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Abstract

Graphs are ubiquitous for modeling complex systems involving struc-

tured data and relationships. Consequently, graph representation learn-

ing, which aims to automatically learn low-dimensional representations of

graphs, has drawn a lot of attention in recent years. The overwhelming

majority of existing methods handle unsigned graphs. However, signed

graphs appear in an increasing number of application domains to model

systems involving two types of opposed relationships. Several authors took

an interest in signed graphs and proposed methods for providing vertex -

level representations, but only one exists for whole-graph representations,

and it can handle only fully connected graphs. In this article, we tackle

this issue by proposing two approaches to learning whole-graph representa-

tions of general signed graphs. The first is a SG2V, a signed generalization

of the whole-graph embedding method Graph2vec that relies on a modi-

fication of the Weisfeiler–Lehman relabelling procedure. The second one

is WSGCN, a whole-graph generalization of the signed vertex embedding

method SGCN that relies on the introduction of master nodes into the

GCN. We propose several variants of both these approaches. A bottle-

neck in the development of whole-graph-oriented methods is the lack of

data. We constitute a benchmark composed of three collections of signed

graphs with corresponding ground truths. We assess our methods on this

benchmark, and our results show that the signed whole-graph methods

learn better representations for this task. Overall, the baseline obtains

an F -measure score of 58.57, when SG2V and WSGCN reach 73.01 and

81.20, respectively. Our source code and benchmark are publicly available

online.

Keywords— Whole-Graph Embedding, Signed Graphs, Graph Classifica-
tion, Graph Neural Networks
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1 Introduction

Graph representation learning is a general task consisting of automatically
learning a data-driven, low-dimensional and fixed-size vector representation of
graphs, or parts of graphs such as vertices, edges, and subgraphs, that preserves
the information conveyed by their structure [23]. The main benefit of such
representations is that one can feed them to standard machine learning tools,
and thus process graphs indirectly with general and efficient methods, instead
of designing task-specific methods required to handle graphs directly. Due to
this advantage over traditional feature engineering methods, the development
of graph representation learning approaches has been the object of many pub-
lications in the last few years, as attested by the many recent surveys on the
topic [30, 36, 57]. Most existing methods focus on vertices or edges, which
is very useful in several tasks such as community detection or link prediction.
However, the representation of graphs as a whole is also crucial, especially in
graph classification [41, 50]. This task typically involves a collection of graphs,
each one belonging to a specific class to be predicted.

In addition, the vast majority of existing representation learning methods
are meant to handle unsigned graphs. This is understandable, as the number
of available unsigned graph datasets is much larger than that for signed graphs.
Nevertheless, signed graphs appear in many application domains such as Sociol-
ogy [43], Neurosciences [49], International Relations [15], Business Science [28],
Finance [39], Political Science [16], and Computer Science [1]; and their pro-
cessing requires appropriate tools. Such graphs were originally introduced in
Psychology, to represent the attitudes of people toward other people or ob-
jects [25]. More generally, they can be used to model any system involving two
types of semantically opposed relationships (like/dislike, similar/different, etc.).
In general, this duality makes it impossible to directly apply standard unsigned
methods. Several methods have been proposed recently to handle signed graph
representation learning at the level of vertices [11, 29, 55]. However, to the best
of our knowledge, only one approach [49] allows learning whole-graph represen-
tations of signed graphs, and it is limited to fully connected graphs (i.e., every
vertex is connected to all other vertices). As a consequence, it cannot handle
most of the real-world signed networks from the literature, which are typically
sparse (e.g., [6, 18]).

In this paper, we tackle this issue by proposing two approaches to learn-
ing the whole-graph representation of signed networks. The first is a signed
generalization of the unsigned whole-graph embedding method Graph2vec [42].
The second one is a whole-graph generalization of the signed vertex embedding
method Signed Graph Convolutional Network (SGCN) [11]. Our contributions
are threefold:

• The first is methodological and concerns the two proposed representation
learning approaches, for which we define several variants. All are able to
handle not only fully connected graphs, but also sparse ones.

• The second is resource-oriented, as we constitute and share a benchmark
annotated for signed graph classification, and constituted of three distinct
collections. This is a first, as all similar datasets only focus on unsigned
graphs.
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• The third contribution is experimental, as we apply our proposed methods
to our benchmark to assess their performance. Our results show that the
proposed approaches perform better than the baseline.

The rest of this article is organized as follows. In Section 2, we introduce
the main concepts and notations used later and review existing methods for
graph representation learning. Next, we present our signed graph classification
benchmark, in Section 3. Then, in Section 4, we describe the methods that we
propose to handle signed whole-graph representation learning. We present and
compare our results in Section 5. Finally, we summarize our main findings in
Section 6, and discuss possible perspectives.

2 Background

This section describes the main notions used in the rest of the article. We
first introduce the principal concepts and notations related to signed graphs in
Section 2.1). We then review existing methods for graph representation learning
in Section 2.2.

2.1 Signed Graphs

Formally, a signed graph is a triple G = (V,E, s) composed of a set of vertices
V , a set of edges E ⊆ V 2 between them, and a function s : E → {−,+} that
associates a sign to each edge. We denote E− and E+ as the subsets of negative
and positive edges, respectively. Consequently, E = E− ∪E+. As is customary
in graph theory [5], we denote n as the order of the graph (i.e., its number of
vertices), while m is its size (i.e., its number of edges).

In this work, we focus on undirected unweighted signed graphs. The unsigned
neighborhood N(u) of a vertex u ignores edge signs and includes all vertices
attached to this vertex: N(u) = {v ∈ V : (u, v) ∈ E}. On the contrary, the
positive N+(u) and negative N−(u) neighborhoods focus only on one edge sign:
N±(u) = {v ∈ V : (u, v) ∈ E±}. We similarly define the unsigned, negative and
positive degrees as the cardinalities of the corresponding neighborhoods, i.e.,
k(u) = |N(u)|, k−(u) = |N−(u)|, and k+(u) = |N+(u)|. The sign of a path or
cycle corresponds to the product of its constituting edge signs. Consequently,
this sign is negative if the path or cycle contains an odd number of negative
edges, and positive otherwise. The positive (resp. negative) reachable set of a
vertex u is the subset of vertices that are connected to u through positive (resp.
negative) shortest paths.

Structural Balance (SB) is a fundamental property of signed graphs [24, 25].
In its strict definition, a graph is said to be structurally balanced when all
its cycles are positive [7]. Equivalently, for a structurally balanced graph, it
is possible to find a bisection of V such that all positive edges are internal,
i.e., they connect vertices from the same cluster, whereas all negative edges are
external, i.e., they lie in between clusters. Fig. 1.a) illustrates this situation:
the graph contains two clusters {v1, v2, v3} and {v4, ..., v7}; all positive edges
are inside these clusters; all negative edges are between them. In real-world
networks, though, graphs are rarely perfectly balanced, and no bisection exists
that respects the SB definition. In this case, one may want to measure the
amount of imbalance in the graph. This is typically done by computing the
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Figure 1: Examples of perfectly balanced graphs according to a) Structural
Balance; and b) Generalized Balance (k = 3).

Frustration measure (a.k.a. Line Index or Imbalance), which requires solving a
combinatorial optimization problem [13]. Let us consider an arbitrary bisection
of V . The positive edges located in between clusters and the negative edges
located inside them are said to be frustrated, as they do not respect SB. For
instance, in Fig. 1.a) , if edges (v1, v2) and (v2, v4) were negative and positive,
respectively, they would be frustrated. The Frustration of this bisection is the
number of such edges. The Frustration of the graph is the minimal Frustration
over all possible bisections. Put differently, the graph Frustration is the minimal
number of edges whose sign must be switched to reach perfect SB.

