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Abstract
This work will consider the physics of free-surface flow and groundwa-

ter flow in a coupled model. Coupled models of such phenomena are not
clearly justified, and there is a lack of precision in deriving such a model.
The primary aim of this work is to derive a coupled model of Shallow Wa-
ter Equations (SWE) and Richards’ Equation (RE) using asymptotic con-
siderations. The numerical coupling chosen for the unified model will be
explained as a parallel coupling. Additionally, numerical considerations on
how to solve this model using Discontinuous Galerkin (DG) methods will
be provided. Furthermore, explanations will be given about how informa-
tion is exchanged between the two models, which are time-synchronized.
The solution of RE coupled with SWE using the mentioned procedure
with DG formulation is implemented in RIVAGE (an in-house numerical
code based on discontinuous Galerkin method), which is then tested on a
numerical problem and validated against an experimental benchmark.

Keywords: Asymptotic analysis, Shallow water equations, Richards equa-
tion, Unsaturated porous media, Discontinuous Galerkin, Two-way coupling
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RE Richards’ Equation

RK Runge-Kutta
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1 Introduction
The present work focuses on developing a coupled model that integrates free-
surface and porous media flow models. Various methods for coupling ground
and surface water flows have been extensively documented in the literature.
The mathematical examination of coupling non-hydrostatic (Stokes) and single-
phase Darcy flow domains can be found in several papers, including [20, 27],
where the coupling is achieved through the Beavers-Joseph-Saffman interface
condition [4, 22, 28]. A detailed discussion on applying these conditions to
a coupled Navier-Stokes and groundwater flow is presented in [13], where a
three-dimensional non-hydrostatic model is linked with Darcy flow. The authors
establish the well-posedness of the model in the case of linear Stokes flow and
gives an iterative method to solve the coupled system.

The field of engineering has extensively investigated various approaches to
integrate depth-averaged shallow water flow equations with both single and
multiphase groundwater flow equations. These models establish the connection
between surface and groundwater through different methods. One approach
involves approximating surface water flow using a diffusive wave approxima-
tion or Manning’s equation, in conjunction with Richards’ Equation (RE) for
flow through the vadose zone, as outlined in [33]. This model is well-suited for
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situations where flow is primarily influenced by gravity and friction, while dis-
regarding inertial effects in the momentum equation. It is commonly utilized to
simulate flow in channels and wetlands. Both Manning’s equation and RE are
non-linear parabolic equations in the hydraulic head (the water height above a
specific reference point), resulting in the overall model being a single non-linear
system that needs to be solved for water height.

An alternative approach that has been proposed involves the calculation of
an "exchange flux". This approach assumes the existence of an interfacial domain
that connects the two domains, referred to as the conductance concept [3, 32].
The interfacial domain is characterized by a thickness parameter and the flux is
then calculated using this parameter. The exchange flux is integrated into the
groundwater and surface water flow equations as source terms. One challenge
of this method is the requirement for observable interfacial domains in the field
[5], which makes the determination of the thickness parameter difficult. The
use of the conductance concept in numerical modeling of groundwater/surface
water interaction can be traced as far back as 1969 [17].

The flow model considered in this study is based on the depth-averaged,
Shallow Water Equations (SWE) coupled with RE in the groundwater domain.
SWE are commonly used for shallow surface water flow and thin layers of water.
This model accounts for inertial effects and wetting and drying processes. When
coupling these two models, a common approach found in the following literature,
Dawson et al. 2008 [10]; Dong et al. 2013 [15]; Delpierre et al. 2023 [12]; Furman
et al. 2008 [18]; Caviedes-Voullieme et al. 2012 [6]. In the SWE model, the
groundwater velocity at the groundwater/surface water interface acts as a source
term in the continuity equation. Pressure continuity is enforced at the interface
between groundwater flow and free-surface flow. Thus, the groundwater flow
equations have a time-dependent Dirichlet boundary condition at the surface
water interface.

The paper is organized as follows: in Section 2, we derive a coupled model
of SWE and RE using asymptotic considerations. The numerical coupling cho-
sen for the unified model will be explained as a parallel coupling in Section 3.
The solution of RE coupled with SWE using the mentioned procedure with
Discontinuous Galerkin (DG) formulation is implemented in RIVAGE(in-house
numerical code based on discontinuous Galerkin method), and tested on a nu-
merical problem and validated against experimental benchmarks in Section 4.

2 Derivation of the coupled model
Derivation of the coupled model of RE and SWE starts by considering Navier-
Stokes equations and RE on the same global domain. The model reduction from
Navier-Stokes equations to SWE is carried by following derivation of SWE with
varying bathymetry by Marche in 2007 [21]. In addition, ideas for handling the
infiltration and recharge term in [16] are used for the following derivation.

Start by considering the incompressible Navier-Stokes system in three di-
mensions is given by the following system of equations:{

div(ρ0uf ) = 0
∂t(ρ0uf ) + div(ρ0uf ⊗ uf )− div(σ(uf ))− ρ0F = 0

in Ωf
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with uf = (uf , vf , wf )T the velocity field ([L · T−1]), ρ0 the fluid density ([M ·
L−3]) (taken to be constant since the fluid is incompressible), F = (0, 0,−g)T
the gravity acceleration ([L · T−2]) with g constant and σ(uf ) the total stress
tensor ([M · L−1 · T−2]) defined by :

σ(uf ) = −pfI + 2µD(uf ) with D(u) = 1
2
(
∇uf + (∇uf )T

)

where pf is the pressure of fluid in the fluid domain and µ > 0 the dynamic
viscosity. The tensor product of two vectors a ⊗ b is defined as abT , and the
divergence of a matrix is taken as the row-wise divergence of the matrix; in
coordinates, it means:

(div(A))i =
3∑
j=1

∂jAij for i = 1, 2, 3.

The RE in three dimensions is given by:{
ug = −K(ψg)∇hg
∂tθ(ψg) + div(ug) = 0

in Ωg (1)

with ug = (ug, vg, wg)T the Darcy velocity field ([L · T−1]), θ the water content
([-]), hg the hydraulic head ([L]), K the hydraulic conductivity ([L·T−1]) and ψg
the pressure head ([L · T−1]). In addition, the pressure head is named after its
definition closely linked to pg the pressure of fluid in the ground ([M ·L−1 ·T−2]):

ψg := hg − z = pg
ρ0g

.

RE is governed by θ and K which are two constitutive laws (interested readers
can found more details in [1, 7, 9].

With numerical and practical applications in mind, an arbitrary final time
T > 0 is considered. The absolute height of the surface of the water course and
the topography of the channel bed is modeled, respectively, by the functions

ζ : [0, T ]× R2 → R
(t, x, y) 7→ ζ(t, x, y) ,

zb : R2 → R
(x, y) 7→ ζ(x, y)

whose values are measured with respect to a reference horizontal height of 0.
The water height is defined by

h(t, x, y) := ζ(t, x, y)− zb(x, y).

The fluid region is defined as the area in which the fluid resides at each time
t ∈ [0, T ]:

Ωf (t) :=
{

(x, y, z) ∈ R3 ∣∣ zb(x, y) < z < ζ(t, x, y)
}
,

with the global fluid region

Ωf :=
⋃

t∈[0,T ]

Ωf (t).
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To work with the fluid region, its indicator functions is introduced:

Φ(t, x, y, z) := 1Ωf (t)(x, y, z) = 1zb(x,y)<z<ζ(t,x,y), for all (t, x, y, z) ∈ R4

The function Φ is advected by the flow so its material derivative, with respect to
the flow uf , must be zero. Moreover, thanks to the incompressibility condition,
Φ satisfies the following indicator transport equation:

∂tΦ + ∂x(Φuf ) + ∂y(Φvf ) + ∂z(Φwf ) = 0 on Ωf . (2)

The ground region is defined as the area below the topography and is fixed
in time:

Ωg :=
{

(x, y, z) ∈ R3 ∣∣ z < zb(x, y)
}
.

x

y

z

O

zb(x, y)

h(t, x, y)
ζ(t, x, y)

(a) Sketch of variables with h the water height, ζ the
free-surface height and zb the bathymetry

x

y

z

O

nb

τb1 τb2

nf

τf1
τf2

(b) Sketck of basis with (nb, τb1 , τb2 ) on the bathymetry
and (nf , τf1 , τf2 ) on the free-surface

2.1 Bottom boundary condition
For the boundary between the fluid and the ground domain, multiple approach
can be considered. The first one consists in considering an interfacial domain
that connects the two main domains [3, 32]. An other approach consists in
considering a clear boundary between the two domains [14]. In this work, the
second approach is considered.

