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A B S T R A C T

In this paper, we extend the low-order fictitious domain method with enhanced mass conservation
introduced in [ESAIM: Math. Model. Numer. Anal., 58(1):303–333, 2024] to the case of
coupling with immersed thin-walled solids. Both 2D- and 3D-shell models are considered for the
description of the solid, including contact between solids. For both models, the interface coupling
is enforced on the mid-surface of the shell using a stabilized Lagrange multiplier formulation.
Numerical examples in 2D and 3D illustrate the effectiveness of the method, including its
successful application to the simulation of aortic heart valve dynamics.

1. Introduction
The numerical simulation of the mechanical interaction between incompressible viscous fluids and immersed

moving thin-walled structures plays a fundamental role in a wide variety of engineering fields, ranging from the
biomechanics of heart valves to the aeroelasticity of parachutes (see, e.g., [47, 66, 51, 69, 62]). One of the fundamental
challenges encountered in the approximation of these systems is the introduction of weak and strong discontinuities in
the fluid velocity and pressure fields, respectively, induced by the immersed thin-walled nature of the solid. Preserving
these properties at the discrete level is known to play an essential role in the accuracy of the resulting numerical method.
In particular, pressure discontinuities across the interface are crucial for ensuring interfacial mass conservation, while
discontinuities in the velocity gradient are necessary for achieving optimal accuracy.

Extensive research has been conducted in the development of numerical methods for fluid-structure interaction
(FSI), resulting in a wide range of methodologies typically classified as fitted (conforming) or unfitted (non-
conforming) mesh methods. In fitted mesh methods, the fluid and structure meshes match at the interface, with the fluid
problem typically solved on a deforming mesh that follows the motion of the interface. This facilitates the enforcement
of interface conditions, and (weak and strong) discontinuities in the solution can be straightforwardly incorporated
at the discrete level, resulting in an optimally accurate method. Noteworthy examples of such methods include those
employing the Arbitrary Lagrangian-Eulerian (ALE) formulation in the fluid (see, e.g., [28, 52, 30, 60, 64, 44]) and
unified continuum modeling for FSI (see [40, 41, 46]). Nevertheless, the body-fitted nature of the mesh presents
challenges whenever the solid undergoes large deflections, particularly in cases of contact between solids, leading to
highly distorted fluid meshes that may necessitate remeshing or topological modifications (see, for instance, [2, 63]),
thereby increasing computational cost.

Unfitted mesh methods are a widespread approach to avoid these issues. In this class of methods, the fluid mesh
is not fitted to the interface, allowing the solid mesh to freely move over the background fluid mesh. Notable methods
in this category include the Immersed Boundary (IBM) and Immersed Finite Element (IFEM) methods (see, e.g.,
[53, 71, 49, 11, 68]), where the solid acts as an external body force in the fluid equations, and the Fictitious Domain (FD)
methods (see, e.g., [59, 4, 26, 3, 13, 42, 12, 14]), where the kinematic constraint is imposed via Lagrange multipliers
or penalization. These methods often suffer from spatial inaccuracies due to discrete treatment of interface conditions
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and limitations in accommodating discontinuities across the interface (see, e.g., [54, 35, 42, 61, 14, 19]). Although
mesh adaptivity mitigates these issues, it does not remove them (see, e.g., [37, 6]).

A simple approach to enhance interfacial mass conservation consists in boosting the incompressibility constraint
through grad-div penalization in the interfacial zone, although this is known to yield severe ill-conditioning issues (see,
e.g., [42, 31, 18, 14]). Alternatively, one can enhance interfacial mass conservation by using discontinuous pressure
approximations with higher-order polynomials for velocities (see, e.g., [4, 10, 9, 13]) or by using divergence-free
velocity approximations (see [19]). Cut-FEM methods ensure high accuracy by integrating equations solely in the
physical region and incorporating stabilizing terms for robustness, but they require intricate computer implementation
due to precise tracking of interface intersections and quadrature over arbitrary polygons (see, e.g., [36, 38, 15]).
The extended-FEM (XFEM) method, combining cut-FEM with local enrichment, addresses some challenges but
introduces additional unknowns (Lagrange multipliers) and potential ill-conditioning (see, e.g., [72, 32, 58]). The
Nitsche-XFEM method overcomes these difficulties by combining overlapping meshes with a Nitsche treatment of the
interface coupling and suitable stabilization in the interfacial zone for robustness (see [1, 17, 73]). However, the superior
accuracy of the Nitsche-XFEM approach comes with increased computational complexity, requiring a more intricate
computer implementation and specific tracking of mesh intersections (see, e.g., [1]). It is also worth mentioning the
recent cut-FEM method reported in [16] based on the minimal divergence-free element introduced in [24].

In this work, we address the mass conservation issues of standard fictitious domain methods by building on the
low-order method introduced in [25]. This approach enhances mass conservation across the interface by imposing a
single global velocity constraint on one side of the interface using a scalar Lagrange multiplier. This constraint can
be alternatively viewed as an enrichment of the pressure discrete space with a single discontinuous basis function.
We formulate and investigate this method in the context of fluid-structure interaction with immersed thin-walled
solids. Two distinct modeling options are considered for the description of the solid: a 2D-shell model under Reissner-
Mindlin assumptions (see, e.g., [5, 8, 23]) and a 3D-shell model (see, e.g., [21]). The 3D-shell model offers significant
advantages, enabling the use of general 3D constitutive relations and facilitating natural displacement-based coupling
with the surrouding media. We present a coupling modeling framework in which the interface conditions are enforced
on the mid-surface of the solid for both the 2D- and the 3D-shell models. Besides its simplicity, in the case of the
3D-shell model, this approach avoids the introduction of fictitious regions in the fluid associated with the overlap with
the solid.

The rest of the paper is organized as follows. The continuous setting is outlined in Section 2, where the coupling
with the two different shell models is presented within a unified framework. Section 3 describes the proposed
fictitious domain approximation with enhanced mass conservation. Section 4 presents a comprehensive numerical
study, including comparisons with alternative approaches, which illustrates the capabilities of the proposed method.
Finally, a summary of the main conclusions is provided in Section 5.

2. Problem setting
Let Ω ⊂ ℝ𝑑 , where 𝑑 = 2 or 3, be a given fixed domain whose boundary is denoted by 𝜕Ω. We consider a fluid-

structure interaction problem in Ω, involving a thin-walled structure immersed in a viscous, incompressible Newtonian
fluid. At time 𝑡, the fluid and structure domains are denoted as Ωf (𝑡) and Ωs(𝑡), respectively. The reference configuration
of the structure is denoted by Ωs. The mid-surface of Ωs, denoted by Σ, is assumed to be parametrized by a smooth
mapping 𝝓 ∶ 𝜔 ⊂ ℝ2 → ℝ3, as Σ = 𝝓(𝜔), where 𝜔 denotes a reference domain in ℝ2. We can hence define the couple
of tangent vectors

𝒂𝑚(𝜉1, 𝜉2)
def
= 𝜕𝝓

𝜕𝜉𝑚
(𝜉1, 𝜉2)

for (𝜉1, 𝜉2) ∈ 𝜔 and𝑚 = 1, 2. The unit normal to the mid-srufaceΣ is given by 𝒏Σ
def
= (𝒂1×𝒂2)‖𝒂1×𝒂2‖−1.The reference

configuration of the solid is parametrized as the image Ωs = 𝚽
(

𝜔 × (−1, 1)
)

of the mapping 𝚽 ∶ 𝜔 × (−1, 1) → ℝ3,
defined as

𝚽(𝜉1, 𝜉2, 𝜉3)
def
= 𝝓(𝜉1, 𝜉2) + 𝜖𝜉3

2
𝒏Σ(𝜉1, 𝜉2), (1)

where 𝜖 > 0 denotes the thickness of the solid and 𝜉3 corresponds to the curvilinear coordinate perpendicular to the
mid-surface.
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The current position of the structure mid-surface Σ(𝑡) is described in terms of the deformation map 𝝍 ∶ Σ×ℝ+ →
ℝ𝑑 as Σ(𝑡) = 𝝍(Σ, 𝑡). In what follows, we shall use the notation𝝍 𝑡

def
= 𝝍(⋅, 𝑡). The fluid-structure interface is assumed to

be given by the current configuration of the solid mid-surface Σ(𝑡), neglecting the shell thickness effects in the interface
coupling. This is a widely used modeling simplification in contexts involving the coupling of surface-based thin-walled
models to 3D-based models (see, e.g., [20]). We hereby extend this approach to the case of the coupling with 3D-shell
models. Consequently, the fluid domain evolves over time according to the deformation of the solid mid-surface as
Ωf (𝑡)

def
= Ω∖Σ(𝑡) ⊂ ℝ𝑑 , with boundary 𝜕Ωf (𝑡) = Σ(𝑡) ∪ 𝜕Ω.

Let us consider the following partition of the boundaries 𝜕Ω = ΓfD ∪ ΓfN, 𝜕Ωs = ΓsD ∪ ΓsN and 𝜕Σ ∩ ΓsD = 𝜕Σ, with
the subscript D (resp. N) meaning the boundary portion on which Dirichlet (resp. Neumann) condition is enforced.
Moreover, assuming that the structure mid-surface Σ(𝑡) divides the fluid domain Ωf (𝑡) into two subdomains Ωf

1(𝑡) and
Ωf
2(𝑡), with Ωf

1(𝑡) ∩ Ωf
2(𝑡) = ∅ and Σ(𝑡) = 𝜕Ωf

1(𝑡) ∩ 𝜕Ωf
2(𝑡), we define 𝒏1

def
= 𝒏Σ(𝑡) and 𝒏2

def
= −𝒏1 over Σ(𝑡) and 𝒏𝑖

def
= 𝒏

on 𝜕Ωf
𝑖 (𝑡) ⧵Σ(𝑡) for 𝑖 = 1, 2. For a given continuous scalar or tensorial field 𝑓 defined in Ωf (𝑡), possibly discontinuous

across Σ(𝑡), we define its sided restrictions, noted by 𝑓1 and 𝑓2, as

𝑓1(𝒙)
def
= lim

𝛿→0−
𝑓 (𝒙 + 𝛿𝒏1) 𝑓2(𝒙)

def
= lim

𝛿→0−
𝑓 (𝒙 + 𝛿𝒏2) ∀𝒙 ∈ Σ(𝑡).

