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Modeling Porous Granular Aggregates

R. Affes, V. Topin, J.-Y. Delenng, Y. Monerie, and F. Radjai

Abstract Werely on 3D simulations based on the L attice Element Method (LEM)
to analyze the failure of porous granular aggregates under tensile loading. We
investigate crack growth by considering the number of broken bondsin the particle
phase as a function of the matrix volume fraction and particle-matrix adhesion.
Threeregimesare evidenced, corresponding to no particle damage, particle abrasion
and particle fragmentation, respectively. We also show that the probability density
of strong stresses falls off exponentially at high particle volume fractions where
a percolating network of jammed particles occurs. Decreasing the matrix volume
fraction leads to increasingly broader stress distribution and hence a higher stress
concentration. Our findings are in agreement with 2D results previously reported in
the literature.

Keywords Damage ¢ Stress transmission ¢ Rheology ¢ Cemented granular
materials « Lattice element method

1 Introduction

Dense granular materials are characterized either in terms of the network of solid
particles or by the properties of the pore space which can be fully or partially
filled by a solid binding matrix or a liquid. At high particle volume fractions
p? (typicaly, for p? > 0.57), the stress transmission is basically guided by a
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percolating network of inter-particle contacts (Satake and Jenkins 1988). This role
of the contact network in force transmission and rheological behavior has been
mainly investigated in granular materials in the absence of a binding matrix and
under compressive confining stresses (Mueth et al. 1998; Radjai et al. 1996).

The issue of stress concentration and the role of particles are much less evident
in the presence of abinding matrix and under tensile loading. Such porous granular
aggregates have been recently studied in some detail in a 2D geometry by means of
numerical simulations (Van Mier et al. 2002; Topin et a. 2007). The overall stiffness
and tensile strength of these materials are dependent on the matrix volume fraction
o™, particle volume fraction p? and particle-matrix adhesion ¢ 7™

In this paper, we introduce the lattice element method (LEM) in a 3D geometry
for the simulation of porous granular aggregates of spherical particles with a solid
matrix. Based on a lattice discretization of both phases and their interface as well
as an efficient quasi-static time-stepping scheme, the LEM algorithm allows us to
analyze the fracture of cohesive aggregates as a function of phase volume fractions
and local binding strength.

2 Lattice Element Method

The lattice element method (LEM) has been recently employed as an aternative to
the finite element method for the investigation of the fracture properties of granular
materials mixed with a binding matrix (Van Mier et al. 2002; Topin et al. 2007).
Such materials, to which we refer in this paper as porous granular aggregates or
cemented granular materials can be found in very different forms in nature and
industry. Well-known examples are conglomerates and concrete.

In LEM, the spaceis discretized as aregular or disordered grid of points (nodes)
interconnected by one-dimensional elements (bonds). Each bond can transfer
normal force, shear force and bending moment up to athreshold in force or energy.
Various rheological behaviors can be carried by these material lattice bonds, in
contrast to the finite element approach where the local behavior is carried by volume
elements. When several phases are present as in a porous granular aggregates,
each phase and its boundaries are materialized by lattice elements sharing the
same properties and belonging to the same portion of space. We use linear elastic-
brittle elements, each element characterized by a Hooke constant and a breaking
force threshold. The bonds transmit only normal forces between the lattice nodes
and thus the strength of the lattice in shear and distortion is ensured only by
the high connectivity of the nodes. This simple kinematics allows to investigate
high sampling statistical approach. A sample is defined by its contour and the
configuration of the phases in space. The samples are deformed by imposing
displacements or forces to nodes belonging to the contour. The initial state is the
reference (unstressed) configuration. The total elastic energy of the system is a
convex function of node displacements and thus finding the unique equilibrium
configuration of the nodes amounts to a minimization problem (implemented here



by means of the conjugate gradient method). Performing this minimization for
stepwise loading correspondsto subjecting the system to a quasi-static deformation
process. The overloaded elements (exceeding a threshold) are removed according
to a breaking rule. This corresponds to irreversible micro-cracking of the lattice.
The released elastic energy between two successive equilibrium states is thus fully
dissipated by micro-cracking. In the fast implementation used in the present work,
all overloaded elements occurring within the same step are removed, as well as
those appearing recursively after energy minimization (within the same step). This
corresponds physically to unstable growth of the micro-cracks compared to the
imposed strain rate.

The 3D LEM has the advantage to be cheap in computational effort, making
it possible to simulate systems with an large number of nodes for reasonable
computing time. It should be remarked that due to the simple additivity of the
potential energy, the computation time depends only linearly on the number of
nodes. It is also obvious that the LEM is a convenient model of brittle fracture in
which the generation and propagation of cracks are “naturally” taken into account.

