel grad�i = 0. So the results apply at the two models 

taking or not taking into account the grad�i ·  It results from our assumptions (Ar = 0 and grad�i = 
0) and from the movement equations (5) or (5bis) that

(52bis) , 

give 

9. 1 i . l. Eauilibrium at low temperature. 

Because we have 
d�r = 0, Brd eS . The constitutive laws (4 1 ), (42) and the relation (52bis)
dt 

This relation means that the vector -(Yr+Sr) is normal to the triangle Cr.
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Figure 9 
The vector - (Yr+Sr) is normal to the triangle Cr. 

Let e = 0, the vectors -(Yr+Sr) (figure 9) have positive components (we have assumed ¥o<To-T) > c) . Thus the only possibility for -(Yr+Sr) to be normal to the triangle is to be normal on

the side AB . Thus P 1 +P2 = 1 :  we have a mixture of the two martensites. 

Let us increase e, the vector -Yr leans slightly on the side AB but because of Sr it is still 
possible for the vector -(Yr+Sr) to be normal to the triangle Cr on the side AB . We still have a 
mixture of the two martensites: P 1 +P2 = l .  The stress is O"E Ke+['t 1 1 (T), -'t 1 1 (T)] ,  (figure 10). 
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cr 

Figure 1 0  
The equil ibrium posi tion at low temperature . 

When e increases the vector -Yr leans more and more on the side AB and for e > _c_ = 
't t  1 (T) 

£3 it is no more possible for -(Yr+S r) to be normal to the side AB (figure 9). It is normal to the

triangle at the vertex A: � 1 = 1 , there is only the martensite number one. The stress is (figure 1 0), 

cr = Ke3-'t 1 l (T) .

Note. We have assumed £ 3 > E t or cK = cK 1 1 1 1 > t 1 1 2(T) . The results are slighty different
when this assuption is not satisfied. 

We have the symmetric result for e negative (figure 1 0). The effect of dissipation i s  to 

increase the domain (cr,e) where equilibrium is possible (figure 1 0) .  

9 . 1 1 .2 . Equilibrium at medium temperature. 
The effect of the set S is the same, it  allows the vector -(Y r+Sr) to be normal to the triangle 
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Cr on the side OA not only for E = E 1  but also for a small interval (E4,E5] around E l  (figures 1 1  and
1 2) . 

Figure 1 1
The vector - (Yr+Sr) is normal to the triangle Cr. 
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cr 

KE5-'t 1 1  (T) 

Figure 1 2  
The equilibrium position at medium temperature. 

When E is within this interval we have p 1 +p3 = 1 :  a mixture of austenite and martensite 
number one . Thus the stress is cre Kc:+[ -t 1 1 (T),O] . 

An analogous result is obtained for E negative (figure 1 2) .  

9 . 1 1 .3 .  Eguilibrium at high temperature. 
The components of -(Yr+Sr) remain negative (we have assume T > Tc and T large enough) .  

Thus the vector -(Yr-+Sr) is normal to the triangle Cr only at the vertex 0, (figure 1 3) .  
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Figure 1 3  
The vector - (Yr+Sr) normal to the triangle Cr at high temperature. 

We have only austenite, �3 = 1 ,  and cr = Ke (figure 26). The equilibrium position are not modified
at high temperature by the dissipation. 

9. 1 2 . Evolution of a shape memory allov. 
The diss ipative terms of the constitutive law (52) or of the relation (52bis) involve 

derivatives with respect to the time. Thus they are differential equations. The natural problem to 
look at is the evolution of a material submitted to time dependant external actions . In this paragraph 
we study unidimensional experiments. We choose to apply the deformation E(t) because it is more 
easy to inverstigate the structure of the equations and exhibit the hysteretical properties of shape 
memory alloys. 

To be specific we look at three experiments. The two first are at fixed low temperature, the 
last one at fixed high temperature. 