We also define the following jump operators across the interface Σ(𝑡):

J𝑓K
def
= 𝑓1 − 𝑓2, J𝑓𝒏K

def
= 𝑓1𝒏1 + 𝑓2𝒏2.

2.1. Coupled fluid-structure interaction models
In this section, we introduce two distinct FSI models that differ in the model used to describe the dynamics of

the solid: one with the solid problem formulated on the mid-surface Σ (see Figure 1(a)) and another in which the
solid problem is formulated in the whole domain Ωs (see Figure 1(b)). Nevertheless, in both cases the fluid-structure
coupling is enforced on the solid mid-surface Σ.

Σ(𝑡)
Ωf

1(𝑡)

Ωf
2(𝑡)

(a) 2D-shell model.

Ωs(𝑡)

Σ(𝑡)
Ωf

1(𝑡)

Ωf
2(𝑡)

(b) 3D-shell model.

Figure 1: Geometric descriptions of a thin-walled solid immersed in a fluid.

2.1.1. Coupling with a 2D-shell model
For the first fluid-structure interaction model, we consider the Navier-Stokes equations for homogeneous, incom-

pressible and Newtonian fluids, along with a nonlinear 2D-shell model to describe the behavior of the solid. The
coupled problem under consideration is formulated as follows: Find the fluid velocity and pressure 𝒖 ∶ Ω×ℝ+ → ℝ3,
𝑝 ∶ Ω ×ℝ+ → ℝ, the structure displacement and velocity 𝒅 ∶ Σ ×ℝ+ → ℝ𝑑 , 𝒖s ∶ Σ ×ℝ+ → ℝ𝑑 such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌f
(

𝜕𝑡𝒖 + 𝒖 ⋅ 𝛁𝒖
)

− 𝛁 ⋅ 𝝈f (𝒖, 𝑝) = 𝟎 in Ωf (𝑡),
𝛁 ⋅ 𝒖 = 0 in Ωf (𝑡),

𝒖 = 𝟎 on ΓfD,
𝝈f (𝒖, 𝑝)𝒏 = 𝟎 on ΓfN,

(2)

⎧

⎪

⎨

⎪

⎩

𝜌s𝜖𝜕𝑡𝒖s +𝑳(𝒅) = 𝑻 on Σ,
𝒖s = 𝜕𝑡𝒅 on Σ,
𝒅 = 𝟎 on 𝜕Σ.

(3)
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝝍 = 𝑰Σ + 𝒅 on Σ, Σ(𝑡) = 𝝍 𝑡(Σ), Ωf (𝑡) = Ω∖Σ(𝑡),
𝒖 = 𝒖s◦𝝍−1

𝑡 on Σ(𝑡),

∫Σ
𝑻 ⋅𝒘 = −∫Σ(𝑡)

J𝝈f (𝒖, 𝑝)𝒏K ⋅𝒘◦𝝍−1
𝑡 ∀𝒘 ∈ 𝑾 .

(4)

The symbols 𝜌f and 𝜌s represent the fluid and solid densities, respectively. The fluid Cauchy stress tensor is given by

𝝈f (𝒖, 𝑝)
def
= 2𝜇𝜺(𝒖) − 𝑝𝑰 ,

where 𝜇 denotes the fluid dynamic viscosity, and the strain rate tensor 𝜺(𝒖) is defined as

𝜺(𝒖)
def
= 1

2
(

𝛁𝒖 + 𝛁𝒖T
)

.

Here, the nonlinear surface operator 𝑳 describes the elastic behavior of the structure. The relations in (4) respectively
enforce the geometrical compatibility, the kinematic and the dynamic coupling at the interface between the fluid and
the solid media. Here, the symbol𝑾 stands for the space of admissible solid displacements, and 𝑻 represents the fluid
traction acting on the reference configuration of the interface.

2.1.2. Coupling with a 3D-shell model
In the second fluid-structure interaction model, we consider the following 3D-shell model for the solid:

𝜌s ∫Ωs
𝜕𝑡𝒖s ⋅𝒘 + ∫Ωs

𝝈s(𝒅) ∶ 𝐷𝒅𝑬 ⋅𝒘 = ∫Σ
𝑻 ⋅𝒘 (5)

for all 𝒘 ∈ 𝑾 and where the 3D-shell reduced space 𝑾 is given by (see, e.g., [21])

𝑾
def
=

{

𝒘 ∈ [𝐻1
ΓD
(Ωs)]3 ∶ 𝒘 = 𝒘0 +𝒘1𝜉

3 +𝒘2(𝜉3)2, 𝒘𝑖 ∈
[

𝐻1(Σ)
]3, 𝑖 = 0, 1, 2

}

. (6)

Here, 𝜉3 corresponds to the transverse coordinate defined by (1). Note that the vector fields𝒘𝑖, for 𝑖 = 0, 1, 2, are defined
only on the mid-surface Σ and, hence, they are only functions of the tangential coordinates (𝜉1, 𝜉2). Furthermore, in
contrast to (3), no plane stress assumption is made in (6), which facilitates the use of non-linear constitutive laws for
the solid (second Piola–Kirchhoff) stress tensor 𝝈s(𝒅). For instance, for a hyperelastic material we have 𝝈s = 𝜕𝑊e

𝜕𝑬 ,
where 𝑊e stands for the hyperelastic potential and 𝑬 denotes the Green-Lagrange strain tensor.

In this framework, the resulting coupled fluid-structure problem is formulated as follows: Find the fluid velocity
and pressure 𝒖 ∶ Ω × ℝ+ → ℝ𝑑 , 𝑝 ∶ Ω × ℝ+ → ℝ, the solid displacement and velocity 𝒅(𝑡), 𝒖s(𝑡) ∈ 𝑾 , for 𝑡 ∈ ℝ+,
such that the relations (2), (5) and (4) are satisfied.

2.1.3. Contact model
In the present study, we consider a non-penetrating contact condition as in [50]. However, we choose here to enforce

the contact constraint on the solid mid-surface Σ(𝑡) (for both the 2D- and 3D-shell models), using a penalty method,
with the corresponding contact energy given by

contact
def
= ∫Σ(𝑡)

𝜅c
2
|

|

|

dist(𝒙,Σ(𝑡))||
|

2

−
, (7)

where 𝜅c denotes the penalty parameter and |𝑥|−
def
= min{0, 𝑥}. This requires the evaluation of the gradient of the

distance function with respect to the displacement field. The difficulty is that we must calculate the distance to a
surface that moves according to the deformation. Therefore, introducing the projection operator 𝜋Σ(𝑡) on Σ(𝑡) as in
[50], we have

𝛁𝑑𝑑𝑑dist(𝒙,Σ(𝑡)) ⋅ 𝛿𝛿𝛿 = −𝛁𝑑𝑑𝑑
(

(𝜋Σ(𝑡)(𝒙) − 𝒙) ⋅ 𝑛𝑛𝑛Σ(𝑡)(𝜋Σ(𝑡)(𝒙))
)

⋅ 𝛿𝛿𝛿

=
(

𝛁𝑑𝑑𝑑𝒙 ⋅ 𝛿𝛿𝛿
)

⋅ 𝑛𝑛𝑛Σ(𝑡) −
(

𝛁𝑑𝑑𝑑𝜋Σ(𝑡)(𝒙) ⋅ 𝛿𝛿𝛿
)

⋅ 𝑛𝑛𝑛Σ(𝑡) −
(

𝛁𝑑𝑑𝑑𝑛𝑛𝑛Σ(𝑡) ⋅ 𝛿𝛿𝛿
)

⋅ (𝜋Σ(𝑡)(𝒙) − 𝒙))
= 𝑛𝑛𝑛Σ(𝑡)(𝜋Σ(𝑡)(𝒙)) ⋅

(

𝛿𝛿𝛿(𝒙) − 𝛿𝛿𝛿(𝜋Σ(𝑡)(𝒙))
)

.
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Therefore, the variational term associated with the contact constraint (7) is

𝑎contact(𝑑𝑑𝑑;𝑤𝑤𝑤)
def
= ∫Σ(𝑡)

𝜅c
|

|

|

dist(𝒙,Σ(𝑡))||
|−
𝑛𝑛𝑛Σ(𝑡)(𝜋Σ(𝑡)(𝒙)) ⋅

(

𝑤𝑤𝑤(𝒙) −𝑤𝑤𝑤(𝜋Σ(𝑡)(𝒙))
)

. (8)

From a computational implementation standpoint, a relaxed contact formulation is adopted to prevent penetration
between the valve leaflets. Therefore, the distance term dist(𝒙,Σc(𝑡)) within the contact operator (8) is replaced with
the relaxed distance term dist𝜀g

def
= dist(𝒙,Σc(𝑡)) − 𝜀g, where 𝜀g > 0 represents a small user-defined value known as

contact relaxation parameter.

2.2. Variational formulation
The two coupled problems introduced above (i.e., (2)–(4) and (2), (5), (4)) can be cast into a single variational

formulation which treats the kinematic and dynamic coupling in a weak fashion by using Lagrange multipliers. Hence,
we introduce the following functional spaces for velocity, pressure and Lagrange multiplier

𝑽
def
= [𝐻1

ΓfD
(Ω)]𝑑 , 𝑄

def
= 𝐿2(Ω), 𝚲

def
= [𝐿2(Σ)]𝑑 ,

the operator 𝑎f ∶ 𝑽 ×
(

𝑽 ×𝑄
)

×
(

𝑽 ×𝑄
)

→ ℝ given by

𝑎f
(

𝒛; (𝒖, 𝑝), (𝒗, 𝑞)
) def
= 𝜌f ∫Ω

𝒛 ⋅ ∇𝒖 ⋅ 𝒗 + 2𝜇 ∫Ω
𝜺(𝒖) ∶ 𝜺(𝒗) − ∫Ω

𝑝𝛁 ⋅ 𝒗 + ∫Ω
𝑞𝛁 ⋅ 𝒖, (9)

and the bilinear form 𝑏 ∶ 𝚲 × 𝚲 → ℝ is defined as

𝑏(𝝁, 𝝃)
def
= ∫Σ

𝝁 ⋅ 𝝃.

