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Abstract

Machine Learning (ML) has become an essential tool for modeling complex
phenomena, offering robust predictions and comprehensive data analysis.
Nevertheless, the lack of interpretability in these predictions often results in
a closed-box effect, which the field of eXplainable Machine Learning (XML)
aims to address. Local attributive XML methods, in particular, provide ex-
planations by quantifying the contribution of each attribute to individual
predictions, referred to as influences. This type of explanation is the most
acute as it focuses on each instance of the dataset and allows the detection of
individual differences. Additionally, aggregating local explanations allows for
a deeper analysis of the underlying data. In this context, influences can be
considered as a new data space to reveal and understand complex data pat-
terns. We hypothesize that these influences, derived from ML explanations,
are more informative than the original raw data, especially for identifying
homogeneous groups within the data. To identify such groups effectively, we
utilize a clustering approach. We compare clusters formed using raw data
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against those formed using influences computed by various local attributive
XML methods. Our findings reveal that clusters based on influences consis-
tently outperform those based on raw data, even when using models with
low accuracy.

Keywords: Explainable Machine Learning (XML), Prediction explanation,
Explanations clustering, Instance clustering, Machine learning explanation,
Explainable Artificial Intelligence (XAI).

1. Introduction

Data exploration is the crucial yet tedious task of analyzing possibly
large and complex datasets to extract insights, i.e., interactively identifying
findings that expose “the unanticipated” [1]. This activity is important in
many domains such as finance, insurance, banking, chemistry and health-
care. This article proposes a new framework to efficiently explore datasets
through eXplainable Machine Learning (XML, also termed eXplainable Ar-
tificial Intelligence - XAI). Although this framework is applicable to any
domain, healthcare data will be used for illustration purposes.

Problem positioning. Data modeling is a very broad problem, based on a
variety of techniques adapted to the desired purpose (e.g., business intelli-
gence (BI), statistical, predictive). One of the possible goals of predictive
analysis is to gain a better understanding of the relationships between the
attributes of the dataset, especially the hidden relationships inferred by the
machine learning model used. Based on this principle, a detailed analysis
of predictions can be highly informative and multi-layered. By considering
an analysis of predictions related to the presence of a systemic disease (pa-
tient level), it may be possible to gain insights from the predictive model
to identify finer groups of patients who share the same biological, clinical or
socio-demographic characteristics for a given health condition.

To create these groups, a trivial solution would be to cluster patients
based on such medical characteristics. Still, then, there would be no advan-
tage of considering the pre-existing knowledge about the presence of pathol-
ogy in this clustering step. Adding pathology information directly to the
description of instances can lead to misleading clustering, preventing the dis-
covery of potential subgroups for that particular pathology.
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Amore appropriate solution to this problem is to consider semi-supervised
clustering methods [2, 3], which rely on user constraints and preferences (such
as pathology labels) as side information to improve the convergence or quality
of the produced clustering. However, as advocated in [4, 5], the introduction
of constraints can degrade the final clustering quality if not associated with
some prior utility measure for a constraint [6]. More importantly, simple
methods that directly implement user constraints during clustering may not
be appropriate [7] and the development of adapted metrics, incorporating
this side information, should instead be considered [8, 9].

Proposition. It is postulated that XML influences can be considered as a new
data space to explore. XML methods provide either global or local insights
about the behavior of a predictive ML model [10]. Among the most popular
methods are local attribution XML methods that produce influences, espe-
cially LIME [11] and approximation of Shapley Values such as SHAP [12],
the K-depth [13] and Coalitional approaches [14]. Their popularity is due to
the instance-level accuracy of these explanations, which links the impact of
each attribute to the prediction made for each instance. As a consequence,
local explanations are increasingly used in AI-assisted tools to offer more
information than solely the prediction [15]. Indeed, these influences may
convey less noise or spurious indicators than the original space, as only the
most significant information is preserved. Exploring the space of influences
thus represents a methodology able to reveal the key attributes for the pre-
diction, both in themselves and through their interactions, by improving the
”signal-to-noise” ratio in the dataset.

Contribution. This paper builds upon our previous work in [16] by propos-
ing a novel framework for data exploration. Rather than considering the
raw data space, the present framework focuses on the benefits of using XML
influence space for data exploration based on clustering algorithms and pro-
vides a real use case in the healthcare domain. This work can, therefore, be
considered as a contribution to the domain of Actionable XAI, as outlined in
[17], which considers actionable concepts, measures, and metrics for explain-
able learning and reasoning intending to improve data analysis or machine
learning (ML) models based on explanations. The main advantage of the
present methodology relies on reducing the disturbances in the description
of instances through explanations. The predictive model allows for better
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separation between instances, which should result in higher-quality clusters
compared to the original raw data. This means one can identify more con-
sistent subgroups of influences within the data, specifically related to the
internal structure of the studied phenomenon. It is crucial to note that the
quality and believability of the local explanations are directly linked to the
quality of the predictive model used to generate them.

This work comprehensively investigates the benefits of using local influ-
ences as a new input for clustering, to identify more informative and ho-
mogeneous subgroups. Importantly, since the quality of the XML influence
space may depend on the quality of the ML model that has been used, we
also explore the robustness of this framework regarding low-accuracy models
with misclassified instances.

The main contributions of the paper are the following:

1. We consider a novel data exploration approach that relies on the use
of XML influence space instead of the original definition space of data
when there exists an ML model attached to these data.

2. We illustrate this first contribution with a clustering framework for
detecting subgroups based on local influences.

3. We extensively evaluate this clustering framework on a representative
set of datasets with distinct challenges, along with several local at-
tributive XML methods and clustering techniques, for a wide variety
of cluster numbers.

4. We propose an in-depth study for the K-medoid clusters’ quality to
show the efficiency of considering influences space even for misclassified
instances and ML models with low-performances.

5. We finally show that the exploration of clusters of explanations is an
effective complement to traditional data analysis through a use case in
healthcare.

The paper is organized as follows: Section 3 gives an overview of the
current local attributive explanation methods and the clustering method
families used in experiments. This section also explores how explanations
are used to detect subgroups of instances in the literature. Then, section 4
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details our clustering framework for detecting subgroups based on local influ-
ences. Section 5 describes the experimental protocol performed to evaluate
our approach, involving 40 datasets, several clustering techniques and local
attributive XML methods. Then, Section 7 discusses about the advantages
of our approach in a broader context, linking results from clustering with
knowledge from modeling and explanation methods. Section 6 introduces a
real medical use case, example of how our approach can be used to support
ML prediction and local explanations use. Finally, Section 8 concludes this
paper and gives short and long-term perspectives.

2. Motivating example

Let us consider a data scientist whose objective is to explore the SA-Heart
dataset1 to binary predict a coronary heart disease (CHD). The dataset in-
cludes 462 individuals and 10 attributes defined as follows: Age (at the on-
set), Adiposity (estimation of the body fat percentage), Obesity (through
the body mass index), LDL (low-density lipoprotein cholesterol), Famhist
(family history of heart disease, present or absent), Tobacco (cumulative
consumption tobacco), SBP (systolic blood pressure), alcohol (current al-
cohol consumption), and type-A (Type-A behavior scale).

