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SHAPE MEMORY ALLOY
A THERMOMECHANICAL MACROSCOPIC THEORY

M. Frémond
Lab. des Matériaux et Structures du Génie Civil, Champs sur Marne, France

1. Introduction.

Shape memory alloys are mixtures of many martensites and of austenite. The composition
of the mixture varies : the matensites and the austenite transform into one another. These phase
changes can be produced either by thermal actions or by mechanical actions. The striking and well
known properties of shape memory alloys results from these links between mechanical and thermal
actions [4], [15], [26].

Shape memory alloys can be studied at the microscopic level by describing the

microstructures of the constitutive crystals, [7], [17], [28]. They can also be studied by using
statistical thermodynamics of a lattice of particles [3] [23].

Thermodynamics involving internal quantities is an other tool to study shape memory alloys
at the macroscopic level, [1], (2], [5], (6], [9], (18], [19], [22] [25], [27], [29]. It is the one we have
chosen [10], [11]. It gives a macroscopic theory which can be used for engineering purposes, for
example to describe the evolution of structures made of shape memory alloys. The internal
quantities we choose, the phase volume fractions, are submitted to constraints (for instance their
actual value is between O and 1). We show that most of the properties of shape memory alloys
result from a careful treatment of these constraints [10], [12].

The first paragraphs 1 to 8 describe the thermodynamical quantities, the free energy and the
pseudo-potential of dissipation. They give also the basic tools for macroscopic modelling. The
paragraph 9 is devoted to the macroscopic description of shape memory alloys.

Basic definitions and properties of convex analysis are given in the appendix 12.

2. Description of a material. The state quantities,

The state quantities are the basic quantities which describe the equilibrium and the evolution
of a material. Their choice depends on the sophistication of the model we are searching for. Thus
their choice depends on the scientist or the engineer concerned.

When the state quantities are constant with respect to the time, we say that the material is at
an equilibrium. Thus the notion of equilibrium is subjective : it depends on the sophistication of the
description.

The set of the state quantities is denoted by E. It usually contains quantities describing the
deformations and the temperature. The other quantities of E are often called internal quantities.

3. Principle of Virtual Pgwer without micoscopic velocities.
This is the classical situation. Let "/ be the linear space of the macroscopic virtual

velocities, Q be the domain of R3 occupied by the structure we consider at the time t. The principle
of virtual power [14] is

(1), VDcQ VYVeV,AD\V)=P(D.V)+PD.V).

where D is a subdomain of Q. The virtual power of the acceleration forces is

A(DV) = Jp*{VdQ,

where 7 is the acceleration and p the density. The virtual power of the internal forces is

P{DV) = —chD(V)dQ,



where D(V) = (Dij(V) = é(vi.jwj_i)) are the strain rates and ¢ = (ajj) the stresses. The virtual
power of the external forces is the sum of the power of the at a distance forces,

Af.VdQ,

where f is the volumetric external force, and of the power of the contact forces

[T.var,
D

where T is the contact external force. The virtual power of the external forces is

P.D.V)= D[f.VdQ + [r.var.
aD

It is classical [14] to get the equations of the movement from the principle (1) ,
(2), py=divo+f,inD,

(3), o.N=T,indD,

where N is the outwards normal unit vector to D.

4. Principle of Virtual Power with microscopic velocities.

When the state quantities include internal quantities, the evolution of those quantities can
result from microscopic movements. We think that the power of the microscopic movements can be

taken into account in the power of the internal forces [13]). Let B be an internal quantity, for
instance a volumetric proportion of austenite in a shape memory alloy, the volumetric proportion of
a constituent in a mixture, the damage in a piece of concrete [13], the intensity of adhesion between
two pieces [16], [32], the volume fraction of unfrozen water in a soil in winter... The only
macroscopic quantity which is related to the micoscopic movements or velocities is -§ which

describes their macroscopic effects i.e. the evolution of B. Thus we choose as actual power of the
internal forces

Pi(D,U,%E) = —JG:D(U)dQ —-J{B%—% + H.grad%}dg,

and as virtual power of the internal forces,

V(V.c)eVxC, P{D.V.c)= —JG:D(V)dQ - A{BC +H.gradc}dQ,

where C is the linear space of the virtual microscopic velocities. The elements (V,c) of VxC are
function of x, (V(x),c(x)).



The gradient of the velocity of B takes into account the influence of the neighbourhood of a
point onto this point. The two quantities B and H are new internal forces. The force B is a work and

H is a work flux vector (if B is a volumetric proportion). Their physical meaning will be given by
the equations of movement as the physical meaning of the stress tensor is given by (3). We will see

that H like o drescribes the effects of the neighbourhood of a point onto this point. The power of
the internal forces has to satisfy the virtual power axiom [14]:

the power of the internal forces is zero for any rigid body movement.
A rigid body movement is such that the distance of two material points remains constant. It

results that D(U) = 0 for a rigid body movement with macroscopic velocity U. Because the distance
of two points remains constant in a rigid body velocity there is no microscopic movement and the

dp

value of B remains constant. It results that(;[[3 =0and P(D,U,~~ at

) = 0. The virtual power is then
satisfied by the power of the internal forces P;.

dﬁ

It is natural to choose a new power of the external forces Po(D,U=- ’d[ti) depending on —-. It is

the sum of

JfUin-J Puq,

the power of the at a distance external actions, and of the power of the external contact forces
[TUdr+ f a‘:i—[fdr
oD oD

where A is the volumic work provided from the exterior and a the surfacic work provided by
contact to D. Thus the new power of the external forces we choose is

V(V,0)e VXC,P(D.V,0) = [£VdQ+ IJAch + JTvar+ facdr.
D aD

We decide not to change the power of the acceleration forces. The principle of virtual power
becomes [12],

4), VDcQ, V(V,c)eVxC, A(D,V ) = P{D,Vc) + Po(D,V c).
By letting c = 0 in (4), we get the classical equations of movement,

(2), py=divo+f,inD,

(3), oN=T,indD.

By letting V =0 in (4), an easy computation gives,

(5), 0=divH-B +A, in D,

(6), H.N=a,indD.



The equation (6) gives the physical meaning of H. It is a work flux vector : H.N is the
amount of work provided to the body through the surface with normal N (for an analoguous
situation think of the heat flux vector).

When the power of the internal forces does not depend on grad% the principle of virtual
power gives
(5 bis), 0=-B+A,inD.

Of course this equation can be obtained by letting H = 0 in (5).

5. The energy balance.

The conservation of energy is for any subdomain D,

dp

d K p.0OU D+ J-a.Nar+ Ardt,
3D

a edt+ —— mn

where e is the volumic internal energy, K the kinetic energy, q the heat flux vector and r the
volumic rate of heat production. By using the kinetic energy theorem, i.e. the principle of virtual
power with the actual velocities, we get for any D,

d

T ledt=—PiD, vl = B, S |-a.Nar+ Ardt

This equation gives,
™, ?jt +edivU + divq =r + 6:D(U) + Bdl3 +H. graddB, in Q,

(8), —q.N=m,indQ,
where Tt is the rate of heat provided to the stucture 2 by contact actions.

6. The secon iple of therm ics.
Itis for any domainD,

% Asdt > f _—(,lr’—l\—(dl“i—J%dt,
oD

where s is the volumic entropy and T the temperature. It gives,
ds | i Wds>L
9), at sdivU + leT 2 T

This equation is the second principle basic relation. It is to be satisfied like the balance
equations by any actual evolution. The equation (9) multiplied by the temperature assumed to be
positive and the energy balance equation give,



de .ds . d gradT
(10), d_‘: ~Tg; + (e-Ts)divU < 5:D(U) + B—&Lt—3 + H.gradd—[: + —_qg;a_’
by letting ‘¥’ = e-T's the volumic free energy, we get

d¥ d d
(D, G+ S(c-¥1:D(U) + B B+Hg"ad B+:9£{a£,

which is the Claudius-Duhem relation (1 is the identiy tensor). This inequality is to be satisfied by
any actual evolution.

7. Constitutive laws when there are no constraint on the internal quantities.

Let us assume that the internal quantity § can have any value : it is not submitted to any
constraint.

From now on, for the sake of simplicity, we make the small perturbation assumption. The
Clausius-Duhem inequality becomes

d¥ d .
an, T e o:pu) + B + Hgradie + ~08724T
because edivU, sdivU and WdivU are negligeable in the small perturbation theory. We assume that
the state quantities are the small deformations €, the internal quantity B, its gradient gradB and the

temperature T: E = (¢,B,gradB,T). The free energy depends on E: W(E). We assume it is
differentiable and let

o
2 ’ =-T
(2. s=-71

which is the Helmholtz relation, and define,

o-nd - a_\{l
o’
Bnd = a_LP'
op
o¥
13), Hd= ——r,
(1) d(gradp)

The stress ond is the non-dissipative stress, B"d and H™d are is the generalized non-dissipative
forces. The Clausius-Duhem relation (11) gives

d d 1
(o—cnd):D(U )+(B—B"d)d—? + (H—H“d)-grad?[t3 +Tq.grads 20,
for any actual evolution of the structure. To achieve the description of the constitutive laws, we

assume that there exist four functions cd, Bd, Hd, Qd depending on x, t, E,

= {D(U),5- dE,graddB gradT } and other quantities X, depending on the history of the material

5



such that
Vx,t,VE, YW = (f.c.g,.p)e SxRxR3xR3, vy,

(14), o9(x,t,E,W x):f + Bdx,t,E,W x)c + HI(x,t.E,.W,x).g+ QI(x,t,E,.W,x).p =0,
where S is the set of symetric tensors.