The solid form 𝑎s ∶ 𝑾 ×𝑾 → ℝ represents the weak formulation of the solid elastic contributions. In particular,
𝑎s(𝒅;𝒘) is assumed to be linear only with respect to the second argument. The scalar product

(

𝜂, 𝜈
)

s is defined
according to the considered model, namely:

(

𝜼, 𝝂
)

s
def
=

⎧

⎪

⎨

⎪

⎩

𝜖 ∫Σ
𝜼 ⋅ 𝝂 for the 2D-shell model (3),

∫Ωs
𝜼 ⋅ 𝝂 for the 3D-shell model (5).

The resulting weak formulation of the fluid-structure interaction problems considered in Sections 2.1.1–2.1.2 reads
as follows: For 𝑡 > 0, find

(

𝒖(𝑡), 𝑝(𝑡),𝝀(𝑡),𝒅(𝑡)
)

∈ 𝑽 ×𝑄 × 𝚲 ×𝑾 , with 𝒖s = 𝜕𝑡𝒅, such that

𝜌f ∫Ω
𝜕𝑡𝒖 ⋅ 𝒗 + 𝑎f

(

𝒖; (𝒖, 𝑝), (𝒗, 𝑞)
)

+ 𝜌s
(

𝜕𝑡𝒖s,𝒘
)

s + 𝑎s
(

𝒅;𝒘
)

− 𝑏
(

𝝀, 𝒗◦𝝍 𝑡 −𝒘
)

+ 𝑏
(

𝝃, 𝒖◦𝝍 𝑡 − 𝒖s
)

= 0 (10)

for all (𝒗, 𝑞, 𝝃,𝒘) ∈ 𝑽 ×𝑄 ×𝚲 ×𝑾 . Using a standard argument of integration by parts in Ωf (𝑡), it can be shown that
problem (10) is equivalent to the above strong formulations with 𝝀 = −𝑻 on Σ.

3. Numerical approximation
For simplicity, we assume that Ω, Ωs and Σ are polyhedral or polygonal domains, and we consider the families

of triangulations { Ω
ℎ }0<ℎ<1, { Ωs

 }0<<1 and { Σ
 }0<<1. Note that the mesh parameters ℎ and  for the fluid and

solid meshes, respectively, may differ a priori. In particular, the fluid triangulations { Ω
ℎ }0<ℎ<1 are not fitted to Σ.

Furthermore, for the 3D-shell case, we consider an initial family of triangulations of Σ, denoted { q
}0<<1, made

of quadrilaterals. The triangulation  Σ
 is then obtained by dividing each element of  q

 into two triangular elements.
Subsequently, the triangulation  Ωs

 is obtained by extruding  q
 along the normal direction 𝒏Σ at each node of  q

 (see
Figure 2). Alternatively, for the 2D-shell case, the triangulation of  Σ

 is made of triangles.
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Figure 2: Example of the elements composing  Σ
 (red and blue triangles), and  Ωs

 (green hexahedra).

In what follows, the symbol 𝜏 > 0 represents the time-step length, 𝑡𝑛
def
= 𝑛𝜏, 𝑛 ∈ ℕ, and 𝜕𝜏𝑥𝑛

def
=

(

𝑥𝑛 −𝑥𝑛−1
)

∕𝜏 and

𝑥𝑛−
1
2

def
= (𝑥𝑛 + 𝑥𝑛−1)∕2 respectively denote the first-order backward difference and the mid-point value. Additionally,

for each 𝑛 ∈ ℕ, 𝝍𝑛 def
= 𝝍(𝑡𝑛), Σ𝑛 def

= Σ(𝑡𝑛), and the 𝑖-th fluid subdomain Ω𝑛
𝑖

def
= Ωf

𝑖 (𝑡𝑛), where 𝑖 = 1, 2. As regards the
time discretization of the fluid and solid sub-problems (2), (3) and (5), we consider the backward Euler method in the
fluid and the mid-point scheme in the solid.

3.1. Discrete fluid problem
The approximation of the fluid subproblem is based on the enhanced mass conservation approach proposed and

analyzed in [25]. To this purpose, we consider the following standard spaces of continuous piecewise affine functions:

𝑋f
ℎ

def
=

{

𝜒ℎ ∈ 𝐶0(Ω)||
|

𝜒ℎ|𝐾 ∈ ℙ1(𝐾), ∀𝐾 ∈  Ω
ℎ

}

, 𝑋Σ


def
=

{

𝜒 ∈ 𝐶0(Σ)||
|

𝜒|𝐾 ∈ ℙ1(𝐾), ∀𝐾 ∈  Σ


}

.

We introduce the discrete spaces 𝑽 ℎ, 𝑄𝑛
ℎ,𝚲 for the approximation of the velocity, pressure and Lagrange multiplier

as follows:

𝑽 ℎ
def
= [𝑋f

ℎ]
𝑑 ∩ 𝑽 , 𝑄̃ℎ

def
= 𝑋f

ℎ ⊂ 𝑄, 𝑄𝑛
ℎ

def
= 𝑄̃ℎ ⊕ ⟨1Ω𝑛

1
⟩ ⊂ 𝑄, 𝚲

def
= [𝑋Σ

]
𝑑 ⊂ 𝚲, (11)

where the symbol 1Ω𝑛
1

denotes the characteristic function of Ω𝑛
1 and ⟨1Ω𝑛

1
⟩ the vector space spanned by 1Ω𝑛

1
. Notice

that the choice of Ω𝑛
1 and Ω𝑛

2 is arbitrary, so that the characteristic function could have been taken over Ω𝑛
2 instead

of over Ω𝑛
1. In the case of an open configuration, the separation between the two sub-domains Ω𝑛

1 and Ω𝑛
2 is missing.

To address this issue, we propose the addition of a fictitious interface Σ𝑛
f ic, closing Σ𝑛, as illustrated in Figure 3. The

Σ𝑛

Σ𝑛
f icΩ𝑛

1

Ω𝑛
2

Figure 3: Example of an open configuration.

purpose of Σ𝑛
f ic is solely to facilitate the definition of Ω𝑛

1. Since no unknowns are defined on Σ𝑛
f ic, its selection depends

solely on the specific geometry. A detailed explanation regarding the choice and construction of the fictitious interface
is provided for each numerical example in Section 4. As outlined in [25], the additional global basis function in 𝑄𝑛

ℎ
can be interpreted as the Lagrange multiplier associated with the additional mass conservation constraint on Ω𝑛

1.
Owing to the definition of the discrete pressure space (11), every 𝑞ℎ ∈ 𝑄𝑛

ℎ can be decomposed into the sum of two
contributions, namely,

𝑞ℎ = 𝑞ℎ + 𝑞ℎ, (12)

: Preprint submitted to Elsevier Page 6 of 41



where 𝑞ℎ ∈ 𝑄̃ℎ is a continuous piecewise affine function over the whole computational domain Ω and 𝑞ℎ ∈ ⟨1Ω𝑛
1
⟩ is a

Heaviside function that allows strong discontinuities across the interface Σ𝑛. Moreover, the following relations hold

𝑞ℎ = J𝑞ℎK1Ω𝑛
1
, 𝑞ℎ = 𝑞ℎ − J𝑞ℎK1Ω𝑛

1
, (13)

where J𝑞ℎK is the constant jump of 𝑞ℎ across Σ𝑛.
The SUPG–PSPG stabilization is considered to overcome the lack of inf-sup compatibility between the velocity

and pressure spaces 𝑽 ℎ and 𝑄ℎ, and to guarantee robustness for high local Reynolds numbers, given by

𝑠SPℎ
(

𝒛ℎ; (𝒖ℎ, 𝑝ℎ), (𝒗ℎ, 𝑞ℎ)
) def
=

∑

𝐾∈ Ω
ℎ

𝛿ℎ ∫𝐾

(

𝜌f
(

𝒛ℎ ⋅ ∇
)

𝒖ℎ + ∇𝑝ℎ
)

⋅
(

𝜌f
(

𝒛ℎ ⋅ ∇
)

𝒗ℎ + ∇𝑞ℎ
)

, (14)

where 𝛿ℎ > 0 is the stabilization parameter (see, e.g., [65]). Note that the above stabilization operator only acts on the
continuous part 𝑝ℎ of the discrete pressure 𝑝ℎ ∈ 𝑄ℎ. The fluid discrete form is hence given by

𝑎fℎ
(

𝒛ℎ; (𝒖ℎ, 𝑝ℎ), (𝒗ℎ, 𝑞ℎ)
) def
= 𝑎f

(

𝒛ℎ; (𝒖ℎ, 𝑝ℎ), (𝒗ℎ, 𝑞ℎ)
)

+ 𝜌f

2 ∫Ω
(𝛁 ⋅ 𝒛ℎ)𝒖ℎ ⋅ 𝒗ℎ + 𝑠SPℎ

(

𝒛ℎ; (𝒖ℎ, 𝑝ℎ), (𝒗ℎ, 𝑞ℎ)
)

.

Finally, in order to overcome the potential lack of inf-sup stability between the spaces 𝑽 ℎ, 𝚲 and, in particular,
to avoid any constraint on the ratio between the fluid mesh size ℎ and the interface mesh size  (see, e.g., in [12]), we
introduce the following weakly consistent Lagrange multiplier stabilization (see [25]):

𝑠BH,𝑛ℎ
(

(𝑝ℎ,𝝀), (𝑞ℎ, 𝝃)
) def
= ℎ

𝛾𝜆𝜇 ∫Σ𝑛
(

𝝀◦𝝍
−1,𝑛
 + J𝑝ℎK𝒏Σ

)

⋅
(

𝝃◦𝝍
−1,𝑛
 + J𝑞ℎK𝒏Σ

)

, (15)

where 𝛾𝜆 > 0 is a user-defined dimensionless parameter and 𝝍𝑛
 , defined below in (18), represents the discrete

counterpart of the deformation map 𝝍 .