It allows to define boundary conditions on the bottom boundary. It is where
interactions between the surface and the ground flow occur. Firstly, the bottom
boundary domain is defined as follows:

B :=
{

(x, y, zb)
∣∣ (x, y) ∈ R2}
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On this boundary, the surface B, one can define the normal vector nb and two
tangential vectors τb1 and τb2 , constituting a basis. The upward normal of B is
defined with:

nb = 1√
1 + |∇zb|2

−∂xzb−∂yzb
1


and (τbi)i=1,2 is a basis of the tangential surface:

τb1 = 1
|∇zb|

−∂yzb∂xzb
0

 and τb2 = 1√
|∇zb|2 + |∇zb|4

 −∂xzb−∂yzb
−|∇zb|2


On the bottom boundary, two phenomena are taken into account. The first

one is friction induced by the roughness of the topography. The second phenom-
ena is friction induced by the difference between tangential fluid velocity in the
fluid domain and Darcy velocity in the ground domain. The first phenomenon
is taking into account through a kinematic friction law given by the following
general form

k(ξ) := (Clam + Ctur|ξ|),∀ξ ∈ R3

with the non-negative friction coefficients Clam and Ctur, respectively, the lam-
inar and turbulent friction coefficients. The second phenomenon was greatly
inspired by the work of Discacciati in 2009 [14] where he establishes a coupling
between incompressible Navier Stokes equations and Darcy’s law. Moreover, this
kind of boundary condition originated from the work of Beavers and Joseph [4].
It results in the following Navier boundary condition:

(σ(uf )nb) · τbi =
(
−ρ0k(uf )uf + µαBJ√

k(ψg)
(uf − ug)

)
· τbi on B (3)

where k(uf ) models a general kinematic friction law on the channel bed, k(ψg) :=
trace(k(ψg)) and αBJ is a dimensionless constant which depends on the struc-
ture of the porous medium.

Due to porosity, the ground may absorb water by infiltration or injecting wa-
ter through recharge. This mechanism is modeled with the following permeable
boundary condition:

uf (t, x, y, z) · nb = ug(t, x, y, z) · nb on B (4)

where ug is the Darcy velocity field defined in System (1). It is the influence
of the ground flow to the surface flow. If ug(t, x, y, z) · nb > 0, water enters the
fluid domain, and if ug(t, x, y, z) · nb < 0 water leaves the fluid domain.

Lastly, a suitable condition relating the pressure of the two fluids across B
is needed. The balance of pressure across the interface is chosen according to
the work of Discacciati [14], Girault [19] and Layton [20]:

−(σ(uf )nb) · nb = ρ0gψg on B. (5)
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It thus follows that Equation (3) on B can be rewritten as:

µ∂xzb∂zvf − µ∂yzb∂zuf

=
[
− ρ0k(uf )(−uf∂yzb + vf∂xzb) + µαBJ√

k(ψg)
(−(uf − ug)∂yzb + (vf − vg)∂xzb)

]√
1 + |∇zb|2

− 2µ∂xzb∂yzb(∂xuf − ∂yvf )− µ(∂yz2
b − ∂xz2

b )(∂xvf + ∂yuf ) + µ∂yzb∂xwf − µ∂xzb∂ywf
(6)

and

µ∂xzb∂zuf + µ∂yzb∂zvf

=
[
ρ0k(uf )(−uf∂xzb − vf∂yzb − wf |∇zb|2)

− µαBJ√
k(ψg)

(−(uf − ug)∂xzb − (vf − vg)∂yzb − (wf − wg)|∇zb|2)
]√

1 + |∇zb|2

+ 2µ∂xz2
b (∂xuf − ∂zwf ) + 2µ∂yz2

b (∂yvf − ∂zwf ) + 2µ∂xzb∂yzb(∂xvf + ∂yuf )

+ |∇zb|2µ
(
∂xzb(∂xwf + ∂zuf )− ∂yzb(∂ywf + ∂zvf )

)
+ µ∂xzb∂xwf + µ∂yzb∂ywf

(7)

Now combining the two previous conditions :

• ∂xzb(7)-∂yzb(6) gives an expression for µ|∇zb|2∂zuf :

µ|∇zb|2∂zuf

= ∂yzb

([
ρ0k(uf )(−uf∂yzb + vf∂xzb)−

µαBJ√
k(ψg)

(−(uf − ug)∂yzb + (vf − vg)∂xzb)
]√

1 + |∇zb|2

+ 2µ∂xzb∂yzb(∂xuf − ∂yvf ) + µ(∂yz2
b − ∂xz2

b )(∂xvf + ∂yuf )− µ∂yzb∂xwf + µ∂xzb∂ywf

)

+ ∂xzb

([
ρ0k(uf )(−uf∂xzb − vf∂yzb − wf |∇zb|2)

− µαBJ√
k(ψg)

(−(uf − ug)∂xzb − (vf − vg)∂yzb − (wf − wg)|∇zb|2)
]√

1 + |∇zb|2

+ 2µ∂xz2
b (∂xuf − ∂zwf ) + 2µ∂yz2

b (∂yvf − ∂zwf ) + 2µ∂xzb∂yzb(∂xvf + ∂yuf )

+ |∇zb|2µ
(
∂xzb(∂xwf + ∂zuf )− ∂yzb(∂ywf + ∂zvf )

)
+ µ∂xzb∂xwf + µ∂yzb∂ywf

)
;
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• ∂xzb(6)+∂yzb(7) gives an expression for µ|∇zb|2∂zvf :

µ|∇zb|2∂zvf

= −∂xzb

([
ρ0k(uf )(−uf∂yzb + vf∂xzb)−

µαBJ√
k(ψg)

(−(uf − ug)∂yzb + (vf − vg)∂xzb)
]√

1 + |∇zb|2

+ 2µ∂xzb∂yzb(∂xuf − ∂yvf ) + µ(∂yz2
b − ∂xz2

b )(∂xvf + ∂yuf )− µ∂yzb∂xwf + µ∂xzb∂ywf

)

+ ∂yzb

([
ρ0k(uf )(−uf∂xzb − vf∂yzb − wf |∇zb|2)

− µαBJ√
k(ψg)

(−(uf − ug)∂xzb − (vf − vg)∂yzb − (wf − wg)|∇zb|2)
]√

1 + |∇zb|2

+ 2µ∂xz2
b (∂xuf − ∂zwf ) + 2µ∂yz2

b (∂yvf − ∂zwf ) + 2µ∂xzb∂yzb(∂xvf + ∂yuf )

+ |∇zb|2µ
(
∂xzb(∂xwf + ∂zuf )− ∂yzb(∂ywf + ∂zvf )

)
+ µ∂xzb∂xwf + µ∂yzb∂ywf

)
.

In addition, Equation (4) on B can be rewritten as:

− uf∂xzb − vf∂yzb + wf = −ug∂xzb − vg∂yzb + wg

Lastly, Equation (5) on B can be rewritten as:

∂xz
2
b2µ∂xuf + ∂yz

2
b2µ∂yvf + 2µ∂zwf + 2∂xzb∂yzbµ(∂xvf + ∂yuf )

− 2∂xzbµ(∂xwf + ∂zuf )− 2∂yzbµ(∂ywf + ∂zvf ) = (pf − ρ0gψg)(1 + |∇zb|2).

2.2 Free-surface boundary condition
On the free-surface, any meteorological phenomena (such as evaporation, rain-
fall, wind, etc.) can be considered. Firstly, the free-surface boundary domain is
defined as follows:

F :=
{

(t, x, y, ζ)
∣∣ t > 0, (x, y) ∈ R2}

On this boundary, the surface F one can define the normal vector nf and two
tangential vectors τf1 and τf2 , constituting a basis. The upward normal of F is
defined with:

nf = 1√
1 + |∇ζ|2

−∂xζ−∂yζ
1


and (τfi)i=1,2 is a basis of the tangential surface:

τf1 = 1
|∇ζ|

−∂yζ∂xζ
0

 and τf2 = 1√
|∇ζ|2 + |∇ζ|4

 −∂xζ−∂yζ
−|∇ζ|2


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On the free-surface, it is only considered that displacements of the free-surface
advect water in the fluid domain. It gives the kinematic boundary condition:

uf · nf = ∂tζ√
1 + |∇ζ|2

on F.

(8)

Then, because no meteorological effects are considered, the stress condition of
the free-surface is given by:

(σ(uf )nf ) · τfi = 0 on F. (9)

One can refer to [16] for information about taking into account rainfall, and for
wind stress, one can read [21].

Using definition of nf and τfi Equation (8) can be rewritten as:

∂tζ + u∂xζ + v∂yζ − w = 0.