The quantity o4 is the dissipative stress, Bd and Hd are the dissipative generalized forces and Q9 is
a heat flux. The constitutive laws we choose are,

(15), o =o"(E)+od(x,E,3E,x),

(16), B =Bnd(E)+Bd(x,tE,3E,x),

(17), H=Hnd(E)+Hd(x,t,E,SE,y),

(18), Tq=QIx.LESEX).
It is very easy to prove that

Thegrem 1. If the relation (14) are satisfied, the constitutive laws (15) to (18) are such that
the Clausius-Duhem inequality is satisfied.

Proof. Write the relation (14) with actual velocities and use the constitutive laws.
Let us sum up the way we define a material : it is defined by

the state quantities E,

the linear spaces V and C,

the power of the internal forces P;(D,V ,c),
the free energy ‘¥ depending on E,

the functions o9, B4, Hd, Qd depending on E, &E and other quantities .

7.1. The pseudo-potential of dissipation.

A very general and powerful method to define the dissipative forces is to introduce a
pseudo-potential of dissipation as defined by Moreau [21]. It is a function ® of E, W and % such
that @ is a positive function, convex with respect to W [20] and equal to 0 for W = 0. Let us prove,

Theorem 2. Let there be ®(E,W,x) such that 8E - ®(E,W.Y) is convex, ®(E,W,y) is
positive and ®(E,0,x) = 0. Let for any W, Ae o®(E,W,x), then we have,

AW 20,

(A.W is the scalar product of A and W and 0®(E,W,y) is the subdifferential set of ® with respect
to W).



Proof. Because W —®((E,W,y)) is convex we have for A€ 0P((E, W),
®(E,0,x) 2 D(E,W, ) -AW,

which gives
AW2PEW,x)20and A.W 20.

The dissipative forces od, B4, Hd, Qd are.deﬂned by

(09(x,t,E,8E.), B4(x,t,E,8E.)), HI(x,t,E,8E.x), Qd(x,t.E,8E,X))e dD((E,SE.}).

It results from the theorem 2 that the inequality (14) is satisfied. In the sequel we will always define
the dissipative forces with a pseudo-potential of dissipation.

8. Constitutive laws when there are constraints on the internal quantities.
Let us assume that B is a volume fraction or a damage quantity. Because in the following

paragraphs the B's will be volume fractions, we choose B to be a damage quantity [13]. The
damaged quantity can be defined as the quotient of the Young modulus of the damaged material by

the Young modulus of the undamaged material. Obviously the value of P is between 0 and 1:
(19), 0<B<1,

when B = 1, the material we consider is undamaged and when B = 0, the material is completely

damaged. The internal quantity B is submitted to the internal constraint (19). We think that this
constraint is a material property. Thus it must be taken into account by the elements which define a
material. Because it is a constraint on the state, it appears convenient to use the free energy. We do

it in the following manner: we decide that the free energy is defined for any value of 8, even for
the values which are physically impossible. The value of the free energy is +e for values of f3
which are physically impossible, i.e. for Be [0,1]; its value is the usual physical value W(E) when
Be [0,1]. Thus we have

W(E) = ¥(E) + I(B),

where W is the extended free energy defined for any value of B, \W(E) is the usual physical value

and I is the indicator function of the segment [0,1], (I(x) = +<= if x& [0,1] and I(x) = 0 if xe [0,1]),
(see the appendix).

Note The temperature T is submitted to the internal constraint T 2 0. For the sake of
simplicity, we assume it is always satisfied. If one does not want to make this assumption, it is

convenient to add L.(T) to ¥ where L, is the indicator function of [0,+c0).
Before we go on, let us remark that the time derivatives cannot be assumed to be continuous

. . . dg. .
due to the effects of the internal constraint (19). For mstance-a% is discontinuous when B decreases

to the value O (figure 1).



Figure 1
dp

The function B(t) decreases to 0 and remains equal to 0. The derivative i is not a continuous
function.

Left and right derivative must be investigated. The right derivative

- r
P ErA0 = B dTnE
At
At— 0
At>0

depends on the future evolution of the material but the left derivative

limP® - Be=Ay _d'B
==
At t
At— 0
At>0
depends on its past evolution.
The constitutive laws we are looking for must be determinist, i.e. relations between the state
quantities E and the history of the material or its past evolution. The left derivative appears as a

compulsory choice for any derivative with respect to the time which appears in the constitutive
laws. Thus in the sequel all the time derivatives we use are left derivative.

Let us come back at the extended free energy and give one of its properties:



Theorem 3. If the function ‘¥(¢,B,gradP,T) is smooth, we have for any actual evolution, i.e.
for any evolution such that B(t)e (0,1] at any time t,

dy_dw ww o 4B

(20), VCedP). —F=g<q +Car

|
where the derivatives in the formula (20), (cii—t’ are left derivatives.

Proof Because the evolution is an actual evolution, we have I(B(t)) = O at any time t. It

results the first equality of (20) because Y is equal to ‘¥ at any time t. The function F'(g,B,gradp,T)
being smooth we have,

, dy
(21), () - ¥(t -A1) = (1) At +o(AD)

where the function o(At)/At tends to O when At tends to 0. Because I is a convex function, we have
(22), I(B(1)) - I(B(t=AD) < C (B(t)-B(t-Av)), for any Ce II(B(1)).

By dividing (21) and (22) by At positive and adding those relations, we get

P (t)-'F(t-At) <d'_‘¥‘() B(t)—ﬁ(t—At)+0(At)
At dt At At

By letting At tend towards O, we have the inequality of (20).

Because the free energy 'V is not differentiable whith respect to the time (it has only a left
derivative), we decide that all the quantities that are to be derived with respect to the time have left
derivatives. We assume also that they are smooth enougth with respect to x for the calculations to
be coherent. The Clausius-Duhem inequality

d .
(23), ddl:’*' dT_GD(U)+BB+nga dB ﬂ%’ﬂ‘

can be proved like in paragraph 7, the time derivatives beeing left derivatives. The choice of left
derivative we make is in agreement with the necessity for the the basic inequality (9) or the
equivalent Clausius-Duhem inequality to be satisfied by the past evolution of the material. We
wish also to keep the role of the Clausius-Duhem inequality as a guide to define the constitutive
laws which are relations depending on the past evolution. The left derivative are, as we have
already mentionned, deterministic. On the contrary the right derivative are not deterministic.

We use the notations of the preeceding paragraphs. We have the Helmholtz relation

¥
24), s(Ey=—-—(E
(24), s(E) aT()

Let us define the non dissipative forces. We assume that there exist functions gnd, Bnd, Hnd
of E and Bndr of (E,x,t) which satisfy



(13), ond(E)= o¥ (E),
o€

¥
13), Bnd(E) =— (E),
(13) (E) aB()

(25), Bndr(E x,t)e dl(B(x,t)),

¥

13), H"d(E) = ——— (E).
(13) (E) a(gradﬁ)()

With those definitions we can write the Clausius-Duhem inequality as in the previous
paragraph

d d 1.
(o—ond):D(U) + (B—B“d)a% + (H—H"d).gradd—g + Tq.grad,f 20.

The relations (13), (24) and (25) are the state laws. It results from the preeceding formulae
that the smooth part of the extented free energy is differentiable and that the non-smooth part is

subdifferentiable, i.e. that the subdifferential set JI(B) is not empty. Let us see how important is
this assumption. The quantity Bndr(E,x,t) is the thermodynamical reaction to the internal constraint
(19). It is related to B by the state law (25). This one implies that the subdifferential JI(B) is not

empty, thus that B is between 0 and 1 which means that the internal constraint (19) is satisfied. One
can also say that relation (25) has two meanings, first that the internal constraint (19) is satisfied,

second that there exists a reaction to the internal constraint which is zero for 0 < < 1, positive for
B =1 and negative for B = 0. Let us also note that the sum of the reaction Bndr and of the reversible
force Bnd, (Bndry Bnd) is a generalized derivative of the free energy ¥ with respect to B; Bnd is the
smooth part and BMdr is the non-smooth part of the derivative. If the indicator function I is

approximated by a smooth function, Bndr is approximated by a classical derivative and there is no
more difference between the smooth part Bnd and the non-smooth part Bndr. In our point of view,

the non-smooth mechanics point of view, the free energy is ¥ and the non-dissipative force
associated to B is Bndr+ Bnd e 9.

Note If we do not assume that the temperature is positive, we replace the relation (24) by :

the entropy is a function of (E,x,t) which satisfies
¥
s(E.x,t) € — — (E) + ol.(T).
T *

This relation implies that o, (T) is not empty. It results that the temperature T is positive. It
shows also that if the temperature is strictly positive the classical Helmholtz relation (24) is
verified.