3.2. Discrete solid problem
Several discrete spaces 𝑾  are considered for the approximation of the solid space 𝑾 , depending on whether a

2D- or a 3D-shell model is used. Specifically, for the 2D-shell model the space 𝑾  ⊂ 𝑾 is defined as the space of
continuous piecewise affine finite elements over the triangulation  Σ

 . In contrast, for the 3D-shell model the space
𝑾  ⊂ 𝑾 is made of ℚ1 ⊗ℙ2 prismatic elements (see Figure 4). The choice of ℙ2 polynomials along the orthogonal
direction to the mid-surface ensures asymptotic compatibility with the full 3D model, while the ℚ1 approximation
brings computational efficiency. Additionally, in both cases, an MITC1 re-interpolation procedure of Green-Lagrange
strain components is used to mitigate numerical locking phenomena, especially for small thickness values (see, e.g.,
[45, 22]). Hereafter, the form 𝑎s ∶ 𝑾  ×𝑾  → ℝ denotes the resulting approximation of the solid variational term
𝑎s(𝒅;𝒘).

Figure 4: Example of ℚ1 − ℙ2 prismatic element.

1Mixed Interpolation of Tensorial Components.
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3.2.1. Contact approximation
Following the ideas introduced in [50] for stabilization operators based on distance computation, we propose to

discretize the contact term 𝑎contact(𝑑𝑑𝑑;𝑤𝑤𝑤) in a semi-implicit fashion. As a mid-point based time discretization has been
considered for the solid, an energy balanced discretization would be given by a mid-point approximation of 𝑎contact,
namely

𝑎
𝑛− 1

2
contact(𝑑𝑑𝑑;𝑤𝑤𝑤) = ∫Σ𝑛−

1
2
𝜅c
|

|

|

dist(𝒙,Σ𝑛− 1
2 )||
|−
𝑛𝑛𝑛
Σ𝑛−

1
2
(𝜋

Σ𝑛−
1
2
(𝒙)) ⋅ (𝑤𝑤𝑤(𝒙) −𝑤𝑤𝑤(𝜋

Σ𝑛−
1
2
(𝒙))). (16)

However, using this discretization in our discrete formulation requires the differentiation of (16) with respect to the
displacement. This leads to the computation of the derivative of 𝑛𝑛𝑛

Σ𝑛−
1
2
(𝜋

Σ𝑛−
1
2
(𝒙)), hence introducing the curvature

of Σ𝑛− 1
2 . In order to overcome this difficulty, we introduce a semi-implicit version of (16) based on a linearization

argument. To this purpose, we introduce the following discretization

𝑎
𝑛− 1

2 ♯
contact(𝑑𝑑𝑑;𝑤𝑤𝑤) = ∫Σ𝑛−

1
2 ♯
𝜅c
|

|

|

dist(𝒙,Σ𝑛− 1
2 ♯)||

|−
𝑛𝑛𝑛
Σ𝑛−

1
2 ♯
(𝜋

Σ𝑛−
1
2 ♯
(𝒙)) ⋅ (𝑤𝑤𝑤(𝒙) −𝑤𝑤𝑤(𝜋

Σ𝑛−
1
2 ♯
(𝒙)))

+ ∫Σ𝑛−
1
2 ♯
𝜅c𝐻

(

−dist(𝒙,Σ𝑛− 1
2 ♯)

)

𝑛𝑛𝑛
Σ𝑛−

1
2 ♯
(𝜋

Σ𝑛−
1
2 ♯
(𝒙)) ⋅

(

𝑤𝑤𝑤(𝒙) −𝑤𝑤𝑤(𝜋
Σ𝑛−

1
2 ♯
(𝒙))

)

× 𝑛𝑛𝑛
Σ𝑛−

1
2 ♯
(𝜋

Σ𝑛−
1
2 ♯
(𝒙)) ⋅

[(

𝑑𝑑𝑑𝑛−
1
2 (𝒙) − 𝑑𝑑𝑑𝑛−

1
2 ♯(𝒙)

)

−
(

𝑑𝑑𝑑𝑛−
1
2 (𝜋

Σ𝑛−
1
2 ♯
(𝒙)) − 𝑑𝑑𝑑𝑛−

1
2 ♯(𝜋

Σ𝑛−
1
2 ♯
(𝒙))

)]

, (17)

with 𝐻 the Heaviside function and Σ𝑛− 1
2 ♯ the surface associated with 𝑑𝑑𝑑𝑛−

1
2 ♯ an extrapolation of the displacement at

time 𝑡𝑛−
1
2 as, for instance,

𝑑𝑑𝑑𝑛−
1
2 ♯

def
= 𝑑𝑑𝑑𝑛−1 + 𝜏

2
𝒖s,𝑛−1 = 3

2
𝑑𝑑𝑑𝑛−1 − 1

2
𝑑𝑑𝑑𝑛−2.

The consistency of this time discretization is justified by the following computation. As already obtained in [50] in a
similar context, we have

𝑎
𝑛− 1

2
contact(𝑑𝑑𝑑;𝑤𝑤𝑤) − 𝑎

𝑛− 1
2 ♯

contact(𝑑𝑑𝑑;𝑤𝑤𝑤) = −
𝜅c
2 ∫Σ𝑛−

1
2 ♯

|

|

|

dist(𝒙,Σ𝑛− 1
2 ♯)||

|−
D𝑛𝑛𝑛

Σ𝑛−
1
2 ♯
(𝜋

Σ𝑛−
1
2 ♯
(𝒙))

⋅
[(

𝑑𝑑𝑑𝑛−
1
2 (𝒙) − 𝑑𝑑𝑑𝑛−

1
2 ♯(𝒙)

)

−
(

𝑑𝑑𝑑𝑛−
1
2 (𝜋

Σ𝑛−
1
2 ♯
(𝒙)) − 𝑑𝑑𝑑𝑛−

1
2 ♯(𝜋

Σ𝑛−
1
2 ♯
(𝒙))

)]

+ 𝑂
(

𝜅c
2
‖

‖

‖

‖

𝑑𝑑𝑑𝑛−
1
2 − 𝑑𝑑𝑑𝑛−

1
2 ♯
‖

‖

‖

‖

2)

.

We have seen that 𝜅c
|

|

|

dist(𝒙,Σ𝑛− 1
2 ♯)||

|−
is the contact force per surface unit, hence it remains finite. This leads to the

relation

𝑎
𝑛− 1

2
contact(𝑑𝑑𝑑;𝑤𝑤𝑤) − 𝑎

𝑛− 1
2 ♯

contact(𝑑𝑑𝑑;𝑤𝑤𝑤) = 𝑂
(𝜅c
2
‖

‖

‖

‖

𝑑𝑑𝑑𝑛−
1
2 − 𝑑𝑑𝑑𝑛−

1
2 ♯
‖

‖

‖

‖

)

𝑂
(

1 + 𝜅c
‖

‖

‖

‖

𝑑𝑑𝑑𝑛−
1
2 − 𝑑𝑑𝑑𝑛−

1
2 ♯
‖

‖

‖

‖

2)
.

Therefore, with the above choice of extrapolation, we get

𝑎
𝑛− 1

2
contact(𝑑𝑑𝑑;𝑤𝑤𝑤) − 𝑎

𝑛− 1
2 ♯

contact(𝑑𝑑𝑑;𝑤𝑤𝑤) = 𝑂
(

𝜏2 + 𝜅c𝜏
4).

As a consequence, for any large value of 𝜅c there exists a sufficiently small time-step length 𝜏 such that the proposed
semi-implicit time scheme (based on a linearization procedure (17)) does not alter the second-order accuracy of the
mid-point scheme.

3.3. Coupling scheme
In order to mitigate the computation complexity of the discrete problem, the geometric coupling (4)1 is treated in

an explicit fashion, so that we set

𝝍𝑛 = 𝑰Σ + 𝒅𝑛−1 on Σ, Σ𝑛 = 𝝍𝑛(Σ).

The remaining coupling conditions (4)2,3 are enforced implicitly, which yields a semi-implicit strongly coupled scheme.
The proposed discrete approximation of (10) is detailed in Algorithm 1.
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Algorithm 1 Fictitious domain strongly coupled scheme.
For 𝑛 ≥ 1:

1. Interface update:

𝝍𝑛
 = 𝑰Σ + 𝒅𝑛−1 on Σ, Σ𝑛 = 𝝍𝑛

(Σ). (18)

2. Find
(

𝒖𝑛ℎ, 𝑝
𝑛
ℎ,𝝀

𝑛
 ,𝒅

𝑛

)

∈ 𝑽 ℎ ×𝑄𝑛
ℎ × 𝚲 ×𝑾  , with 𝒖

s,𝑛− 1
2

 = 𝜕𝜏𝒅𝑛 , such that

𝜌f ∫Ω
𝜕𝜏𝒖𝑛ℎ ⋅ 𝒗ℎ + 𝑎fℎ

(

𝒖𝑛−1ℎ ; (𝒖𝑛ℎ, 𝑝
𝑛
ℎ), (𝒗ℎ, 𝑞ℎ)

)

+ 𝜌s
(

𝜕𝜏𝒖
s,𝑛
 , 𝝃

)

s + 𝑎s
(

𝒅
𝑛− 1

2
 ; 𝝃

)

− 𝑏
(

𝝀𝑛 , 𝒗ℎ◦𝝍
𝑛
 −𝒘

)

+ 𝑏
(

𝝃 , 𝒖
𝑛
ℎ◦𝝍

𝑛
 − 𝒖

s,𝑛− 1
2


)

+ 𝑠BH,𝑛ℎ
(

(𝑝𝑛ℎ,𝝀
𝑛
), (𝑞ℎ, 𝝃)

)

= 0 (19)

for all
(

𝒗ℎ, 𝑞ℎ, 𝝃 ,𝒘
)

∈ 𝑽 ℎ ×𝑄𝑛
ℎ × 𝚲 ×𝑾  .