In the first experiment, the deformation E(t) starting from 0 increases then decreases till the 

stress cr is zero (figure 1 4) .  
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Figure 14 
In the first experiment the applied deformation e(t) increases from 0 and decreases till the stress

cr(t) is zero. In the second experiment the applied deformation e(t) (dotted line) increases to a larger

value, then decreases till the stress cr(t) is zero. 

In the second experiment, the deformation increases to a larger value then decreases again 
to a value such that the stress is zero (figure 14). In the last experiment, the deformation starting 
from 0 increases. In all experiments the initial mixture is made of the two martensites with equal volume

fractions P 1 CO> = P2CO) =i· The point which represents this mixture in the plane CP 1 .P2> is Pro =  cl. 
l 
2> ·

9. 12 .  l .  First experiment at low temperature <T < TQ) .  
The point Pro is an equilibrium position when e = 0. The deformation e(t) increases from 0 

as shown in figure 14.  The vector -Yr which at t = 0 is normal to the line AB leans progressively 
towards it (figure 1 5) .  
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Figure 1 5  
The vector - (Yr+Sr) is normal to the triangle Cr. 

When e is not too large, e < e3 = _c
_ .  it is possible to find SrE s and RrE ofr(�r) such that't t 1 (T) 

(52bis) is satisfied (figure 1 5) .  Thus we have ClPr = 0. In the plane (cr,e), (figure 1 7) , this part of the
at 

evolution correspond to the line I .
Note . The point Pr(t) cannot go inside Cr because when �(t) is inside Rr = 0, (dlr(�r)= { O ) ).

It would result from (52bis) that 

-(Yr+Sr) = 0, 

which means that Sr aniPr 
are directed outwards which is impossible because d�r 

is directed� � 
inwards ! 

When e(t) goes beyong e3 it is no more possible to satisfy (52bis) with 
apr = 0. Thus o�r
at at 

becomes non zero and is tangent to the triangle Cr (figure 1 5) with 

Cl Pr
S = c• + k-r 

'1" ot • 

where tr is the unit vecto4. The volume fraction of the martensite number one increases whi le�Bi 
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the volume fraction of the martensite number two decreases. The stress cr is given by relation ( 48), 
cr(t) = Ke(t)+i: 1 1 (T)(P2(t)-P1 (t)) .  

The quantity Ke(t) increases and the quantity •11 (T)(P2(t)-P1 (t)) decreases. Assuming the first one 

co increase more than the second one decreases, the stress cr(t) increases but more slowly than 

previously. It follows the line 2 in the ( cr,e) plane (figure 1 7) .  
Before Pr(t) reaches the point A, we decrease the applied deformation (figure 14).  The

vector -Yr begins to go back towards the normal vector to the line AB. Thus the modulus of the

vector Sr decreases. But it is still larger than c. The vector dl3r 
is not 0 but its modulus decreases.

at 

The volume fraction P 1 (t) is still encreasing but more and more slowly. The stress cr(t) decreases 

quickly because it is the sum of two decreasing quantities. It follows the line 3 in the ( cr,e) plane 
(figure 1 7). 

When e(t) becomes lower than E3, Sr is lower than c. Thus �r 
= 0 and the composition of

at 

the mixture Pr ! remains constant. The value of the stress is

It is shown in figure 1 7  on the line 4. The stress is zero for (figure 1 7),

The material remains in this position if no load is applied. 

9 . 1 2.2 .  Second experiment at low temperature CT < T Q). 
The deformation applied at the beginning is the one applied in the first experiment. The 

deformation e(t) is increased till the point Pr(t) reaches the vertex A. At this point air(A) is  a larger 

set and is possible to find Rre a:HPr) = arr(A) and Sre S such that the vector -(Yr+Sr) is normal to
the triangle (figure 1 6) ,  

-{Y r+Sr) = Rr E a�<Pr ) .
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Figure 1 6

' 
' P r (t)

' ' 

The vector - (Yr+Sr) is normal to the triangle Cr at low temperature.