To complete the description of the constitutive laws, we assume the assumption (14) made
in paragraph § is satisfied : there exist four functions of E and of fe S, ce R, ge R3, pe R3 and other

10



quantities ¢ depending on the history of the material: ¢4, B4, Hd, and Q9 which satisfy
Vx,t,VE, YW = (f,c.g,p)e SXRxR3xR3, vy,

(14), od(x,t,E,W,x):f + Bd(x,t,E‘,W,x)c + HI(x,t,E,W,x).g+ QI(x,t,E,W,x).p > 0.
Then the constitutive laws are defined by the following relations

(15), o=09(x,t,E,8E,x) + c"d(E),

(26), B =BY(x,t,E,3E,x) + BNd(E) + Bndr(E x,t),

(17), H = HY(x,t.E,5E.x)+ Hd(E),

(18), Tq=QY(x,tE,3E.x),

where E = (¢,B,gradp,T) et 8E = (?if ,dd—? ,grad—- d? grad ).

The functions o4, B4, Hd and Q9 are the dissipative or irreversible forces. Let us note that
the constitutive laws are obviously deterministic because the time derivatives are left derivatives.
We must prove that our choice is such that the Clausius-Duhem inequality is satisfied. The
following theorem shows that we have the expected properties.

Theorem 4. If the state laws (13), (24) and (25), the constitutive laws (15), (26), (17) and
(18) and the inequality (14) are satisfied then,

(i) the internal constraint (19) is satisfied;
(ii) the Clausius-Duhem rellation (23) is satisfied.

Proof We have already seen that the state law (25) implies that the the internal constraint
(19) is satisfied because the subdifferential set dI(B) is not empty. Let us replace W by 8E =
dle d!'p dip
Cqraceradye
expression given by the constitutive laws (15), (26), (17) and (18). We get

(o -6"d(E)) : —+(B Bnd(E) - B"d"(Ext))d—P+(H Hnd(E)).grad—- d?

grad,Lr) in the inequality (14). Let us replace also the dissipative forces by their

+Tq.grad,Lr 20.
This relation gives with the state laws (13), (24) and (25),

dip dip dlw

d! d'T
27N, 6 ot +B +I~Igraddt T - BMr(E x,t)—=— B+’I‘q grad,r—s—>0

Because the assumptions of theorem 3 are satisfied, the relation (20) with C = Bndr(E x,t)
gives

11



d'y dp _dv
g ~BMEXOG S gr

This inequality and (27) give

i I
de+Bdﬁ

1 ‘T dahy
S ar

+ngad B+Tq gradT —_ a

which is the Clausius-Duhem inequality (23) with left derivatives.

Let us sum up. In this theory, a material is defined by choosing

the state quantities E,

the linear spaces V and C,

the power of the internal forces P;(D,V c),
the quantities

the function ¥,

the functions o4, B4, Hd and Q9 or the pseudo-potential of dissipation ®.
8.1. Constitutive laws on discontinuity surfaces.

In this paragraph we do not make the small perturbation assumption. The state quantities or

the velocities can be discontinuous on some surface. It is easy to prove that the equations of
movement on those surfaces are,

m(U] =[ 6.N],
(H.N] =

where m is the mass flux, N is a unit normal vector to the discontinuity line which divides the
spaces into two parts denoted with the indices 1 and 2; [Z] = Z,—Z denotes the discontinuity of the
quantity Z. The energy balance is

m(e’] - L.[U] -h(b] = (-q.N],

where €' is the specific internal energy (e = pe', p is the density)

h=HN,T —(T1+T2)Q —q.N.

. . d .
Let us recall that b is the actual velocity of B, b = H% . By using the mass balance, we get,

m(e] - Tn [ﬁ]) _Tr.{Ur] - h(b] - [Q] =0,

where

IN=TN,Tr=T-TnN and Ut = U - UNN is the tangential velocity.

12



The second principle of thermodynamics is
(28), mis]- (120,
where s' is the specific entropy (s = ps') or

mTh(s'] - ThQE}- [Q1 20,

where Th, is the harmonic average temperature (rlh = %(TLI + Tiz)) and Qp, the average heat flux (Qn

= %(Q1+Q2)). It gives with the energy balance

([Ths—¢'}+ In %Dm - ThQumEg] + Tr.[Ur] + hib] 20.

To describe the evolution of the discontinuity surface constitutive laws are needed. They are
defined by assuming that there exist four functions of AE = (m,i%],[UT],[b]) and of (x,t), E =

(E|,E2) and other quantities & depending on the history of the material : Y9, Qd, Fd, and hd which
satisfy

vx,t, VE, VW = (f,g,V.c)e RxRxR2xR, V¢,

(29), Y9d(x,t,E,W.E)f + Qd(x,t,.E,W.E)g+ Fd(x,t,E,W,E).V +hd(x,t,E,W,E)c > 0.

The constitutive laws are

[Ths—¢'1+ Tn (1] = Yo(x,LE.AE.%),
p

-ThQm = Qd(x,t,E,AE£),

Tt =Fd(x,t,E,AE.S),

h = hd(x,t,E,AE.£).

It is easy to prove that the preceeding constitutive laws are such that the second principle is
satisfied:

Theorem 5 If the inequality (29) is satisfied, the fondamental inequality (28) is satisfied in
any actual evolution such that the temperature is strictly positive.

Proof. Write the inequality (29) with the actual velocities W = AE = (m,[%],[U'r],[b]) and

substract the energy balance to get the fondamental inequality multiplied by the harmonic average
temperature.

13



Let us sum up again. In this theory, a material is defined by choosing
the state quantities E,
the linear spaces V and C,

the power of the internal forces P;(D,V c),

the quantities ,

the function ¥,

the functions ¢4, Bd, Hd and QU or the pseudo-potential of dissipation @,
the quantities £,

the functions Y4, Qd, Fd, and hd or the pseudo-potential of dissipation on the
discontinuity surface

8.1.1. Exa nstitutive laws on discontinuity lines.

We choose pseudo-potential of dissipation ®s(AE) = Ior([.lf]) where Ig; is the indicator

function of Rx{0}xR2xR. It gives the constitutive laws,
Y4(AE) = 0, Qd(x,t.E,AE)e BI(),([%]), Fd(AE) = 0 and h9(AE) = 0.

It results from the second constitutive law that the temperature is continuous. If we assume
that the density is continuous, the first constitutive law gives

[Ts—'] = -[¥'] =0.

The two last laws show that there is no friction and no flux of damage work on the discontinuity
surface. These constitutive laws are often chosen to describe phase changes occuring in solids.

9. Shape memory alloys. A macroscopic theory.

9.1. Introduction,

This chapter is devoted to the construction of models able to describe at the macroscopic
level the evolution of a structure made of shape memory alloys. The internal constraints on the state
quantites will play a major role and account for most of the striking properties of the shape memory
alloys.

9.2. The state guantities.

As already mentionned we deal only with macroscopic phenomenons and macroscopic
quantities. Thus to describe the deformations of the alloy, we choose the macroscopic deformation

€. For the sake of simplicity we assume this deformation to be small (a large deformation theory
based on those ideas exists). Of course the temperature T is a thermodynamical quantity.

The properties of shape memory alloys results from martensite-austenite phase changes
produced either by thermal actions (as it is usual) or by mechanical actions. At the macroscopic
level we need quantities to describe those phase changes. For this purpose we choose as new

thermodynamical quantities the volume fractions B; of the martensite and austenite. We think that
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this choice is the more simple we can make. Again to be very simple we assume that only two
martensites exist together with the austenite. The volume fractions of the martensites are B and 2

The volume fraction of austenite is B3_Those volume fractions are not independant: they satisfy
constraints, said as usual internal constraints,

(30), 0<B;i<l,

because the B's are volumetric proportions. We assume that no void can appear in the evolutions of
the alloy, i. e. Bj+B2+B3 = 1 and that no interpenetration of the phases can occur, i. e.
B1+PB2+B3 < 1. Thus the B's satisfy an other internal constraint,

(Bl), Bi+PaPs=1.

We think those internal constraints are physical properties.

The thermodynamical macroscopic state quantities we have chosen are E = (¢,81,2,3.T) or
E = (¢,81,82,B3.gradp,gradp2,gradps,T) depending on the sophistication we wish. The second set
(e,B1,B2,B3,gradB,gradpo,gradPs3,T) is chosen if we think that the composition of the alloy at one
point is influenced by its neighbourhood. We note B the vector (B;).

9.3. The free energy.
As already said, we consider a shape memory alloy as a mixture of the three martensite

austenite phases with volume fractions B;. The volumetric energy of the mixture we choose is

3
(32), W(E)= Y Bi¥i(E)+Th(p)

i=1

where the '¥; are the volumetric free energies of the i phases and Th is a free energy describing

interactions between the different phases. We have said that internal constraints are physical
properties. Being physical properties we decide to take them into account with the two functions

we have to describe the material, i.e, the free energy ¥ and the pseudo-potential of dissipation ®.
The pseudo-potential describes the kinematic properties, i.e, properties which depend on the
velocities. The free energy describes the state properties. Obviously the internal constraints (30)

and (31) are not kinematic properties. Thus we take them into account with the free energy ¥. For
this purpose, we assume the ¥; to be defined over the whole linear space spanned by the €, B; and

gradp; and define the extended free energy by

3
¥(E) = ¥(E) + Tlo(B) = ¥(E) +Io(B) = X.Bi¥i(E)+Th(B),

i=1

where I is the indicator function of the convex set

C={(mywyeRi0sysln+n+i=1},

and the extended interaction free energy is defined by
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h(B) = h(B)+Io(B).