4. Numerical examples
The purpose of this section is to provide a comprehensive numerical illustration of the capabilities of Algorithm 1 in

three different scenarios. Section 4.1 provides numerical evidence of the accuracy of Algorithm 1 with respect to well-
established methods reported in the literature. To this purpose, we consider a series of 2D immersed FSI benchmarks.
In Section 4.2, we compare the approximations provided by Algorithm 1 in both the case of the 2D-shell and 3D-shell
models. Finally, Section 4.3 presents the application of Algorithm 1 to the simulation of the dynamics of the aortic valve
where, in particular, we investigate the benefits of the additional mass constraint in the fluid. In all subsequent sections,
the strongly coupled problem (19) in Algorithm 1 is solved using a partitioned solution procedure. This procedure is
parameter-free and relies on interface Newton-GMRES Dirichlet–Neumann iterations (see, e.g., [29, 27]). Throughout
the following sections, all physical quantities and parameters are expressed in the centimeter-gram-second (CGS) unit
system.

4.1. Comparative study
In this section, we present a comprehensive numerical study in order to assess the accuracy of Algorithm 1 (referred

to as FD-LJ hereafter), with respect to alternative unfitted mesh methods (see, e.g., [14] for a review). These include
the Nitsche-XFEM (NXFEM) method, the standard penalty fictitious domain (FD) method, and a modified version of
the latter incorporating enhanced interfacial mass conservation through the grav-div stabilization technique (FD-GD).
The fitted mesh Arbitrary Lagrangian-Eulerian (ALE) method with highly resolved space-time grids is considered as
reference for the comparisons.

The accuracy of the unfitted mesh methods is assessed using three successive space-time refinement levels: M1,
M2, and M3. These levels correspond to uniform refinements of M1, with refinement factors of 2 and 4 in both spatial
and temporal directions. Specifically, the spatial grids consist of uniform structured meshes, as illustrated in Figure 5.
Detailed descriptions of these refinement levels are provided subsequently for each benchmark. In all tests, the solid is
described as a nonlinear Timoshenko curved beam model discretized with linear MITC elements (see, e.g., [5, 55, 48]).

In the following, we present three distinct 2D benchmark problems that cover a wide range of scenarios, motivated
by bio-fluid flow simulations, including partially and fully intersected fluid domains. For the NXFEM method, the
following parameters remain constant across all test cases: 𝛾v = 𝛾p = 0.01, 𝛾g = 1, and 𝛾 = 100. For all other methods,
we set 𝛾p = 1 and 𝛾d = 0, except for FD-GD, where 𝛾d = 1. Additional parameter details are provided subsequently
for each benchmark.

All the numerical simulations of the present section have been performed with the FELiScE finite element library2.
2https://gitlab.inria.fr/felisce/felisce
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Figure 5: Example of computational meshes used in the comparative study of Section 4.1. The fluid mesh is represented
in gray, while the structure mesh is shown in red.

Number of elements Time-step
Fluid mesh Solid mesh

ALE 25600 80 2.5 ⋅ 10−4
M1 1034 24 2 ⋅ 10−3
M2 4370 50 1 ⋅ 10−3
M3 17954 100 5 ⋅ 10−4

Table 1
Idealized closed valve space-time grids details.

4.1.1. Idealized closed valve
As a first example, we consider a benchmark problem mimicking the behavior of a closed valve subjected to a

pressure drop (see, e.g., [42, 66]). The problem consists in an elastic beam clamped at its extremities and immersed
in a channel filled with an incompressible Newtonian fluid, as represented in Figure 6. The fluid domain is given by
Ω = (0, 4)× (0, 1), while the reference solid configuration is given by Σ = {2}× (0, 1) (see Figure 6). The time domain
spans 𝑡 ∈ [0, 3], representing the duration required for the system to reach a steady state from its initial rest state.
Regarding the boundary conditions of the fluid, no-slip is enforced on Γbot ∪Γtop, whereas zero traction is enforced on
the lateral boundary Γout . On the inlet boundary Γin, a time-dependent traction force is applied as 𝝈f (𝒖, 𝑝) = −𝑝in𝒏,
with the inlet pressure given by 𝑝𝑖𝑛(𝑡) = 3 ⋅ 105 atanh(10 𝑡). The physical parameters of the fluid are set to 𝜌f = 100
and 𝜇 = 10, while for the solid we have 𝜌s = 100, 𝜖 = 0.0212, 𝐸 = 5.6 ⋅ 107, and 𝜈 = 0.4.

•

•

Γin Γout

Γtop

Γbot

Ω1 Ω2Σ

𝑥
𝑦

Figure 6: Idealized closed valve geometric configuration.

Spatial and temporal discretization. Table 1 provides details regarding the space-time grid used for the ALE
method, as well as the three refinement levels (M1, M2, and M3) employed for the unfitted mesh methods. Additionally,
across all refinement levels, the parameters 𝜀 and 𝛾gd for the FD and FD-GD methods are set to 10−5 and 10−4,
respectively. For a detailed and comprehensive discussion about the value of the parameter 𝛾gd, we refer to [14, Section
4.2.3]. The parameter 𝛾𝜆 for the FD-LJ is set to 10 for all the refinement levels. Additionally, since the interface Σ𝑛
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divides the domain Ω into two subdomains, Ω𝑛
1 and Ω𝑛

2, at each time step (see, e.g., Figure 6 for 𝑛 = 0), there is no
necessity to introduce the fictitious interface Σf ic for the definition of the pressure space 𝑄𝑛

ℎ in (11).

(a) Velocity magnitude reference solution. (b) Pressure reference solution.

Figure 7: Snapshots of the velocity magnitude and pressure at 𝑡 = 0.125 for the reference solution.

(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 8: Snapshots of the fluid velocity magnitude at 𝑡 = 0.125 for the M1 refinement level.

Comparison of the results. Once the prescribed pressure is established, the elastic solid initiates its deformation,
leading to bending and elongation. After a brief initial transition phase, the system gradually reaches a steady state
characterized by a constant pressure jump across the interface. In this state, both fluid and solid velocities are negligible,
and the pressure becomes a piecewise constant function. Specifically, it takes the values of 3 × 105 on one side of the
interface and zero on the other side. For comparison purposes, we consider the results at 𝑡 = 0.125. Figure 7b shows
the reference solution obtained using the fitted mesh ALE method, while Figures 8–13 depict the results obtained
with the four unfitted mesh methods in terms of velocity magnitude and pressure for the three refinement levels.
From these results, it is evident that regardless of the refinement level employed, the FD method exhibits a spurious
flow within the channel (see Figures 8b, 9b, 10b) and consequently yields a significantly underestimated pressure
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(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 9: Snapshots of the fluid velocity magnitude at 𝑡 = 0.125 for the M2 refinement level.

(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method

Figure 10: Snapshots of the fluid velocity magnitude at 𝑡 = 0.125 for the M3 refinement level.

in comparison to the reference solution, see Figures 7b, 11b, 12b, 13b. This is a well-known limitation of the FD
method with continuous pressure approximations (see, e.g., [4, 42]). Although global mass conservation in the whole
domain Ω is ensured, the continuous nature of the pressure approximation fails to guarantee mass conservation on each
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(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 11: Snapshots of the fluid pressure at 𝑡 = 0.125 for the M1 refinement level.

(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 12: Snapshots of the fluid pressure at 𝑡 = 0.125 for the M2 refinement level.

side of the interface. This limitation is effectively fixed by the other unfitted mesh methods under consideration. The
FD-LJ method overcomes this issue via the enriched finite element pressure space, thus significantly improving the
mass conservation constraint within each subdomain. The additional basis function in the pressure space facilitates the
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(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 13: Snapshots of the fluid pressure at 𝑡 = 0.125 for the M3 refinement level.
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(a) M1 vs. Reference.
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(b) M2 vs. Reference.
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(c) M3 vs. Reference.

Figure 14: Time history of the 𝑥-displacement of the solid mid-point.

retrieval of the correct pressure discontinuity across the interface (see Figures 11d, 12d, 13d) and the correct velocity
field (see Figures 8d, 9d, 10d). On the other hand, the NXFEM method correctly retrieves the velocity and pressure
jump via the use of overlapping finite element spaces for the velocity and the pressure, thereby allowing weak and
strong discontinuities across the interface. The results are illustrated in Figures 8a, 9a, 10a and Figures 11a, 12a, 13a
for velocity and pressure, respectively. Furthermore, the comparisons also show that as expected the FD-GD method
removes the spurious velocity field of the FD method. Indeed, the grad-div penalty term enhances the local satisfaction
of the mass conservation constraint in the vicinity of the interface (see, e.g., [42]), and thus significantly reduces the
mass leak across the interface, as shown in Figures 8c, 9c, 10c. Although not accounting for discontinuous pressures
across the interface, it demonstrates excellent agreement compared to the reference solution, as depicted in Figures 11c,
12c, 13c.

Figure 14 provides a temporal comparison of the horizontal displacement at the mid-point of the interface. The
FD-LJ, NXFEM, and FD-GD methods exhibit better agreement, increasing with mesh refinement, with the reference
solution compared to the FD method. In particular, unlike the other methods, the FD method fails to capture the
dynamics of the structure.
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Number of elements Time-step
Fluid mesh Solid mesh

ALE 48706 59 1 ⋅ 10−3
M1 4096 25 1 ⋅ 10−2
M2 20352 64 5 ⋅ 10−3
M3 65536 128 2.5 ⋅ 10−3

Table 2
Idealized open valve space-time grids details.

4.1.2. Idealized open valve
As a second example, we consider the benchmark problem proposed in several studies [33, 39, 42, 70], focusing on

simulating the behavior of a section of an idealized heart valve. The 2D representation of the heart valve comprises two
identical cantilevered elastic beams attached to the walls of a 2D channel filled with an incompressible Newtonian fluid.
Figure 15 shows the initial geometric configuration. Due to the symmetry of the problem, simulations are performed

•

•

•

•

Γin Γout

Γtop

Γbot

ΩΣ
𝑥

𝑦

Figure 15: Idealized open valve geometric configuration.

on half of the domain, incorporating appropriate symmetry boundary conditions. The fluid domain is defined as
Ω = (0, 8) × (0, 0.805), while the reference configuration of the solid is Σ = {2} × (0, 0.7). The simulation spans
a time interval of [0, 3], roughly corresponding to three full cycles of oscillations of the structure. The following
conditions are applied on the fluid domain boundaries: a no-slip condition on Γbot , a symmetry condition on Γtop, and
zero traction on the lateral boundary Γout . Additionally, a prescribed velocity profile is enforced on boundary Γin, given
by: 𝒖(𝑡) = −5𝑦(1.61 − 𝑦) atanh(5𝑡)(sin(2𝜋𝑡) + 1.1)𝒏. The beam is fully clamped at its bottom endpoint. Both the fluid
and the solid are initially at rest. The physical parameters for this example are as follows: for the fluid 𝜌f = 100 and
𝜇 = 10, and for the solid 𝜌s = 100, 𝜖 = 0.0212, 𝐸 = 5.6 ⋅ 107 and 𝜈 = 0.4.