The notion of SB was generalized to allow partitions composed of more than
two antagonistic clusters [10]. A graph that can be split into k such clusters
is said to be k-balanced. Equivalently, this Generalized Balance (GB) requires
that a graph have no cycles with exactly one negative edge. Fig. 1.b) illus-
trates the notion of GB: the presented graph contains three clusters {v1, v2, v3},
{v4, v5}, and {v6, ..., v8}; all positive edges are inside the clusters; all negative
edges are between them. Note that Frustration remains a valid imbalance mea-
sure for this generalization of the SB. The combinatorial problem consisting of
finding the partition of V that minimizes Frustration is called the Correlation

Clustering (CC) problem [4]. Finally, it is important to stress that the ubiquity
of SB among real-world systems, which is widely advertised in the literature, is
nevertheless disputed among specialists of signed graphs [12]. Therefore, it is
not guaranteed that building a graph representation method that takes SB into
account will perform better than one that ignores it. Assessing this point is one
of the goals of our experiments.

2.2 Graph Representation Learning

Graph representation learning is a very popular research topic, and the literature
provides a profusion of methods allowing us to automatically train models to
represent various types of graphs (directed, weighted, signed, multiplex, etc.),
and various parts of graphs (vertices, edges, subgraphs, whole graphs, etc.).
However, to the best of our knowledge, none of them can handle signed graphs
as a whole, except Hierarchical Signed Graph Representation Learning (HS-
GRL) [49]. Moreover, this method, which we discuss later in this section, suffers
from a limitation as it can only process fully connected graphs. Consequently,
to position our work, in the following, we summarize the main approaches de-
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signed to deal with one of two situations that are the closest to our own: on
the one hand, representing whole but unsigned graphs, and on the other hand,
representing the vertices of signed graphs. The methods used as a basis for our
work are described in further detail later, in Section 4.

2.2.1 Whole Graphs

Whole-graph embeddings can be obtained through handcrafted approaches such
as feature engineering [46], matrix factorization [40], or graph kernels [33]. How-
ever, they often suffer from generalization problems [42]. Representation learn-
ing methods are data-driven and allow solving this issue by adapting the graph
representation to the targeted dataset.

A popular approach involves leveraging models from the field of Natural
Language Processing (NLP), such as in Graph2vec [42] and Graph Classification
via Graph Structure Learning (GC-GSL) [27]. Graph2vec, one of the earliest
methods for whole-graph representation learning, is an unsupervised and task-
agnostic approach that leverages the Doc2vec model [34] from NLP and applies
it to graphs. Instead of treating a text as a collection of paragraphs, Graph2vec
considers a graph as a collection of subgraphs, which are then used to train a
SkipGram model (cf. Section 4.3 for more details).

Another family of approaches relies on graph autoencoders to learn the rep-
resentation in an unsupervised way, e.g., Permutation-Invariant Graph-level Au-
toencoder (PIGAE) [53], or the Denoising Autoencoder-based (DAE) method
from [22]. Such neural networks are composed of two parts. First, the encoder
receives a raw representation of the graph, which is compressed to remove redun-
dant information and superfluous variability and get a fixed-sized and compact
representation. Second, the decoder is in charge of reconstructing the original
input based on the compressed representation. The autoencoder is trained by
minimizing the reconstruction error.

The literature contains another family of approaches, that adapt Convolu-
tional Neural Networks (CNN) from the field of image processing to handle
graphs, resulting in supervised methods able to learn whole-graph representa-
tions for specific classification tasks, e.g., Patchy-San Convolutional Network
(PSCN) [45] and NgramCNN [37]. PSCN adapts the notion of convolution to
the context of graphs, which allows applying the same principle as for image
processing. The graph is represented by a collection of subgraphs, on which
PSCN performs convolutions. These are then aggregated to create higher-level
representations of the graph.

Finally, another strategy is to modify vertex-oriented Graph Neural Net-
works (GNN) to produce whole-graph representations, e.g., Message Passing
Neural Network (MPNN) [21] or Virtual Column Network (VCN) [47]. This is
conducted by the addition of a so-called master node, which is connected to all
the other vertices. At the end of the training, the vector associated with this
master node can be used as a representation of the graph.

2.2.2 Signed Graphs

Although much less common than for unsigned graphs, many vertex representa-
tion learning methods have been developed for signed graphs. Historically, the
first type of such method relied on random walks, e.g., Signed Network Embed-
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ding (SNE) [55] or Signed Directed Embeddings (SIDE) [29]. The general idea
is to sample the graph using random walks and feed them to a standard neural
network, which learns a representation that preserves both graph structure and
edge signs. Put differently, the representations of two well-connected vertices
tend to be close in the embedding space, whereas those of two vertices connected
by a negative edge tend to be distant.

Signed Network Embedding (SiNE) [51] relies on a deep learning framework.
Unlike the previous methods, it does not use random walks to decompose the
network, but simpler subgraphs as it extracts all the open triads. The neural
network is trained to learn a representation of a vertex that is similar to its
direct positive neighbors, and dissimilar to its direct negative neighbors. We
describe SiNE in further detail in Section 4.1.

More recently, a group of methods leveraged GNN (Graph Neural Networks)
to learn a representation of vertices in signed graphs. The first one, Signed
Graph Convolutional Network (SGCN) [11], directly generalizes Graph Con-
volutional Networks (GCNs) [32] to signed graphs, by proposing a dual repre-
sentation and a dual message passing rule to take positive and negative paths
into account (cf. Section 4.3 for more details). Methods such as Signed Graph
Attention Networks (SiGAT) [26] or Signed Network Embedding via Graph At-
tention (SNEA) [35] introduce attention in the process, to give more importance
to relevant neighbors during the message passing step.

Hierarchical Signed Graph Representation Learning (HSGRL) [49] extends
SNEA by including an additional pooling module. Based on an information-
based centrality metric, it selects a fixed number of vertices and uses their
individual representations to build an overall representation of the whole signed
graph. According to our review of the literature, HSGRL is the only method able
to do so. However, it is designed only for fully connected graphs: this restricts its
application to a very specific type of graphs and constitutes a serious limitation
of this method. Indeed, the signed networks used in the literature to model and
study real-world systems are typically sparse, see for instance [6, 18].

3 Signed Graph Datasets

To assess the proposed methods, we constitute a benchmark composed of three
datasets of signed networks. This is not a trivial work, as most publicly available
signed networks are individual graphs that are used for single graph problems
such as vertex classification or link prediction. To perform graph classification,
not only do we need collections of signed graphs, but these collections must
be annotated for classification (i.e., each graph must be explicitly associated
with a class). Our three datasets come from various sources and differ in their
structures and sizes. The first one (Section 3.1) is based on an existing collection
of real-world unsigned networks originally designed for a binary classification
task, which we extend to obtain signed networks. The second one (Section 3.2)
is an existing collection of artificially generated signed graphs, and the third one
(Section 3.3) is an existing collection of real-world vote networks. These last two
collections were not initially designed for graph classification: we leverage their
metadata to repurpose them and define proper classification tasks. In principle,
we could also include the fully connected signed networks used to assess the
performance of the HSGRL method in [49]. Unfortunately, they are not publicly
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available, therefore, we focus on the three datasets that we constructed. Global
statistics describing these datasets are provided in Table 1, and described later
(Section 3.4). The datasets themselves are all publicly available online1.

3.1 SpaceOrigin Conversations

The SpaceOrigin collection (SO) was originally proposed in [46]. Papegnies et
al. extract a collection of conversational networks from a corpus of chat con-
versations taking place between players of the online video game SpaceOrigin.
Each network is built around a message of interest, called the targeted message,
and aims at modeling its conversational context. Its vertices represent players,
and its weighted edges reflect the intensity of their verbal interactions. Each
network integrates the messages present in a so-called context period, which con-
tains a fixed number of messages occurring right before and after the targeted
message. Temporal integration is performed by sliding a fixed-sized window over
the context period, and incrementing edge weights based on the co-occurrence
of speakers in this window. Papegnies et al. tackle the task of automatic mod-
eration, which they formulate as a binary classification problem consisting of
determining whether the targeted message is Abusive or Non-abusive. The avail-
able ground truth is based on manual annotation. For more details on the graph
extraction process and the task itself, see [46].