The objective of the data scientist is to produce a clustering (and the
appropriate metric) highlighting homogeneous subgroups in the space of ex-
planations, thus revealing subgroups of subjects which for the same health
status (a coronary heart disease or not) would have several explanation pro-
files. Following the methodology proposed in [18], the local influences for
each instance were computed as follows: (i) a MLP classifier is trained (ex-
cluding the type-A attribute as performances were better without it), and
(ii) a KernelSHAP XML model is used to compute the local explanations.
The final model has a final accuracy of 0.77.

This problem can be illustrated by selecting pairs of instances, in Table
1. Table 1 identifies five pairs of patients who are consistently the closest in-
stances in the original space, as evidenced by their proximity to one another
(by Euclidean distance, below 3). In contrast, the mean distance between

1https://www.kaggle.com/datasets/emilianito/saheart
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Figure 1: Illustration of similar instances (Pair 5) for which the XML attribute explanation
space introduces significantly different representations.

instances in this dataset is approximately 45.5± 24.5. Whereas explanations
are roughly similar within the first 4 pairs, pair 5 offers two different ex-
planations (Figure 1). This highlights the fact that close instances in the
data space can result in different explanations and that considering the ex-
planation space provides a relevant angle of view on both the data and how
that data has been processed by the ML algorithm. XML influences may
consequently be a more discriminant space for clustering.

Age Adiposity Obesity LDL Famhist Tobacco SBP Alcohol Distance

Pair 1
18 13.39 22.01 2.46 0 0 120 0.51

1.48
18 13.35 23.37 2.77 0 0 120 1.03

Pair 2
20 17.15 22.76 2.69 1 0.61 124 11.55

2.03
20 16.64 22.26 3.74 1 1.8 124 10.49

Pair 3
17 15.7 22.03 2.81 0 0 127 1.03

2.15
17 15.11 22.17 3.95 0 0.21 126 2.42

Pair 4
17 13.15 20.75 2.43 1 0 128 0

2.22
17 12.51 20.28 1.88 1 0 130 0

Pair 5
62 34.80 31.15 8.07 0 7.77 160 0

2.47
62 34.34 30.77 7.67 1 7 162 0

Table 1: Example of five pairs of instances from SA-Heart dataset. Each pair groups
two patients who are very similar as attested by their descriptive attributes and class
membership (i.e. pathology)

3. Related works

Our proposal relates to different fields of data analysis and exploration.
One major axis of study concerns so-called explainable approaches [19], first
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detailed in this section. A special emphasis is put on local attributive ap-
proaches such as SHAP [12] or LIME [11] that produce an influence score
for each attribute describing an instance for a specific ML model. Then as
our goal is to study clustering approaches in the influence space, we present
a brief overview of the related methods and literature.

Explainable Machine Learning and local attributive methods. Explainable ML
refers to the field focusing on the problems of understanding machine learning
predictions and closed-box models, with multiple overlapping terminology:
eXplainable ML (XML), Interpretable ML (IML), eXplainable AI (XAI), In-
terpretability, Explainability [20]. The main hypothesis is that more trans-
parent, interpretable and explainable models lead users to understand and
trust the intelligent system [21]. There are two main approaches for achieving
explainable ML: intrinsically interpretable models and post-hoc explanation
approaches. Intrinsically interpretable models refer to models understand-
able due to their inner structure, with components that can be analyzed
individually and easily linked to understandable concepts. On the other
hand, post-hoc explanation methods are methods that can be applied to al-
ready trained ML models, to grasp insights about how they work and their
reasoning behind the predictions.

The field of intrinsically interpretable models existed before closed-box
problems appeared in ML. The idea is to build ML models that are inherently
interpretable and understandable, also called glass-box or open-box models.
Linear regression, decision trees and rule-based machine learning models fall
into this category. Intrinsically interpretable models are often defined as the
easiest way to achieve explainability [19] and the use of post-hoc explana-
tions over interpretable models in sensitive domains is particularly criticised
[22]. Unfortunately, there are limitations to the intrinsic interpretation of
these models and their use in modelling complex data. Especially, intrin-
sically interpretable models can also become closed-box models when they
are proprietary -i.e. the one creating the model reserves the rights to use,
modify or share- or when the complexity of the model increases to model
complex data, hindering the interpretation of these models [23]. Post-hoc
explanations, applicable to all models, are then the only solution currently
available to provide explanations to users and attempt to explain the reasons
for a prediction.

With post-hoc explanation methods, models remain closed-box and the
prediction reflect both the attributes (data) and the trained ML model [24].
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Models can be studied globally or locally, depending on the goal and the
information requested. Global methods aim to describe the overall model
behaviour (the role of each attribute over all the instances) while local meth-
ods explain the prediction for each instance of the dataset individually (the
role of each attribute for each instance). In the field of local post-hoc expla-
nations, one of the first methods was based on the Shapley values, a local
attributive XML method [25], to explain ML predictions. The influence of
each attribute over a prediction is computed as the difference in prediction
from the model with and without the attribute, and represent the impact
of each attribute over a prediction for each instance of the dataset. Local
influences allow better appropriation without prior data science knowledge
as they are easy to interpret and represent graphically. Secondary methods
have emerged such as LIME [11] that uses linear surrogate models trained
with sampled data to approximate the closed-box model locally. The Coali-
tional approaches [14] approximate the Shapley value by precomputing rele-
vant groups of instances and reducing complexity. Finally, SHAP [12] mixes
Shapley values with LIME and other methods to simulate the absence of at-
tributes by sampling, find a linear model that explains the closed-box model
locally and approximate the Shapley values. Nowadays, SHAP framework
offers proven and easy-to-use methods, agnostically to the ML model or spe-
cific (e.g. KernelSHAP [12] or TreeSHAP [26]).

Analysis of clustering algorithms. According to [27], clustering consists of
the unsupervised classification of patterns (being data items, attributes vec-
tors, time series, graphs) into groups called clusters. There are no unique
criteria to assess the quality of a grouping. For example, internal criteria
such as Davies-Bouldin index [28] ensure that groups are compact and well-
separated but impose to shape the clusters as hyper-spheres, similar to the
Silhouette index [29]. External criteria such as (Adjusted) Rand Index [30]
assess the quality of the grouping with a ground-truth knowledge that is to
be known beforehand. Even if an evaluation criterion is known, clustering is
an NP-hard problem since one would have to build all partitions for all possi-
ble numbers of clusters to determine the best clustering [31]. As such, there
exists a large variety of clustering algorithms [32] depending if they produce
a disjoint partition of the dataset such as k-means [33] or k-medoid [34], a
fuzzy or soft partition [35] or a dendrogram that is a nested set of partitions
such as in the hierarchical clustering [34]. In [32], the author identifies new
trends for clustering algorithms such as the introduction of semi-supervision
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to take into account expert knowledge when available [8, 6]. Other challenges
involve dealing with large-scale datasets or streams [36] or proposing efficient
co-clustering approaches that build a clustering of instances and attributes
at the same time [37]. In our work, we focus first on simple use cases of
data exploration, thus avoiding the impact of streams or external constraints
on our experiments. Finally, another recent tendency in clustering is re-
lated to the use of deep architecture to build end-to-end clustering systems
that go from data representation to clustering in a single algorithm. Such is
the case of DEC (Deep Embedded Clustering) and its variants [38]. These
latter will not be included in this study since they build their own embed-
ding. A clustering method should be associated to a metric that is able to
define the topology of the space, hence related to the geometry of the clus-
ters. To preserve a variety of cluster shapes, clustering approaches relying on
minimisation of variance in Euclidean space were considered in this study (k-
means, k-medoids, hierarchical clustering with Ward’s criterion [33, 39, 40]),
Gaussian Mixture Models that leverage the constraint of uniform variance of
k-means [41] and finally, a density-based algorithm (HDB-SCAN, based on
DB-SCAN algorithm) that can find any type of cluster shape [42, 43].