Thus we have ClPr = 0. The stress cr versus the deformation E before the point Pr(t) reaches 
dt 

the vertex A is shown in figure 1 7  on the line 5 .  
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Figure 1 7  
The stress cr(t )  versus the de fonnation E(t )  in the first  and second experiment.

When E(t) still increases the point �r(t) remains at the vertex A. The stress is 

(54), cr(t) = KE(t)-• 1 1 (T). 

It is shown in figure 17 on the line 6. If we let E(t) decrease, we still have (52bis) with Sr =

0. Thus 
()(3r 

= 0 and the stress is given by (54). It is zero for (figure 17), 
at 

't1 1 (T) 
E = E2 = �·

The stress cr is shown on the line 7 of figure 17. The material remains in the position (� 1 = 
1, �2 = �3 = 0, cr = 0, E = E2) if no load is applied. 

44



Note . It is clear that any point of the segment [-t2, E2] can be reached . We have assumed 

that E2 = 't J �T) < _c_ or 't J 1 2(T) < cK. When it is not true the results are slightly different.'t J 1 (T) 

An other evolution at medium temperature is shown in figure 1 8  exhibiting the classical 
features of hysteresis. The applied deformations starts from 0, increases and comes back to O. The 

point ( cr(t) , E( t) ) in figure I !  follows the path I ,  2, 3, 4, 5 .

-E ­
l ) 

K£5-"t 1 1  (T) 

cr 

Figure 1 8  
The stress cr(t)  versus the deformation E( t) in an experiment at medium temperature.

9. 1 2 . 3 .  Third experiment at hi�h temperature <T > T.;.:)� 
Let us repeat the first or second experiment at high temperature . The point �ro is not an 

equilibrium point for �r(t). Thus the point �r(t) goes from �o to 0 on the segment [�rO,O] following 
the equation Y r+Sr = 0 or 
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la T "fo<T- o)
+ ta<T-To)

= 0. 

I c 
�- We have assumed T large enough for T�(T-To) - "2 > 0.

When �r(t) reaches the origin, it remains at this point. During all the evolution, relation ( 48) 
shows that 

a(t) = Ke(t) .  

9.13 . The one shape memoi:y effect. 
Let us deform the alloy at low temperature, for instance Jet us m,ake the first experiment. 

The alloy is deformed to the state (a = 0, £ = £Q, �r l ) . 

Let us heat it without applying any load (a(t) = 0 during the process) .  The state (a = 0, e = 

£Q, �r l )  is no more an equilibrium position for the alloy at high temperature thus it evolves towards

the state (a = 0, e = 0, �r = 0).
The deformation is produced by thermal action: the alloys goes back to its reference shape. 

It remembers this reference shape. 
Let us cool it. Nothing occurs ! Because the situation (a = 0, £ = 0, �r = 0) is an equilibrium 

position at low temperature. 

9. 14.  The two sh!&Pe memozy effect. 
The two shape memory effect can be obtained by a special thermomechanical treatment of 

the alloy which then can remember two shapes : one at low temperature an other one at high 
temperature. Depending on the temperature the shape goes from one to the other. 

The thermomechanical treatment is called the education of the shape memory alloy.  Its 
effect is to make one martensite to be dominant. It is much more present than the other one. In our 
point of view the effect of education is to replace the triangle er by the flattened triangle ere (figure
1 9): the possible compositions of an educated shape memory alloy are within the triangle ere
(figure 1 9) .  
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Figure 1 9  
The educated shape memory triangle Cre· The possible compositions of  the educated shape 

memory alloy are within the triangle Cl. 

It is obvious that the martensite number one is much more present than the martensite number two. 