The networks produced in [46] are unsigned, though. To obtain signed net-
works instead, we change some parts of the extraction process. When sliding
the window over the context period, we leverage a sentiment analyzer2 to deter-
mine the polarity of the players’ interactions, based on their exchanged textual
content. The resulting weight change can thus be either negative (hostile inter-
action) or positive (neutral or friendly). Consequently, the total weight obtained
when integrating over the whole context period can also be negative or positive.
We call the resulting dataset Signed SpaceOrigin (SSO), and it contains 2,545
conversational graphs.

3.2 Correlation Clustering Instances

This dataset is proposed in [3], originally as a means to study the space of
optimal solutions to the Correlation Clustering problem [4] (CC), described
in Section 2.1. Arınık et al. want to study the multiplicity and diversity of
the optimal solutions to CC. For this purpose, they define a random model
and generate a collection of artificial graphs with planted partitions, applying
various levels of noise to control the difficulty of the problem. They use an exact
method to identify all possible optimal solutions for each graph in this collection
and study how certain graph characteristics relate to the number of solutions.
Due to the NP-hard nature of CC, they focus on relatively small graphs, with a
maximal order (number of vertices) of n = 50. They produce a total of 24,660
unweighted signed graphs, including 22,560 completely connected graphs (i.e.,
every pair of vertices is connected), while the remaining 2,100 graphs are not
completely connected, with a density ranging from 0.25 to 0.75.

To use this dataset in the present work, we define a classification problem
by associating each graph of the collection with a label. This problem, named

1https://doi.org/10.5281/zenodo.13851362
2https://github.com/TheophileBlard/french-sentiment-analysis-with-bert
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Table 1: Statistics describing our three datasets. Notations± and [ ] respectively
denote the standard deviation, and minimum & maximum.
Data Number Average Number Average density

of Graphs of Vertices

SSO 2,545 47.74 ±20.34 [2; 214] 0.48 ±0.16 [0.10; 1.00]
CCS 24,660 27.31 ±7.44 [16; 50] 0.95 ±0.17 [0.19; 1.00]
EPF 6,000 67.34 ±59.21 [20; 274] 0.70 ±0.19 [0.07; 1.00]

Data Nbr. of Gini Average Average

Classes Index SB Frustration GB Frustration

SSO 2 0.74 0.30 ±0.04 [0.01; 0.48] 0.25 ±0.04 [0.01; 0.46]
CCS 2 0.66 0.37 ±0.05 [0.03; 0.51] 0.33 ±0.04 [0.01; 0.49]
EPF 3 0.44 0.28 ±0.04 [0.01; 0.46] 0.22 ±0.03 [0.00; 0.45]

Data Average Number Average Number

of Negative Edges of Positive Edges

SSO 166.1 ±22.96 [1; 1,692] 245.9 ±30.41 [1; 2,323]
CCS 220.6 ±130.45 [25; 833] 131.0 ±80.11 [24; 392]
EPF 333.9 ±877.20 [0; 15,933] 2,552.2 ±5,761.46 [0; 33,153]

Data Average proportion

of Positive Edges

SSO 59.61 ±24.73 [0.00; 100.00]
CCS 37.54 ±11.99 [20.10; 79.01]
EPF 78.30 ±22.22 [0.00; 100.00]

Correlation Clustering Solutions (CCS), consists of predicting whether there are
a single vs. several optimal CC solutions for the graph of interest.

3.3 European Parliament Roll-Calls

The last dataset is based on a collection of signed graphs extracted in [2] from
a description of the voting activity at the European Parliament (EP). The raw
data corresponds to roll-call votes cast individually by Members of the EP
(MEPs) during plenary sessions, in the course of the 7th term (2009–2014).
Such votes can take one of three values: For (MEP supporting the proposi-
tion), Against (MEP opposing the proposition) or Abstention (MEP not
taking a stand despite being present). MEPs can also be absent, and conse-
quently, not take part at all in a roll-call. Each network extracted by Arınık et

al. corresponds to a specific roll-call, using vertices to model MEPs and edges
to represent an agreement between them: a positive sign represents an iden-
tical vote, and a negative one represents a disagreement. The goal of Arınık
et al. is to study the polarization of the EP, and more specifically, its voting
patterns, and how these are affected by various criteria, such as the topic of
the voted proposition. For this purpose, they first identify factions of similarly
voting MEPs in each roll-call network. Next, they compare the resulting vertex
partitions to identify the types of situations that result in a comparable voting
pattern.

The raw data contains 6,595 roll calls, from which the Arınık et al. extract
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many more networks by leveraging the metadata associated with the voting
activity. Since each MEP belongs to a member state and a European polit-
ical group, they extract not only overall networks containing all MEPs, but
also state- and group-specific networks, containing only the MEPs from a given
member state or political group, respectively. In total, they produce 244,015
networks. Some of them are too small or too sparse (almost empty) to be
interesting in a classification context, though. We constitute our dataset by
first filtering out these unusable instances and then randomly sampling 6,000
networks.

As for the previous dataset, the initial collection of networks considered
here was not originally used to perform any prediction tasks. We leverage the
clusters of networks exhibiting similar voting patterns identified by Arınık et al.,
and define a classification task consisting of predicting the number of factions
identified in a network. We call the resulting dataset European Parliament

Factions (EPF).

3.4 Brief Comparison

Table 1 provides a few descriptive statistics for all three datasets, to help inter-
pret the classification results in Section 5. For each dataset, the top part shows
the number of graphs, the average number of vertices by graph, and the average
density. Graph density is the proportion of edges present in the graph, relative
to a fully connected graph. CCS is by far the largest dataset in terms of the
number of graphs, however, these are smaller. Moreover, the order of graphs,
(i.e., their number of vertices) is not as uniform in both SSO and EPF, covering
two orders of magnitude.

The middle part of the table shows the number of classes in each dataset,
the Gini Index, and the average Frustration. The datasets contain roughly the
same number of classes. The Gini Index is used here to characterize class imbal-
ance. The Frustration measure, which we compute for both types of considered
balance (SB vs. GB) is expressed as a proportion over the total number of
edges in the graph, to have comparable values. By definition, the Frustration
obtained for the strict version of structural balance is greater or equal to that
of the generalized version: equal if the optimal partition contains two clusters,
and greater if it contains three or more clusters.

Finally, the bottom part of the table exhibits the average numbers of positive
and negative edges by graph, and the average proportion of positive edges. The
number of edges is quite variable in all three datasets. In EPF, a few graphs
have no positive or negative edges at all. Overall, the graphs tend to be denser
than unsigned real-world networks [17].

4 Representation Methods

We now describe the three families of methods that we propose to handle signed
whole-graph representation learning. The first can be considered a baseline
and relies on the aggregation of signed vertex embeddings (Section 4.1). The
second is an adaptation of an unsigned whole-graph embedding method to signed
graphs (Section 4.2). The third is based on a Graph Convolutional Network able
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Figure 2: Triads used in SiNE, as inputs of the dual neural network. Mixed
triplets (a) are used directly, positive ones (b) require a transformation, and
negative ones (not represented) are not used.

to learn signed vertex representations, which we adapt to handle whole signed
graphs (Section 4.3).