Mixing clustering and local explanations for improving data exploration. Sev-
eral papers in the last year have covered use cases combining machine learning
explainability and clustering to find relationships between instances [18, 44].
Based on a COVID-19 dataset, [18] tries to better identify clusters based
on KernelSHAP values. Rather than clustering on the original dataset (raw
data), a classification model has been trained, explained by KernelSHAP,
and the resulting influences were clustered with HDBSCAN. Graphical in-
terpretation on UMAP and silhouette scores demonstrate the ability to better
discriminate between sub-groups using explanations rather than data. Other
papers also used clustering to determine groups and to recommend instances
based on the influences on a single dataset. [45] explores healthcare risk strat-
ification based on influences from TreeSHAP on a urinary disease dataset.
Clustering patients by SHAP values allows the selection of representative
patients and investigation of the risk factors for each cluster, where raw data
only are insufficient to perform the same analysis. The same kind of anal-
ysis was performed on a COVID-19 dataset concerning the identification of
subgroups of patients during the first lockdown in France [46]. With clini-
cal and biological data from COVID-19 hospital patients, [46] uncovered the
COVID-19 typology of patients to identify those most at risk of aggravation
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during their hospital stay. ML combined with Explainability methods was
used to highlight the most significant attributes and build an aggravation
risk score. Then, clustering techniques on explanations aggregated patients
and defined three clusters of patients that appear to be consistent with three
distinct risk-score levels. Instance recommendations based on the medöıd of
each cluster also allowed an in-depth study of each subgroup’s characteristics.
Although such works have explored the idea of using influences and cluster-
ing to extract more knowledge about the data on specific medical examples,
none of them formally evaluates the contribution of explanation clustering
as a whole. This article is therefore an original contribution to demonstrate
the ability of using local attributive XML methods as a generic method to
explore subgroups of data.

4. Influence-based clustering framework

Figure 2 shows the step-by-step framework to cluster instances based on
their influences:

1. A machine learning model is trained with raw data and predicts classes
of all the instances from the raw dataset.

2. A local attributive XML method explains the trained model. Users can
choose the data used as input for the method. Influences are computed
to explain the determinants of the predictions provided by the ML
model.

3. A clustering algorithm is used on influences to create homogeneous
groups of instances to detect their core attributes. The proportion of
computed clusters can be adjusted by the user.

In this framework, various elements can be tuned according to user pref-
erences. Any classification model can be used at Stage 1, as they are all
designed to compute predictions, and Stage 3 allows any clustering method
that produces a disjoint partition of the dataset. In Stage 2, the framework
is designed to accept local attributive XML methods. These influences are
represented as tabular data, where each instance has a value associated with
each attribute. We directly use these influences data as input for the clus-
tering stage. Influences provide additional information that the raw data
does not: the link between the modeling predictions and the dataset at-
tributes. Compared to raw data, explanations produced by local attributive
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Figure 2: Our proposed Framework for explanation analysis.

XML methods have the same unit across all attributes, thus avoiding any
problem of value ranges. Another advantage is that influence values are less
noisy since the ML model mainly focuses on attributes relevant to the under-
lying predictive task and excludes information not explained by the complex
attributes interaction, hence the relevance of carrying out clustering. For
supervised tasks, local attributive XML methods usually generate a dataset
for each class with identical dimensions as the raw data. For example, if the
raw data consists of n instances and m attributes and the supervised task is
a multi-class problem with c classes, the generated dataset (also called the
influence dataset) is shaped as a tensor with n×m× c dimensions. To have
an influence dataset with the same dimension as raw data (n ×m) one can
only select a single class and its associated influences. For example, regarding
binary classification, the positive class is often chosen as the class of interest
for influences.

An additional and optional step is to select a particular subset of the
data for clustering. Indeed, it is possible to study the instances correctly and
incorrectly classified by the model separately via instance clustering. This
option has several advantages. Since the influences represent the model de-
cisions, separating the instances can provide new knowledge. Studying the
well-classified instances can help to identify their characteristic patterns by
removing noise and outliers from the misclassified instances. This can give a
more accurate idea of general patterns, for example, to check that there is no
bias in the dataset. Regarding misclassified instances, they may cover differ-
ent realities. They can represent real outliers, data whose variability may be
intrinsic to the instance or indicative of an error in data acquisition. How-
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ever, it may be a specific sub-population of the dataset whose frequency is
too low to be significant in relation to the current number of instances of the
dataset. This configuration is common in medicine, where inter-individual
variability is often substantial and the size of data sets often modest. Sepa-
rating the instances can, therefore, allow the exploration of new patterns that
can be invisible if all the data were kept. This may be even more important
for influences because of their direct link to the model. Indeed, when the
model prediction is of low performance, the influences reflect this error and
are directly impacted by the wrong prediction of the model.

The full implementation of our proposal is available here:
https://github.com/kaduceo/XAI-based-instance-selection. The source code
will evolve with future works. Additional materials are also available.

5. Experiments

This section details the experiments carried out to test our framework
and, more generally, assess explanation clustering. We derive several research
questions (RQ) to show whether clustering explanations produce better-
quality clusters than raw data clustering (see Section 5.2.7):

(RQ1): What is the sensitivity of our framework to the XML method?
(see Section 5.2.1)

(RQ2): What is the sensitivity of our framework to the clustering method?
(see Section 5.2.2)

(RQ3): Are there some best combinations of ML models and XML meth-
ods? (see Section 5.2.3)

(RQ4): What is the sensitivity of our framework to the accuracy of the
ML models? (see Sections 5.2.4 and 5.2.6)

(RQ5): How size and dimensionality of datasets impact clustering? (see
Section 5.2.5)

Based on these questions, we expect clustering in XML influence space
will be valuable for all clustering techniques and local XML methods included
in the experiment when compared to raw data clustering. We hypothesize
that this approach is also relevant for low-performance models, and that clus-
tering on misclassified instances can still provide insightful cluster informa-
tion. Finally, we speculate that Shapley-based XML methods and Spearman
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coalitional will exhibit better performance for clustering explanations than
LIME as they should be able to capture more information from more complex
ML models.

