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This article presents two theoretical approaches that simulate the visco-elastic behaviour of elastomer

specimens. The first approach, based on an equivalent rheological model, provides a dynamic modulus

extracted from a Volterra development of the visco-elastic constitutive law using either relaxation or creep

kernels. The second approach establishes a restoring force model based on a first-order differential equation

that relates the restoring force to the deflection, the forcing frequency and deflection amplitude dependence

being taken into account by the envelope curves of the force–deflection loop.

The two models proposed are first applied to an elastomer cylinder mount made of a small quantity of

carbon black filler and then to elastomer plates made of a large quantity of black filler. The cylinder and

plates specimens are subjected to traction–compression and shear tests, respectively.

In order to compare the two approaches, the dynamic modulus of the second approach is extracted by 
applying classical formulae to the force–deflection loop obtained with the restoring force model. Moreover 
experimental investigations permit comparing the simulated and measured dynamic modulus and 
validating the two theoretical approaches proposed.

�Corresponding author. Tel.: +33 4 72 43 82 02; fax: +33 4 72 43 89 30.

E-mail address: regis.dufour@insa-lyon.fr (R. Dufour).
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1. Introduction

Elastomer specimens are widely used as vibration isolators in particular in automotive

applications. Their visco-elastic behaviour is delicate and complicated to model due to nonlinear

dependence on pre-load, deflection, temperature and forcing frequency. The modelling of such

behaviour requires experimental investigations that detect significant geometric and material

nonlinearities. Consequently, the associated constitutive laws are quite complex. Hyper-elastic

models are often used to fit nonlinear quasi-static force–deflection curves. Numerous specific

formulations of strain energy functions have been proposed to describe the hyper-elastic

properties of incompressible as well as compressible materials. A partial overview can be found in

Ref. [1]. Phenomenological models include the generalised Rivlin model and the Ogden model.

Other models are based on statistical theory in which vulcanised rubber is regarded as a three-

dimensional network of long chain molecules connected at a several points.

The theory of linear visco-elasticity is used to model the rate-dependent properties of rubber.

Linearity and the Boltzmann superposition principle provide a hereditary integral that represents

memory effects observed in creep and relaxation experiments carried out on elastomers [2]. For

incompressible materials like rubber, an integral relates isochoric stress to isochoric strain.

Incompressibility yields a non-determined hydrostatic pressure. Visco-elastic material models are

often constructed by analogy with spring and dash-pot systems [3]. Relaxation kernels are

traditionally approximated by the superposition of rheological elements (linear springs and

dampers). These models can also be formulated using fractional rheological elements. The main

advantage of the fractional derivative model is that it reduces the number of parameters to be

identified [4]. Both rheological and fractional models provide very good agreement with the

frequency dependence observed in the dynamic modulus. In recent years, many authors have

introduced rate-independent friction in one-dimensional models to take into account amplitude

dependency. A combined viscous and frictional model is obtained by adding ‘‘friction elastic’’

elements to the generalised Maxwell model. This approach is widely used in automotive

engineering [5]. Most of these models are of unidirectional macroscopic type and cannot be

generalised easily to incorporate multidimensional loading. Moreover they remain linear i.e., they

are unable to predict amplitude dependency and nonlinearities due to heavy strains.

The theory of nonlinear visco-elasticity must be used to take into account finite strains and

small harmonic oscillations superposed on large static displacements. Pipkin [6] and Lockett [7]

gave the general form of the nonlinear visco-elastic function, taking into account isotropy and

incompressibility. In Refs. [8–10], nonlinear visco-elastic models are linearised to take into

account small harmonic oscillations superposed on large static ones. As discussed by many

authors [11,12], all these constitutive equations can be implemented in finite element models and

many algorithms have been developed for this purpose, but the high number of degrees of

freedom (dof) necessary makes the procedure complex.

The main objective of this article is to propose two models using simplified approximations

based either on a rheological formulation, or on the restoring force model for the possible

prediction of the harmonic response of a structure equipped with elastomer specimens. In this

paper the aim is to obtain the dynamic modulus extracted from the two proposed theoretical

approaches and compare them to the experimental results. Section 2 presents an equivalent

rheological model using only a few dof. In particular the dynamic modulus is provided by a
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Volterra development of the visco-elastic constitutive law. Section 3 is devoted to the description

of the restoring force model and establishes the force–deflection loops from which the dynamic

modulus can be extracted. Then, the two proposed approaches are applied to traction–compres-

sion tests carried out on an elastomer mount with a small quantity of carbon black filler (see

Section 4) and to shear tests performed on elastomer plates with a large quantity of black filler

(see Section 5).