4.1 Aggregated Signed Network Embedding

Signed Network Embedding (SiNE) is a deep learning framework for vertex em-
bedding in signed graphs, proposed by Wang et al. [51]. Following [9], it is
based on the assumption that the representation of a vertex should be similar
to its positive neighbors, and dissimilar to its negative ones. To model signed
networks based on this principle, SiNE proceeds at a very local level by focusing
on a very specific type of subgraph. It extracts the set of all open triads (i.e.,
three vertices connected by two edges) present in the graph, focusing on those
containing one positive and one negative edge, as illustrated by Figure 2.a. This
set of triads represents the graph and is fed to a deep learning framework com-
posed of two neural networks sharing certain weights. Following the principle
mentioned earlier, this model is trained to minimize the similarity between the
representation of the vertex located at the center of the triad and its negative
neighbors, while maximizing its similarity with its positive ones. One neural
network within the framework is dedicated to the positive neighbors, while the
other network handles the negative ones.

A limitation of this approach is that it ignores vertices whose neighbors are
all negative or all positive, such as the first triad in Figure 2.b. To handle
the latter case, SiNE introduces a dummy vertex, denoted by u in the figure,
that is connected through a negative edge to the central vertex of the positive
triad, vi. This allows creating as many dummy triads containing one positive
and one negative edge, which can be processed by the framework. A similar
principle could be used to handle negative triads, by adding positive dummy
edges. However, Wang et al. stress that this is not justified by the signed
network literature, and prefer to discard negative triads [51].

At the end of the training process, SiNE learns a compact representation
for each vertex in the input graph, based only on its direct neighborhood. To
get a graph-level representation, we simply aggregate the representations of
all the vertices in the graph. For the sake of completeness, we consider two
approaches: averaging these representations and summing them. We select
SiNE as a baseline because it reaches top performances on several tasks and
datasets in the literature [11, 29, 48]. Of course, these are vertex-level tasks,
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and not graph-level tasks as in the present article.
According to Wang et al. [51], the time complexity of SiNE is O(RnSTd2),

where R is the number of epochs, n the number of vertices in the input graph,
S the number of triplets used to describe each vertex, T the number of layers in
the neural network, and d the dimension of the representation (or of the layers,
whichever is larger). In our case, we do not work with a single graph, but rather
a whole collection of graphs G. Consequently, we must include an additional
multiplicative factor corresponding to the number of graphs in the collection.
Moreover, we must replace n by N , the number of vertices in the largest graph
in G. As a result, the total expression is O(|G|RNSTd2). Variables R, S, T and
d are user-controlled parameters, whereas G and N depend on the data.

4.2 Signed Graph2vec

Graph2vec [42] is an embedding method designed to learn representations of
whole unsigned graphs, and is based on an analogy with the Doc2vec approach
defined for text [34]. Its principle is to consider graphs (documents, in the
analogy) as collections of subgraphs (words). The procedure enumerates rooted
subgraphs around all vertices of the considered graphs. Each one represents the
neighborhood of a vertex (the so-called root) in a certain order.

These rooted subgraphs are named using labels obtained with the relabel-
ing procedure of the Weisfeiler–Lehman isomorphism test [52] (WL for short).
Starting with the degree as the initial vertex label, this procedure goes through
two phases to iteratively update these labels. First, each vertex is described by
a tuple consisting of its previous label, and a sorted multiset containing those
of its neighbors. Second, each unique tuple is replaced by a new label, to be
used in the next iteration. Two identical tuples are replaced by the same label,
but two different ones get distinct labels. This phase allows for a compact rep-
resentation of the vertices. At the end of the process, each rooted subgraph is
represented by its root’s label. More formally, the label update rule is

ℓt(u) = f
(

ℓt−1(u), {ℓt−1(v) : v ∈ N(u)}
)

, (1)

where ℓt(u) is the label of the subgraph rooted in u at iteration t, N(u) is the
neighborhood of u, and f is an injective function used to replace the tuples by
new labels. Note that the set of the neighbors’ labels is ordered. Consider v1
in the left graph of Figure 3, for instance. Assuming degree is used to initialize
the vertex labels, the composite label produced by the above rule is 3,122: the
initial label of v1 is 3, and those of its neighbors are 1, 2, 2 when ranked in
increasing order. This composite label is then fetched to f , which returns the
compressed label. Here, it could be, for example 4, which has not been used yet
at this stage of the process.

The number of iterations corresponds to the desired order of the neighbor-
hood covered by the rooted subgraph (i.e., how far the subgraph spreads). At
the end of this process, two isomorphic rooted subgraphs should get the same
label. The obtained labels are then used to train the standard Doc2vec Skip-
Gram model. Graph2vec has proven its effectiveness in many tasks involving
the classification of unsigned graphs [19, 44, 59].

This method is not able to take advantage of the additional information
present in signed graphs (i.e., edge signs), though. For this purpose, we define
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Figure 3: Unsigned (a) and signed (b) graphs used to illustrate the relabelling
rules of G2V and SG2V (cf. text). The numeric values are the vertex degrees.

Signed Graph2vec, an adaptation of Graph2vec that relies on two variants of the
WL relabeling procedure able to handle edge signs. The first one, denoted by
SG2Vn (n for neutral), is straightforward and does not assume that the network
has any form of structural balance. Regarding label initialization, instead of
using the degree, we use both positive and negative degrees. For each vertex u,
we first define a tuple

(

k+(u); k−(u)
)

, and then replace each unique pair with a
unique label using f . For the rest of the iterations, we proceed as in Graph2vec,
except that we append the sign of the concerned edge in front of each neighbor
when building the labels:

ℓt(u) = f
(

ℓt−1(u),
{[

s(u, v), ℓt−1(v)
]

: v ∈ N(u)
}

)

, (2)

where s(u, v) is the sign of edge (u, v), and [ ] denotes string concatenation. This
allows distinguishing vertices holding the same label but connected to the root
with edges of opposed signs. In our example from Figure 3 (right), applying
f to the pairs of negative and positive degrees could produce the initial labels
1, 2, 3 and 4 (in this order), as all these pairs are different. According to the
above rule, the composite label of v1 at the first iteration would be 1,+2-3+4.

The second relabeling method, denoted by SG2Vsb, is the one proposed (for
a different purpose) by Zhang et al. in [58], and it assumes that the network
is structurally balanced. Each vertex is represented by two labels, based on its
positive and negative reachable sets, respectively (cf. Section 2.1). The authors
do not explain how they perform their initialization, so we use the positive (resp.
negative) degree for the positive (resp. negative) label. The method requires
one update rule for each label:

ℓ+t (u) = f
(

ℓ+t−1(u), {ℓ
+

t−1(v) : v ∈ N+(u)}, {ℓ−t−1(v) : v ∈ N−(u)}
)

(3)

ℓ−t (u) = f
(

ℓ−t−1(u), {ℓ
−

t−1(v) : v ∈ N+(u)}, {ℓ+t−1(v) : v ∈ N−(u)}
)

. (4)

In our example from Figure 3 (right), the positive composite label of v1 at the
first iteration is 2,11,2, because it has an initial positive label of 2, two positive
neighbors with an initial positive label of 1, and one negative neighbor with an
initial negative label of 2. Symmetrically, the negative label of v1 is 1,01,0.
At the end of the process, f is applied to tuples formed by the positive and
negative labels of each vertex, resulting in the final rooted subgraph labels.

Based on the algorithm described in [42], the time complexity of Graph2Vec
is O(|G|RNT 2d), where |G| is the size of the collection, R the number of epochs,
N the number of vertices of the largest graph in G, T the order of the neigh-
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borhood covered by the rooted subgraphs, and d the dimension of the repre-
sentation. The complexity is identical for our signed generalization, since our
modifications do not affect the computational cost of the original algorithm.
Like for SiNE, time complexity is linear in the collection size G and in the graph
order N , but it also depends on some user-controlled parameters (R, T , and d).