5.1. Experimental protocol

Clustering algorithms. Five clustering techniques have been selected for com-
parison to be representative of the main clustering families: two partitioning
clustering (namely k-means and k-medoids), one hierarchical clustering (hier-
archical agglomerative clustering), one density-based clustering (DB-SCAN)
and one model-based clustering (Gaussian mixture model). As both raw data
and influences data are tabular data with the same dimensions, we use the
exact same implemented framework for our experimental comparisons, the
only difference being the use of the initial raw space or the alternative XML
representation space.

K-medoids algorithm [39] assigns data to k clusters iteratively based on
their distance to a centroid point. This central point is always an instance
from the dataset. Each iteration tries to maximize the distance between
points from different clusters and minimize the intra-cluster distance. The
number of clusters k is pre-defined. In the experiments, we chose the Eu-
clidean distance. We also use k-means algorithm [33]. We can expect some
differences as prototypes representative of clusters may not necessarily be
part of the original instances with k-means. However, due to the continu-
ous representation of prototypes, k-means can reach better compactness and
separability between clusters when compared to k-medoids at the expense of
the interpretability of cluster prototypes.

For these two clustering methods, to ensure the stability of the clustering,
we use k-means++ and kmedoid++ for the initialization, which relies on a
Monte-Carlo approach to decide on the selection of initial cluster centers.
Based on these initialization methods, results were very consistent across
runs. For this reason, only one result by clustering method was presented
even though there might exist a small variability due to the non-deterministic
nature of the choice of the initial clusters.

Agglomerative Nesting (Agnes) is a hierarchical clustering method [34].
Hierarchical clustering creates a hierarchy of nested clusters, and therefore, a
pre-specified number of clusters is not required when the complete hierarchy
is required. A number can be specified to extract the clusters from one
level of the hierarchy. Agglomerative clustering is a bottom-up approach:
at first, each instance is considered as a single-element cluster, and at each
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iteration, the two most similar clusters are combined. The similarity between
elements is based on the Euclidean distance, consistently to what is done
for previous partitioning approaches, and cluster are merged with the Ward
linkage criterion which aims at minimizing the variance of produced clusters.

HDBSCAN [43, 47] is a popular hierarchical density-based clustering
technique. Based on a density measure for each instance defined as a number
of instances in an ϵ-neighborhood centered around that instance, HDBSCAN
groups together the points where the density is high (i.e., the points closely
packed that have many neighbors). HDBSCAN performs multiple iterations
of clustering for all possible density scales. This allows the detection of mean-
ingful clusters in data of varying densities and the robustness to parameter
selection, as opposed to the traditional DBSCAN [42]. HDBSCAN is stable
over runs and resistant to noise and outliers. However, this technique de-
tects automatically the number of clusters which makes it inappropriate for
our test protocol where we evaluate iteratively different number of clusters.
Moreover, HDBSCAN does not necessarily include all instances in clusters,
some points being considered as noise. This raises questions about com-
parison with other approaches in our protocol. In conclusion, although we
have run some preliminary tests with HDBSCAN, we do not consider this
approach in this paper for the aforementioned reasons.

Gaussian- mixture model clustering algorithm (GMM) is an instance of
Expectation Maximization clustering by [41] to cluster points based on sta-
tistical modeling and data distribution. EM clustering assigns data points
to clusters iteratively to maximize the overall likelihood of the data. Unlike
other clustering methods, EM is a soft clustering technique: each point has a
probability of belonging to each cluster rather than a single assigned cluster.
In our case, we assign instances to the cluster with the highest probability.
We use the Gaussian mixture model in our test, which assumes that each
attribute in each cluster is the observation of a Gaussian random variable.
This version is a generalization of the k-means algorithm.

Datasets and classification task. We use 40 datasets from an Open ML col-
lection2 [48] that meet the following criteria: binary classification, more than
100 instances, more than four attributes and at most nine attributes due to
the computational cost of producing influences. Table 2 provides descriptive
statistics about the included datasets.

2Available in https://www.openml.org/s/107/tasks
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Table 2: Descriptive statistics of the study datasets.

Number of attributes 5 6 7 8 9 10 All

Number of datasets 8 12 6 3 6 5 40

Mean number of instances 529 1229 1026 225 1128 818 917

Min number of instances 125 100 100 137 310 286 100

Max number of instances 1372 5404 3107 379 4177 1473 5404

Binary classification is chosen to facilitate the interpretation of influences.
Indeed, for example, with SHAP values, influences for one class are the op-
posite of influences for the second class in play. For the sake of simplicity,
we consider that all influences are based on class 1. In this case, influences
represent the impact of each attribute on the probability of the instance be-
ing in class 1. We train a Random Forest model (RF) with a Grid Search
Cross-Validation to optimise hyperparameters. This model was chosen to test
tree-specific explanation methods while keeping a limited number of hyperpa-
rameters to avoid overfitting (compared to boosted trees). Only to evaluate
the performance of the models, each dataset is divided into train and test sets
according to the 75%/25% ratio. Table 3 shows the performances of all the
models trained in our experiments. Models are trained adequately to cap-
ture most information of the dataset. The mean balanced accuracy is 0.88,
meaning most models can accurately classify test instances. When we sepa-
rate models based on an accuracy threshold set to 0.8, high-accuracy models
have a median balanced accuracy of 0.98, whereas low-accuracy models have
a median of 0.66.

Table 3: Statistics of models trained. Balanced accuracy and percentages of well-
classified and misclassified instances are presented for the 40 datasets and separately based
on the 0.8 accuracy threshold. For well-classified and misclassified instances, the median
number of instances is presented along with the percentage.

Balanced Accuracy % of Well-classified % of Misclassified

Models (#) Median Min Max

All (40) 0.88 0.50 1.0 85.6% 14.4%

Acc ≥ 0.8 (26) 0.98 0.83 1.0 94% 6%

Acc < 0.8 (14) 0.66 0.50 0.79 72% 28%

We also study the number of instances well classified and misclassified
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by the ML modeling in Table 3. We use three different data separations:
all instances together, only well-classified instances, and only misclassified
instances. For the experiments about (RQ4), as we separate well-classified
and misclassified instances, we choose not to evaluate high-accuracy models
on misclassified instances as there are not enough instances in most datasets
to create clusters and properly evaluate them and compare the results. Then,
when studying misclassified instances, we only work with models with low
accuracy as the number of misclassified instances is higher and sufficient.
Note that the number of well-classified instances is adequate for performing
clustering for all models.

Explainability methods. We choose three different local attributive XMLmeth-
ods, which provide unique advantages and disadvantages to compute local
influences [49]. SHAP, and more specifically its KernelSHAP implementa-
tion [12], is the reference method based on game theory, but suffers from a
high time complexity due to the exploration of attributes power set and a
potential bias with correlated attributes. Another SHAP implementation,
TreeSHAP [26], provides the fastest computation for tree-based prediction
models. In contrast, LIME [11] approximates influences following a linear
local model that does not rely on the same game theory inspired kernel as
SHAP. Finally, Spearman coalitional [14] improves over SHAP and LIME by
taking into account potential correlations between attributes while reducing
the size of the power set to explore with coalitions.