The more simple choice for h(B) we can make is h(B) = 0. There is no interaction betwween the
different phases in the mixture. The extended interaction free energy h(B) = Ip(B) is equal to 0 when
the mixture is physically possible (B €C) and to +o when the mixture is physically impossible
(Be C). Properties of the extended free energies are given in the theorem,

Theorem 6. If the function ‘P(g,,gradB, T) is smooth, we have for any actual evolution, i.e.
for any evolution such that f € C at any time t,

dy dy _dw o diB d¥  diB; . diBy . dis

(33), vBedb®). G="qr <Tq *Bar=w *Biy Brg Biy

|
where the derivatives in the formula (33), % , are left derivatives.

Proof. It is identical to the proof of theorem 3.

The vector B is the thermodynamical reaction to the internal constraints (30) and (31). The
subdifferential of the indicator function I is rather easily computed :

Theorem 7. The subdifferential dlg is
dlo(B) = (c,c,c), if B is an internal point of C (0 < Bj < 1 for any i);
dIp(0,B2,83) = (-a2 + c,c,c), if 0 < Bj < 1 fori=23;

910(0,0.1) = (-a%2 +c,-b2 +c,c) ;

where a, b and c are real numbers.

Proof. Let I; be the indicator function of the set {(Y),72,¥3)€ R3 ; 0<v; <1} and 14 the
indicator function of the set {(Y,y2¥3)€R3; ni+v2+y3 = 1). We have I[pB) =
L1 (B)+12(B)+I3(B)+14(B). It results from a theorem of convex analysis (see for instance Moreau
[20]) that

0lo(B) = dlj(B)+ala(B)+ol3(B)+aLa(B),

(be careful, this result obvious for smooth functions is not always true for convex non-smooth
functions).

When 0 < Bj < 1 for any i, we have dIop(B) = dl4(B) = (c,c.c).
When B =0,0< Bj< 1 fori=2,3, we have dlg(B) = oI} (B)+dLy(B) = (-a2,0,0)+(c,c,c).

When B =, = 0, we have dlp(B) =dI,(B)+3dI2(B)+dLs(B) = (-a2,0,0)+(0,-b2,0)+(c,c,c).
Note. It is also possible to prove the theorem by using the fact that the thermodynamical
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reaction B is a vector of R3 normal to the convex set C of R3.

As for the volumic free energies we choose,

Y(E)= %eT:K|£+01(T)T:s - C1TLogT,

W2(E) = %€ T:Kpe+0,T(T):e - CTLogT,

¥3(E) = 5eT:Kse- %)(T-To) — C3TLogT,
where K are the elastic tensors, C; the heat capacities of the phases. The stresses 6 and 65 depend
on the temperature T. The quantity I, is roughthy the martensite-austenite phase change latent heat

(see paragraph 9.8.3). We denote oT:e = Gij€ij.
For the interaction function we choose

Th(E) = Io(B) or Th(E) = lo(B)+5(gradB ) 2+5(gradBy)2,

depending on the sophistication of the model.
Because we want to describe the main basic features of the shape memory alloys behaviour,

we assume for the sake of simplicity that the elastic tensors K; and the heat capacities C; are the
same for all the phases:

G =C, K;=K, fori=1,2and 3.
Always for the sake of simplicity we assume that
o(T) == o2(T) =-u(T).
Concerning the stress t(T), we know that at high temperature the behaviour of the alloy is a
classical elastic behaviour. Thus we have T(T) = 0 at high temperature and choose the schematic

simple expression (always for the sake of simplicity),

UT) = (T-Tek, for TS T,
H(T)=0,forT2Tg,

with 71 <0 and assume the temperature T, to be greater than To. With those assumption we get
|
W(E) = 3€T:Ke ~(B1-Byt(T)Tie By (T-T) - CTLogT.

We have the Helmholtz relation

s(E) =- aa—:j (E) = (B1-Bo)zT:e + [33.;—2’0 +C(1+LogT), for T £ Te,
0a), sE) =X (B) = Bs + C(1+LogT), for T2 T
e ot To ot E e
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which gives the volumic internal energy,

e(E) = W(E)+Ts(T) = %eT:Ka +(B1-B2)Texlie + B3ly+ CT, for T T,

&(E) = W(E)+TS(T) = €K + B3l + CT. for T2 Te.
Note When T = T, the energy can be discontinuous. On the discontinuity surface the
equations of paragraph 8.1 apply. If one wants to avoid using them, the free energy function ¥ can

be smoothed for the value T = T, to have the entropy continuous.

The non dissipative forces are defined by assuming that there exist functions o"d, Bnd, Hnd
of E and Bndr of (E,x,t) which satisfy

(13), o"4(E)= aa;: (E) = Ke=(B1-B2)u(T),

-t(MTe
(13), B"d(E)=aa%l(E)= 1(T)Te
T(T-To)
(25), Bndr(E x,t)edl(B(x,1)),
kgradf
¥
13 s Hnd E = ————— E - .

To complete the description of the constitutive laws, we assume the assumption (14) made
in paragraph 7 is satisfied: there exist four functions of E and of x.t, fe S, ce R3, ge R3x3 and pe R3
and other quantities 3 depending on the history of the material : 4, Bd, H4, and Q4 which satisfy,

Vx,t VE, VW = (f,c,g,p)e SxR3xR3%3xR3, vy,

(14), oc9(x,t,E,W x):f + Bd(x,t,E,W x)c + HI(x,t, E,W x).g+ QI(x,t E,W,x).p > 0.

Then the constitutive laws are defined by the following relations,
(15), ©=0d(x,t.E,8E.x) + o"(E),
(26), B =Bd(x,t,E,SE.x) + Bnd(E) + Bndr(E x,t),
(17), H=HI(x,t,E,8E,x)+ HMI(E),

(18), Tq=Qd(x,t.E,OE. ),
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d‘B d'

1
where E = (¢,8.gradB,T) and JE = ( dt grad @t ,gradT).

9.4. The non-dissipative constitutive laws.

We assume that there is no mechanical dissipation (the functions o9, B4 and Hd are equal to
0) or that the non-thermal part of the pseudo-potential of dissipation is equal to 0. We know that
this is not very realistic but it is a step towards the complete understanting of the constitutive laws.
The results from this non-dissipative theory will be schematic. The constitutive laws are given by

(34), o=oM(E)= ks (E),
o€

(35), B=Bnd(E)= %B\{: (E)+Bndr(E x,t),

(36), Bndr(E x,t)e olo(B(x.t)),

¥

37), H=HY(E)= — (E
(37) ®= et ®
(38), Tq=QIESE.x).

The last constitutive law gives the classical Fourier's law

q = -AgradT,

where A is the thermal conductivity, by choosing Q4(E,8E,x) = AT3 grad,lr.

9.5. Transformation of the equations. Elimination of §3.

Because of the relation (31), we can select one of the B's, for instance B3 = (1-B1-B2) and
rewrite all the equations with the dissymetric set of state quantities E; = (¢,81,B2,T) or E; =
(¢.81,B2.gradB,gradp,,T).

Let us define

B\' = ([31962)v

and the convex set C; of RZ by
Cr={(nn)eRHE0Sv <Nt s i},

and note that ye C is equivalent to Yr = (Y1,¥2)€ Crand y3 = | — y1—y2 or to Io(y) = I¢(Yy) =0, and y3 =
1 —y;—y2 where I is the indicator function of C;. Let us remark that Bndre dly(B) is equivalent to

(39), BeCand Vye C,02 Bdr (y~ B) = By"dry; - B1) + B2ndr(yz - B2) + B3"9r(y3 - B3).

Thus the relation (39) is equivalent to
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Br=(B1.B2)eCe, V¥eCr, 02 (B1-B3)11+(B2-B3a)yz,

or to

B; ndr_B3ndr

B dre e 91(B,) with Bndr = B,ndr_Bandr |

where I; is the indicator function of the convex set C;. Thus the equation (36) is equivalent to

(40), B dre L (By.

The power of the internal forces

dB; dB2 dBs3 ddB
"4t dt ’ dt 8T

dB2

l,grad a ,grad B3

P{D, J 6:DU)Q

dB2 l33 40

J{ B ldﬁl +Boy—~ de +B3d£3 +H; grad(—iﬁ— +Hj. grad +H3. grad

becomes

dB; df2 gra ddﬁx ﬁz

P{D.U 5~ dt " dt dt

grad—2 D[ o:DUYIQ

d
—J {(BI_B”.(%_I +B2-Ba) g B +(H|-H3) grad-g~ P, +(H2-H3)-gl’ad%}d§2

d d
=_ D[ 6:D(U)Q -J{ B,.d—Bt’ +Hr.grad£5}d9,

with

B1-Bs3

B, = l By-B;

The power of the external forces

dBi1 dB2 dB3
POV 2D = D[f.UdQ

d d
J{Al dBtl+Az% + A2 dﬁf dQ+ [T.Udr + f{a £‘+a2 ff B3}dr

oD oD

becomes
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PuD.u D1 8o, Jf UdQ

+J{(AI_A3)E +(A2—A3) BZ 1dQ+ jT.Udl"+ f{(a|—a3)%+(a2 a3)%}dl"
oD oD
=Jf.UdQ+ JA, 4o+ [T.Udr + fa, Srd
oD oD
with
A= A-Aj _|aj-a3
TT A=A T L ag-a3 [

We define also

he(Er) = h(E), Wir(Er) = ¥i(E), with B3 = (1-B1-B2),

W (Er) = B1'¥1(E0)+2 Y2 E+(1-B1-B2) ¥ 3(Er)+ The(Ep),

W(Er) = YHED+E(Br) = B1¥ 1r(Er)+B2'¥ 2r(E0)+(1-B1-B2) ¥ 3(Er)+ The(Ep),
with

The(Ey) = The(Eo)+k(Br)-
The expressions of the different powers show that equations of the movement,
(5), 0=divH-B+A,in D,
(6), H.N=a,indD,
become,
(Ster),0 =divH, - B¢ + A, in D,
(6ter), H.N=a, in dD.