4.3 Whole-graph Signed GCN

Graph Convolutional Networks (GCNs) are a family of neural networks that
adapt traditional Convolutional Neural Networks (CNNs) so that they can pro-
cess graph data instead of standard tabular data [54]. Shallow embedding meth-
ods such as Graph2vec may miss complex patterns in the graphs, and deep
learning methods like CNNs are likely to solve this limitation [56]. GCNs gen-
eralize the convolution operation by considering graph neighborhoods instead
of linear or grid neighborhoods as in standard CNNs used in NLP and image
processing.

Most GCNs are designed to produce vertex -level representations. The gen-
eral principle is as follows. Each vertex is initially represented by a vector, that
can be generated randomly or based on some vertex features. In a convolution
layer, the representation of a given vertex is combined with that of its neighbors.
The result is then fed to a generally non-linear function (e.g., multilayer percep-
tron) to get the updated vertex representation. The information is propagated
through multiple layers to incorporate information from multi-hop neighbors.
The maximal number of hops corresponds to the number of convolution layers
in the network. GCNs achieve state-of-the-art performances on many tasks [11]
such as vertex classification, edge prediction, and community detection.

Standard GCNs are only able to handle unsigned networks, though. Lever-
aging the information conveyed by edge signs mainly requires adapting the
message-passing rules used when computing the graph-based convolution. A
few methods allow doing so, and in this work, we focus on Signed Graph Con-

volutional Networks (SGCN) [11], for two reasons. First, SGCN obtains strong
performances on many tasks, such as node classification and link sign predic-
tion, and is used as a basis for multiple other methods [31, 38, 49]. Second, its
implementation is conveniently available online3 and can be modified to fit our
needs. Similarly to SG2Vsb (Section 4.2), this method relies on a dual hidden
representation of a vertex, corresponding to its positive vs. negative reach sets,
and it uses balance theory to aggregate and propagate vertex representation
across layers. Formally, the hidden representations h are updated as follows:

h+
t (u) = σ

(

W+
t

[

∑

v∈N+

h+

t−1(v)

k+(u)
,
∑

v∈N−

h−

t−1(v)

k−(u)
,h+

t−1(u)
]

)

(5)

h−
t (u) = σ

(

W−
t

[

∑

v∈N+

h−
t−1(v)

k+(u)
,
∑

v∈N−

h+
t−1(v)

k−(u)
,h−

t−1(u)
]

)

, (6)

where σ is a non-linear activation function, [ ] denotes the concatenation, and the
W matrices are learnable weights. Ultimately, the dual hidden representations
are concatenated to obtain a single vertex representation.

3https://github.com/benedekrozemberczki/SGCN
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Figure 4: Update rules of SGCN, applied to an example graph. Only the edges
belonging to a shortest path between the vertex of interest v1 and some other
vertex are shown.

Figure 4 illustrates how these update rules work, focusing on vertex v1. The
dual representation of the vertices is shown using two colors: orange (negative)
and cyan (positive). The update rules are depicted by pairs of arrows. Each
arrow is attached either to the positive or negative representation of the source

vertex, and shows how it is used to update the representation of the target ver-
tex. The arrow color indicates if this update affects the negative (orange) or
positive (cyan) representation of the target vertex (see the figure legend). Com-
ing back to v1, the first convolution layer combines the positive representations
of its positive neighbors v2 and v3, as well as the negative representation of its
negative neighbor v4, to build h+

1 (v1). Symmetrically, h−

1 (v1) is based on the
negative representations of v2 and v3 and the positive representation of v4. The
second layer performs an update that takes into account the representations
of the second-order neighbors, in a way that respects structural balance. For
instance, since v9 is connected to v1 by a positive path, its positive representa-
tion is (indirectly) used to compute h+

2 (v1), and its negative representation to
compute h−

2 (v1). On the contrary, v10 is connected to v1 by a negative path, so
its positive and negative representations affect h−

2 (v1) and h+

2 (v1), respectively.
SGCN effectively learns representations of vertices in signed graphs. How-

ever, our objective is to handle whole graphs. A solution proposed for unsigned
graphs in the literature [21] consists of adding a master node (also called a vir-

tual or super node), which is connected to all other vertices in the graph. One
then uses the representation of this master node as the representation of the
whole graph. The intuition is that, as the master node is connected to all parts
of the graph, its representation aggregates all its information.

It is not straightforward to adapt this approach to signed graphs, though:
connecting a master node to the rest of the graph is not trivial, as there are
two different types of edges. We propose five interconnection schemes, which we
call collectively Whole-graph SGCN (WSGCN). They are represented in Fig. 5:
circular vertices and solid lines correspond to the original graph, whereas the
master nodes are shown as rounded rectangles denoted by MN , and their con-
nections to the original vertices are shown as dotted lines. The first three in-
terconnection schemes do not respect structural balance and can be considered
baselines: WSGCN+ (Fig. 5.a) and WSGCN- (Fig. 5.b) consist of connecting a single
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Figure 5: Examples of the 5 proposed interconnection schemes: WSGCN+ (a),
WSGCN- (b), WSGCN± (c), WSGCNsb (d) and WSGCNgb (e). MN stands for Master
Node. Green and red edges represent positive and negative connections, respec-
tively. Each colored ellipse is a cluster.

master node to the rest of the graph using only positive and negative edges,
respectively. With WSGCN± (Fig. 5.c), we use two distinct master nodes (one
positive and one negative), which allows us to combine both previous schemes
at once. The whole-graph representation is obtained by summing both master
node representations. The fourth scheme, WSGCNsb (Fig. 5.d), is based on a
(strict) structural balance. Using the signnet library4, we detect the optimal
graph bisection. Then, we connect one distinct master node to each cluster by
enforcing structural balance, i.e., positive edges within the cluster and nega-
tive ones within the other cluster. Like before, the whole-graph embedding is
obtained by summing the representations of both master nodes. Finally, the
fifth scheme, WSGCNgb (Fig. 5.e), relies on the generalized structural balance.
As before, we find the optimal graph partition, but this time there may be more
than two clusters. We add one master node for each cluster and sum their
representations to get the whole-graph embedding.

SGCN generalizes a vanilla GCN architecture by using a dual representation
of the vertices. This does not affect the time complexity of such architecture,
which is O(RT (md + nd2)) according to the literature [8, 54], where R is the
number of epochs, T the number of layers in the neural network, m the size of
the graph (i.e., its number of edges), n its order (i.e., number of vertices), and d

the dimension of the representation. The master nodes that we introduce in our
whole-graph adaptation of SGCN do not imply any change in this complexity
either. However, we iteratively apply our WSGCN method to all graphs in a
collection |G|, so its total time complexity is O(|G|RT (Md+Nd2)), with M the
size of the largest graph, and N its order. Like for the other methods described
in this section, some of these variables correspond to user-controlled parameters

4https://github.com/schochastics/signnet

15

https://github.com/schochastics/signnet


Table 2: Results in terms of macro F -measure obtained with SiNE. Each row
focuses on a task, whereas columns represent the function used to aggregate
vertex representations.
Task Sum Average

SSO 55.42 50.21
CCS 50.48 48.62
EPF 69.81 67.58

(R, T , and d), whereas others depend on the data (G, M , and N).

5 Results

Our experimental protocol consists of assessing all the methods described in
Section 4 on the datasets and tasks presented in Section 3. We produce the
representations, then train an SVM to perform the classification, using a 10-fold
cross-validation. Our code is available online5. We conduct our experiments on
an Nvidia RTX 2080 Ti GPU.

We discuss each family of methods separately: SiNE (Section 5.1), Graph2vec
(Section 5.2), and Signed Graph Convolutional Networks (Section 5.3); before
comparing them (Section 5.4). All the performance values are expressed in
terms of the macro-averaged F -measure, i.e., by computing the F -measure for
each class separately, then averaging them to get the overall performance. This
allows giving the same importance to all classes, even in imbalanced datasets.
For the sake of completeness, performance expressed in terms of Precision and
Recall is provided in the Appendix.