Setting the number of clusters. To define the number of clusters we use multi-
ple proportions of the total number of instances in the dataset as the number
of clusters. The following proportions were used: 0.01, 0.02, 0.03, 0.04, 0.05,
0.1. The number of clusters is then ncluster = p∗ninstances with p the selection
proportion between 0 and 1 with a minimum number of two clusters. As the
size of the datasets greatly varies (see Table 2), a proportion rather than
fixed numbers of instances was preferred to take into account the diversity of
the datasets. As the aim is to study the comparative behavior of clustering
on influences and raw data, multiple proportions per dataset can show how
cluster quality evolves without looking for an ”optimal” number of clusters
(which may be different depending on the clustering method).

Comparison to ground-truth labels. Finally, to evaluate if clusters are well-
defined and manage to group similar instances and separate dissimilar in-
stances based on their a-priori labels, the Entropy metric was computed
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[50]. There exists many external criterion to measure the agreement of a
clustering relatively to a set of existing classes [51]. We use entropy as we ex-
pect XML representation space to produce clusters aligned with ideally only
one original class, but we do not want to penalize an over-segmentation of the
initial classes into more clusters. Indeed, we expect to highlight meaningful
and more specialized patterns than what can be observed in the raw data
as illustrated in Section 6. Entropy measures the distribution of labels in a
cluster, i.e., the ability of the algorithm to differentiate between data that
do not have the same “real” class. A perfect entropy means all instances
from the same class are in the same clusters (lower entropy means better
clustering).

Entropy =
K∑
k=1

nk

n

(
− 1

log q

q∑
i=1

ni
k

nk

log
ni
k

nk

)
where Ck is a particular cluster of size nk, q is the number of class in the
dataset, K the number of clusters and ni

k is the number of instances of the
ith class assigned to the kth cluster.

5.2. Results

As expected, increasing the proportion of clusters leads to a slight de-
crease in entropy values (in this case lower values are better), reflecting more
homogeneous clusters. In Table 4, most clustering approaches show a de-
crease in entropy when clustering percentage increases from from 0.01 to
0.1. Using explanations also leads to better clustering than using raw values,
underlining the value of using explanations for less noisy data mining.

5.2.1. Spearman outperforms LIME and to an extent SHAP

Compared to Spearman and SHAP, LIME performs worse (see Table 4),
offering clusters with higher entropy. This is expected as previous studies
have already pointed out some limitations of LIME, such as the definition of a
proper neighborhood to learn XML influences [19], the sensitivity to the non-
linearity of the process to be learned or the instability of explanation from one
instance to the closest one [52]. All of this causes explanations representation
of instances from different classes to be close, or conversely instances from the
same class to have different XML influence representations, which in turn,
causes a more balanced representation of classes in each cluster.
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Clustering Method
X
M
L Clustering agnes gmm kmeans kmedoid

Percentage mean (std) mean (std) mean (std) mean (std)

R
aw

0.01 0.59 (0.24) 0.47 (0.29) 0.52 (0.22) 0.54 (0.24)
0.02 0.59 (0.25) 0.56 (0.27) 0.57 (0.24) 0.57 (0.24)
0.03 0.57 (0.26) 0.55 (0.28) 0.57 (0.25) 0.57 (0.25)
0.04 0.56 (0.27) 0.55 (0.28) 0.53 (0.25) 0.54 (0.26)
0.05 0.54 (0.27) 0.52 (0.27) 0.52 (0.26) 0.54 (0.27)
0.10 0.48 (0.28) 0.48 (0.27) 0.46 (0.26) 0.47 (0.26)

L
IM

E

0.01 0.51 (0.25) 0.7 (0.28)∗ 0.46 (0.25) 0.46 (0.26)
0.02 0.5 (0.25) 0.66 (0.29) 0.49 (0.25) 0.5 (0.25)
0.03 0.49 (0.25) 0.68 (0.26) 0.47 (0.25) 0.48 (0.24)
0.04 0.49 (0.26) 0.7 (0.25)∗ 0.47 (0.25) 0.48 (0.25)
0.05 0.48 (0.25) 0.68 (0.23)∗ 0.47 (0.25) 0.48 (0.25)
0.10 0.43 (0.26) 0.72 (0.23)∗ 0.43 (0.26) 0.43 (0.25)

S
H
A
P

0.01 0.38 (0.27)∗ 0.58 (0.36) 0.31 (0.27)∗ 0.32 (0.28)∗

0.02 0.35 (0.28)∗ 0.7 (0.28) 0.31 (0.28)∗ 0.32 (0.28)∗

0.03 0.32 (0.27)∗ 0.74 (0.24)∗ 0.31 (0.27)∗ 0.32 (0.27)∗

0.04 0.31 (0.27)∗ 0.66 (0.28) 0.3 (0.27)∗ 0.31 (0.27)∗

0.05 0.3 (0.28)∗ 0.7 (0.25)∗ 0.29 (0.26)∗ 0.3 (0.27)∗

0.10 0.26 (0.26)∗ 0.72 (0.25)∗ 0.26 (0.26)∗ 0.26 (0.26)∗

S
p
ea
rm

an 0.01 0.33 (0.25)∗ 0.51 (0.3) 0.31 (0.26)∗ 0.32 (0.26)∗

0.02 0.34 (0.26)∗ 0.6 (0.3) 0.31 (0.25)∗ 0.32 (0.25)∗

0.03 0.32 (0.27)∗ 0.61 (0.34) 0.32 (0.28)∗ 0.33 (0.28)∗

0.04 0.31 (0.25)∗ 0.64 (0.32) 0.31 (0.26)∗ 0.32 (0.26)∗

0.05 0.3 (0.26)∗ 0.68 (0.28)∗ 0.3 (0.26)∗ 0.31 (0.26)∗

0.10 0.26 (0.24)∗ 0.66 (0.26)∗ 0.26 (0.25)∗ 0.27 (0.25)∗

Table 4: Influence of clustering method, percentage, and XAI method on cluster entropy
(fixed ML model to RF). Results are presented as mean (standard deviation). A * right of
the standard deviation means the t-test rejected the null hypothesis (alpha = 0.05) that
the XAI method performed as well as the baseline Raw on average (Welch correction was
applied to account for unequal variance and Bonferroni correction to account for multiple
testing).

5.2.2. Kmeans and kmedoid yield better results

Regarding the clustering method, the performance of GMM is the worst,
followed by Agnes. The GMM clustering results may be limited by the
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relatively low number of data instances relative to the larger number of pa-
rameters to learn. GMM may also be more sensitive to the difference in the
range of attribute values between raw and the XML spaces as it learns their
relative importance to properly estimate likelihood. Agnes exhibits perfor-
mance close to k-means and k-medoid although a bit below for a low number
of clusters (i.e. the strongest aggregation in the partition trees). This result
is coherent since we use the Ward criterion which minimizes cluster variance
similar to k-means and k-medoids. Finally, kmeans and kmedoid offer similar
entropy values. Since k-medoid clustering can be represented by the dataset
instances being the medoids of the different clusters (and not by the k-means
calculated centroids), the following experiments will be conducted using k-
medoid.