In the case where the power of the internal forces does depend on the gradients the equation
(5bis) becomes

(5quatro),0 = - B¢+ A, in D.

The non dissipative internal forces are

¥ .
oM(Ep) = At (Ep) = o"d(E) = — (E), with B3 = (1-B1-B2),
Je oe
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|
. -(T)T:e~T-To)
B,"d(E,) = g—? (Er) = Y(E) = l F1(En)-¥3d(Er) I_ “To

Yo E)-WaEy) | T.e_Ja T
r 2(Er)-¥ 3e(Ey) (T .E‘T—O(T To)
(40)9 Brndl‘(Er,x’t) Galr(Br,(xJ)) >
¥ kgradf
Hd(E, -—Tr E) = .
D = S gradp kgradﬁzl

The constitutive laws (34) to (38) give the constitutive laws for ¢, q and for B, H;,

de dBy dB2 d, dp

depending on x,t, E; and 3E; = (T, dv dt * dt eradg; ——grad—~= z,grad.l.) if there is dissipation,

(41), o= o d(x,t,E,OE.,) + 6:"(Ep),

(42), B =Bd(x,tE,0Ey) + BM(E,) +Bdr(E, x, 1),
(43), H=H(x,tE,5E.x)+ HMI(E,),

(44), Tq = QI(x.L.E,8Er ).

and

(45), B3 =(1-B1-P).

The dissipative forces o4, B4, H;4 and Q.9 can be defined with the functions cd, Bd, Hd
and Q9, with

H9(x,E,8E.x)-H39(x,t.E,8E.%)
Hd(x,tE,8Er, ) = ’
r (x r T l) sz(x,t,E,BEvX)-H3d(x'['E'SE'X)
B19(x,LE,8E.x)-B3d*,LEBEX) | .
B, 5E.9) = , with 3 = (1-B1-B2),
c 05K = | B d(x .t E.SE.)-Bad(x. E.OE 1) B Bi-B

and
crd(X,LEpSEr»Z) = od(xvtvE18E9X) and Ql'd(xv[*Ef’sEDX) = Qd(x,t,E,BE,X),
with B3 = (1-B1-B2),

or directly with functions o d(x,t,E8EnY), B9 (x.t,EnOEry) Hidx,tEn8Ery) and
Qrd(x,t,E.,8E;,x) which satisfy the inequality,

vx,t, VE., YW, = (f,c..g.p)e SXRZXR23xR3, vy,
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(14bis), 6,9(x,tEr, Wy 0:f + BAXLE, W0 + HidLE W) g+ Qud(,tLE, We,x).p 2 0.

The constitutive laws we have are (40) to (44). Let us one more time emphasis that the
internal constraints (30) and (31) are part of the constitutive laws.

9.6. The first non-dissipative model.
A model is a set of partial differential equations able to describe the evolution of a structure
i.e. able to compute the state E(x, t) knowing the initial situation at the initial time t = O and the

external actions applied to the structure. In the case of a non dissipative model where gradp is not a
state quantity, E = (,8,2,83,T) or Er = (€,81,82,T) and Th =1 or Th = I;. In fact we want to
compute (u(x, t),B1(x, t),B2(x, t), T(x, t)) where u is the small displacement. The equations are

2), py=divo+f,inQ,

(3), o.N=T,indQ,
(5 quatro),0 =- B + Ar, in Q,

where Q is the domain occupied by the structure. In the sequel we assume the external action A to
be equal to 0 ;

(7bis), der | divq =r + o:D(U) + Br.

dpr .
i ,in Q,

dr

8), —q.N=r,inoQ;

o =cM(E,) = ki (Ep),
oe

PR
B"d(E,) = £ (Er) = Y(Ey) =

r

¥ lr(Er)“{l3r(Er)
¥or(Er)-¥3.(Er)

(40), Bdr(E,x,t) €l(Br.(X.1)),
(46), BM(E)+BMIN(ELx,t) =By =Ar =0,
= - AgradT,
and
(45), B3=(1-B1-B2);
er =¥~ Ts.

This long list of equation gives a set of partial differential equations for the unknowns (u,B1,B2,T).
It is completed with boundary conditions and initial conditions for the equations (2) and (7bis).
This set of partial differential equations can be investigated with mathematics and numerical
methods (8], (30], (31], [24], (33]. This model will be the basic model we study in the sequel.
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9.7. The second non-dissipative model.

It is the previous model with a new interaction function,

The(Ey) = (gradB)2+5(gradB2+1:(By).

The equations which are new or different from those of the previous paragrah are:
the equations of movement,

(Ster),0 =divH; -B; + A, in Q,

(6ter), H,.N =a,, in 0Q;

the energy balance equation,

(7ter), % +divg=r+a:D(U) + Br.dd—[ir + I-Ir.graddd—Btr ,in 2,

and the new constitutive law

9'¥;

47),- H;=Hpd(E,) = ——— (E
(47),- Hr=H"YEy) a(gradB,)( r

).

The list of equation is a long one! The partial differential equations are (2), (3), (Ster), (6ter) and
(Tter), (8). The constitutive laws are (40), (41) with o4 = 0, (42) with B4 =0, (43) with Hd = 0,
(44), (45) and (47).

9.8. An example of non-dissipative evolution.

Let us consider a unidimendional experiment and assume € to be the only non zero
deformation. Let us also assume that gradf; = 0 in the second model for the results to apply to both

the two non-dissipative models. Let us focus on the stress 6 as a function of € when the
temperature is fixed. From relation (40) we have

(48), o11 = Kjnen+ti(MB2-P ).

from relations (41), (42) and (43) we get,
(49), -Y{(Epedl(B,),
with

1
—tn(Men + ﬁ(T—To)
Yr(Er) = 1
T11(Ter + ﬁT-To)

The relation (49) means that the vector —Y(E;) is normal to the triangle G at the point Br
(figure 2).
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Ba(t)

Y

1 B1(t)

Figure 2
The vector —Y((E;) is normal to the triangle C,.

9.8.1. Low temperature behaviour (T < Tp).

The temperature is fixed and low, T < Tog. We look for 611 = o, B and B, as functions of
. |
€11 = €. The two components of Y(Er) Y (Ep) =-111(Te +ﬁT—To) and Yp2(Ep) =711(T)e +

,{f:) T-Ty), are shown on figure 3.
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Figure 3
The components of Y(E;) versus € = €| at low temperature.

When € = 0, the two component of the vector —Y(E,) are equal and positive. This vector
can be normal to the triangle C, only on the~side AB (figure 4). Thus B3 = 0 and.we have a mixture
of the two martensites. The stress G can take any value of the segment [t11(T), —t11(T)] (we have
T11(T) = (T-T¢)x11 > 0 because we have assumed 11| < 0).

When € > 0, we have —=Y;(E;) > 0 and -Y|(Er) > -Y;2(Er). The only point where <Y ((E()
can be normal to the triangle C; is the vertex A (figure 4).
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‘ -Yr(Er) € S O

-Y (Epe=20
-

1 Bi(®

Figure 4
The vector -Y(E;) for different deformations € at low temperature.

Thus By = 1: there is only the martensite number one and ¢ = Ke -1 (T) (figure 5), (we let K =

K-
When € < 0, we have -Y2(E;) > 0 and -Y2(E;) > -Y1(E;). The vector Y(E;) is normal to

the triangle C; at the vertex B (figure 4). Thus By = I: there is only the martensite number two and
o = Ke+111(T), (figure 5).
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(M)

=T11(T)

Figure 5

The non-dissipative constitutive low at low temperature.

We get some of the properties of shape memory alloys : at low temperature there is no
austensite but mixtures of martensites ; there is a softening of the behaviour when going from
compression to tension. Of course the behaviour at the origin is not the actual one but it has some

of its properties.

9.8.2. Medium temperature behaviour (To < T < Tp).

The temperature is fixed and satisfies Tg < T < T. The two components of the vector Y((Er)
are shown on figure 6.
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Figure 6
The components of Y((E;) at medium temperature.

When € = 0 the two components of Y(E;) are equal and negative. The vector Y(E;) can be
normal to the triangle C; only at the vertex O (figure 7).
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-Y,(E) € < —€) ?
Ba(t)

1 \B

'

1 B

ZY (Ep) €€ [-€1,€]
-YA(Ep € 2¢g

Figure 7
The vector -Y(E,) for different deformations € at medium temperature.