5.1 Aggregated Signed Network Embedding

In this section, we present the results obtained with SiNE, the signed vertex
embedding method that we consider our baseline. The performance scores are
shown in Table 2 for all our datasets, in terms of macro F -measure. Each column
focuses on one of the two functions used to aggregate vertex representations:
sum and average. The corresponding tables describing performance in terms of
Precision (Table 5) and Recall (Table 6) are available in the Appendix. Overall,
the Precision tends to be slightly higher than the Recall for the SSO and CCS
datasets, whereas the opposite is true for the EPF dataset. However, both
metrics follow the trends described below for the F -measure.

On SSO and CCS, the performances are close to a random classifier, which
would get an expected 50% F -measure. SiNE performs better on EPF, with the
best result reaching 69.81%. We assume that for this task, the local information
available is often sufficiently discriminative. Moreover, as the graphs in this
dataset tend to be larger, SiNE can extract a greater number of training triads,
contributing to an improved model performance. Furthermore, the choice of
the aggregation function has a notable impact on performance, with the sum
operation yielding better results across all tasks.

5https://github.com/CompNet/SWGE
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Table 3: Results in terms of macro F -measure obtained with Graph2vec and
our two proposed signed adaptations. Each column focuses on a specific number
of iterations used when extracting rooted subgraphs.
Task Method 1 it. 2 it. 3 it. 4 it. 5 it.

SSO G2V 75.09 71.32 72.62 73.96 73.77
SG2Vn 74.85 71.44 72.15 72.88 72.37
SG2Vsb 67.29 72.01 74.88 76.98 77.44

CCS G2V 48.43 48.12 45.97 51.85 52.07
SG2Vn 49.70 49.25 48.37 52.57 52.12
SG2Vsb 49.84 51.81 49.70 51.37 51.62

EPF G2V 45.63 49.76 52.31 60.43 63.14
SG2Vn 75.63 81.44 84.18 86.16 88.68
SG2Vsb 80.83 82.90 86.31 87.99 89.98

5.2 Signed Graph2vec

In this section, we present the results obtained with our two proposed vari-
ants of the Signed Graph2vec method: SG2Vn (which does not enforce SB) and
SG2Vsb (which does). As a reference, we also include in our study Graph2vec
(noted G2V), which simply ignores all edge signs. The performances are shown
in Table 3, in terms of macro F -measure, whereas scores expressed in terms of
Precision (Table 7) and Recall (Table 8) are provided in the Appendix. The
columns show the performance for an increasing number of iterations, ranging
from 1 to 5. As a reminder, this parameter controls the order of the rooted sub-
graphs extracted to describe the graph and, therefore, the range that is taken
into account when characterizing vertex neighborhoods. The Precision and the
Recall scores are very comparable, which is why we now focus on the F -measure.
In the following, we discuss each dataset separately.

5.2.1 Signed Space Origin

The top part of Table 3 presents the performances of the three Graph2vec
variants on the Signed SpaceOrigin dataset. It appears that they are affected
diversely by the number of iterations. On the one hand, G2V and SG2Vn get their
best score with a single iteration, and increasing iterations tend to reduce the
performance. On the other hand, SG2Vsb starts low but increases consistently
with the number of iterations. In the end, it reaches an F -measure of 77.44% and
outperforms both other variants. The average diameter is 5.47 in this dataset,
which means five iterations correspond to almost complete graph coverage.

From these observations, we can assume that a lot of information is already
conveyed by the unsigned graph structures, in this dataset. This is consistent
with the results obtained in the article that published the original data, as its
authors already had some success performing a similar task with the unsigned
version of the graphs [46]. Nevertheless, the signs bring some additional discrim-
inative power, which SG2Vsb leverages to improve the classification performance.
By comparison, this is not the case with SG2Vn. The relatively low level of SB
Frustration in this dataset (0.30) may favor methods relying on SB.
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5.2.2 Correlation Clustering Solutions

The results obtained for this dataset are shown in the middle part of Table 3.
The performance is clearly lower, for all three variants, and even similar to the
score expected from a random classifier (50), with a maximum F -measure of
52.57% obtained by SG2Vn. As explained in Section 3.2, the dataset contains
two subsets: some graphs are completely connected, and the rest are not. As-
suming that one type of graph might be more difficult to handle than the other,
we try training separately on these subsets. However, we do not see any signifi-
cant difference between the obtained results, which are similar to those already
presented in Table 3.

We assume that either this classification task is too hard, in the sense that
the information available in the graphs is not sufficient to perform the pre-
diction, or that none of the three Graph2vec variants manage to capture the
relevant information. The value predicted in this task is directly related to the
distribution of edge signs (cf. Section 3.2), so we know with certainty that the
information conveyed by signs is essential. The fact that G2V has similar per-
formance to its signed counterparts hints at the second assumption (methods
are unable to capture relevant information). In addition, the higher level of SB
Frustration (0.37) may hinder the performance of SG2Vsb, compared to SG2Vn.

Increasing the number of iterations eventually improves the performance, but
the effect is not as strong and stable as for the previous dataset. The graphs
are more compact in this dataset, with an average diameter of only 3.6, which
may partially explain this observation. Indeed, a few iterations are enough to
retrieve all available information, and increasing their number does not bring
any new neighbors.

5.2.3 European Parliament Factions

The results for this dataset are shown in the bottom part of Table 3. It appears
that both our signed adaptations perform drastically better than the original un-
signed method. The difference in F -measure is the largest of the three datasets:
63.14 (G2V) vs. 88.68 (SG2Vn) and 89.98 (SG2Vsb). Edge signs thus appear to
be even more important for this task than they were for the Signed SpaceOrigin

dataset. The SB-based variant SG2Vsb is slightly above SG2Vn, which seems to
indicate that this type of structure may be relevant to this classification task.
The average SB Frustration is 0.28 for this dataset.

This dataset contains larger graphs than the others, with an average of
67.34 vertices (vs. 47.74 and 27.31 previously) and a mean diameter of 4.12.
This may explain the very strong effect of the number of iterations on the
performance, even for G2V, the unsigned variant. It seems that even a small
increase (proportionally to the order of the network) in the part of the graph
covered when extracting rooted subgraphs, is enough to greatly improve the
quality of the classification.

5.3 Whole-graph Signed GCN

In this section, we present the results obtained with the five variants that we
proposed for the WSGCN method. Each one relies on the addition of one or
several master nodes, through different interconnection schemes. The first three
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Table 4: Results in terms of macro F -measure obtained with the original SGCN
and our five proposed WSGCN interconnection schemes. Each column focuses on
a specific number of convolution layers.
Task Method 1 lay. 2 lay. 3 lay. 4 lay. 5 lay.

SSO SGCN 66.48 67.21 68.06 68.87 69.54
WSGCN+ 65.12 66.78 68.42 68.98 69.29
WSGCN- 54.19 54.89 55.56 55.59 55.89
WSGCN± 49.28 48.95 49.01 49.25 49.39
WSGCNsb 52.69 54.99 55.49 55.08 55.67
WSGCNgb 66.59 68.85 71.21 72.28 73.69

CCS SGCN 70.29 70.65 71.27 71.43 71.89
WSGCN+ 70.50 70.86 71.13 71.27 71.35
WSGCN- 70.14 70.55 70.84 71.02 71.18
WSGCN± 70.76 71.02 71.00 71.20 71.37
WSGCNsb 69.59 70.12 70.86 71.21 71.46
WSGCNgb 71.75 72.20 72.98 73.24 73.49

EPF SGCN 90.16 90.87 91.63 92.04 92.65
WSGCN+ 88.56 89.30 90.49 91.11 91.87
WSGCN- 88.61 89.30 90.49 91.09 91.80
WSGCN± 86.32 88.45 90.01 90.78 91.56
WSGCNsb 91.11 92.09 93.31 94.17 94.99
WSGCNgb 92.36 93.65 95.29 96.04 96.43

(WSGCN+, WSGCN-, WSGCN±) ignore any type of structural balance, whereas the
others enforce, respectively, SB (WSGCNsb) and GB (WSGCNgb). We considered
two methods to extract a graph representation: using only the last layer vs. the
sum of all layers. Preliminary experiments showed that the former performs
better, so we only focus on this approach in the following discussion.