5.2.3. More complex ML models and XML methods yield better results

The proportion of clusters has little influence on cluster entropy depend-
ing on the type of ML model (Table 5). However, the quality of clustering is
improved when a more complex XAI method or ML model is used (Spearman
and SHAP versus LIME, RF versus LR, respectively).

As shown in Table 5, the results of linear models such as LR or SVM are
less stable when compared to RF and do not provide as much improvement
when compared to raw representation space. We hypothesize that this is
expected since RF is a more expressive model that corresponds to multiple
linear models when compared to single linear models in LR and SVM. As
a consequence, RF captures more complex class structure from the initial
representation space and XML influences attached to this model may identify
more discriminant attributes whose information is otherwise more diluted
with less expressive models such as LR and (linear) SVM.

In conclusion, SHAP and Spearman methods with an RF-type MLmethod,
produce more homogeneous clusters, facilitating the exploration of instances
sharing similar explanations.

5.2.4. Low accuracy models do impact clustering performance

Table 6 presents the entropy values for different clustering percentage
for our three XML methods when compared to raw representation space in
two distinct scenarios: Table 6-top details results for accurate model (whose
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ML Model

X
M
L Clustering LR RF SVM

Percentage
R
aw

0.01 0.54 (0.24) 0.54 (0.24) 0.54 (0.24)
0.02 0.57 (0.24) 0.57 (0.24) 0.57 (0.24)
0.03 0.57 (0.25) 0.57 (0.25) 0.57 (0.25)
0.04 0.54 (0.26) 0.54 (0.26) 0.54 (0.26)
0.05 0.54 (0.27) 0.54 (0.27) 0.54 (0.27)
0.10 0.47 (0.26) 0.47 (0.26) 0.47 (0.26)

L
IM

E

0.01 0.53 (0.26) 0.46 (0.26) 0.49 (0.24)
0.02 0.56 (0.24) 0.5 (0.25) 0.53 (0.25)
0.03 0.55 (0.26) 0.48 (0.24) 0.51 (0.25)
0.04 0.56 (0.27) 0.48 (0.25) 0.5 (0.25)
0.05 0.55 (0.27) 0.48 (0.25) 0.51 (0.25)
0.10 0.51 (0.26) 0.43 (0.25) 0.47 (0.26)

S
H
A
P

0.01 0.43 (0.29) 0.32 (0.28)∗ 0.34 (0.28)∗

0.02 0.47 (0.28) 0.32 (0.28)∗ 0.33 (0.28)∗

0.03 0.47 (0.29) 0.32 (0.27)∗ 0.35 (0.3)∗

0.04 0.46 (0.29) 0.31 (0.27)∗ 0.32 (0.29)∗

0.05 0.47 (0.3) 0.3 (0.27)∗ 0.32 (0.29)∗

0.10 0.41 (0.29) 0.26 (0.26)∗ 0.3 (0.29)∗

S
p
ea
rm

an 0.01 0.44 (0.28) 0.32 (0.26)∗ 0.43 (0.29)
0.02 0.49 (0.27) 0.32 (0.25)∗ 0.46 (0.27)
0.03 0.5 (0.29) 0.33 (0.28)∗ 0.45 (0.27)
0.04 0.49 (0.29) 0.32 (0.26)∗ 0.44 (0.28)
0.05 0.5 (0.29) 0.31 (0.26)∗ 0.44 (0.28)
0.10 0.43 (0.28) 0.27 (0.25)∗ 0.38 (0.26)

Table 5: Influence of ML model, clustering percentage and XAI method on cluster entropy
(fixed clustering algorithm to kmedoid). Results are presented as mean (standard devia-
tion). A * right of the standard deviation means the t-test rejected the null hypothesis
(alpha = 0.05) that the XAI method performed as well as the baseline Raw on average
(Welch correction was applied to account for unequal variance and Bonferroni correction
to account for multiple testing).

accuracy is above or equal 0.8) and Table 6-bottom details results for inac-
curate models (whose accuracy is under 0.8). It can be seen that SHAP and
Spearman still perform best when compared to LIME. Raw is the worst rep-
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resentation space for clustering in both scenarios. Finally, it can be clearly
observed that SHAP and Spearman do perform better on accurate models
with a best score around 0.2 (clustering perc. equals to 0.1) while perfor-
mances decrease with an entropy score above 0.3 for inaccurate models.

Model accuracy over 0.8
Clustering Perc. 0.01 0.02 0.03 0.04 0.05 0.1
RAW 0.5 (0.25) 0.55 (0.25) 0.53 (0.26) 0.5 (0.25) 0.5 (0.26) 0.42 (0.25)
LIME 0.43 (0.25) 0.46 (0.24) 0.43 (0.24) 0.42 (0.25) 0.42 (0.25) 0.36 (0.25)
SHAP 0.28 (0.26) 0.27 (0.27) 0.25 (0.24) 0.24 (0.24) 0.23 (0.24) 0.2 (0.23)
Spearman 0.27 (0.23) 0.28 (0.22) 0.28 (0.26) 0.26 (0.23) 0.25 (0.24) 0.22 (0.23)

Model accuracy under 0.8
Clustering Perc. 0.01 0.02 0.03 0.04 0.05 0.1
Raw 0.59 (0.23) 0.62 (0.24) 0.63 (0.25) 0.6 (0.27) 0.61 (0.28) 0.54 (0.27)
LIME 0.52 (0.27) 0.56 (0.25) 0.55 (0.25) 0.56 (0.25) 0.57 (0.24) 0.53 (0.23)
SHAP 0.39 (0.3) 0.39 (0.31) 0.42 (0.29) 0.41 (0.29) 0.4 (0.29) 0.35 (0.28)
Spearman 0.39 (0.31) 0.38 (0.29) 0.39 (0.3) 0.4 (0.3) 0.38 (0.3) 0.33 (0.28)

Table 6: Entropy for inaccurate and accurate ML models and the different XAI approaches
using k-medoids clustering. Results are presented as mean (standard deviation).

5.2.5. Dataset size and dimensionality matter

Table 7 considers the typology of datasets according to their number
of instances and attributes (considered as high or low). Again, increasing
the proportion of clusters results in more homogeneous clusters with lower
entropy. Interestingly, both the number of attributes and the number of in-
stances impact the quality of clusters. In the case of datasets with a large
number of attributes, including additional instances seems to be advanta-
geous for a percentage of clusters above 0.03. Conversely, this approach is
more beneficial in the context of datasets with a relatively limited number
of attributes and a low number of instances. Noticeably, our best results
are obtained in this context, which can be justified by the fact that this
corresponds to the most straightforward case for our RF model, which can
learn and generalize from very few training instances when dimensionality is
reduced.