Thus B3 =1 and B| = B2 =0, there is only austenite. Relation (27) gives ¢ = 0 for € = 0. When ¢ #
0, the vector Y |(E) is normal to C; at vertex O if its two components are negative i.e. for

_ 1a(T-Tp) <e< 1a(T-To) =¢
Tot11(T) Tot11(T)

Thus for g€ ]-€1,€ [, there is only austenite, B3 = 1, and from (48), o = Ke (figure 8).
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Ke,

KSI—T“(T)

-Ke&+1;(T)

K¢,

Figure 8
The constitutive low at medium temperature.

For € = €|, we have Y |(E;) = 0. The vector -Y(E;) is normal to the triangle C; on the side
OA (figure 7) and B|+PB3 = 1: we have a mixture of austenite and martensite number one. The stress
o can take any value of the segment [Ke, Kej—t)(T)] (figure 8).

For € > €|, we have -Y,|(E;) > 0 and -Y2(E;) < 0. The vector -Y(E;) is normal to the
triangle C; at the vertex A (figure 7) and B = 1, there is only the martensite number one and the
stress is ¢ = Ke—1(T).

The increase of deformation produces the martensite-austenite phase change. We have the
same result when decreasing the deformation: phase change from austenite to martensite number

two occurs at € = — €. When € < - € there is only martensite number two, B3 = 1, and the stress is
o = Ke+1(|(T), (figure 8).

9.8.3. Austenite martensite phase change latent heat.
Let us compute

¥ T
Tds = —Td(a—T) = CdT+lap; dB3-tT:e(dB2-dB1)~(B2-B1)xT:de

T
= Tds, = CdT -(IT:e+1aTlO)dBg+(;T:e-1:,f5)dB 1=(B2-B 2T de.
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When phase-change occurs at fixed medium temperature from austenite to martensite
number one, at the deformation € = €|, i.e when going from € slightly lower than € to € slitghtly
greater than € the reversible heat received by the material is

T
AQ= ‘laﬁ +T11E1

because AT = 0, AB3 = -1, AP2 =0, AB| = 1. We have assumed T|| < 0. Thus AQ < 0. The
austenite-martensite phase change is exothermic at medium temperature: when the material is
deformed heat is produced. This result is in accordance with experiments [15], [26]. Let us note
that the quantity I, is the martensite austenite volumetric phase change latent heat at temperature T

of the undeformed material (¢ = 0 when T = T).

9.8.4. High temperature behaviour (T > T,).

The temperature is fixed and satisfies T > T.. We have 1||(T) = 0. Thus the two
components of —Y(E;) are negative, equal and do not depend on €. The vector -Y(E;) is normal to
the triangle C; at the vertex 0. Thus B3 = 1: there is only austenite. The stress is given by (48), ¢ =

Ke (figure 26). We have the classical elastic behaviour at high temperature in accordance with
experiments.

Let us conclude that even without dissipation we get some of the important features of the

behaviour of shape memory alloys : the relatonships (0, €) at different temperatures looks like the

actual ones; loading is exothermic at medium temperature, unloading is endothermic [15].
Even if it is not reasonable to expect a good description of evolutions with this non

dissipative constitutive law, let us consider a deformed unloaded material at low temperature (€ =

T11(T)

€ = )
K

undeformed state (€ = 0, 6 = 0). This is one kind of shape memory!
The results will be much more better with an educated alloy.

o = 0, figure 5) and heat it to high temperature : the material goes back to the

9.9. The dissipation. The pseudo-potential of dissipation.
From experiments it is known that the behaviour of shape memory alloys depends on time,
ie the behaviour is dissipative. It results that the mechanical part of the pseudo-potential of

dissipation @ is not zero.
Again to deal only with the main features of the behaviour, we assume there is only

aB; . T
dissipation with respect to the —a& . Because relation (45) implies
t

B__ 31 3B
ot a ot

- . 0B3. -
we can eliminate the velocity —aﬁ-}' in the constitutive laws. As we have already mentionned, we can
t

also define directly the dissipative internal forces. We choose this way and define a pseudo-
potential of dissipation,
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381 3B \/ By, B2, B, B2
50), @ T——, = 2 2}+ k{( 2
(50), @ gra dT) G G) b+ A +—(gradT)

with ¢ 2 0 and k 2 0. Of course this expression is induced by experimental results: the first term is
related to the permanent deformations exhibited by experiments; the second term is related to the
viscous aspect. It has a smoothing effect. We have also

3ﬁ13B2 B BBr
dT)- I ot

Q)r(T +k(

)2+ —(gde)2

where the euclidian norm is

| ,\/{(aﬁl aBz

9.10. The dissipative constitutive laws.
Following paragraph 9.5 and assuming there is no quantity , we define the dissipative
forces,

3Br

Grd(xqt,Er,SEr) = 09
Hrd(xyt»Er,SEr) = 07

B 9(5E )e 9D ( % aB2),

where the subdifferential of the non-smooth function ®; is
9Br

CIE TN 22

ot \ B, | ot ot

ot

oD (x,t,— #0,

0Dr(x,t,0,0) €S, if “aa_Br” =0,with S= {Se RZ; [S|<c}.
t

The constitutive laws are then

(51), o=0M(E),

¥
(41), Br"d<Er>—aB’(Er> =YH(E) =

r

¥ (Ep)-¥3d(Er) l
\PZr(Er)—\‘PZ&r(Er) ,

(42)’ Br"dr(Er,xot) € aIr(Br(x,t)),
9B, 9B>

(52), Br=Bd(E)+Bdr(E,x,t) + Bt 5
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(53), Hr = Hrnd(Er),

(18), Tq=QJ4E.E,) = XT3grad.Lr or q = -AgradT.

9.11. The dissipative behaviour.

Although the dissipation is more interesting to describe evolutions of the material, let us

briefly look for the equilibrium states, ie find the (g,€) and B; such that % = 0 in relations (52)
t

and (5bis). We have already assumed that the external action A is equal to 0. For the sake of
simplicity let us also assume that in the sequel gradp; = 0. So the results apply at the two models

taking or not taking into account the gradp;. It results from our assumptions (A; = 0 and gradp; =
0) and from the movement equations (5) or (5bis) that

oB;d
(52bis), 0 = B."d(E)+Bndr(E x,1) + B, 1, %%)
9.1i.1. Equilibrium at low temperature.
Because we have ? =0, Bd €S . The constitutive laws (41), (42) and the relation (52bis)
t

give
Y +S+R; = 0, with S, S, Rie ok(By).

This relation means that the vector —(Y+S;) is normal to the triangle C;.
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Figure 9
The vector - (Y+Sy) is normal to the triangle C;.

Let € = 0, the vectors —(Y+S;) (figure 9) have positive components (we have assumed

.i.—aO(To-T) > c). Thus the only possibility for —(Y+Sy) to be normal to the triangle is to be normal on

the side AB. Thus B;+f3; = 1: we have a mixture of the two martensites.

Let us increase €, the vector Y leans slightly on the side AB but because of Sy it is still
possible for the vector —-(Y+S;) to be normal to the triangle G on the side AB. We still have a

mixture of the two martensites: B1+P2 = 1. The stress is o€ Ke+[1{(T), =11 1(T)], (figure 10).
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Figure 10
The equilibrium position at low temperature .

T11(T) B
€3 it is no more possible for —(Y+S;) to be normal to the side AB (figure 9). It is normal to the
triangle at the vertex A: B = 1, there is only the martensite number one. The stress is (figure 10),
o = Kez-11(T).

When ¢ increases the vector =Y leans more and more on the side AB and for € >

Note. We have assumed €3 > €] or cK = cKj1| > T11%(T). The results are slighty different
when this assuption is not satisfied.

We have the symmetric result for € negative (figure 10). The effect of dissipation is to
increase the domain (o,€) where equilibrium is possible (figure 10).

9.11.2. Equilibrium at medium te 4
The effect of the set S is the same, it allows the vector —(Y+S;) to be normal to the triangle
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Cron the side OA not only for € = € but also for a small interval [€4,€5] around €; (figures 11 and
12).

B5(t)

0

-Y, 1 Bi(v
€ € [84,85] —(Yr+Sr)

Figure 11
The vector - (Y +S;) is normal to the triangle C;.
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Figure 12
The equilibrium position at medium temperature.

When ¢ is within this interval we have B+B3 = I: a mixture of austenite and martensite
number one. Thus the stress is ce Ke+[ -11((T),0].
An analogous result is obtained for € negative (figure 12).

9.11.3. Equilibrium at high temperature.

The components of —(Y+S;) remain negative (we have assume T > T, and T large enough).
Thus the vector —(Y+S;) is normal to the triangle C only at the vertex O, (figure 13).

38



Ba(t)

1 Bi(®

Figure 13
The vector - (Y +S) normal to the triangle C; at high temperature.

We have only austenite, B3 = 1, and 6 = Ke (figure 26). The equilibrium position are not modified
at high temperature by the dissipation.