Spatial and temporal discretization. Table 2 presents details of the space-time grid used in the ALE method, as well
as the configurations for three refinement levels: M1, M2, and M3. In the ALE method, the fluid mesh is refined around
the coupling interface. Due to the significant deflection experienced by the interface, the mesh motion is performed
using a pseudo-nonlinear elastic extension (see [44]). Regarding the FD and FD-GD methods, the penalty parameter
𝜀 takes values of 10−5, 10−6, and 10−6 for M1, M2, and M3, respectively. The parameter 𝛾gd in the FD-GD method is
set to 10−4 for all refinement levels. For the FD-LJ method, 𝛾𝜆 = 10. For the FD-LJ method, to accurately define the
discrete pressure space 𝑄𝑛

ℎ in (11), we employ the fictitious interface Σ𝑛
f ic, obtained by projecting, at each time step,

the endpoint of the structure onto the boundary Γtop, as illustrated in Figure 16.

Comparison of the results. The parabolic and oscillatory velocity profile induces a deformation of the interface,
causing it to flex and subsequently return to a position near its initial state, oscillating over time. For comparison
purposes, we consider the time instant 𝑡 = 0.5, corresponding to the point where the valve achieves its maximum
displacement. Figure 17 illustrates the reference solution obtained using the fitted mesh ALE approach. Subsequent
refinement further enhances the agreement with the reference solution for all methodologies. Starting from refinement
level M2, the FD-GD method provides results in close agreement with the reference solution (see Figures 19c and 22c).
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•

•

Γtop

Γbot

Σ𝑛
Σ𝑛
f ic

Ω𝑛
1

Ω𝑛
2

Figure 16: Example of the splitting of the fluid domain Ω into Ω𝑛
1 and Ω𝑛

2 using the fictitious interface Σ𝑛
f ic.

(a) Velocity magnitude reference solution. (b) Pressure reference solution.

Figure 17: Snapshots of the velocity magnitude and pressure at 𝑡 = 0.5 for the reference solution.

(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 18: Snapshots of the fluid velocity magnitude at 𝑡 = 0.5 for the M1 refinement level.

Notably, for the FD approach, comparing results between M1 and M3 clearly illustrates the positive impact of mesh
refinement on the accuracy (see Figures 21b–23b).
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(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 19: Snapshots of the fluid velocity magnitude at 𝑡 = 0.5 for the M2 refinement level.

(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 20: Snapshots of the fluid velocity magnitude at 𝑡 = 0.5 for the M3 refinement level.

Overall, there is a notable agreement in both velocity and pressure fields across all methods for all refinement levels,
as it can be inferred from Figures 18–23. In particular, the FD-LJ and NXFEM methods exhibit a very good agreement
with the results of the ALE method from the initial refinement level M1 (see Figures 18d, 18a, 21d, and 11a).
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(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 21: Snapshots of the fluid pressure at 𝑡 = 0.5 for the M1 refinement level.

(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 22: Snapshots of the fluid pressure at 𝑡 = 0.5 for the M2 refinement level.

Similar observations can be drawn from Figure 24, which provides a comparison of the temporal evolution of the
displacement in the 𝑥 and 𝑦 directions of the upper leaflet tip. Both the FD-LJ and NXFEM methods exhibit good
agreement with the ALE method. However, the overall agreement of the FD-GD methods is satisfactory for the M2
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(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 23: Snapshots of the fluid pressure at 𝑡 = 0.5 for the M3 refinement level.

and M3 refinement levels. Additionally, as mesh refinement increases, the convergence of the FD method solutions
towards the reference solution is clearly visible.
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(b) M1 vs. Reference.
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(c) M1 vs. Reference.
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(d) M2 vs. Reference.
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(e) M2 vs. Reference.
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(f) M3 vs. Reference.
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(g) M3 vs. Reference.

Figure 24: Time history of the 𝑥-displacement (left) and 𝑦-displacement (right) of the valve end-point.

4.1.3. Vesicle in a lid-driven cavity flow
As last 2D example, we consider the lid-driven cavity benchmark problem featuring an immersed elastic vesicle,

as presented in [67, 35, 57, 34]. The fluid domain is defined as the rectangular region Ω = (0, 1)× (0, 1). The reference
configuration Σ of the structure, corresponds to a circle centered at (0.6, 0.5) with a radius of 𝑅 = 0.2. Figure 25
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Number of elements Time-step
Fluid mesh Solid mesh

ALE 46078 200 2.5 ⋅ 10−3
M1 800 40 1 ⋅ 10−2
M2 3200 80 5 ⋅ 10−3
M3 12800 160 2.5 ⋅ 10−3

Table 3
Lid-driven cavity space-time grids details.

shows the initial geometric configuration. The simulation spans a time interval of 10 seconds, representing the period
required for a complete revolution of the vesicle within the fluid domain. A no-slip boundary condition is enforced on
Γwall, while zero traction is applied to the lateral boundaries Γin and Γout . On the upper boundary Γtop, a prescribed
velocity profile of 𝒖 = (1, 0) is specified. Initially, both the fluid and the solid are at rest. The physical parameters are
chosen as follows: 𝜌f = 100, 𝜇 = 10, 𝜌s = 100, 𝜖 = 0.0212, 𝐸 = 5.6 ⋅ 103, and 𝜈 = 0.4.

𝑅

Γwall

Γtop

Γwall Γwall

Γin Γout

Ω2

Ω1

Σ

𝑥
𝑦

Figure 25: Lid-driven cavity geometric configuration.

Spatial and temporal discretization. Table 3 provides details of the space-time grid utilized in the fitted mesh
ALE approach and the grids corresponding to refinement levels M1, M2, and M3. For defining the discrete pressure
space 𝑄ℎ for the FD-LJ method, we designate Ω𝑛

1 as the portion of the domain Ω outside Σ𝑛, while the portion of
the domain within Σ𝑛 is labeled as Ω𝑛

2 (see Figure 25). In this scenario, there is no need for the artificial interface
Σf ic to subdivide the domain. It is essential to note that the choice of subdomains is arbitrary; selecting the opposite
subdomains yields the same result. The penalty parameter 𝜀 for the FD and FD-GD methods remains constant at
𝜀 = 10−4 across all refinement levels. Concerning the stabilization parameter 𝛾gd, we set 𝛾gd = 1 for M1, 𝛾gd = 10−1

for M2, and 𝛾gd = 10−4 for M3. Additional details regarding the specific values of the stabilization parameter 𝛾gd can
be found in [14, Section 4.3.3]. The parameter 𝛾𝜆 for the FD-LJ method is set to 10 for all refinement levels.

Comparison of the results. We consider that 𝑡 = 4.5 is the upper limit where we can still refer to the ALE solution
as the reference (close to the break-down of the mesh motion procedure, which is performed without remeshing or
mesh topology changes, see Figure 26).

Figures 31–33 present the snapshots of the fluid pressure at 𝑡 = 4.5 for three refinement levels, while Figures 28–30
show the snapshots of the fluid velocity magnitude and the vesicle position at the same time instance and refinement
levels.

We observe that the FD-LJ and NXFEM methods accurately approximate the interface location even with the
coarsest refinement levels (see Figures 28a,d–30a,d).
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Figure 26: Close-up view of the ALE fluid mesh at time 𝑡 = 0.45. Distortions in the elements lead to the breakdown of the
mesh motion procedure.

(c) Velocity magnitude reference solution. (d) Pressure reference solution.

Figure 27: Snapshots of the velocity magnitude and pressure at 𝑡 = 4.5 for the reference solution.

These methods also effectively capture the pressure jump between the inner vesicle and the cavity, with further
improvement observed with mesh refinement (see Figures 31a,d–33a,d). Moreover, the FD-GD method achieves
satisfactory approximation to the reference solution starting from refinement level M2, as depicted in Figures 29c
and 33c.

These results are ascribed to the enhanced mass conservation across the interface ensured by these methods. Indeed,
by monitoring the evolution of the vesicle area over time, Figure 34 shows minimal area changes with the FD-LJ and
NXFEM methods, and significant convergence with the FD-GD method after reasonable grid refinement. Conversely,
the FD method exhibits substantial vesicle area variation throughout the simulation at all grid levels, indicative of
significant mass losses across the interface. Concurrently, it fails to accurately predict significant pressure jumps
between the inner vesicle and the cavity, regardless of the refinement level used (see Figures 31b, 32b, 33b), resulting
in poor interface position approximation (see Figures 28b, 29b, 30b). Figure 35 displays the trajectory of the vesicle
point in position 𝒙 = (0, 0) at 𝑡 = 0. Notably, the trajectories of the FD-GD, FD-LJ, and NXFEM methods converge
after appropriate grid refinement.
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(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 28: Snapshots of the fluid velocity magnitude at 𝑡 = 4.5 for the M1 refinement level.

(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 29: Snapshots of the fluid velocity magnitude at 𝑡 = 4.5 for the M2 refinement level.
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(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 30: Snapshots of the fluid velocity magnitude at 𝑡 = 4.5 for the M3 refinement level.

(a) NXFEM method. (b) FD method

(c) FD-GD method. (d) FD-LJ method.

Figure 31: Snapshots of the fluid pressure at 𝑡 = 4.5 for the M1 refinement level.
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(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method

Figure 32: Snapshots of the fluid pressure at 𝑡 = 4.5 for the M2 refinement level.

(a) NXFEM method. (b) FD method.

(c) FD-GD method. (d) FD-LJ method.

Figure 33: Snapshots of the fluid pressure at 𝑡 = 4.5 for the M3 refinement level.
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(b) M1 vs. Reference.
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(c) M2 vs. Reference.
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(d) M3 vs. Reference.