In conclusion, the quality of clustering using explanations is strongly influ-
enced by informational adequacy when the number of attributes is consistent
with the sample size.
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Clustering Perc. 0.01 0.02 0.03 0.04 0.05 0.1
Var high+Inst high 0.38 (0.27) 0.37 (0.28) 0.36 (0.27) 0.34 (0.27) 0.33 (0.26) 0.29 (0.24)
Var high+Inst low 0.35 (0.30) 0.37 (0.33) 0.38 (0.31) 0.40 (0.32) 0.39 (0.31) 0.33 (0.29)
Var low+Inst high 0.34 (0.27) 0.31 (0.26) 0.29 (0.26) 0.27 (0.25) 0.26 (0.25) 0.22 (0.25)
Var low+Inst low 0.22 (0.24) 0.24 (0.23) 0.25 (0.20) 0.23 (0.19) 0.23 (0.20) 0.19 (0.22)

Table 7: Entropy for the different typology of datasets using k-medoids clustering, with RF
model, SHAP, and trained on all instances versus the clustering percentage. The cut-off
of high/low levels of attributes and instances was set at 7 and 500, respectively. Results
are presented as mean (standard deviation).

5.2.6. Spearman is more resilient to variability in quality of the models

Table 8 considers the explanations provided by well or miss-classified in-
stances. Compared to Table 4 (k-medoids), all methods have better entropy:
it is easier to analyze instances according to whether or not the ML model
has predicted their class correctly. However, using raw data or LIME expla-
nations leads to higher entropy clustering. In a surprising way, Spearman
provided clusters with low entropy both for well-classified and misclassified
instances, while SHAP only provided clusters with low entropy for well-
classified instances. This result concerning Spearman explanation method
has to be confirmed by future research work. It is now hypothesized that a
coalition is able to maintain superior discriminant information by addressing
correlations, which assists in clustering even misclassified instances.

Well-classified instances
Clustering Perc. 0.01 0.02 0.03 0.04 0.05 0.1
Raw 0.38 (0.22) 0.43 (0.24) 0.43 (0.23) 0.4 (0.22) 0.38 (0.21) 0.31 (0.2)
LIME 0.33 (0.19) 0.32 (0.18) 0.31 (0.17) 0.31 (0.19) 0.3 (0.18) 0.25 (0.14)
SHAP 0.14 (0.16) 0.12 (0.14) 0.1 (0.11) 0.09 (0.09) 0.07 (0.07) 0.04 (0.06)
Spearman 0.16 (0.16) 0.16 (0.16) 0.14 (0.15) 0.12 (0.12) 0.12 (0.12) 0.08 (0.08)

Misclassified instances
Clustering Perc. 0.01 0.02 0.03 0.04 0.05 0.1
Raw 0.32 (0.22) 0.33 (0.22) 0.34 (0.22) 0.33 (0.21) 0.34 (0.2) 0.36 (0.21)
LIME 0.3 (0.23) 0.3 (0.23) 0.3 (0.22) 0.31 (0.22) 0.31 (0.22) 0.35 (0.22)
SHAP 0.26 (0.2) 0.25 (0.2) 0.26 (0.21) 0.25 (0.2) 0.26 (0.19) 0.22 (0.2)
Spearman 0.12 (0.14) 0.12 (0.14) 0.11 (0.11) 0.1 (0.11) 0.08 (0.1) 0.09 (0.1)

Table 8: Entropy for well-classified and misclassified instances and the different XAI ap-
proaches using k-medoids clustering. Results are presented as mean (standard deviation).
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5.2.7. Statistical significance of findings

To sum up, Table 9 shows that the combined contribution of the chosen
explanation method (including raw values) and the ML model has a strong
influence on the quality of the clustering obtained. The best-performing
explanation methods combined with more complex ML methods provide,
by far, the best performance. On the other side of the spectrum, using
LIME or raw values gives higher entropy clustering, whatever the ML model
used (Figure 3). When now considering the combination of the explanation
method and the type of clustering, using SHAP with kmeans or kmedoid
generally provides better quality clusters.

Figure 3: Critical rank diagram (see [53]) of Entropy comparing Raw and XAI approaches
combine with various ML models (fixed clustering algorithm to kmedoid).

6. Medical Use Case: SA-Heart explanation clustering

This use case illustrates how this framework can be used on a medical
dataset, to help classify patients, understand these categories and retrieve
information from explanations. The example is based on the same dataset
introduced in Section 2, using the same MLP model and KernelSHAP expla-
nations.

Figure 4 displays the distribution of the obtained local explanations. Age,
Tobacco and Family history are the three most important attributes for the
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XAI Method Clustering Count

Raw
agnes 0
kmeans 0
kmedoid 3

LIME
agnes 5
kmeans 9
kmedoid 6

SHAP
agnes 72
kmeans 91
kmedoid 85

Spearman
agnes 51
kmeans 58
kmedoid 57

Table 9: Number of times each XML method performs with the lowest entropy (ties
allowed) comparing the four clustering methods over the 40 datasets. In the event of a
tie, each XML method gets one point.

model as per KernelSHAP. Based on the influences, a high value in these three
attributes - i.e. old age, high consumption of tobacco or family history of
heart disease - is associated with a higher prediction, a higher risk of coronary
heart disease. For the other attributes, correlations between attribute and
influence values are less obvious.

We applied hierarchical agglomerative clustering to the explanations. Hi-
erarchical clustering allows us to think about nested groups, offering greater
granularity when exploring populations. The used clustering algorithm is
available in the Scipy library 3 and we select the Ward criterion [40] to ag-
gregate clusters in the hierarchy. The optimal number of clusters was set to 5,
based on the L-method [54], automation of the Elbow method for hierarchical
clustering.

Figure 5 shows the mean attributes’ importance for each cluster, based
on the local influences of the instances in each cluster. Clusters 1 and 5
stand out clearly from the other clusters in terms of the mean importance
of Age attributes for both clusters and tobacco for Cluster 1. However, this
representation is insufficient to analyse the produced clusters.

3https://docs.scipy.org/doc/scipy/index.html
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Figure 4: Distribution of KernelSHAP influences for each attribute over the dataset. The
attributes are sorted in decreasing mean attribute importance from top to bottom and
each dot represents an instance from the dataset, its colour representing the raw value of
the attribute. The position on the x-axis represents the contribution of the attribute to
the prediction of this individual, and overlapping dots are spread on the y-axis.

Figure 5: Heatmap of the mean importance of each attribute for each cluster

For a better understanding, the Skope-Rules [55] library was used to
compute decision rules (such as a decision tree) for each cluster, to maximise
the precision and recall of the rules. Perfect precision means that all instances
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of the cluster respect the rule, and perfect recall that all instances respecting
the rule belong to the cluster. The rules for each cluster (each cluster is
defined based on the explanations) were defined based on the raw data, so
that the rules can be read and understood with patient data.