9.12. Evolutign of a shape memory alloy,
The dissipative terms of the constitutive law (52) or of the relation (52bis) involve

derivatives with respect to the time. Thus they are differential equations. The natural problem to
look at is the evolution of a material submitted to time dependant external actions. In this paragraph
we study unidimensional experiments. We choose to apply the deformation €(t) because it is more
easy to inverstigate the structure of the equations and exhibit the hysteretical properties of shape

memory alloys.
To be specific we look at three experiments. The two first are at fixed low temperature, the

last one at fixed high temperature.

In the first experiment, the deformation €(t) starting from O increases then decreases till the

stress o is zero (figure 14).
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Figure 14 )
In the first experiment the applied deformation &(t) increases from O and decreases till the stress
o(t) is zero. In the second experiment the applied deformation £(t) (dotted line) increases to a larger

value, then decreases till the stress o(t) is zero.

In the second experiment, the deformation increases to a larger value then decreases again
to a value such that the stress is zero (figure 14). In the last experiment, the deformation starting
from O increases.

In all experiments the initial mixture is made of the two martensites with equal volume

fractions B1(0) = B(0) =-21. The point which represents this mixture in the plane (B1,p2) is B0 = (%,
1
2

9.12.1. First experiment at low temperature (T < Tg).
The point B,0is an equilibrium position when € = 0. The deformation £(t) increases from 0
as shown in figure 14. The vector -Y, which at t = 0 is normal to the line AB leans progressively
towards it (figure 15).
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Figure 15
The vector - (Y+S;) is normal to the triangle C;.

When € is not too large, € < €3 = , it is possible to tind Sr€ S and Rre 9L;(B;) such that

T11(T)
(52bis) is satisfied (figure 15). Thus we have? = 0. In the plane (o,€), (figure 17), this part of the

t
evolution correspond to the line 1.

Note. The point B(t) cannot go inside C; because when Bi(t) is inside Ry = 0, (3I:(B)= {0}).
It would result from (52bis) that

—(Y+Sp) =0,
oB:

which means that S; and——aBr are directed outwards which is impossible because —a is directed
t t

inwards!

. .0 d
When £(t) goes beyong €3 it is no more possible to satisfy (52bis) w1th3‘3—r = 0. Thus Bﬁ—t[
t

becomes non zero and is tangent to the triangle C; (figure 15) with

ad
Sr=th+k%,

where t; is the unit vectorﬁ%. The volume fraction of the martensite number one increases while
|
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the volume fraction of the martensite number two decreases. The stress G is given by relation (48),

o(t) = Ke()+t11(T)(B2(t)-B1(1)).

The quantity Ke(t) increases and the quantity T11(T)(B2(t)-B1(t)) decreases. Assuming the first one
to increase more than the second one decreases, the stress G(t) increases but more slowly than
previously. It follows the line 2 in the (0,€) plane (figure 17).

Before Br(t) reaches the point A, we decrease the applied deformation (figure 14). The
vector —Y; begins to go back towards the normal vector to the line AB. Thus the modulus of the

B

vector Sy decreases. But it is still larger than c. The vectora— is not O but its modulus decreases.
t

The volume fraction B(t) is still encreasing but more and more slowly. The stress o(t) decreases

quickly because it is the sum of two decreasing quantities. It follows the line 3 in the (,€) plane
(figure 17).

When g(t) becomes lower than €3, S; is lower than c. Thus %& = 0 and the composition of
t
the mixture B,! remains constant. The value of the stress is

o(t) = Ke()+t 1 (T(Pl~B1y).

It is shown in figure 17 on the line 4. The stress is zero for (figure 17),
“T(TY(Bl-Bly)
gp = =1L 1? By

The material remains in this position if no load is applied.

9.12.2. Second experiment at low temperature (T < Tg).

The deformation applied at the beginning is the one applied in the first experiment. The
deformation £(t) is increased till the point B;(t) reaches the vertex A. At this point oI (A) is a larger

set and is possible to find Rre ok(Br) = dI;(A) and S;e S such that the vector —(Y+S¢) is normal to
the triangle (figure 16),

—(Y+S) =R, € ok(Br).
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Figure 16
The vector - (Y+S;) is normal to the triangle C; at low temperature.

9Bs

Thus we have-a—— = 0. The stress G versus the deformation € before the point B,(t) reaches
t

the vertex A is shown in figure 17 on the line 5.
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Figure 17
The stress o(t) versus the deformation €(t) tn the first and second experiment.

When €(t) still increases the point B(t) remains at the vertex A. The stress is
(54), o(t) = Ke(t)-t11(T).

It is shown in figure 17 on the line 6. If we let &(t) decrease, we still have (52bis) with S, =

0. Thus %§£= 0 and the stress is given by (54). It is zero for (figure 17),
t

T
e=sz=t—“é ).

The stress ¢ is shown on the line 7 of figure 17. The material remains in the position (B =
1,B2=P3=0,0=0, € =¢) if no load is applied.
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Note. It is clear that any point of the segment [-€, €3] can be reached . We have assumed

Tll(T)<

that €7 = K — _or 7112(T) < cK. When it is not true the results are slightly different.

T11(T)

An other evolution at medium temperature is shown in figure 18 exhibiting the classical
features of hysteresis. The applied deformations starts from 0, increases and comes back to 0. The

point (o(t), &(t)) in figure 1! follows the path 1, 2, 3, 4, S.

[y}

Kes—T (T | — — —

KE‘;"'_—

Figure 18
The stress o(t) versus the deformation £(t) in an experiment at medium temperature.

9.12.3. Third experiment at high temperature (T > T,).

Let us repeat the first or second experiment at high temperature. The point B0 is not an

equilibrium point for By(t). Thus the point B(t) goes from B0 to O on the segment [(39,0] following
the equation Y +S; =0 or
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la B -
To V2 o

Note. We have assumed T large enough for ,—%(T—To) - \/C_i > 0.

When [,(t) reaches the origin, it remains at this point. During all the evolution, relation (48)
shows that

o(t) = Ke(v).
9.13. The one shape memory effect.

Let us deform the alloy at low temperature, for instance let us make the first experiment.
The alloy is deformed to the state (o = 0, € = g, B1).

Let us heat it without applying any load (o(t) = O during the process). The state (6 =0, € =
£0, [3.-‘) is no more an equilibrium position for the alloy at high temperature thus it evolves towards

the state (6 =0, € =0, B = 0).

The deformation is produced by thermal action: the alloys goes back to its reference shape.
It remembers this reference shape.

Let us cool it. Nothing occurs! Because the situation (¢ = 0, € = 0, B = 0) is an equilibrium
position at low temperature.

9.14. The two shape memory effect,

The two shape memory effect can be obtained by a special thermomechanical treatment of
the alloy which then can remember two shapes : one at low temperature an other one at high
temperature. Depending on the temperature the shape goes from one to the other.

The thermomechanical treatment is called the education of the shape memory alloy. Its
effect is to make one martensite to be dominant. It is much more present than the other one. In our
point of view the effect of education is to replace the triangle C; by the flattened triangle C¢ (figure

19): the possible compositions of an educated shape memory alloy are within the triangle C¢
(figure 19).
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Figure 19

The educated shape memory triangle C.. The possible compositions of the educated shape
memory alloy are within the triangle C..

It is obvious that the martensite number one is much more present than the martensite number two.

We assume that the point B0 = (:1,-,%) does not belong to C.E.

9.14.1. Equilibrium states at low temperature (T < Tg).

In the plane (o,€) the possible equilibrium positions are shown in figure 21.
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Figure 20
The vector - (Y+S;) is normal to the triangle C®.

Figure 21
Equilibrium positions of an educated shape memory alloy at low temperature.
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They result from equation (52bis) or

Y +S+Rr =0,

with S;e S and R;€ d¢(By), where I;€ is the indicator function of the triangle Ge. Let us remind that
equation (52bis) means that the vector (Y +Sy) is normal to the triangle C€ (figure 20).

When € = 0, the two components of —Y are positive and equal. Let us assume T » Tg such
that the components of —(Y+S¢) are also positive. Thus the only possibility for the vector —(Y+S;)

to be normal to the triangle C© is to be normal on the side AB.. Because the point ;0 =(¢,l,%) does

not belong to C.¢, the stress 6 = Ke+11(T)(B2-P ) cannot be equal to 0. Thus the point (¢ =0, ¢ =
0) cannot be an equilibrium state at low temperature.

The possible equilibrium states at low temperature are shown in figure 21. Depending on
the values of T and c there are different possibilities for the equilibrium domain at low temperature

(see figures 20, 21 and figures 22, 23). On figure 23, the deformation €4 is the smallest deformation
for which there exists S; for’ which (Y (+S¢) is normal to ABe and OB, (figure 22). The

deformation €5 is also the largest deformation for which —(Y,+S;) can be normal to C;¢ on AR, and
OBe(figure 22).

Bat
L AN C
AN
N\ N _ —Sr
N
N ‘ -Y;
AR
N ~(Y+S,)
Be
Cce
0 i A
-
1 B
Figure 22

The vector - (Y +S;) is normal to the triangle C;©. It can be normal to the sides B.A and OB, for
different vectors S;e S .
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Figure 23
Equilibrium positions of an educated shape memory alloy at low temperature.

9.14.2. Equilibrium states at medium temperature (To < T <T¢).

They are shown in figure 24.
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Figure 24
Equilibrium staes of an educated shape memory alloy at medium temperature.