Figure 34: Time history of the relative area of the vesicle.
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(c) M2 vs. Reference.
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(d) M3 vs. Reference.

Figure 35: Trajectory of the interface node initially located at (0, 0).
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4.2. Idealized 3D open valve
In this section, we assess the capabilities of Algorithm 1 in a 3D counterpart of the heart-valve inspired benchmark

problem of Section 4.1.2. The primary goal is the numerical comparison of the two coupled models with different shell
models presented in Sections 2.1.2 and 2.1.1.

All numerical simulations in this section are carried out using the FELiScE finite element library3 for the
fluid subproblem and the 2D-shell subproblem (3), alongside the MoReFEM finite element library4 for the 3D-shell
subproblem (5).

Geometrical setting. The fluid domain is defined asΩ = (0, 8)×(0, 0.805)×(0, 0.5), while the reference configuration
of the shell is Ωs = (1.9894, 2.0106)×(0, 0.7)×(0, 0.5), with the mid-surface Σ = {2}×(0, 0.7)×(0, 0.5). The depicted
geometric configuration is illustrated in Figure 36. The simulation is conducted over a time interval 𝑡 ∈ [0, 3], which
corresponds to three full oscillation cycles of the structure. Boundary conditions include a no-slip condition enforced

Γwall

Γsym

Γin ΓoutΩ Ωs

Σ Γsym

Γsym

𝑥
𝑦

𝑧

Figure 36: 3D idealized open valve geometric configuration.

on Γwall, a symmetry condition on Γsym (bottom and lateral walls), zero traction on Γout , and a prescribed parabolic
profile on Γin, given by: 𝒖(𝑡) = −5𝑦(1.61 − 𝑦) atanh(5𝑡)(sin(2𝜋𝑡) + 1.1)𝒏. The structure is clamped at its bottom
with symmetry conditions prescribed on its lateral boundaries. Initially, both the fluid and structure are at rest. The
physical parameters for the fluid in this test are: density 𝜌f = 100 and dynamic viscosity 𝜇 = 10. For the structure, the
parameters are: density 𝜌s = 100, thickness 𝜖 = 0.0212, Young’s modulus 𝐸 = 5.6 ⋅ 107, and Poisson’s ratio 𝜈 = 0.4.

Note that the parameters correspond to those used in Section 4.1.2, while Ω and Σ represent the extrusion in the 𝑧
direction of the respective domains employed in the same section.

Spatial and temporal discretization. The domain Ω is represented by an unstructured simplicial mesh comprising
102150 elements, while the domain Ωs is defined using a structured grid composed of 70 tensorial shell elements.
As a result, the mid-surface Σ is discretized with 140 triangular elements. Both the fluid and structure meshes are
characterized by a spatial discretization parameter, ℎ and  respectively, approximately equal to 0.11. The time-step
used is 𝜏 = 1 × 10−3. For the fitted mesh ALE method, which serves as reference solution, the fluid mesh consists of
173400 tetrahedra, while the solid mesh comprises 280 elements, with an average element size ℎ ≈ 0.05. Additionally,
the stabilization parameters are chosen as 𝛾p = 1 and 𝛾d = 0 in (14), and 𝛾𝜆 = 10 in (15). At every time step 𝑛,
the subdomains Ω𝑛

1 and Ω𝑛
2 are identified to define the approximation space 𝑄𝑛 using a fictitious interface Σ𝑛

f ic. This
interface is derived by projecting, at each time step, the immersed upper boundary of Σ onto the boundary Γtop, as
depicted in Figure 38. This interface is an extrusion in the 𝑧-axis direction of the interface Σ𝑛

f ic illustrated in Figure 16.

Comparison of the results. As in the 2D case, the oscillatory velocity profile induces a periodic deflection of the
solid. Owing to the symmetry of the setting, the solution is invariant along the 𝑧-direction. To conduct a comparative
analysis, we focus on the time instant 𝑡 = 0.5, coinciding with the moment when the valve reaches its maximum
displacement. Figure 39 shows the reference solution obtained with fitted mesh ALE approach. However, it is necessary
to use this reference solution with caution, as a significant impact of mesh distortion on the numerical solution is

3https://gitlab.inria.fr/felisce/felisce
4https://gitlab.inria.fr/MoReFEM
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(a) Section of the fluid domain mesh. (b) Mesh of the solid domain
mid-surface.

(c) Mesh of the solid domain.

Figure 37: Fluid and solid meshes.

Figure 38: Representation of the solid mid-surface Σ𝑛 in green and the fictitious interface Σ𝑛
f ic in red.

observed. Figure 40 presents the numerical solution obtained with Algorithm 1 and the two different shell models. By
comparing with Figure 39, we observe that Algorithm 1 provides a good approximation for a relatively coarse mesh,
although the maximum velocity magnitude is slightly lower than the reference solution. Nonetheless, considering
the exceedingly coarse mesh utilized for the discretization of the structure (the solid mesh dimension  is twice
as large as the one employed in Section 4.1.2 for the M1 refinement level), the obtained result is considered as
satisfactory. Figure 41 illustrates a comparison of the temporal evolution of displacement in the 𝑥 and 𝑦 directions
at the midpoint of the upper leaflet edge. Initially, the proposed fictitious domain method shows good alignment with
the ALE method, although it slightly diverges when the structure reaches its maximum bending level (see Figure 41).
Additionally, Figure 41 clearly illustrates the two shell formulations yielding similar results for this test case. Moreover,
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Figure 39: Snapshot of the velocity magnitude at 𝑡 = 0.5 for the reference solution.

(a) 2D-shell model. (b) 3D-shell model.

Figure 40: Snapshots of the fluid velocity magnitude at 𝑡 = 0.5.

it is worth noting that the reference solution is obtained using a 2D-shell model, which may account for the slightly
better agreement observed between the 2D-shell model with Algorithm 1 and the fitted mesh ALE approach.
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(b) 𝑥-displacement.
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(c) 𝑦-displacement.

Figure 41: Time history of the 𝑥-displacement (left) and 𝑦-displacement (right) of the mid-point of the valve end-edge.

4.3. Aortic valve with contact
In this section, we investigate the capabilities of Algorithm 1 to simulate the dynamics of the aortic valve over a

complete cardiac cycle. In particular, we assess the impact of enhanced mass conservation by comparing the results
obtained using Algorithm 1 with those obtained removing the additional mass conservation constraint from it, i.e.
by considering 𝑝ℎ, 𝑞ℎ ∈ 𝑄̃ in (19). Hereafter, we refer to these two methods as the FD-LJ method and the FD-LG
method, respectively. Simulating the FSI of the aortic valve presents several challenges. One notable difficulty arises
from the large deformations and fast dynamics of the valve during opening and closing phases. Specifically during the
closing phase, employing contact algorithms is crucial to prevent leaflet interpenetration. Additionally, when the valve
is closed, it experiences substantial pressure drops, underscoring the importance of preventing mass leakage to ensure
the reliability and accuracy of the results.

The numerical simulations in this section were conducted using the FELiScE finite element library5 for the fluid
subproblem and the MoReFEM finite element library6 for the structural subproblem.

Geometrical setting. The aortic root, located between the outflow tract of the left ventricle and the ascending aorta,
contains the aortic valve. Specifically, it extends from the superior sinotubular junction to the inferior bases of the valve
leaflets. Notably, the aortic root features three sinuses, expanses defined proximally by the attachments of the valve
leaflets and distally by the sinotubular junction.

In modeling this anatomical region, we consider the domain Ω as a circular rigid tube with a diameter and length
of approximately 2cm, which incorporates the three-lobed dilation of the sinuses near the valve (see Figure 42a).
The geometry of the aortic valve with its three leaflets (although, in pathological cases, they may reduce to two) is
represented in Figure 42c. The temporal domain encompasses 𝑡 ∈ [0, 0.342], corresponding to a single cycle (opening
and closure).

We define the inflow and outflow boundaries as the bases of the domain Ω lying on the ventricular and aortic
sides, respectively (i.e.the bottom and top bases in Figure 42a). At the inflow boundary, denoted as Γin, we prescribe
the idealized left ventricular pressure profile illustrated in Figure 43 and adapted from [42]. Conversely, at the outflow
boundary, denoted asΓout , we apply the resistance boundary condition𝝈𝑓 (𝒖, 𝑝)𝒏 = −(𝑝0+𝑅𝑄)𝒏, where 𝑝0 = 80mmHg
represents a constant physiological pressure level, 𝑄 denotes the volumetric flow rate through the outflow (with the
convention that 𝑄 > 0 indicates flow leaving the domain), 𝑅 = 70(dyn ⋅ s)∕cm5 is a resistance constant (see [42]).
These parameters ensure a realistic transvalvular pressure difference of 80mmHg during the diastolic steady state
(where 𝑄 is nearly zero), while permitting a reasonable flow rate during systole. On the wall of the aortic root, denoted

5https://gitlab.inria.fr/felisce/felisce
6https://gitlab.inria.fr/MoReFEM
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(a) Aortic root domain. (b) Aortic valve domain.

(c) Aortic valve mid-surface.

Figure 42: Geometric description and computational meshes.
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Figure 43: Idealized left ventricular (LV) pressure profile applied to the inflow boundary Γin (see [42])

by Γ𝑤, we impose the no-slip boundary condition 𝒖 = 𝟎. Backflow stabilization is applied both on Γin and Γout to
avoid the traditional instability issues of the Navier-Stokes approximations with Neumann boundary conditions (see,
e.g., [7]). At time 𝑡 = 0, the system is at rest; notably, the inflow pressure condition on Γin of Figure 43 coincides with
𝑝0.
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The fluid parameters, which reflect the physical properties of human blood (see, e.g., [43, 56]), are defined as
𝜌f = 1.0g∕cm3 and 𝜇 = 3 ⋅ 10−2g∕(cm ⋅ s). For the valve leaflets, we adopt an isotropic St. Venant–Kirchhoff material
model with 𝐸 = 1 ⋅ 107dyn∕cm2 and 𝜈 = 0.499. The solid density is 𝜌s = 1.2g∕cm3, and the thickness of the leaflets
is approximately 𝜖 = 3.86 ⋅ 10−2cm.