We also include SGCN as a reference in our study, i.e., the original method
without any master node. To get a graph-level representation, we proceed like
for SiNE, and sum the representations of all vertices. We alternatively experi-
mented with averaging them, but got lower performance, which is why we focus
only on the sum, here. The results are shown in Table 4, in terms of macro F -
measure. As before, the performance in terms of Precision (Table 9) and Recall
(Table 10) is provided in the Appendix. The columns show the results for an
increasing number of convolution layers, ranging from 1 to 5. When compar-
ing Precision and Recall, we observe very similar scores, as with the previous
methods, which is why we focus on the F -measure results. In the following, we
discuss each dataset separately.

5.3.1 Signed Space Origin

The top part of Table 4 shows the results on the Signed SpaceOrigin dataset.
Increasing the number of layers in the convolutional network results in better
performances for all variants, but to different extents. For instance, when going
from 1 to 5 layers, the performance gain is +7, 1 F -measure point for WSGCNgb
but only +0.11 for WSGCN±. With an average diameter of 5.47 in this dataset,
using 5 layers allows for almost complete graph coverage.
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All three variants that ignore any form of balance (WSGCN+, WSGCN-, and
WSGCN±) are below the unsigned baseline (SGCN), which indicates that using signs
improperly is counterproductive as it decreases the classification performance.
WSGCN+ largely outperforms both other variants, probably because there are
many more positive than negative edges in this dataset (cf. Table 1).

Among the variants that take balance into account, WSGCNgb consistently
outperforms WSGCNsb: 55.67 vs. 73.69 with five layers. This shows that the type
of balance selected when learning the representation must match the structural
properties of the considered graphs. Interestingly, vanilla SGCN is the second-best
method, which illustrates the methodological importance of the interconnection
scheme when using a master node approach. It is on par with WSGCNgb when
using a single layer because they are equivalent for this specific parameter value,
however, the difference quickly grows with the number of layers.

5.3.2 Correlation Clustering Solutions

The middle part of Table 4 shows the F -measure scores for the Correlation

Clustering Solutions. On this dataset, all methods yield quite similar results,
except for WSGCNgb, which once again obtains the best performances. In partic-
ular, this method is able to capture more information at the whole-graph level
than SGCN at the vertex level. Increasing the number of layers still improves
the results, but the effect is much weaker than for the previous dataset. The
graphs are smaller there, which may explain this, as more layers do not bring
more information after a certain point. These results also show that this task
is not as challenging as assumed when discussing Graph2vec results, since it is
possible to get scores much higher than the expected performance of a random
classifier. There is still room for improvement, though, as we are far from a
perfect classification.

5.3.3 European Parliament Factions

The bottom part of Table 4 shows the results obtained for the EPF graphs.
The behavior on this dataset is similar enough to that on Signed SpaceOrigin:
the three variants that ignore balance (WSGCN+, WSGCN-, and WSGCN±) are below
the original SGCN method (the latter being the worst, again), whereas WSGCNgb
gets the best results, peaking at 96.43% when using 5 layers. There are three
differences, though: First, the overall performance is much better, with a min-
imal F -measure of 88.45. This is in line with the behavior exhibited by the
Graph2vec variants on the same dataset, and could be explained by the low
level of Frustration (around 0.20). Second, WSGCN+ and WSGCN- perform very
similarly. Third, WSGCNsb is above SGCN, which could mean that many graphs
have a 2-cluster structure in this dataset.

5.4 Comparison and Concluding Remarks

We now compare and analyze the results of the three families of methods. Our
baseline, which relies on SiNE, is consistently the least efficient method for all
tasks. The gap in F -measure reaches up to 27.23 points with the best method,
on the Signed SpaceOrigin dataset. On the one hand, this could be explained in
part by the order and size of the graphs that constitute our benchmark: these
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are relatively small, whereas SiNE was designed to handle large graphs, with
hundreds or thousands of vertices. On the other hand, one could assume that
working with smaller graphs should be an advantage when aggregating vertex
representations to produce a whole-graph representation, as the most important
vertices are likely to have a stronger effect on the produced representation.
Nevertheless, our results indicate that applying a method designed to handle
whole graphs directly leads to much better classification results than simply
aggregating multiple vertex representations.

Signed Graph2vec, through its SG2Vsb variant, obtains the best perfor-
mance on the Signed SpaceOrigin dataset, while Whole-graph SGCN, through
its WSGCNgb variant, largely dominates on both other datasets (and is close on
SPO). Regarding the use of signs to learn whole-graph representations, we iden-
tify three main results. First, the best signed methods systematically dominate
their unsigned counterparts, often by a large margin. This shows the interest
of leveraging this information to produce a relevant representation of signed
graphs. Second, among the signed methods, those based on some form of SB,
be it strict (SG2Vsb and WSGCNsb) or generalized (WSGCNgb), obtain better re-
sults than signed methods that ignore this property (SG2Vn, WSGCN+, WSGCN-,
WSGCN±). Moreover, the latter generally gets a performance comparable to un-
signed methods. This confirms that using signs is not sufficient: the notion
of structural balance should be integrated in the design of the representation
learning method, so that this property is preserved in the representation space.
Third, the generalized version of structural balance seems to work better than
the strict version. This is probably because GB is the most general of the two
definitions, and subsumes SB. In other words, if the graph exhibits strict struc-
tural balance, it is captured by the GB-based representations, whereas SB-based
ones cannot handle generalized balance.

Increasing the number of iterations in G2V and SG2V, or that of layers in
SGCN and WSGCN, has a positive impact on performances for all datasets,
and for almost all variants. This effect is generally stronger when the appro-
priate type of balance is leveraged to aggregate the representation of direct and
indirect neighbors, though, which confirms the importance of this concept when
dealing with signed graphs. For the WSGCN variants, it also shows that the
method does not suffer from oversmoothing on the considered datasets. How-
ever, at some point, using more iterations or layers does not bring any significant
performance gain.

Graph Convolutional Networks are the best-performing method, overall.
However, this comes at a cost: they are also the most expensive in terms of
computational runtime. Learning the representation of a graph with WSGCN
variants takes more than 25 seconds on average, over the three datasets. As
a comparison, SG2V variants take an average of 0.15 seconds per graph, and
the SiNE baseline takes 0.65 seconds. SG2V is more than 100 times faster than
WSGCN, but its performance is 8 F-measure points below, overall.

The time complexity of all three methods is linear in |G|, the number of
graphs in the collection, so they are likely to scale well on larger datasets.
Their complexity is also linear in the number of vertices N , therefore, they can
reasonably be expected to handle larger graphs as well. The complexity of SiNE
and SG2V is independent of the number of edges M , whereas for WSGCN, it
depends linearly on this graph size. This can be an issue if dealing with much
denser graphs, but, as already explained in Section 2.2, real-world networks are
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typically sparse. The complexity of both SG2V and WSGCN depends on T , a
variable that controls the extent of the vertex neighborhood considered when
building the graph representation. As a consequence, dealing with larger graphs
may require increasing T to produce relevant representations. On this point,
SWGCN has an advantage over SG2V, as its complexity only depends linearly
on T , whereas this dependence is quadratic for SG2V.