We assume that the point �ro = clt> does not belong to Cre·

9. 1 4. 1 . Equil ibrium states at low temperature CT < Tot 
In the plane ( cr,E) the possible equilibrium positions are shown in figure '.! 1 .  
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Figure 20 

The vector - (Yr+Sr) is normal to the triangle Cre· 

Figure 2 1  
Equilibrium positions of an educated shape memory alloy at low temperature . 
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They result from equation (52bis) or 

Y r+Sr+Rr = 0, 

with SrE S and RrE Clll(�r) , where Ire is the indicator function of the triangle Cre. Let us remind that
equation (52bis) means that the vector -(Y r-+Sr) is normal to the triangle ere (figure 20) . 

When £ =  0, the two components of -Yr are positive and equal. Let us assume T » To such 
that the components of -(Yr-+Sr) are also positive. Thus the only possibility for the vector -(Yr+Sr) 
to be normal to the triangle ere is to be normal on the side ABe. Because the point �ro =(i.i) does

not belong to ere. the stress cr = Kc+'t 1 1 (T)(�2-� 1 )  cannot be equal to 0. Thus the point (E = 0, cr = 
0) cannot be an equilibrium state at low temperature.

The possible equilibrium states at low temperature are shown in figure 2 1 .  Depending on 
the values of T and c there are different possibilities for the equilibrium domain at low temperature 
(see figures 20, 2 1  and figures 22, 23) .  On figure 23,  the deformation £4 is the smallest deformation 
for which there exists S r  for which -(Y r+S r) is normal to ABe and OBe (figure 22) .  The 
deformation £5 is also the largest deformation for which -(Yr+Sr) can be normal to ere on ABe and
OBe(figure 22) .

' 
' 

Figure 22 
The vector - (Y r-+Sr) is normal to the triangle Cre. It can be normal to the sides BeA and OBe for

different vectors SrE S . 
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Figure 23 
Equilibrium positions of an educated shape memory alloy at low temperature. 

9. 14.2.  Equilibrium states at medium temperature CTo < T <T '-) . 

They are shown in figure 24. 
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Figure 24 
Equilibrium staes of an educated shape memory alloy at medium temperature. 

9. 1 4. 3 .  Equil ibrium states at hi�h temperature CT > Tc). 
The components of -Yr are equal and negative. We assume T » Tc such that the components 

of -(Y r+Sr) are also negative (figure 25) . 
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Figure 25 

' 
' 

The vector - (Yr+Sr) is normal to ere at high temperature. 

Thus the only possibility for this vector to be normal to ere is to be normal at the point O (J3r = 0),
(figure 25) .  The equilibrium states at high temperature satisfy (figure 26) 

a= Ke. 

52



Figure 26 
The constitutive law at high temperature . 

9. 1 4.4. Constitutive laws of a non-dissipative educated shape memory alloy 
They are obtained by letting c = 0 in the previous figures showing the equilibrium positions of the dissipative shape memory .  The consitutive laws for the low and medium temperature are 

shown in the following figures 27 and 2 8 .  The constitutive law at high temperature is the one 
shown in the previous figure 26. 
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Figure 27 
Constitutive law of a non-dissipative educated shape memory alloy at low temperature. 
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Figure 28 
Constitutive law of a non-dissipative educated shape memory alloy at medium temperature. 

9 . 14 .5 .  The two shape memory effect . 
Let us consider an unloaded (cr = 0) educated shape memory alloy at high temperature, T+. 

We have E = 0. Let us cool it ,  the only unloaded (cr = 0) equilibrium state at low remperature , T-, is 

(cr = 0, E = E2}. If the temperature is again increased the alloys goes back to the state (cr = 0, E = 0) 

and so on (figure 29) . The alloys remembers two shapes:  the state Er+(E = 0, cr = 0, �3 = 1 ,  T+) and

the state Er-(E = E2 , cr = 0, p 1 = 1 ,  T-) ! One at high temperature and an other one at low

temperature. The heat �Q which is received from the exterior during the phase change , for instance 
when going from E- fo E+, is 

As we expect, it is positive because T- � Tc. 
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The two shape memory effect. The state goes from Er+(T+, E = 0, cr = 0, p3 = l) to
Er-(T-, E = £2, cr = 0, P t = l )  and from Er- to Er+. 