In addition, Equation (9) can be rewritten as:

µ∂xζ∂zvf − µ∂yζ∂zuf =
− 2µ∂xζ∂yζ(∂xuf − ∂yvf )− µ(∂yζ2 − ∂xζ2)(∂xvf + ∂yuf )− µ∂xζ∂ywf + µ∂yζ∂xwf

(10)

and

µ∂xζ∂zuf + µ∂yζ∂zvf =
2µ∂xζ2(∂xuf − ∂zwf ) + 2µ∂yζ2(∂yvf − ∂zwf ) + 2µ∂xζ∂yζ(∂xvf + ∂yuf )
+ |∇ζ|2µ(∂xζ(∂xwf + ∂zuf )− ∂yζ(∂ywf + ∂zvf )) + µ∂xζ∂xwf + µ∂yζ∂ywf

(11)

Now combining the two previous condition :

• ∂xζ(11)-∂yζ(10) gives an expression for µ|∇ζ|2∂zuf :

µ|∇ζ|2∂zuf

= ∂yζ

(
2µ∂xζ∂yζ(∂xuf − ∂yvf ) + µ(∂yζ2 − ∂xζ2)(∂xvf + ∂yuf ) + µ∂xζ∂ywf − µ∂yζ∂xwf

)

+ ∂xζ

(
2µ∂xζ2(∂xuf − ∂zwf ) + 2µ∂yζ2(∂yvf − ∂zwf ) + 2µ∂xζ∂yζ(∂xvf + ∂yuf )

+ |∇ζ|2µ(∂xζ(∂xwf + ∂zuf )− ∂yζ(∂ywf + ∂zvf )) + µ∂xζ∂xwf + µ∂yζ∂ywf

)
;
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• ∂xζ(10)+∂yζ(11) gives an expression for µ|∇ζ|2∂zvf :

µ|∇ζ|2∂zvf

= −∂xζ
(

2µ∂xζ∂yζ(∂xuf − ∂yvf ) + µ(∂yζ2 − ∂xζ2)(∂xvf + ∂yuf ) + µ∂xζ∂ywf − µ∂yζ∂xwf

)

+ ∂yζ

(
2µ∂xζ2(∂xuf − ∂zwf ) + 2µ∂yζ2(∂yvf − ∂zwf ) + 2µ∂xζ∂yζ(∂xvf + ∂yuf )

+ |∇ζ|2µ(∂xζ(∂xwf + ∂zuf )− ∂yζ(∂ywf + ∂zvf )) + µ∂xζ∂xwf + µ∂yζ∂ywf

)
.

2.3 Dimensionless Navier-Stokes equations
To derive the Saint-Venant model, the water height is assumed small with re-
spect to the horizontal length of the domain and that vertical variations in
velocity are small compared to the horizontal variations. This is achieved by
postulating a small parameter ratio:

ε := H

L
= Wf

Uf
� 1,

where H, L, Vf and Uf are, respectively, the scales of water height, domain
length, vertical fluid velocity and horizontal fluid velocity. As a consequence
the time scale Tf is such that:

Tf = L

Uf
= H

Wf
.

Moreover, for the ground domain, L, D, Wg, and Ug are the scales of, respec-
tively, ground domain length, ground domain height, vertical ground velocity
and horizontal ground velocity. As a consequence the time scale Tg is such that:

Tg = L

Ug
= H

Wg
.

A relation between the two time scales is needed to link the two models in the
two different domains. The following relation is chosen:

Tf = εδTg,

with δ ∈ R∗+, a parameter that allows us to control the difference between speeds
in the fluid and ground domains. It implies a set of relations between the scales
of the two models:

Ug = εδUf and Wg = ε εδUf .

The pressure scale is defined as:

Pf := ρ0U
2
f .

It is convenient to define the spatial characteristic length, L, and horizontal
velocity, Uf (and, by definition, Tf ), as finite constants with respect to ε → 0,
while the water height and vertical velocity are defined asH = εL and Vf = εUf ,
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respectively. This allows us to introduce the dimensionless quantities of time
t̃f , space (x̃, ỹ, z̃), pressure p̃f , and velocity field (ũf , ṽf , w̃f ) via the following
scaling relations:

t̃f := t

Tf
, p̃f := pf

Pf
K̃ := K−1K ũg := ug

Ug

x̃ := x

L
, ỹ := y

L
, ũf := uf

Uf
, ṽf := vf

Uf
h̃g := hg

H
ṽg := vg

Vg

z̃ := z

H
= z

εL
, w̃f := wf

Vf
= wf
εUf

ψ̃g := ψg
H

w̃g := wg
Wg


with

K = εδUf

 1
ε 0 0
0 1

ε 0
0 0 ε

 . (12)

The laminar and turbulent friction factors are scaled, respectively,

Clam,0 := Clam

Vf
= Clam

εUf
, Ctur,0 := Ctur

ε
.

The dimensionless number αBJ is rescaled as:

αBJ,0 := αBJ

γ
with γ = ε

δ+1
2 .

Finally, the following non-dimensional numbers are defined as:

Froude’s number, Fr := Uf/
√
gH,

Reynolds number with respect to µ, Re := ρ0UfL/µ.

Using these dimensionless variables in the Navier-Stokes equations and re-
ordering the term with respect to power of ε, the dimensionless incompressible
Navier-Stokes equations reads as follows:

divx̃ỹ(ũf ) + ∂z̃w̃f = 0
∂t̃ũf+divx̃ỹ(ũf ⊗ ũf ) + ∂z̃(w̃f ũf ) +∇x̃ỹp̃f =

Re−1
(

2divx̃ỹ(Dx̃ỹ(ũf )) +∇x̃ỹ(∂z̃w̃f ) + 1
ε
∂z̃z̃ũf

)
∂z̃ p̃f =Re−1 (ε2∆x̃ỹw̃f + divx̃ỹ(∂z̃ũf ) + 2∂z̃z̃w̃f

)
−ε2

(
∂t̃w̃f + divx̃ỹ(w̃f ũf ) + ∂z̃(w̃2

f )
)
− Fr−2

(13)

with ũf = (ũf , ṽf )T , ∇x̃ỹ = (∂x̃, ∂ỹ)T , Dx̃ỹ(a) = ((∇x̃ỹa) + (∇x̃ỹa)T )/2, ∀a ∈
R2 and ∆x̃ỹa = ∂x̃x̃a + ∂ỹỹa, ∀a ∈ R. Then, using the same dimensionless
relations, RE reads as follows:

∂t̃θ(Hψ̃g) + ∂x̃ũg + ∂ỹ ṽg + ∂z̃w̃g = 0 (14)
On the fluid boundary B, the dimensionless Navier boundary condition 3 and
with the expression of µ|∇zb|2∂zuf , implies that

∂z̃ũf
ε2Re =−

(
Clam,0 + Ctur,0

√
ũ2
f + ṽ2

f

)
ũf

+ 1
√
ε
√
ReFr

αBJ,0√
K̃x + K̃y

(ũf − εδũg) +O(Re−1) +O(ε2).
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Similarly the dimensionless Navier boundary condition 3 with the expression of
µ|∇zb|2∂zvf

∂z̃ ṽf
ε2Re =−

(
Clam,0 + Ctur,0

√
ũ2
f + ṽ2

f

)
ṽf

+ 1
√
ε
√
ReFr

αBJ,0√
K̃x + K̃y

(ṽf − εδ ṽg) +O(Re−1) +O(ε2).

The dimensionless permeable boundary condition 4 implies that on B

− ũf∂x̃z̃b − ṽf∂ỹ z̃b + w̃f = −εδũg∂x̃z̃b − εδ ṽg∂ỹ z̃b + εδw̃g (15)

The dimensionless balance of pressure 5 implies that on B

p̃f = 1
Fr2

ψ̃g − Re−1(2∂x̃z̃b∂z̃ũf + 2∂ỹ z̃b∂z̃ ṽf − 2∂z̃w̃f ) +O(ε2)

The dimensionless kinematic boundary condition 8 implies that on F

∂t̃ζ̃ + ũf∂x̃ζ̃ + ṽf∂ỹ ζ̃ − w̃f = 0 (16)

The dimensionless stress boundary condition 9 implies that on F

∂z̃ũf
ε2Re = O(Re−1) and ∂z̃ ṽf

ε2Re = O(Re−1).