3 Application to Granular Aggregates

In a granular aggregate, there are three bulk phases: particles, matrix and voids.
There are a so two interface phases: particle—particle and particle-matrix; see Fig. 1.
To construct the samples, we first generate a large dense packing of rigid spherical
particles compressed isotropically by means of the contact dynamics method.
A cubic portion of this three-dimensional packing is overlaid on a disordered
tetrahedral lattice. The particle properties are attributed to the bonds falling in the
bulk of the particle phase. The binding matrix is then added in the form of bridges
of variable width connecting neighboring particles within a prescribed gap between
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particles. The bonds belonging to these bridges are given the properties of the
matrix. In the same way, the bonds falling between a particle and the matrix or
between two particles are given the properties of the corresponding interface. The
width of solid bridges between particles is proportional to the total volume of the
binding material. At higher levels of the matrix volume fraction, the bridges overlap
and the porosity declines to zero. The particles are polydisperse with diameters
varying nearly uniformly is size in a range [0.84, d]. The total particle volume
fraction is about 0.6 corresponding to a dense close packing. The samples consist
of the bulk phases: (1) particles, denoted p; (2) matrix, denoted m; and (3) void
space or pores, denoted v, as well as the interface phases: (1) particleparticle
interface, denoted pp, and (2) particle-matrix interface, denoted pm. The elements
belonging to each phase ¢ (bulk or interface) are given a Hooke constant k%and a
breaking force f¢. We have £V = 0 and the choice of the value of k¥ isimmaterial.
The interface phases pm and pp are transition zones of finite width. But for large
systems, the volume fractions of these transition zones are negligible compared to
those of the particles and matrix. The interface phases affect the global behavior
through their specific surface and their strengths represented by the Hooke constants
kPP and k?™ and the corresponding tensile force thresholds /77 and f7™. In our
simulations, we model the interface phases by a one bond-thick layer linking two
particles or a particle to the matrix. The volume fractions of the interface phases
are thus assumed to be zero (p?? = p?™ = 0) and the volume fractions p?, p™
and p" are attributed only to the three bulk phases, with p? + p” + p¥ = 1. It
is dimensionally convenient to express the bond characteristics in stress units. We

thus define the bond breaking (or debonding) stresses o? = i—f and the moduli

E? = "a—¢ where a is the length of the lattice vector. These bond moduli E? of the
lattice should be carefully distinguished from the equivalent phase moduli which
depend both on the bond moduli and the geometry of the lattice. We will use below
square brackets to represent the phase moduli: EIP!, E1 ElrPl and E[P™] 1t can be
shown that the overall Young modulus and Poisson ratio of an disordered isotropic
tetrahedral lattice are ET = ﬁEE‘ﬁ and v = 0.25. We performed a serie of

simple tension tests over samples composed of 516 particles. The particle volume
fraction was kept constant p” = 0.6, and p” was varied from p? /10 to 4p”. Each
sample was discretized over a lattice containing about 1.5 x 10° elements. The
results presented below were obtained for hard particules E? = 3E™, g? = o™
and o”? = 0. The cubic sampleswere subjected to uniaxial tension with freelateral
sides. The nodes belonging to the base were constrained to be immobile. Upward
step-wise displacements were applied to the nodes belonging to the upper surface.
Figure 2 shows the stress—strain plot under for p™ = 28% and p™ = 13%.
We observe a brittle behavior with a well-defined initial stiffness E« and atensile
strength o at the stress peak. The post-peak behavior is characterized by nonlinear
propagation of the main crack (initiated at the stress peak) in the form of a
sequence of loading—unloading events. The stiffness declines due to progressive
damage of the aggregate. The overal tensile strength is higher at larger p™ as a
result of a weaker concentration of stresses. The probability distribution functions
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of vertical node stresses oz are shown in Fig. 3. From the shapes of the pdf’s,
we distinguish large stresses falling off exponentially as observed for large contact
forcesin granular media (Mueth et al. 1998; Radjal et al. 1996). The weak stresses
have nonzero probability (increasing as o, — 0) reflecting the arching effect
whereasintermediate stresses are centered on the mean and define anearly Gaussian
distribution. Thelarge stresses mostly concentrate at the contact zonesand they form
well-defined chains that cross the particles.

The tensile strength and crack propagation are controlled by both o™ and o?™.
For a quantitative evaluation of this effect, we consider here the proportion n; of
broken bonds inside the particles with respect to the total number of broken bonds.
Figure 4 shows a map of n;, in the parameter space (p™, o?™) following failure.
We see that below a well-defined frontier, no particle damage occurs (n, >~ 0).
For this range of parameter values, the cracks propagate either in the matrix or at
the particle-matrix interface. Above this “ particle-damage” limit, the isovalue lines
become nearly parallel to the limit line with an increasing level of n,. This suggests
three distinct regimes of crack propagation: (1) below the particle-damagelimit, the
cracks bypass the particles and propagate through the matrix, the pores or along the
particle-matrix interface; (2) above thislimit and for p™ < 20, the cracks penetrate
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into the particles from solid bridges that strongly concentrate stresses; (3) Above
this limit, the cracks propagate inside the matrix as well as across the particles,
causing the fragmentation of the particles. These results are qualitatively similar in
2D cohesive granular aggregates (Topin et al. 2007).

4 Conclusion

In this paper, a lattice-based discretization approach (lattice element method) was
introduced and illustrated by application to the brittle failure of porous granular
aggregates. In contrast to dilute particle-reinforced composites, such materials
involve a high level of particle volume fraction and thus a jammed skeleton of
solid particles interconnected via a binding matrix. The overall behavior depends
on the bulk phase volume fractions and the properties of the particle—particle and
particle-matrix interface zones. We found that the presence of the particle skeleton
controls stress concentration and thus the strength properties of these materials. It
was also shown that for a range of the values of the particle-matrix adhesion and
matrix volume fraction, no particle damage occurs. The trends are very similar to
those previoudly established for 2D aggregates by the same model.
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