9. 1 5 .  Smooth constitutive laws. 
The equilibrium curves showing the stresses versus the deformations are non-smooth. They 

are angular. Experiments have shown that the pure martensite variants or mixtures, corresponding 
to the extreme points A and B in the triangle Cr. There is always a slight fraction of the second 
martensite at the point A CP2 is very small but not zero) .  To take this property into account we 
replace the set of the possible mixture by a convex curvilinear triangle Crc as shown in figure 30. 
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Figure 30 
The curvilinear set of the possible mixtures of the martensites. 

The effect of replacing the triangle Cr by the curvilinear Crc on the extended free energy is
to replace the indicator function Ir of Cr by the indicator function Ire of Crc ·  The effect on the
constitutive laws is to replace the subdifferential dlr by dlrc ·  For instance the relations (40) is
replaced by 

(40bis) ,  

which means that the reaction Brndr is normal to the convex curvilinear triangle Crc- The equation
of movement ( 46) where we assume no dissipation, 

with 

gives 

which means that the vector -Yr is normal to the convex curvilinear triangle Crc (figure 30) . The
result is a smoothing effect as shown in the figure 3 1  on the constitutive law at low temperature. 
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figure 3 1  
The smooth constitutive law at low temperature. 

10. Evolutions of structures made of shape memory alloys. 
The evolution of a structure made of shape memory alloys, i .e .  the computation of 

Er(x,t) = (E(x,t) . P 1 (x,t),p2(x,t),T(x,t)) depending on the point x of the domain occupied by the 
structure and on the time t can be performed by solving numerically the set of partial differential 
equations resulting from the movement equations (2), (3) ,  (Ster) , (6ter), (or (5bis)) and the energy 
balance (7ter) ,  (or (7bis) ,  (8) ,  the constitutive laws (40), (4 1 ) , (42) , (43) ,  (44), (45) and (47) .  
completed by convenient initial and boundary conditions. Let us mention the numerical results 
given by Worshing [33] where numerous practical and theoretical results can be found. The 
coherence in term of mathematics of the set of partial differential equations has been proved in 
theoretical mathematical papers[8], [30] , [3 1 ] .  

1 1 . Conclusion.  
The models we have described are able to account for the different features of the shape 

memory alloys macroscopic mechanical and thermal properties. We have used schematic free 
energies and pseudo-potentials of dissipation. There are many possibilities to sophisticate the basic 
choices we have made to take into account the practical properties of the shape memory alloys.  Let 
us for instance mention that the pseudo-potential of dissipation can be modified to describe more 
precisely the hysteretical properties of the shape meuory alloys. There is no difficulty to have more 
than two martensites, for instance to take care of the 24 possible martensites: 22 more P 's are to be

introduced and the triangle Cr has to be replaced by the convex set C24 = { Pe R24; 0 s; Pi s; 1 for i =
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l to 24 } ! 
Let us remark that the physical quantities to characterise an educated shape memory alloys 

are: K, C, la. Ta. Tc . :I. the two coordinates of Be for the tree energy and c, k for the pseudo­
potential of dissipation . It is not so many to have a complete multidimentional model which can be 
used for engineering purposes. 

Let us also note the very important role of the internal constraints and of the reaction Bndr to 
these internal constraints which are responsible for many properties. The way we have taken into 
account the internal constraints is general and can be developped in other circumstances [ 1 2] ,  
[ 1 3 ] , [ 1 6] ,  [32] . 

1 2 . Appendix . 

12 . 1 . Convex function.
A convex function from R into R = Ru{  +oo} ;  (figure 32), [20] is an application f whose 

value can be +oo at some point (the value -oo is forbidden) such that 

\:f x,y and \:f9e ]O, 1 [ ,  f(9x+( l-9)y) S: 9f(x)+( l-9)f(y) . 