2.4 First order approximation of the dimensionless Navier-
Stokes equations

Dropping all the term of O(ε) and above in Equation (13), the hydrostatic
approximation is deduced from the dimensionless Navier-Stokes system

divx̃ỹ(ũf ) + ∂z̃w̃f = 0

∂t̃ũf + divx̃ỹ(ũf ⊗ ũf ) + ∂z̃ [w̃f ũf ] +∇x̃ỹp̃f = Re−1
(

2divx̃ỹ(Dx̃ỹ(ũf )) + 1
ε2 ∂z̃z̃ũf + ∂z̃ [∇x̃ỹ(w̃f )]

)
∂z̃ p̃f = Re−1

(
∂z̃ [divx̃ỹ(ũf )] + 2∂z̃z̃w̃f

)
− Fr−2

Then the vertical averaging is considered valid in a turbulent regime the follow-
ing asymptotic setting is considered

Re−1 = ε. (17)

By using this new assumption, and dropping all the term of O(ε) it gives:

divx̃ỹ(ũf ) + ∂z̃w̃f = 0

∂t̃ũf + divx̃ỹ(ũf ⊗ ũf ) + ∂z̃ [w̃f ũf ] +∇x̃ỹp̃f = ∂z̃

[
1
ε
∂z̃ũf

]
∂z̃ p̃f = −Fr−2

12



Then by dropping �̃ the previous system becomes

∂xuf,ε + ∂yuf,ε + ∂zwf,ε = 0, (18)

∂tuf,ε + ∂x
[
u2
f,ε

]
+ ∂y [uf,εvf,ε] + ∂z [uf,εwf,ε] + ∂xpf,ε = ∂z

[
1
ε
∂zuf,ε

]
, (19)

∂tvf,ε + ∂x [uf,εvf,ε] + ∂y
[
v2
f,ε

]
+ ∂z [vf,εwf,ε] + ∂ypf,ε = ∂z

[
1
ε
∂zvf,ε

]
, (20)

∂zpf,ε = −Fr−2 (21)

with (uf,ε, vf,ε, wf,ε, pf,ε) the solution of the first-order dimensionless Navier-
Stokes system.

Similarly for (14) it gives :

∂tθ(Hψg) + ∂x̃ug + ∂yvg + ∂zwg = 0

with (ug,ε, vg,ε, wg,ε, ψg,ε, hg,ε) the solution of the first-order dimensionless Richards’equation.
Boundary conditions on B under the first-order approximation and 17 are

1
ε
∂zuf,ε = −k0(uf,ε)uf,ε + Fr−1αBJ,0√

Kx +Ky

(uf,ε − εδug,ε) on B,

uf,ε∂xzbvf,ε∂yzb − wf,ε = εδug,ε∂xzb + εδvg,ε∂yzb − εδwg,ε on B,

pf,ε = 1
Fr2

ψg,ε on B
(22)

with uf,ε = (uf,ε, vf,ε)T ,ug,ε = (ug,ε, vg,ε)T and k0(uf,ε) := Clam,0+Ctur,0|uf,ε|.
Boundary conditions on F under the first-order approximation and 17 are

1
ε
∂zuf,ε = 0 on F, (23)

∂tζ + uf,ε∂xζ + vf,ε∂yζ − wf,ε = 0 on F. (24)

Vertically integrating both members of 21 between z and ζ(t, x, y), the hy-
drostatic pressure is obtained∫ ζ

z

∂zpf,εdz = −
∫ ζ

z

Fr−2dz

pf,ε(t, x, y, ζ)− pf,ε(t, x, y, z) = −Fr−2(ζ(t, x, y)− z)

Assuming that the pressure exerted on the free-surface pf,ε(t, x, y, ζ) = patm for
some constant patm ∈ R (all other meteorological phenomena are neglected),
this becomes

pf,ε(t, x, y, z) = Fr−2(ζ(t, x, y)− z) + patm (25)

If Equation (2) is integrated between z = zb(x, y) and z = ζ(t, x, y) it gives:∫ ζ

zb

∂tΦdz +
∫ ζ

zb

∂x(Φuf,ε)dz +
∫ ζ

zb

∂y(Φvf,ε)dz +
∫ ζ

zb

∂z(Φw)dz = 0

⇐⇒ ∂th(t, x, y) + ∂x

(∫ ζ

zb

uf,εdz

)
+ ∂y

(∫ ζ

zb

vf,εdz

)
+ (uf,ε∂xzb + vf,ε∂yzb − w) |z=zb

− (∂tζ + uf,ε∂xζ + vf,ε∂yζ − w) |z=ζ = 0

13



Using Equation (15) and Equation (16) gives:

∂th(t, x, y) + ∂x

(∫ ζ

zb

udz

)
+ ∂y

(∫ ζ

zb

vdz

)
= −εδug,ε∂xzb − εδvg,ε∂yzb + εδwg,ε.

Noting f̄ as the mean of a generic function f over the section [zb(x, y), ζ(t, x, y)],

f̄(t, x, y) = 1
h(t, x, y)

∫ ζ(t,x,y)

zb(x,y)
f(t, x, y, η)dη,

Using the following approximations:

uf,ε(t, x, y, z) = ūε +O(ε) and u2
f,ε = ū2

ε +O(ε),

and dropping the first higher order terms in ε gives mass-balance equation:

∂t [h] + ∂x [hūε] + ∂y [hv̄ε] = −εδug,ε∂xzb − εδvg,ε∂yzb + εδwg,ε. (26)

Integrating 19 between z = zb(x, y) and z = ζ(t, x, y) gives:

∂t

∫ ζ

zb

uf,εdz + ∂x

∫ ζ

zb

[
u2
f,ε

]
dz + ∂y

∫ ζ

zb

[uf,εvf,ε] dz + ∂x

∫ ζ

zb

pf,εdz

− (pf,ε∂xζ)|ζ + (pf,ε∂xzb)|zb

−

((
∂tζ + uf,ε∂xζ + vf,ε∂yζ − wf,ε

)
uf,ε

)
|ζ +

((
uf,ε∂xzb + vf,ε∂yzb + wf,ε

)
uf,ε

)
|zb

=
[

1
ε
∂zuf,ε

]ζ
zb

Using Equation (25) for the previous equations it gives:∫ ζ

zb

pf,εdz = Fr−2h
2

2

with patm = 0. Replacing previous terms in the integration gives:

∂t [hūε] + ∂x

[
hū2

ε + h2

2Fr2
]

+ ∂y [hūεv̄ε] = − 1
Fr2

h∂x [zb]

− k0(uf,ε)uf,ε + Fr−1αBJ,0√
Kx +Ky

(uf,ε − εδug,ε) + (−εδug,ε∂xzb − εδvg,ε∂yzb + εδwg,ε)uf,ε

(27)

Similarly integrating Equation (20) between z = zb(x, y) and z = ζ(t, x, y) gives:

∂t [hv̄ε] + ∂x [hūεv̄ε] + ∂y

[
hv̄2

ε + h2

2Fr2
]

= − 1
Fr2

h∂y [zb]

− k0(uf,ε)vf,ε + Fr−1αBJ,0√
Kx +Ky

(vf,ε − εδvg,ε) + (−εδug,ε∂xzb − εδvg,ε∂yzb + εδwg,ε)vf,ε

(28)
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Finally by dropping the average �̄ notation and considering the mass balance
equation 26 and momentum equations 27 and 28 the dimensionless Saint-Venant
system with recharge is obtained:

∂t [h] + ∂x [huf ] + ∂y [hvf ]
= εδ(−ug∂xzb − vg∂yzb + wg)

∂t [huf ] + ∂x

[
hu2

f + h2

2Fr2
]

+ ∂y [hufvf ] = − 1
Fr2

h∂x [zb]

− k0(uf , vf )uf + Fr−1αBJ,0√
Kx +Ky

(uf − εδug) + εδ(−ug∂xzb − vg∂yzb + wg)uf

∂t [hvf ] + ∂x [hufvf ] + ∂y

[
hv2

f + h2

2Fr2
]

= − 1
Fr2

h∂y [zb]

− k0(uf , vf )vf + Fr−1αBJ,0√
Kx +Ky

(vf − εδvg) + εδ(−ug∂xzb − vg∂yzb + wg)vf

(29)

For now, εδ is kept on purpose in the Shallow-Water system of equations. εδ
are used to show that the influence of ground flow on free-surface flow is valid
with the first order of approximation only for specific values of δ. Since for
establishing the classic Shallow-Water system, terms of order greater than ε are
dropped, terms of order εδ are considered for 0 ≤ δ < 1.

If δ is chosen in this range, the two-way coupling is valid if ground fluid
speeds are not too small compared to free-surface fluid speeds. In other words,
if the time scale for the two models is similar. Moreover, one can see that the
rescaling of the hydraulic conductivity tensor is expressed with Uf and εδ. Since
hydraulic conductivity is fixed for a given problem, the two-way coupling is valid
for a specific range of fluid speeds. As depicted in [9] for instance, hydraulic
conductivity is relatively minor for most materials. The two way coupling is
valid for a whole range of permeability, as long as the characteristic time of
the problem is adequate. For instance for almost impervious materials, slow-
evolving problems such as tides, water recharge, rain, or snow melting must be
considered. In addition, for more permeable materials fast-evolving problems
such as waves swashing on a sand beach, overland flow, and flooding can be
considered. In addition, Equation (12) shows an anisotropy in the hydraulic
conductivity tensor. It indicates that hydraulic conductivity in horizontal di-
rections is greater than in vertical directions. This characteristic is observed
and documented in the literature [31, pp. 100-103]. He states that Kx/Kz, with
Kx and Kz respectively horizontal and vertical hydraulic conductivity, usually
fall in the range 2 to 10 for alluvium, but values up to 100 or mode occur where
clay layers are present.