2. Equivalent rheological model

The behaviour of an elastomer specimen obviously depends on its geometry and constitutive

material. The proposed rheological model uses only a few dof and a constitutive law.

2.1. Constitutive equation

Stress is expressed as a function of strain history. Green and Rivlin [13–15] derived integral

approximations for this function by using the Weierstrass theorem on the polynomial

approximation of continuous functions. Pipkin [6] proposed a generic form of the development,

expanded as a 3-order Volterra series containing one-dimensional kernels to take into account

isotropy and incompressibility. This form has also been used by Lockett [7] to discuss experiments

carried out to identify relaxation kernels. Following Refs. [6,7], the constitutive equation is

formulated as follows:

SijðtÞ ¼ �pðtÞC�1
ij þ S1

ijðtÞ þ S2
ijðtÞ þ S3

ijðtÞ, (1)

where pðtÞ is a non-determined hydrostatic pressure, Cij are the components of the right

Cauchy–Green tensor and S1
ij ;S

2
ij ;S

3
ij are the components of the 3-order Volterra series of the

second Piola–Kirchoff stress tensor linked to the Green–Lagrange strain tensor EðtÞ by the

following equation:

S1
ijðtÞ ¼

Z t

�1
r1ðt� tÞ _EijðtÞdt,

S2
ijðtÞ ¼

Z t

�1

Z t

�1
r2ðt� t1; t� t2Þ _Eikðt1Þ _Ekjðt2Þdt1 dt2,

S3
ijðtÞ ¼

Z t

�1

Z t

�1

Z t

�1
r31ðt� t1; t� t2; t� t3Þtraceð _Eikðt1Þ _Eklðt2ÞÞ _Eljðt3Þdt1 dt2 dt3

þ
Z t

�1

Z t

�1

Z t

�1
r32ðt� t1; t� t2; t� t3Þ _Eikðt1Þ _Eklðt2Þ _Eljðt3Þdt1 dt2 dt3, ð2Þ

where rkðtkÞ are the relaxation kernels that link the deviatory stress matrix components with the

strain. Constant kernels reduce the development to nonlinear elastic behaviour. Linear visco-

elasticity corresponds to the first term of the development, where the first kernel r1ðtÞ is a

monotonic function of t, with r1ð1Þa0 being used to capture the elastic response. This kernel is

classically approximated by using a Prony series [16] or fractional derivative models [4]. The
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second- and third-order relaxation functions can be approximated by using a decreasing

exponential [17].

2.2. Rayleigh–Ritz expansion

According to the Rayleigh–Ritz method, the displacement u and the virtual displacement u� of
a point M are expanded as a linear combination of a chosen and admissible kinematic

displacement function matrix FðMÞ,
ujðM; tÞ ¼ akðtÞFk

j ðMÞ; u�j ðM; tÞ ¼ a�kðtÞFk
j ðMÞ 8Mðx1;x2; x3Þ, (3)

where a and a
� are the vector and the virtual vector, respectively, of the kinematical parameters.

The approximation based on only one kinematic displacement field Fj, yields the following

approximation of the Green–Lagrange strain tensor:

EijðtÞ ¼
1

2

quiðtÞ
qX j

þ qujðtÞ
qX i

� �

þ 1

2

qukðtÞ
qX j

qukðtÞ
qX i

� �

¼ UðtÞ ~E1ij þU2ðtÞ ~E2ij, ð4Þ
~E1ij and ~E2ij are calculated from the displacement field Fj as follows:

~E1ij ¼
1

UF

1

2

qFi

qX j

þ qFj

qX i

� �� �

,

~E2ij ¼
1

U2
F

1

2

qFk

qX j

qFk

qX i

� �� �

, (5)

where UF denotes the displacement of the constrained face of the elastomer specimen. In order to

obtain an analytical expression of the nonlinear time response, let the principle of virtual work be