A convex function f from R2 into R = Ru{  +oo } is a function f such that

\:fye R2, "1Pe R2. \:f9e ]O. l [, f(&y+( l-9)P)  s: 9f(y)+( l-9)f(p) . 

x 

Figure 32 
The convex function is not differentiable at point A. It has a generalized derivative: the slope of any 

line which passes through point A and is under the function f. 

1 2 .2 .  Subgradient and subdifferential of a convex function.
. . 

A convex function does not always have a denvat1ve (for mstance at the pomt A of figure
32)  but it can have generalized derivatives , subgradients, which are the slopes of the lines which
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pass through point A and are always under the function. The set of all the sub-gradients is the 
subdifferential denoted af(XA)· The subgradients have the following property 

(55), V'pe af(XA), V'y, f(y) � f(XA)+(y-XA)p.

Let us remark that the set af(x) is empty if f(x) = +oo (because f(y) which is finite for some y cannot 
be greater than +oo ) . Thus the relation pe af(x) has two meanings: first that f(x) is finite and second 
that relation (55) is satisfied. 

A vector Ye R2 is a subgradient of the convex function f from R2 into R = Ru { +oo} at the 

point p if 

(56), V'ye R2, f(y) � fCP)+ Y.(y-p).

The set of all the subgradients of f at the point P is the subdifferential, af(p). 

12.3 .  Indicator function of a set. 

The indicator function le of a set C is defined by 

Ic(y) = 0, if ye C, 

Ic(y) = +oo, if � C. 

If the set C is convex, the function le is convex. Let us recall that a set is convex iff 

V'ye C, 'Vpe c, V'0e ]O, l [, 0y+( l-0)p e c. 

Let us give some useful examples. 

12 .4. Subdifferential of the indicator function I of the segment ro. 11. 
The convex set is C = [0,1) . Let Y be a subgradient, we have from (55), (figure 33) ,  

V'ye [0,1) , O � I(p)+Y.(y-p).
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Figure 33 
A subgradient of the indicator function I of the segment [O, 1 ]  at  the point � ::: 1 is the slope of a line 

passing through the point ( 1 ,0) and which is under the function I. 

It results (figure 34) , 

arc�) == 0, if �e [O, l ] ,  
and 

CJI(�) ::: { O } ,  if �e ]0, 1 [,

Cll( l ) ::: R+, 

Cll(O) ::: R-. 
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Figure 34 
The graph dl(�). 

12.5.  Subdifferential of the indicator function IQr of the orig-in of R 
The convex set is C = { 0 } .  Let Y be a subgradient, we have from ( 55), 

0 ;::: 10..(x)+ Yx. 

It results that 

dlor(X) = 0, if x 1:- 0, 

dl0r(O) = R; 

because any subgradient at the origin x = 0 is such that 0 ;::: YO, (figure 35). 
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Figure 35 
Any subgradient of the indicator function of the origin is the slope of'a l inear function. 

1 2.6. Subdifferential of the indicator function Ir of a triangle C. 
Let Y be a subgradient, we have from (56), 

It results that 

oir<P) = 0, if PE: C,

and that the vector Y is normal to the triangle C at the poinr P if Pe C (figure 36). 
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Figure 36 
The triangle C with vertices 0 = (0,0), A = ( 1 ,0) and B = (0, l ) . The vector Y is normal to the

triangle C at the point A. 

Thus we have 

C1Ir(f3)  = { 0,0 } ,  if f3 is in the interior of the triangle, 

i.llr(�)  = { (Y,Y) ; · Y  � O } ,  if � is  on the side AB ; 
olr(�)  = { (0,Y) ; Y S 0 } ,  if � is on the side OA ; 

olr(�)  = { (Y,0) ; Y S O } ,  if � is on the side 08 ; 

olr(B) = { (Y 1 ,Y2) ; Y2 � 0, Y 1 S Y2 } .
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