Consider that 0 ≤ δ < 1 and multiply 29 by DU2

L gives the Saint-Venant
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system with ground influence in its dimensional form:

∂t [h] + ∂x [huf ] + ∂y [hvf ] = I

∂t [huf ] + ∂x

[
hu2

f + g
h2

2

]
+ ∂y [hufvf ]

= −k(uf , vf )uf + αBJ√
kx + ky

(uf − ug) + Iuf − gh∂x [zb]

∂t [hvf ] + ∂x [hufvf ] + ∂y

[
hv2

f + g
h2

2

]
= −k(uf , vf )vf + αBJ√

kx + ky
(vf − vg) + Ivf − gh∂y [zb]

(30)

with I = −ug∂xzb − vg∂yzb + wg the quantity of water that enters (I>0) or
leaves (I<0) the fluid domain.

Finally the two way coupled model of SWE and RE is given with the fol-
lowing system of equations :

∂th+ div(q) = I, in Ωswe,

∂tq + div
(

q ⊗ q
h

+ g
h2

2 I
)

= −k(uf )uf + αBJ√
kx + ky

(uf − ug) + Iuf − gh∇zb, in Ωswe,

I = ug · (−∂xzb,−∂yzb, 1)T , in Ωswe,

ug = −K(ψg)∇hg, in Ωg,
∂tθ(ψg) + div(ug) = 0, in Ωg,

hg = h+ zb, on ΓC ,
hg = hD, on ΓD,

−ug · n = qN , on ΓN .
(31)

Unknowns of the problem are (h,q, hg) respectively, the water height, the hor-
izontal discharge, and the hydraulic head. Horizontal discharge is defined as
q = (qx, qy)T = ufh with uf = (uf , vf )T the horizontal velocity of the free-
surface fluid. Moreover, zb is the bottom topography, K is the hydraulic conduc-
tivity tensor, ψg is the hydraulic head, and θ is the water content. Constitutive
laws for the ground domain are given in [9]. Several domains appear in Sys-
tem (31). It is important to notice that since SWE is obtained by vertically av-
eraging Navier-Stokes equations, its definition domain is one dimension smaller
than RE one. For instance, if Ωg ⊂ Rd then Ωswe ⊂ Rd−1 with d = 2, 3. First,
the interface between the fluid and ground domains must be defined to define
them properly. This interface is defined as ΓC , which is the topography’s graph.
The domain Ωswe is the SWE domain which is the orthonormal projection of ΓC
on the Oxy-plane. The domain Ωg is the ground domain under the topography
such that ΓC ⊂ ∂Ωg. The remaining part of ∂Ωg is split into two parts: ΓD
and ΓN , respectively, the Dirichlet and Neumann boundary conditions. It is
important to notice that Ωswe is the reference plane fixing the origin for both
SWE and RE.

Figure 1 shows the two domains Ωswe and Ωg with the interface ΓC for the
two-way coupled model in the two-dimensional case. ΓC is depicted in dark sand
color, Ωg is the volume in light sand color and Ωswe is the Oxy-plane in light

16



x

y

z

O

Ωg

ΓC

Ωswe

zb(x, y)

h(t, x, y)

Figure 1: Representation of the two domain Ωswe and Ωg with the interface ΓC
for the two way coupled model.

blue. For the one-dimensional case, one may consider a vertical cross-section on
Figure 1.

3 Numerical considerations of coupling RE and
SWE

The preceding section derived a coupled model of RE and SWE equations. This
model represents a two-way coupling of two models that encompass different
physical processes. The (formal) justification of this coupled model has been es-
tablished, although it does have limitations in its range of validity, whereas the
one-way coupling is always valid. In the upcoming sections, we will consider the
two-way coupling even when the problem is beyond its scope. This is justifiable
as, outside of its scope, the interaction of the ground flow is, often, negligi-
ble compared to the surface flow. Before delving into how the coupled model is
solved, an overview of different coupling methods is provided. For a comprehen-
sive review of modeling coupled surface-sub-surface flows processes, readers can
refer to [18], which presents coupling methods, coupled models with references,
and the names of commercial software that solve such coupled problems.

3.1 Coupling methods
In the context of coupling surface and sub-surface models, it is crucial to prop-
erly define the coupling problem. Let’s consider a global problem solved on a
domain Ω, which can be divided into two subdomains Ω1 and Ω2, each with
distinct physics. Also, let L1(u1) = f1 and L2(u2) = f2 denote the respective
problems on Ω1 and Ω2, where ui is the solution of problem i. It’s important to
note that the model on Ω1 may not be valid on Ω2 and vice versa. As a result,
the two domains should not overlap but should share a common interface de-
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noted ΓC . The coupling constraint comes into play at this common edge, such
as u1 = u2. If their respective solutions are incompatible, an operator A1,2 is
introduced, where u1 = A1,2u2 and vice versa. This occurs when the two models
do not have the same unknowns or the same space dimensions.

Three different levels of coupling between surface and sub-surface processes
can be distinguished. Figure 2 depicts a scheme of these three methods. They
include the one-way coupling (I, Ia), the two-way (iterative) coupling (II), and
the full coupling. All three components are described in the following. In theory,
the higher is the level of coupling, the higher is the accuracy.

The first level of numerical coupling is known as one-way coupling. In this
approach, each system is independently solved at every time step, with the sur-
face water component typically being solved first due to its faster dynamics.
After obtaining the solution, an internal boundary condition value is specified,
and then the other system is solved. There is no feedback loop used to correct
the first system. An approximation is required because the boundary condition
at the interface between the systems generally applies to both systems. It is con-
venient to use conditions from the previous time step to estimate the boundary
conditions of the system that is solved first. This level of coupling is studied
by Morita and Yen [23]. Clément et al. [7] employs this coupling level in the
context of coupling RE and SWE.

The first level of coupling can be divided into two subcategories, the first
of which has been explained previously. The second category involves repre-
senting one of the interacting systems (either surface or sub-surface) through
an algebraic formulation (generally a specific solution for one of the systems).
This approach is widely used by surface irrigation modelers and is referred to
as degenerated uncoupled. Delestre adopts this level of coupling [11] with the
Green and Ampt model for sub-surface flow.

The second level of coupling, iterative coupling, there is a feedback loop
between the two systems. The initial steps are akin to those at the uncoupled
level: the first system is solved, interfacial boundary conditions are defined, and
the second system is solved using these boundary conditions. The difference
lies in using the solution of the second system to update the internal boundary
condition within the same time step. The first system is then solved again using
this updated boundary condition, and this process is repeated until convergence
criteria are met (typically until there is no significant change in one of the solved
components). Morita and Yen [23] referred to this coupling level as alternating
iterative. When there is only one iteration without seeking convergence, this
coupling level is known as parallel coupling. In this approach, the two models are
solved separately with their respective time steps, while the interface conditions
(source terms) evolve according to the updated results. This type of coupling
involves feedback but is always shifted in a kind of interlacing.

The third coupling level, which is the most complete, involves solving the two
systems and the internal boundary conditions together. That is, the two PDEs
and the interface equation (which may be an ordinary differential equation) are
solved simultaneously. This coupling level is referred to here as fully coupled.

In this work, and the case of coupling RE and SWE the parallel coupling
is chosen for its simplicity of implementation and its efficiency. Moreover, since
the time steps for the surface flows are considerably smaller than the ground
ones, the shifting between the two models is small.
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Figure 2: Different levels of coupling between surface and sub-surface processes.

3.2 Space synchronization
Because the SWE are obtained by averaging the Navier-Stokes equations along
the vertical axis, there is a difference of one dimension between RE and SWE.
It is common in the field of Computational Fluid Dynamics to couple models
with different dimensional domains. For example, the Euler Bi-fluid equations
are coupled with SWE (or Serre-Green-Naghdi Equations) [25], and the Navier-
Stokes Equations are coupled with SWE [26]. In these cases, the averaging
direction occurs along the interface between the two models. As a result, the
coupling is achieved in both models using a boundary condition. However, in the
case of RE and SWE, the averaging direction is perpendicular to the interface
between the two models, leading to the coupling being achieved through a source
term in SWE and a boundary condition in RE, with both equations being solved
on separate domains.