Spatial and temporal discretization. The domain Ω is discretized using a simplicial mesh comprising 297, 822
tetrahedral elements, with each element having a characteristic size of approximately ℎ ≈ 0.09. For the valve, the
3D-shell model detailed in Section 2.1.2 is employed. The valve domain Ωs is constituted of 4, 472 shell elements,
as depicted in Figure 4. The valve mid-surface Σ, utilized for enforcing the FSI coupling conditions and the contact
penalty term, is represented by a 3D surface mesh composed of 8, 944 triangles and fitted to Ωs with an approximate
characteristic size of  ≈ 0.7. The time step chosen for the simulation is 𝜏 = 10−4s. Additionally, we set 𝛾p = 1 and
𝛾d = 0 in equation (14). In equation (15), the parameter 𝛾𝜆 is assigned a value of 103. The contact penalty parameter
𝜅c = 5 ⋅ 107, while the contact relaxation parameter 𝜀g = 2 ⋅ 10−2cm.

At each time step 𝑛, a fictitious interface Σ𝑛
f ic is employed in order to identify the two subdomains Ω𝑛

1 and Ω𝑛
2 used

for defining the pressure approximation space 𝑄𝑛. The corresponding triangulation  Σ𝑛f ic is constructed following the
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Figure 44: Schematic representation of the construction of the fictitious interface Σf ic. Top view of the aortic valve. In
gray the valve leaflets.

steps outlined in Algorithm 2 and illustrated in Figure 44.
Figure 45 illustrates the fictitious interface generated by Algorithm 2 at three different time steps. It is important to

note that no unknowns are defined on this mesh; it is solely used for integration purposes. Algorithm 2 is implemented
within the software Wolf7.

Comparison of the results. The numerical simulation starts almost at the beginning of the systolic phase, precisely
at the conclusion of the isovolumetric ventricular contraction. During this phase, as the ventricular pressure steadily
increases, the aortic valve begins to open, allowing blood flow from the left ventricle into the aorta. As the blood is
propelled into the aorta, the ventricular pressure gradually decreases until it falls below the aortic pressure, resulting in
a slight backward flow. This backward flow prompts the closure of the aortic valve, vanishing with it. Subsequently, the
diastolic phase begins, with the left ventricle and the aorta separated by the closed aortic valve, and only minimal blood
recirculation on both sides of the valve is experienced. The ventricular pressure then resumes increasing, marking the
beginning of a new cardiac cycle.

7https://gitlab.inria.fr/alauzet/wolf
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Algorithm 2 Triangulation of the fictitious interface Σ𝑛
f ic, as shown in Figure 44.

Input: Σ𝑛
f ic boundary edges.

1. Add the central triangle 𝐴𝐵𝐶 to 
Σ𝑛f ic
 .

2. Starting from edge 𝐵𝐴, consider vertices 𝑅 and 𝑆 to form triangles 𝐵𝐴𝑅 and 𝐵𝐴𝑆. Select the triangle with
higher quality, e.g., 𝐵𝐴𝑆, and add it to 

Σ𝑛f ic
 .

3. Starting from edge 𝑆𝐴, consider vertices 𝑅 and 𝐻 to form triangles 𝑆𝐴𝑅 and 𝑆𝐴𝐻 . Again, select the triangle
with higher quality, e.g., 𝑆𝐴𝑅, and add it to 

Σ𝑛f ic
 .

4. Repeat step (3) for edge 𝑆𝑅 to obtain 𝑆𝑅𝐶 , for edge 𝑆𝐶 to obtain 𝑆𝐶𝐻 , etc.

5. From edge 𝑄𝑃 , the only available vertex is 𝐷. Add the triangle to 
Σ𝑛f ic
 .

6. Finally, the obtained triangulation is appropriately refined.

Output: Triangulation 
Σ𝑛f ic
 .

(a) 𝑡 = 0.015. (b) 𝑡 = 0.080. (c) 𝑡 = 0.250.

Figure 45: Fictitious interface generated by Algorithm 2 at different time steps.

Figures 47 and 46 provide some snapshots of the fluid velocity field and the mid-surface valve deformation,
respectively, captured at different time instances for both the FD-LJ and FD-LG approaches. Notably, the FD-LJ method
demonstrates superior interfacial mass conservation compared to the FD-LG method.

In particular, for the FD-LG method, significant spurious velocity and a lack of mass conservation are observed
across the valve leaflets during the initial stages of valve opening (𝑡 = 0.015), in contrast to the behavior exhibited by
the FD-LJ method (see Figures 47a-b). As a result, the fluid-induced stress on the valve leaflets is lower with the FD-LG
method compared to the FD-LJ method, leading to reduced leaflet displacement (see Figures 46a-b). The discrepancy
in valve displacement between the two methods is evident throughout the entire simulation, with a more pronounced
contrast observed during the transition between the open and closed configurations (refer to Figures 46a-b-e-f). Even
at maximum valve opening, this difference persists, with the valve position slightly more closed in the FD-LG method
compared to the FD-LJ method (see Figures 46c-d).

At this point, Figures 47c-d show a significant blood flow from the left ventricle into the aorta, i.e., from Γin to
Γout . Although the FD-LJ method demonstrates enhanced mass conservation compared to the FD-LG method, both
methodologies reveal some degree of mass leakage near the valve attachment to the aortic root wall. Notably, this
leakage is less pronounced when utilizing the FD-LJ approach. The emergence of this spurious velocity is attributed
to the relatively coarse resolution and is expected to diminish with increased levels of refinement.
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(a) 𝑡 = 0.015, FD-LG method. (b) 𝑡 = 0.015, FD-LJ method.

(c) 𝑡 = 0.080, FD-LG method. (d) 𝑡 = 0.080, FD-LJ method.

(e) 𝑡 = 0.112, FD-LG method. (f) 𝑡 = 0.112, FD-LJ method.

Figure 46: Snapshots of the valve deformation from two perspectives: top view and side view, colored by displacement
magnitude.

During the closure phase, a flow is observed from Γout to Γin owing to the higher pressure in the aorta compared
to the ventricle (see Figures 47e-f). As the valve gradually closes, the enhanced mass conservation offered by the
FD-LJ method becomes more prominent. Under these circumstances, the velocity field is expected to gradually
decrease, eventually showing only minimal recirculation phenomena on each side of the valve when the valve is fully
closed. However, with the FD-LG method, significant velocity fields persist, resulting in substantial mass leakage (see
Figures 47h-j), whereas the FD-LJ demonstrates a gradual reduction of blood recirculation after an initial transition
period (see Figures 47i-k). In particular, the presence of spurious velocity in the FD-LG leads to a non-natural twisting
motion (see Figure 46e), causing partial detachment of the leaflets and the formation of space, resulting in induced
blood flow across the valve.
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(h) 𝑡 = 0.142, FD-LG method. (i) 𝑡 = 0.142, FD-LJ method.

(j) 𝑡 = 0.250, FD-LG method. (k) 𝑡 = 0.250, FD-LJ method.

(l) 𝑡 = 0.342, FD-LG method. (m) 𝑡 = 0.342, FD-LJ method.

Figure 46: Snapshots of the valve deformation from two perspectives: top view and side view, colored by displacement
magnitude.
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(a) 𝑡 = 0.015, FD-LG method. (b) 𝑡 = 0.015, FD-LJ method.

(c) 𝑡 = 0.080, FD-LG method. (d) 𝑡 = 0.080, FD-LJ method.

(e) 𝑡 = 0.112, FD-LG method. (f) 𝑡 = 0.112, FD-LJ method.

Figure 47: Snapshots of the fluid velocity field at multiple time steps throughout a cardiac cycle. Left: Results obtained
using the FD-LG method. Right: Results obtained using the FD-LJ method
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(h) 𝑡 = 0.142, FD-LG method. (i) 𝑡 = 0.142, FD-LJ method.

(j) 𝑡 = 0.250, FD-LG method. (k) 𝑡 = 0.250, FD-LJ method.

(l) 𝑡 = 0.342, FD-LG method. (m) 𝑡 = 0.342, FD-LJ method.

Figure 47: Snapshots of the fluid velocity field at multiple time steps throughout a cardiac cycle. Left: Results obtained
using the FD-LG method. Right: Results obtained using the FD-LJ method.
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Figures 47i-k show minor fluid leakage along the contact region between the valve leaflets. This leakage is ascribed
to the contact relaxation parameter 𝜀g employed in the contact algorithm to avoid penetration. Nonetheless, decreasing
the value of the contact relaxation parameter 𝜀g is expected to mitigate this phenomenon. Figures 47l-m, captured at
the initial stage of the valve opening phase, exhibit similar trends to those observed at previous time instances for both
methods.

5. Conclusion
We have proposed a fictitious domain method for immersed FSI with enhanced mass conservation based on

the symmetric variant of the method presented in [25]. The behavior of the immersed thin-walled structure was
modeled using both 2D and 3D-shell models. A salient feature of the proposed method is that the size of the system
matrix remains constant regardless of the location of the interface with respect to the background computational
mesh, which is particularly advantageous for cases involving moving interfaces. This innovative fictitious domain
method for immersed fluid-structure interaction has been compared and validated through a series of 2D benchmarks,
encompassing fully non-linear models and large interface deflections, alongside alternative numerical approaches.
The proposed approach demonstrates similar or superior accuracy compared to alternative fictitious domain methods.
Notably, it achieves this without the necessity of resorting to penalty terms, which can compromise the conditioning
of the resulting system matrix. Furthermore, the accuracy achieved is comparable to that of the Nitsche-XFEM
method, provided a reasonable level of mesh refinement is used. In the numerical test under consideration, both shell
models produce comparable results; however, the 3D-shell formulation offers distinct advantages. Notably, it facilitates
coupling with other 3D media, e.g., the aortic valve with the left ventricle, enables the use of arbitrary 3D material
laws, and provides more precise information throughout the body’s thickness. Finally, the method has been successfully
applied to the simulation of the aortic valve under realistic conditions. The improvement in mass conservation ensured
by the proposed method is notably evident when the valve is closed, in contrast to the standard fictitious domain method,
leading to an overall satisfactory solution.
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