9.14.3. Equilibrium states at high t rature (T > T,).
The components of —Y are equal and negative. We assume T » T¢such that the components
of —(Y+Sr) are also negative (figure 25).
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Figure 25
The vector — (Y +S;) is normal to C;€ at high temperature.

Thus the only possibility for this vector to be normal to C¢ is to be normal at the point 0 (B; = 0),

(figure 25). The equilibrium states at high temperature satisfy (figure 26)

o= Ke.
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Figure 26
The constitutive law at high temperature.

9.14.4. Constitutive laws of a non-dissipative educated shape memory alloy

They are obtained by letting ¢ = 0 in the previous figures showing the equilibrium positions
of the dissipative shape memory. The consitutive laws for the low and medium temperature are
shown in the following figures 27 and 28. The constitutive law at high temperature is the one
shown in the previous tigure 26.
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=T11(T)
Ke

Figure 27
Constitutive law of a non-dissipative educated shape memory alloy at low temperature.

54



Ke

Ke-1,1(T)

Figure 28
Constitutive law of a non-dissipative educated shape memory alloy at medium temperature.

9.14.5. The two shape memory effect .
Let us consider an unloaded (6 = 0) educated shape memory alloy at high temperature, T*.

We have € = 0. Let us cool it, the only unloaded (¢ = 0) equilibrium state at low remperature, T-, is
(0 =0, € = ). If the temperature is again increased the alloys goes back to the state (6 =0, € = 0)
and so on (figure 29). The alloys remembers two shapes: the state E;*(€=0,5=0, B3 =1, T*) and
the state E;~(¢ = €2, 6 =0, B = 1, T-) ! One at high temperature and an other one at low
temperature. The heat AQ which is received from the exterior during the phase change, for instance

when going from E~ fo E*, is

AQ = Aer = er+—e = CAT - % K(e2)? - Tcty182+a, (K=Kp111)

with AT = T*-T- and g7 = - ;((T),

)2
= CAT+ 13- (T2 - TCZ}W.

As we expect, it is positive because T~ < T.
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Figure 29
The two shape memory effect. The state goes from E;*(T+,€=0,6=0,B3=1)to
E~(T-,e=¢€,6=0,0; =1) and from E;~ to E;*.

9.15. Smooth constitutive laws.

The equilibrium curves showing the stresses versus the deformations are non-smooth. They
are angular. Experiments have shown that the pure martensite variants or mixtures, corresponding
to the extreme points A and B in the triangle C;. There is always a slight fraction of the second
martensite at the point A (7 is very small but not zero). To take this property into account we
replace the set of the possible mixture by a convex curvilinear triangle C,c as shown in figure 30.
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Figure 30
The curvilinear set of the possible mixtures of the martensites.

The effect of replacing the triangle C, by the curvilinear C¢ on the extended free energy is
to replace the indicator function I; of C; by the indicator function Ir; of Cc. The effect on the

constitutive laws is to replace the subdifferential dI; by dlr. For instance the relations (40) is
replaced by

(40bis), B "dre dlc(By),

which means that the reaction B9 is normal to the convex curvilinear triangle C;c The equation
of movement (46) where we assume no dissipation,

(46), BE)+BM(E LX) =Br=A, =0,

with

¥,
B(E) = " (B0 = Vi) = |

r

Y1 (E-¥Y3(Ep) I
Wor(Er)-¥3(Ep)

gives

-Y e Lc(Br),

which means that the vector -Y, is normal to the convex curvilinear triangle C, (figure 30). The
result is a smoothing effect as shown in the figure 31 on the constitutive law at low temperature.

57



A T

=T11(T)

figure 31

The smooth constitutive law at low temperature.

volutions of structu ade of sha e alloys,
The evolution of a structure made of shape memory alloys, i.e. the computation of

Ec(x,t) = ((x,t),B1(x.t),B2(x,t), T(x,t)) depending on the point x of the domain occupied by the
structure and on the time t can be performed by solving numerically the set of partial differential
equations resulting from the movement equations (2), (3), (Ster), (6ter), (or (Sbis)) and the energy
balance (7ter), (or (7bis), (8), the constitutive laws (40), (41), (42), (43), (44), (45) and (47).
completed by convenient initial and boundary conditions. Let us mention the numerical results
given by Worshing [33] where numerous practical and theoretical results can be found. The
coherence in term of mathematics of the set of partial differential equations has been proved in
theoretical mathematical papers[8], [30], [31].

11. .
The models we have described are able to account for the different features of the shape
memory alloys macroscopic mechanical and thermal properties. We have used schematic free
energies and pseudo-potentials of dissipation. There are many possibilities to sophisticate the basic
choices we have made to take into account the practical properties of the shape memory alloys. Let
us for instance mention that the pseudo-potential of dissipation can be modified to describe more
precisely the hysteretical properties of the shape melory alloys. There is no difficulty to have more

than two martensites, for instance to take care of the 24 possible martensites: 22 more B's are to be
introduced and the triangle C; has to be replaced by the convex set Cp4 = {Pe R24:0< Bi<1fori=
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1 to 24}!
Let us remark that the physical quantities to characterise an educated shape memory alloys

are: K, C, la, Ty, Tc,I, the two coordinates of B for the tree energy and c, k for the pseudo-
potential of dissipation. It is not so many to have a complete multidimentional model which can be
used for engineering purposes.

Let us also note the very important role of the internal constraints and of the reaction Bndr to
these internal constraints which are responsible for many properties. The way we have taken into
account the internal constraints is general and can be developped in other circumstances [12],

[131,[16], [32].

12. Appendix.
12.1. Convex function.

A convex function from R into R = RU{+e0}; (figure 32), [20] is an application f whose
value can be +e< at some point (the value —e is forbidden) such that

Vx,y and V0e 10, 1[, f(8x+(1-0)y) < Bf(x)+(1-0)f(y).
A convex function f from R2 into R = RuU{+e}is a function f such that

VyeR2, VBeR2. VO 10.1[, f(By+(1-8)B) < OF(Y)+(1-0)f(P).

Af

VA

, -

XA X
Figure 32

The convex function is not differentiable at point A. It has a generalized derivative: the slope of any
line which passes through point A and is under the function f.

12.2. Subgradient and subdifferential of a convex function.

A convex function does not always have a derivative (for instance at the point A of ﬁgl_lre
32) but it can have generalized derivatives, subgradients, which are the slopes of the lines which
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pass through point A and are always under the function. The set of all the sub-gradients is the
subdifferential denoted of(xa). The subgradients have the following property

(55), Vpedf(xa), ¥y, f(y) 2 f(xa)+(y—xa)p.

Let us remark that the set df(x) is empty if f(x) = +oo (because f(y) which is finite for some y cannot

be greater than +ec). Thus the relation pedf(x) has two meanings: first that f(x) is finite and second
that relation (55) is satisfied.

A vector YeR2is a subgradient of the convex function f from R? into R = RuU{+} at the
point B if

(56), VYeRZ f(y) 2 f{(B)+Y.(r-B).
The set of all the subgradients of f at the point f is the subdifferential, of(B).
12.3. Indicator function of a set.

The indicator function Ic of a set C is defined by
Icw=0,ifyeC,
Ic(y) = +oo, if Y& C.
If the set C is convex, the function I¢ is convex. Let us recall that a set is convex iff
VyeC, VBeC, V6e]0,1[, 8y+(1-6)p €C.

Let us give some useful examples.

12.4. Subdifferential of the indicator function the segment {0.1].
The convex setis C = [0,1]. Let Y be a subgradient, we have from (55), (figure 33),

Vve [0,1], 0 2 I(B)+Y.(y-B).
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Figure 33

A subgradient of the indicator function I of the segment [0,1] at the point = 1 is the slope of a line
passing through the point (1,0) and which is under the function L

It results (figure 34),

dI(B) =G, if Be [0,1],

and
dI(B) = {0}, if Be 10,1,
JI(1) = R+,

81(0) =R-.

61



al
:
0 | B
Figure 34
The graph JI(B).
12.5. Subdifferential of the indicator function I of the origin of R.

The convex set is C = {0}. Let Y be a subgradient, we have from (55),
02 Io(x)+Yx.

It results that
dlor(x) =D, if x 20,

dlor(0) = R;

because any subgradient at the origin x =0 is such that 0 2 YO, (figure 35).
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Figure 35
Any subgradient of the indicator function of the origin is the slope of a linear function.

12.6. Subdifferential of the indicator function I; of a triangle C.
Let Y be a subgradient, we have from (56),

VveC, 02 L(B)+Y.(v-B).

It results that

and that the vector Y is normal to the triangle C at the poinr B if Be C (figure 36).
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Figure 36
The triangle C with vertices O = (0,0), A = (1,0) and B = (0,1). The vector Y is normal to the
triangle C at the point A.

Thus we have

JI«(PB) = {0,0}, if B is in the interior of the triangle,
dL(B) = {(Y.Y); Y 20}, if B is on the side AB ;
dl(B) = {(0,Y) ; Y <0}, if B is on the side OA ;
dl(B) = {(Y.0); Y <0}, if B is on the side OB ;
I(0) = {(Y1,Y2); Y1£0, Y220} ;

a(A) = {(Y1,V2): Y120, Y2 Y1}

ol(B) = ((Y1,Y2); Y220, Y| < Y2}
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