Table 10 displays the rules obtained with Skope-rules on the 5 clusters.
For each cluster, the correct classification rate of the model for this cluster
and the mean prediction were presented. This information is valuable for
both a Data Scientist and a medical expert as model performances reflects
how easy it is for the ML model to understand the data for a given task. In
the rules, Age seems to be an influential factor in dividing patients, followed
by Cumulative tobacco and Obesity. This is consistent with the analysis from
Figures 4 and 5 for Age and Tobacco, especially in Clusters 1 and 5. Based
on the well-classification rate and the mean prediction, the model seems to
better predict where the risk of coronary heart disease is low. Differences
in performance between groups could indicate complex sub-groups in the
data and a specific lack of data in these sub-groups. It could reveal the
limitations of the model, like biases, and could raise fairness and ethical
questions about the model [56]. In our case, the model performs better on
patients under 23 than on other patients, even though their number is low
(61 patients). This cluster highlights the obvious lower-risk subgroups, with
patient characteristics that could explain the model’s better performance:
young patients with low BMI. For an expert in the field, these clusters can
represent the major statistical trends in the population studied and simplified
relationships relating to coronary heart disease.

Other examples of how explanation clusters can be used are available on
the GitHub mentioned in Section 4.

7. Discussion

Clustering on XML influences showed better results than clustering on
raw data, regardless of the percentage/number of clusters or the performance
of the modeling, especially for Shapley-based XML methods. This behavior
was seen for multiple clustering techniques and multiple ML models. This
highlights the feasibility of exploring explanations through clustering. The
influences seem to contain information allowing a better clustering, probably
by highlighting the most significant attributes for each instance or remov-
ing noises from raw data. This finding seems consistent with the results of
[18] while showing a more global approach, working with other XML meth-
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Table 10: Decision rules for each cluster

Cluster Rules Well-classification rate Mean prediction

1

cumulative tobacco >9.825

obesity >19.385

age >42.0

73.3% 66.7%

2

cumulative tobacco ≤ 10.85

low density lipoprotein cholesterol >5.065

age >37.5

67.5% 52.5%

3

low density lipoprotein cholesterol ≤ 4.76

obesity ≤ 24.33

age >43.5

71.4% 40.8%

4

current alcohol consumption ≤ 61.815

age ≤ 40.5

age >22.0

79% 20.3%

5
obesity ≤ 27.185

age ≤ 23.5
96.7% 3.28%

ods than KernelSHAP and 40 datasets of various number of attributes and
instances.

Separating the instances correctly and incorrectly classified by the model
also gives better results than keeping all the instances together. Since the in-
formation in the two subgroups is different, they each seem to create noise in
the information of the other subgroup. Indeed, the misclassified instances are
often outliers or critical instances in the dataset. Their behavior is different
from the general behavior of the data, whereas correctly classified instances
follow the behavior that the model detects. However, as some misclassifi-
cation may result from bias in a subgroup of the data or from the atypical
behavior of that subgroup compared to the whole dataset, it is of great in-
terest to study them as a priority. When separating correctly and incorrectly
classified instances, the differences in cluster quality seem to be more pro-
nounced with the Spearman coalitional method than with KernelSHAP. The
contribution seems to depend on the XML method used, probably because of
the calculation of influences since KernelSHAP creates perturbations on the
instances and Spearman coalitional keeps the input data as it is. A limit to
these subgroups’ separation is also the decrease of its relevance when the ac-
curacy of the model increases. Indeed, the number of false instances logically
decreases with increasing accuracy. Creating an XML model and clusters
with a low instance count does not make sense and can only lead to data

27



misunderstanding. However, as the accuracy increases, the false instances
become mostly outliers of the dataset or biased instances rather than sub-
groups with their behaviors to analyze. Their small number can be analyzed
manually without any particular clustering method.

Explanations clustering, being better than Raw clustering, also emerges
when focusing on the optimal number of clusters for each dataset, cluster-
ing technique, and explanation type. SHAP and Spearman appear to be
the best local explanation methods to perform explanation exploration. In
this setup, LIME again produces worse results than the other explanation
methods, suggesting that LIME influences are not suitable for clustering and
data exploration through clustering. Shapley-based methods then seem more
reliable for exploration, as SHAP also performs well with all clustering tech-
niques.

Finally, the proposed approach also adds another use of influences. Clus-
ters based on influences can be used to focus on sub-groups of data to be
studied. Clustering can be combined with other approaches to understand
the clusters created, like rule-based algorithms or instance selection. As men-
tioned before, the inner properties of each clustering technique can be used
to explore clusters. Hierarchical clustering can be valuable for exploring sim-
ilar influences and instances or how influences behave with different numbers
of clusters/on different hierarchical levels. The data distribution and vari-
ance in each cluster from GMM clustering can explain what attributes are
important for each cluster and may explain how clusters are built. Medoids
from K-medoids can be used to select representative instances and summarise
each cluster. Density-based approach may allow the discovery of prototypes
from high-density clusters and outliers/critic instances from low-density clus-
ters, enhancing the understanding of the dataset and summarising it as with
medoids. Our results reinforce the idea that influences can be considered as
new inputs for finer analysis on the ML modelling pipeline, to gain a more
in-depth and concise understanding of the ML model and the underlying
data. This is what we have illustrated in the medical use case: an analysis of
clusters of explanations (summarised in the form of decision rules) shows hid-
den, explainable relationships between attributes for particular predictions
(sub-populations).
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8. Conclusion and perspectives

In this paper, we propose a novel approach based on the analysis of local
explanations for data exploration. We use local attributive XML methods
combined with clustering to explore the explantation space and discover new
insights about explanations, predictions, modeling, and datasets. By provid-
ing clusters of instances based on their explanations, we aim to enhance data
analysis. Our experiments demonstrate the effectiveness of influence-based
clustering for various XML methods, clustering techniques, and different
numbers of clusters. The clusters generated by our influence-based frame-
work are more homogeneous and of higher quality, regardless of the XML
methods and clustering techniques used. We show that the explanations-
based clusters are of good quality and pertinent, even for low-performance
models and misclassified instances. We show the advantages of splitting the
well- and misclassified instances by the model when studying a dataset as a
whole, as it highlights the most important subgroups of data and the behav-
ior of outliers simultaneously. Finally, we provide a medical use case of how
clusters of explanations can be used in real-world applications and support
data analysis.

Perspectives. We will initially focus on extending our approach for other su-
pervised tasks and pursuing our work on explanation clustering, particularly
by analyzing and characterizing the clusters formed. Clusters can help se-
lect informative instances and provide a small number of instances to users.
These instances can support understanding datasets and modeling using ex-
amples rather than statistical information. Based on the different advantages
of each clustering technique (Agnes hierarchy, medoids from Kmedoids, and
the variance of GMM clusters) we want to explore how to analyze and make
the most of each cluster based on their characteristics, to better understand
the explanations, the prediction, the models and the dataset. With users
in the loop, the framework, augmented with additional clustering analysis,
could be tested to evaluate the impact of the local explanations and their
analysis and/or against other local explanation methods like example-based
XML methods.

New information on the dataset and its subgroups may also provide feed-
back on the quality of the training data or the trained model to improve it.
This idea of possible user feedback may be one way to improve data quality
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and modeling. Clustering based on influences may help to understand why
the model is wrong and not just where the model is wrong. These new in-
sights could also detect biases in the model and the data. Subsequently, the
feedback will be evaluated in order to ascertain its potential for implementa-
tion within the framework. Finally, our framework could be integrated into
a complete system where users can interact with the modeling and define
typical instances to profile new data patterns for user testing.
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