6 Conclusion

In this paper, we tackle the problem of learning signed whole-graph represen-
tations, and use them for the classification of signed networks. In the absence
of any appropriate method in the literature, we generalize two existing mod-
els: 1) we adapt Graph2vec to signed graphs by generalizing the Weisfeiler–
Lehman relabeling procedure in two different ways; 2) we adapt Signed Graph
Convolutional Networks to whole graphs by introducing master nodes and five
interconnection schemes. Their implementation is shared online5. We build
a benchmark of signed graphs annotated for classification, which is publicly
available online1. It is constituted of three datasets, each one corresponding to
a real-world application of graph classification: detecting abusive behavior in
online conversations; estimating the multiplicity of optimal solutions to a combi-
natorial problem; and predicting the polarity at the European Parliament. We
use this benchmark to assess our methods and compare them with a baseline
relying on SiNE, a standard signed vertex embedding method. Our results show
that a signed whole-graph embedding manages to learn better representations
for the classification of signed networks. Our proposed method, WSGCNgb, which
relies on the notion of generalized structural balance, obtains the best results,
overall.

Our work could be extended in several ways. First, we want to expand our
benchmark by including new collections containing larger graphs. This could
be done by complementing existing unsigned graph datasets, as we did for the
Signed Space Origin collection. Repositories of correlation matrices constitute
another promising source, as these can be considered signed adjacency matrices.
Regarding the methods, we want to apply the master node approach to other
types of signed GNN, such as Graph Attention Networks (GATs). It would
also be interesting to generalize our methods so that they can use edge weights,
which are available in two of the original datasets used in this article. Another
promising perspective is to experiment with other master node interconnection
schemes, based on other variants of Structural Balance. The concept of Relaxed
Balance [14, 20], in particular, is very interesting, as it allows inter-cluster (resp.
intra-cluster) edges to be positive (resp. negative).
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A Additional Results

This appendix provides additional results regarding the experiments conducted
in Section 5. Tables 5 and 6 show the performance of the SiNE baseline, sim-
ilarly to Table 2, but in terms of Precision and Recall instead of F -measure,
respectively. Likewise, Tables 7 and 8 show the performance of the G2V-based
methods, similarly to Table 3, but in terms of Precision and Recall. Finally,
Tables 9 and 10 show the performance of the SGCN-based methods, similarly to
Table 4, but in terms of Precision and Recall. The pairs of matching Precision
and Recall scores are very similar. As a result, the F -measure scores discussed
in the main text are also very similar, since the F -measure is the harmonic mean
of Precision and Recall.

Table 5: Results in terms of macro Precision obtained with SiNE. Each row
focuses on a task, whereas columns represent the function used to aggregate
vertex representations.
Task Sum Average

SSO 56.12 51.01
CCS 50.88 49.11
EPF 69.07 66.74
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Table 6: Results in terms of macro Recall obtained with SiNE. Each row focuses
on a task, whereas columns represent the function used to aggregate vertex
representations.
Task Sum Average

SSO 54.74 49.44
CCS 50.09 48.14
EPF 70.57 68.45

Table 7: Results in terms of macro Precision obtained with Graph2vec and our
two proposed signed adaptations. Each column focuses on a specific number of
iterations used when extracting rooted subgraphs.
Task Method 1 it. 2 it. 3 it. 4 it. 5 it.

SSO G2V 76.31 71.49 73.01 73.94 74.03
SG2Vn 76.02 72.20 72.89 73.49 72.98
SG2Vsb 66.68 71.58 74.79 76.50 77.03

CCS G2V 48.67 47.97 46.21 52.87 51.79
SG2Vn 50.33 49.88 48.53 53.20 51.84
SG2Vsb 50.31 52.13 49.67 51.49 52.02

EPF G2V 47.68 51.24 54.53 61.85 64.78
SG2Vn 74.75 81.05 84.29 86.35 88.13
SG2Vsb 79.66 82.85 86.46 87.64 90.44

Table 8: Results in terms of macro Recall obtained with Graph2vec and our
two proposed signed adaptations. Each column focuses on a specific number of
iterations used when extracting rooted subgraphs.
Task Method 1 it. 2 it. 3 it. 4 it. 5 it.

SSO G2V 73.90 71.15 72.23 73.98 73.51
SG2Vn 73.71 70.69 71.42 72.28 71.77
SG2Vsb 67.91 72.44 74.97 77.46 77.85

CCS G2V 48.19 46.40 45.73 50.76 52.35
SG2Vn 49.08 48.63 48.21 51.95 52.40
SG2Vsb 49.37 51.49 49.73 51.25 51.22

EPF G2V 43.74 48.36 50.26 59.07 61.58
SG2Vn 76.53 81.83 84.07 85.97 89.23
SG2Vsb 82.03 82.95 86.16 88.34 89.52
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Table 9: Results in terms of macro Precision obtained with the original SGCN
and our five proposed WSGCN interconnection schemes. Each column focuses on
a specific number of convolution layers.
Task Method 1 lay. 2 lay. 3 lay. 4 lay. 5 lay.

SSO SGCN 65.88 66.76 68.02 68.45 69.40
WSGCN+ 65.24 66.98 68.57 69.68 70.00
WSGCN- 54.42 55.11 55.78 55.48 56.03
WSGCN± 49.84 48.99 49.25 49.18 49.58
WSGCNsb 53.16 55.84 57.10 56.42 56.59
WSGCNgb 68.32 68.59 72.35 72.46 73.51

CCS SGCN 71.04 71.21 71.86 72.01 72.07
WSGCN+ 71.25 71.49 71.67 72.23 71.77
WSGCN- 70.42 70.41 70.76 71.04 71.40
WSGCN± 70.99 71.45 71.20 71.43 71.33
WSGCNsb 69.84 70.33 71.25 71.49 71.94
WSGCNgb 71.43 72.35 73.56 74.03 74.18

EPF SGCN 90.46 91.20 91.89 92.08 92.58
WSGCN+ 89.40 89.96 90.48 91.24 92.23
WSGCN- 88.95 89.39 90.66 91.54 92.03
WSGCN± 86.11 88.23 89.86 90.67 91.60
WSGCNsb 91.32 92.20 93.56 94.67 95.45
WSGCNgb 92.66 93.81 95.45 96.16 96.51

Table 10: Results in terms of macro Recall obtained with the original SGCN and
our five proposed WSGCN interconnection schemes. Each column focuses on a
specific number of convolution layers.
Task Method 1 lay. 2 lay. 3 lay. 4 lay. 5 lay.

SSO SGCN 67.09 67.66 68.10 69.29 69.68
WSGCN+ 65.00 66.58 68.27 68.29 68.59
WSGCN- 53.96 54.67 55.34 55.70 55.75
WSGCN± 48.73 48.91 48.77 49.32 49.20
WSGCNsb 52.22 54.16 53.96 53.80 54.77
WSGCNgb 64.94 69.11 70.10 72.10 73.87

CCS SGCN 69.55 70.09 70.68 70.85 71.71
WSGCN+ 69.76 70.24 70.59 70.33 70.93
WSGCN- 69.86 70.69 70.92 71.00 70.96
WSGCN± 70.53 70.59 70.80 70.97 71.41
WSGCNsb 69.34 69.91 70.47 70.93 70.98
WSGCNgb 72.07 72.05 72.40 72.46 72.81

EPF SGCN 89.86 90.54 91.37 92.00 92.72
WSGCN+ 87.73 88.64 90.50 90.98 91.51
WSGCN- 88.27 89.21 90.32 90.64 91.57
WSGCN± 86.53 88.67 90.16 90.89 91.52
WSGCNsb 90.90 91.98 93.06 93.67 94.53
WSGCNgb 92.06 93.49 95.13 95.92 96.35
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