First, let’s define ΩRE ⊂ Rd as the domain for the RE model, where d = 2 or
3 represents the space dimension. Then, let’s define ΩSWE ⊂ Rd−1 as the domain
for the SWE model. The boundaries of ΩRE are divided into three subdomains:
ΓD, ΓN , and ΓC , corresponding to Dirichlet, Neumann, and Coupling boundary
conditions, respectively. The coupling boundary ΓC facilitates the exchange of
information between the two models. In the case of the SWE model, information
is obtained from the RE model through source terms, while for the RE model,
information is received from the SWE model through boundary conditions on
the coupling edge of the domain. Consequently, this information needs to be
computed based on the approximations of the solutions of the two models.
This is because the shared edge aligns with the averaging direction of the SWE
model. In our specific case, the common edge shared by the initial models is
perpendicular to the averaging direction of the SWE model. This implies that
the exchange of information occurs across the entire domain Ωswe and the entire
edge ΓC .

Both ΩRE and ΩSWE are discretized with meshes denoted as EnRE and EnSWE,
where n ∈ N indicates the time sub-interval Tn. For EnRE, the set of boundary
faces is represented as F∂ = FD ∪ FC ∪ FN , where FD = F∂ ∩ ΓD, FN =
F∂ ∩ ΓN , and FC = F∂ ∩ ΓC . The mesh and domain representation for the
coupling of SWE and RE with d = 2 can be seen in Figure 3. Furthermore, the
two meshes are designed such that the number of blocks in EnSWE corresponds
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Figure 3: Mesh and domain representation for the coupling of SWE and RE.

to the number of blocks composing the coupling boundary of EnRE. This design
is not mandatory, but it helps the exchange of information between the two
models and defines a coupling map function.

The resolution of SWE and RE with DG methods has been developed within
the framework of adaptive mesh refinement [1] and [2]. Both models are solved
on their respective meshes, which are composed of blocks that are refined at
different levels. To facilitate the exchange of information, the aim is to have a
conformal coupling interface. This means that each element E of ESWE should
correspond to a face of FC . Therefore, the refinement levels of the elements of
ESWE and the elements sharing a face with FC need to be consistent.

Since the two meshes are distinct, to exchange information and compute the
solution of RE in SWE and vice versa, a mapping function φ̂coupling : ΩSWE →
ΓC is needed. This mapping function allows to evaluate the solution of RE on
ΩSWE, and its inverse allows to evaluate the solution of SWE on ΓC . Recalling

Vp(E) :=
{
v ∈ L2(Ω)

∣∣ v|E ∈ Pp(E), ∀E ∈ E
}

where Pp(E) stands for the set of polynomial functions of degree less than or
equal to p ∈ N on E (see [1, 2, 24] for further details) and using this mapping
function and using DG space discretization weak formulations of System (31) is
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(see [2] for further details):

Find U := (h,q)T ∈ [Vp(EnSWE)]3 such that ∀t ∈ Tn, ∀E ∈ EnSWE and ∀ϕ ∈ [Vp(EnSWE)]3,

∑
E∈EnSWE

∫
E

ϕ(x)∂tU(x, t)dE −
∑

E∈EnSWE

∫
E

∂xiϕ(x)Gi(U(x, t))dE

+
∑

E∈EnSWE

∑
F∈FE

∫
F

ϕ(x)G∗F (U(x, t))dF =
∑

E∈EnSWE

∫
E

ϕ(x)Sb(U(x, t), z̃b(x))dE

+
∑

E∈EnSWE

∫
E

ϕ(x)Sf (U(x, t))dE +
∑

E∈EnSWE

∫
E

ϕ(x)SRE(U(x, t), z̃b(x),ug(φ̂coupling(x)))dE

(32)

where z̃b is the projection of the bathymetry onto Vp and G∗F is the numerical
flux (based on the Rusanov flux) across any face F . In addition, Sb, Sf and
SRE are respectively the source terms due to bathymetry, friction and RE. The
source term due to RE is computed using the map function (φ̂coupling) between
Ωswe and ΓC . And, for RE the weak formulation is (see [1] for further details):

Find h ∈ Vp(EnRE) such that ∀t ∈ Tn, ∀E ∈ EnRE and ∀ϕ ∈ Vp(EnRE),

∑
E∈EnRE

∫
E

∂tθ(h− z)ϕdE +
∑

E∈EnRE

∫
E

(K(h− z)∇h) · ∇ϕdE

−
∑

F∈F in
RE

∫
F

⦃(K(h− z)∇h) · nF⦄JϕKdF −
∑

F∈FDRE

∫
F

(K(h− z)∇h) · nFϕdF

+
∑

F∈F in
RE

1
2

(
σinE
dE

+
σinEr
dEr

)∫
F

JhKJϕKdF +
∑

F∈FCRE

σ∂E
dE

∫
F

hϕdF +
∑

F∈FDRE

σ∂E
dE

∫
F

hϕdF

=
∑

F∈FCRE

σ∂E
dE

∫
F

(h+ zb)(φ̂−1
coupling(x))ϕdF +

∑
F∈FDRE

σ∂E
dE

∫
F

hDϕdF −
∑

F∈FNRE

∫
F

qNϕdF

(33)

where nF, Er, σ∂E , σinE , dE , JvK and ⦃v⦄ are respectively, a normal pointing
from E to Er, a neighboring element Er such that E ∩ Er = F , a boundary
penalty parameter, an interior penalty parameter, the diameter of an element
E defined as the ratio between its surface and its perimeter, the jump and the
average of a function v on a face F ∈ F :

∀x ∈ F, JvK(x) := vr(x)− vl(x) and ⦃v⦄(x) := 1
2
(
vr(x) + vl(x)

)
where

vl(x) := lim
ε→0−

v(x + εnF ) and vr(x) := lim
ε→0+

v(x + εnF ), ∀x ∈ F.

On any boundary faces F ∈ F∂ the trace of v is only defined on the left side of
the face:

vl(x) := lim
ε→0−

v(x + εnF ), ∀x ∈ F

21



and these quantities are defined by

∀x ∈ F, JvK(x) := vl(x) and ⦃v⦄(x) := vl(x).

In Problem (33), XD and XN stands for the Dirichlet and Neumann boundary
condition on the generic variable X.

A variation exists on the boundary condition for the coupling term for RE.
For now, the coupling is done using a Dirichlet boundary condition. It is well
suited for problems that do not involve dry areas. In other words, problems
where the porous medium is always covered by water. In the case of dry areas,
a part of the porous medium is exposed to the atmosphere and imposing a
Dirichlet boundary condition is not suitable. As mentioned in [7, 8], the seepage
boundary condition models the interaction between the porous medium and the
atmosphere. As a recall, the seepage boundary condition states that at the
face exposed to the atmosphere, if an outflow occurs, then water pours out at
atmospheric pressure, and otherwise, the porous medium acts as an impervious
boundary; there is no flux. To implement this boundary condition, the coupling
term in Problem (33) is modified as follows:

Find h ∈ Vp(EnRE) such that ∀t ∈ Tn, ∀E ∈ EnRE and ∀ϕ ∈ Vp(EnRE),

∑
E∈EnRE

∫
E

∂tθ(h− z)ϕdE +
∑

E∈EnRE

∫
E

(K(h− z)∇h) · ∇ϕdE

−
∑

F∈F in
RE

∫
F

⦃(K(h− z)∇h) · nF⦄JϕKdF −
∑

F∈FDRE

∫
F

(K(h− z)∇h) · nFϕdF

+
∑

F∈F in
RE

1
2

(
σinE
dE

+
σinEr
dEr

)∫
F

JhKJϕKdF +
∑

F∈FCRE

σ∂E
dE

∫
F

1SC(x)hϕdF +
∑

F∈FDRE

σ∂E
dE

∫
F

hϕdF

=
∑

F∈FCRE

σ∂E
dE

∫
F

1SC(x)(h+ zb)(φ̂−1
coupling(x))ϕdF +

∑
F∈FDRE

σ∂E
dE

∫
F

hDϕdF −
∑

F∈FNRE

∫
F

qNϕdF

(34)

with 1SC the indicator function of the coupling seepage boundary condition.
This function is defined as follows:

1SC(x) =
{

1 if h(φ̂−1
coupling(x)) > 0 or hg(x) ≥ z

0 otherwise
(35)

One can see that in the case of a fully wet problem Problem (34) and Prob-
lem (33) are equivalent, but in the case of dry areas the coupling seepage bound-
ary condition becomes a classical seepage boundary condition.

Weak formulation of Problem (32) and Problem (34) are used to compute
an approximated solution of the two-way coupling problem. Nevertheless, these
weak formulations are still semi-discrete. Time integration needs to be per-
formed to have fully discretized problems.

3.3 Time synchronization
Typically, surface and groundwater flows have different time scales. In particu-
lar, for most surface water flows, the time steps needed for stability and accuracy
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of numerical methods are seconds to minutes. For groundwater flow, time steps
are generally from minutes to days. Consider that for the groundwater flows
problem, its computational time is discretized with sub-intervals Tn := [tn, tn+1]
with ∆tnRE := tn+1 − tn. Now each sub-interval Tn is split into K sub-intervals
with for all k = 1, . . . ,K Tn,k := [tn,k, tn,k+1] with ∆tn,kSWE := tn,k+1 − tn,k and
by definition tn,1 := tn and tn,K+1 := tn+1. As seen in [1] and [2] the semi-
discrete weak formulation of RE is time-integrated using an implicit method
on Tn whereas the semi-discrete weak formulation of SWE is time-integrated
using an explicit method on each Tn,k. The time synchronization procedure is
depicted in Figure 4 with Roman figures enumerating the different stages. It is
composed of four main steps:

[I] This is the first exchange of information between the two models. They ex-
change their respective solution at the time tn. The solution is exchanged
under its algebraic representation, and degrees of freedom are exchanged
for memory consumption and efficiency. Since the solutions exchanged
live in their respective solution space, the mapping function is useful for
evaluating the solution of RE on ΩSWE, and its inverse allows evaluating
the solution of SWE on ΓC .

[II] RE is solved on Tn using the implicit Backward Differentiation Formula
(BDF) method. The solution of SWE at tn is used in the boundary con-
dition. The non-linear iterative solver presented [1] with adaptive time
stepping is used, and the next step of the time synchronization is per-
formed only when the converged solution at tn+1 is obtained.

[III] This is the second exchange of information between the two models. The
solution of RE at tn+1 is exchanged to SWE following the same procedure
as [I].

[IV] SWE is solved on Tn,k for all k = 1, . . . ,K using the explicit Runge-Kutta
Discontinuous Galerkin (RKDG) method. In the source terms of SWE the
solution of RE is linearly interpolated in time using the solution of RE at
tn and tn+1. The well-balanced property, the limiting procedure, and the
flooding and drying treatment are performed as explained in [2]. Time
steps of SWE are computed through a Courant-Friedrichs-Lewy (CFL)
condition. Thus they are not constant and may vary from one time step
to another.

One can observe that the groundwater flow is shifted backward in time since
it uses the surface flow solution at tn to compute the solution at tn+1. The
benefit of this method is that the slowest problem pilots the global time stepping
and consequently the amount of shift. There exists a variation in the time
synchronization strategy. One can first solve SWE with the solution of RE at
tn in source terms and then solve RE with the solution of SWE at tn+1 in the
boundary condition. This way, the shift between the two models is displaced
from RE to SWE but it is observed that the solution is not significantly impacted
by this method.
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Figure 4: Scheme of time synchronization between RE and SWE for Tn with
K = 5.

4 Numerical toy problem end experimental bench-
mark for validation

The coupling methodology described before and DGmethods introduced in [1, 2]
is implemented in RIVAGE. It leads to an in-house code that solves problems
involving computing interactions between free-surface and groundwater flows.
These newly implemented methods need to be validated. Because it is new to
couple these two models, there are few benchmarks to validate RIVAGE. In this
section, firstly, a toy problem is considered to test if the expected phenomenon
of a coupled problem is presented; this is a qualitative validation. Secondly, an
experimental benchmark is considered to validate the code; this is a quantitative
validation.

4.1 Coupled groundwater and free-surface flow: toy prob-
lem

The first test case is a toy problem. It is a simple test case assessing the cou-
pling between the groundwater and free-surface flows. The free-surface domain
considered is a one-dimensional domain with a flat bathymetry. The ground-
water domain is a two-dimensional rectangular domain. A traveling wave over
the ground domain is considered, and water can flow through it. During this
considered problem, several phenomena are expected to be observed:

• The wave should travel freely over the ground domain;

• Hydraulic head distribution should be modified by the traveling wave;

• The global water level should decrease due to infiltration in the ground
domain.

Figure 5 depicts the toy problem’s configuration. The ground domain (Ωg) is a
20×5 m box with impervious sides (qN = 0 m.s−1) and hydraulic head imposed
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Figure 5: Coupling toy problem’s configuration

on the bottom (hD = −1 m). The box is full of sand, saturated with water.
Hydraulic properties use Vachaud’s relations in [7] with A = 2.99 106, B =
5.0, C = 40000, D = 2.9,Ks = 9.72 10−2 m.s−1, θs = 0.3 and θr = 0.0. The
fluid domain (Ωf ) is a 20m long canal with flat bathymetry and solid walls at
the ends. The two domains are linked through ΓC . No friction is considered
on the bottom of the fluid domain, hence Ctur = Clam = 0 and αBJ = 0.Initial
data are given by:

∀x ∈ Ωg, hg(x, 0) = 0.4y + 1 and ∀x ∈ Ωf , ζ(x, 0) = 1 + 2e−x
2
.

The problem is solved using DG methods, seeking solutions in V1 with BDF
and Runge-Kutta (RK) integration methods of order 2. Block Based Adaptive
Mesh Refinement (BB-AMR) techniques are used for both SWE and RE. For
the fluid domain, the adaptation criterion is based on the gradient of the water
height with βc = βr = 0.025 (see [2] for instance). For the ground domain,
the adaptation criterion is based on the gradient of the hydraulic head with
βc = βr = 0.2. The initial mesh is given in Figure 6. The simulation is
carried out until T = 20 s. Auto calibration of penalization parameters is used,
and moment limiters are set to the least diffusive for the SWE. The non-linear
solver’s stopping criteria are set to ε1 = ε2 = 10−6.

Figures 7 to 9 display the solution of the toy problem at selected times. The
hydraulic head distribution is shown in color grading, the free surface elevation
is black, the initial free surface elevation is red, and the mesh is white. The
figures show the expected phenomenon of the toy problem. The wave travels
freely over the ground domain, and its momentum is diminished due to friction
related to infiltration. The wave modifies the hydraulic head distribution, and
the global water level decreases due to infiltration in the ground domain. The
numerical results are in agreement with the expected phenomenon. Moreover,
the Adaptive Mesh Refinement (AMR) technique follows phenomena. The mesh
is refined where the wave is located and where the hydraulic head distribution
is modified. The mesh is coarsened where the gradient is low and where the
wave has already passed.
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Figure 6: Coupling toy problem’s initial mesh

Figure 7: Coupling toy problem’s hydraulic head distribution (color grading),
free surface elevation (black line), initial free surface elevation (red line) and
mesh (white lines) at t = 1 s
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Figure 8: Coupling toy problem’s hydraulic head distribution (color grading),
free surface elevation (black line), initial free surface elevation (red line) and
mesh (white lines) at t = 5 s

Figure 9: Coupling toy problem’s hydraulic head distribution (color grading),
free surface elevation (black line), initial free surface elevation (red line) and
mesh (white lines) at t = 15 s
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Figure 10: Steenhauer’s test case configuration

4.2 Coupled groundwater and free-surface flow: Steen-
hauer’s test case

Bore-driven swash on unsaturated coarse-grained beaches involves several inter-
acting processes: surface flow over the beach face, infiltration into the unsatu-
rated part of the beach, air entrapment below the wetting front, and groundwa-
ter flow. This phenomenon was observed during an experiment by Steenhauer
et al. [30]. They used a 20 m long, 0.9 m high, and 0.45 m wide flume with
a water reservoir at one end and a beach plane at the other end. A bore is
generated by quickly raising the gate of the reservoir. The bore propagates to
the beach, leading to a swash event typical of natural beaches. The beach is a
1 : 10 slope located at 4 m downstream of the reservoir. Figure 10 depicts a
cross-section of the reservoir, hence, the experiment’s configuration. The beach
is made of sediment throughout its depth, with the top 30 mm bonded by a
diluted water-cement-sediment mix, maintaining the permeability and rough-
ness but preventing the sediment from moving. This experiment involves two
different materials: one with a nominal diameter of 1.5 mm (denoted d1.5) and
another with 8.5 mm (denoted d8.5). Samples of the two sediments are shown
in Figure 11. The porous media is characterized by Vachaud’s law [7]. Physical
parameters can be found in Table 1. Shape parameters of Vachaud’s law are
calibrated to have a classical shape of constitutive considering that the capillary
fringe for d8.5 is smaller than for d1.5. Hydraulic conductivity is extracted from
the literature [29] and anisotropy (with a ratio of 5) is considered. Saturated
and residual water content are extracted for the literature [29]. Friction coeffi-
cients are set empirically to match the experimental results. Lastly, αBJ is set
to 0 because the time scales of the problem are too different from each other.
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Figure 11: Steenhauer’s test case sediments [30]

A B C D Ks,x Ks,z θs θr Clam Ctur αBJ

unit - - - - m.s−1 m.s−1 - - m.s−1 - -

d1.5 5 10−5 2.5 5 10−4 2.5 1.27 10−2 2.54 10−3 0.3 0.0 0.0 0.01 0
d8.5 5 10−5 2.0 5 10−4 2.0 2.45 10−1 4.90 10−2 0.3 0.0 0.0 0.02 0

Table 1: Steenhauer’s test case, physical parameters

Initial water height (h) for the free-surface flow is given by:

∀x ∈ Ωf , h(x, 0) =


H0 m, if x < −4.82 m
h0 m, if 4.82 m ≤ x < −0.62 m

−x/10 m, if − 0.62 m ≤ x < 0 m
0.0 m, if x ≥ 0 m

with H0 = 0.6 m and h0 = 0.062 m. Initial hydraulic head (hg) for the ground-
water flow is given by:

∀x ∈ Ωg, hg(x, 0) = 0.0 m.

Boundary conditions considered are for this test case are:

• Solid wall at both en of Ωf ;

• Impervious walls at left, right and bottom sides of Ωg;

• Coupling boundary condition on ΓC .

For both sediments, the problem is solved using DG methods, seeking solu-
tions in V1 with BDF and RK integration methods of order 2 with αCFL = 0.9.
The simulation is carried out until T = 10 s. BB-AMR techniques are used
for both SWE and RE. For the fluid domain, the adaptation criterion is based
on the gradient of free surface elevation with βc = βr = 0.01 (see [2] for in-
stance). In addition, if a block contains the shoreline, it is refined. For the
ground domain, the adaptation criterion is based on the water content gradient
with βc = βr = 1.5. The initial mesh is given in Figure 12. Auto calibration
of penalization parameters and moment limiters, set to the least diffusive, are
used for the SWE. For the wetting and drying treatment, slope modification
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Figure 12: Steenhauer’s test case initial mesh

is used with hdry = 10−3. The non-linear solver’s stopping criteria are set to
ε1 = ε2 = 10−3. Time adaptation is used withmit = 10,Mit = 20 andWit = 25
(see [1]).

Results for d1.5

Figures 13 to 16 depicts the computed solution for d1.5 at selected times. The
hydraulic head distribution is shown with color grading, the free surface eleva-
tion is black, the water table is white, and the mesh is black. One can observe
that t = 2.00 s the bore reaches the beach with a height of 20 cm as expected
and observed in the experiment [30]. At t = 3.00 s, the bore propagates over
the beach, the hydraulic head distribution is modified, and water infiltrates the
porous medium. At t = 4.80 s, the bore has reached its maximum covering
of the beach and starts retreating, water is still infiltrating, and groundwater
is moving through the sand. At t = 7.00 s, the bore retreats, and the water
table follows the bore. Nevertheless, water still moves vertically after the bore
covers the beach. One can see that during the whole run-up of the bore, air
is trapped between water infiltrating from the wave and the water table. This
phenomenon is observed in the experiment.

Figure 17 compares results extracted from the work of Steenhauer et al. in
2012 [29] with numerical results computed with RIVAGE. One can observe that
the free surface elevation is well recovered; however, at t = 5.11 s, the maximum
covering of the beach by the bore is underestimated. It may be caused by poor
calibration of the friction coefficient. One can do several tests by trial and error
to find the best value for the friction coefficient. One can see that the infiltration
from the wave is well recovered in terms of the groundwater flow. However, in
the literature, the connection between the initial water table and the infiltrating
water table does not move, whereas, in our numerical results, it moves to the
right.

During the experiments, gauges to record hydraulic head were placed at sev-
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Figure 13: Steenhauer’s test case, hydraulic head distribution (color grading),
free surface elevation (black line), water table (white line) and mesh at t = 2.00 s
for d1.5

Figure 14: Steenhauer’s test case, hydraulic head distribution (color grading),
free surface elevation (black line), water table (white line) and mesh at t = 3.00 s
for d1.5
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Figure 15: Steenhauer’s test case, hydraulic head distribution (color grading),
free surface elevation (black line), water table (white line) and mesh at t = 4.80 s
for d1.5

Figure 16: Steenhauer’s test case, hydraulic head distribution (color grading),
free surface elevation (black line), water table (white line) and mesh at t = 7.00 s
for d1.5
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Figure 17: Steenhauer’s test case, comparison of numerical results V1 (red line)
with experimental results,[30] (black cross) and numerical results, [29] (blue
triangle) for d1.5
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results V1 (solid lines) and experimental results, [30] (crosses) for gauges P30
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eral locations. Figure 18 depicts time series of hydraulic head of numerical re-
sults V1 and experimental results for gauges P30 and P31 placed at x = 1180 mm
and respectively y = −65.9 mm and y = −65.9 mm. One can see that the maxi-
mum hydraulic head value is well recovered. Nevertheless, the numerical results
do not recover the overall shape of the time series. It may be due to the choice
of constitutive law for the porous media and/or law parameters. There is a
need to calibrate the constitutive law parameters to fit the experimental results
better.

Figure 19 displays the evolution of time steps and the number of elements
over time. The adaptation of time steps and the number of elements is evident.
Time steps are maximum before the arrival of the bore to the beach (t = 2 s).
Then, during the whole run-up phase, time steps are reduced to catch strong
non-linearities due to water infiltration from the free surface flow. Once the run-
down phase begins, the time steps return to its maximum ∆tamr. The number
of elements is evolving with time and the adaptation criteria. Evolution of the
mesh can be observed in Figures 13 to 16.

Results for d8.5

Figures 20 to 23 depicts the computed solution for d1.5 at selected times. The
hydraulic head distribution is shown with color grading, the free surface eleva-
tion is black, the water table is white and, the mesh is black. One can observe
that t = 2.00 s the bore reaches the beach with a height of 20 cm as expected
and observed in the experiment [30]. At t = 3.00 s, the bore propagates over
the beach, the hydraulic head distribution is modified, and water infiltrates the
porous medium. At t = 4.20 s, the bore has reached its maximum covering of
the beach and starts retreating, water is still infiltrating, and groundwater is
moving through the sand. At t = 7.00 s, the bore retreats, and the water table
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Figure 19: Steenhauer’s test case, evolution along time of time steps (left) and
number of elements (right)

follows the bore. Nevertheless, water still moves vertically after the bore covers
the beach. One can see that during the whole run-up of the bore, in this case
no air is trapped between water infiltrating from the wave and the water table.
This phenomenon is observed in the experiment.

Figure 24 compares results extracted from the work of Steenhauer et al. in
2012 [29] with numerical results computed with RIVAGE. One can observe that
the free surface elevation is well recovered. However, the maximum covering of
the beach by the bore is underestimated. It may be caused by poor calibration
of the friction coefficient. One can see that the infiltration from the wave is
well recovered in terms of the groundwater flow. However, in literature, the
connection between the initial water table and the infiltrating water table moves
slower to the right than numerical results.

During the experiments, gauges to record hydraulic head were placed at
several locations. Figure 25 depicts time series of hydraulic head of numerical
results V1 and experimental results for gauges P30 and P40 placed respectively
at x = 1180 mm, y = −67.8 mm and x = 1980 mm, y = −65.1 mm. One
can see that the maximum hydraulic head value is well recovered. Nevertheless,
the numerical results do not recover the overall shape of the time series. It
may be due to the choice of constitutive law for the porous media and/or law
parameters.

Figure 26 displays the evolution of time steps and the number of elements
over time. The adaptation of time steps and the number of elements is evident.
Time steps are maximum before the arrival of the bore to the beach (t = 2 s).
Then, during the whole run-up phase, time steps are reduced to catch strong
non-linearities due to water infiltration from the free surface flow. Once the run-
down phase begins, the time steps return to its maximum ∆tamr. The number
of elements is evolving with time and the adaptation criteria. Evolution of the
mesh can be observed in Figures 20 to 23.
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Figure 20: Steenhauer’s test case, hydraulic head distribution (color grading),
free surface elevation (black line), water table (white line) and mesh at t = 2.00 s
for d8.5

Figure 21: Steenhauer’s test case, hydraulic head distribution (color grading),
free surface elevation (black line), water table (white line) and mesh at t = 3.00 s
for d8.5
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Figure 22: Steenhauer’s test case, hydraulic head distribution (color grading),
free surface elevation (black line), water table (white line) and mesh at t = 4.20 s
for d8.5

Figure 23: Steenhauer’s test case, hydraulic head distribution (color grading),
free surface elevation (black line), water table (white line) and mesh at t = 7.00 s
for d8.5
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Figure 24: Steenhauer’s test case, comparison of numerical results V1 (red line)
with experimental results,[30] (black cross) and numerical results, [29] (blue
triangle) for d8.5
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Figure 25: Steenhauer’s test case, time series of the hydraulic head of numerical
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