W �
int ¼ W �

ext. In the case of a one-dimensional loading, the external virtual work is reduced to

W �
ext ¼ F ðtÞU�

F, (6)

where U�
F denotes the virtual displacement of the constrained face. Using a material description,

the internal mechanical virtual work is written as follows, see also Ref. [1]:

W �
int ¼

Z

O0

Sij

qu�i
qX j

dO0 þ
Z

O0

qui

qX k

Skj

qu�i
qX j

dO0, (7)

where O0 stands for the volume in the non-deformed configuration. Hence, including

approximation (3) in the principle of virtual work yields an expression of the nonlinear force:

F ðtÞ ¼
Z

O0

Sij
~E1ij dO0 þ 2UðtÞ

Z

O0

Sij
~E2ij dO0. (8)

Experimental dynamic results from a non-pre-loaded specimen permit fitting the parameters of

the model. This corresponds to the case of nonlinear viscoelasticity, where nonlinearities are

purely constitutive. Since there are no large strains, the second-order terms in the Green–

Lagrange strain tensor are not taken into account. Therefore S ¼ r, and only the terms from the

linear part of the mechanical internal work are taken into account in the expression of the internal
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virtual work. Under these assumptions, Eq. (8) is reduced to

F ðtÞ ¼ a1

Z t

�1
r1ðt� tÞ _UðtÞdtþ b2

Z t

�1

Z t

�1
r2ðt� t1; t� t2Þ _Uðt1Þ _Uðt2Þdt1 dt2

þ c31

Z t

�1

Z t

�1

Z t

�1
r31ðt� t1; t� t2; t� t3Þ _Uðt1Þ _Uðt2Þ _Uðt3Þdt1 dt2 dt3

þ c32

Z t

�1

Z t

�1

Z t

�1
r32ðt� t1; t� t2; t� t3Þ _Uðt1Þ _Uðt2Þ _Uðt3Þdt1 dt2 dt3, ð9Þ

where a1; b2; c31 and c32 are known parameters which take into account the geometry

a1 ¼
Z

O0

~E1ij
~E1ij dO0; b2 ¼

Z

O0

~E1ik
~E1kj

~E1ij dO0,

c31 ¼
Z

O0

trace ð ~E1ik
~E1kl Þ ~E1lj

~E1ij dO0; c32 ¼
Z

O0

~E1ik
~E1kp

~E1pj
~E1ij dO0. (10)

2.3. Dynamic modulus

The dynamic modulus is calculated using a harmonic displacement assumption:

UðtÞ ¼ 1
2
ðU0e

iot þ Ū0e
�iotÞ. (11)

The force is calculated from Eq. (9), by using the harmonic balance method. Restricting the

development to the first harmonic, the only terms that remain are those from the first and the

third kernels. There is no term associated with the fundamental harmonic coming from the

second-order kernel, and the dynamic modulus can be written as follows:

Kðo;U0Þ ¼
F ðo;U0Þ

U0

¼ a1ioK1ðoÞ þ
1

4
io3jU0j2ðc31K31ðoÞ þ c32K32ðoÞÞ, (12)

where KkðoÞ are related to the Fourier transform of the relaxation kernels using the following

relationships:

K1ðoÞ ¼
Z 1

0

r1ðX Þe�ioX dX ,

K3kðoÞ ¼ ~K3kðo;o;�oÞ þ ~K3kðo;�o;oÞ þ ~K3kð�o;o;oÞ,

~K3kðo1;o2;o3Þ ¼
Z 1

0

Z 1

0

Z 1

0

r3kðX 1;X 2;X 3Þe�ioX 1e�ioX 2e�ioX 3 dX 1 dX 2 dX 3. (13)

Hence, for any geometry, the dynamic modulus can be written as a function of the frequency and

the amplitude. Eq. (12) can be written as follows:

Kðo;U0Þ ¼ KLinðoÞ þ jU0j2KNLðoÞ, (14)

where KLinðoÞ and KNLðoÞ, deduced from Eqs. (12) and (13), need to be estimated experimentally

for each forcing frequency. In order to evaluate these functions, q experimental tests were carried
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out at different levels of displacement which gave Kðo;U iÞ with i ¼ 1; 2; . . . ; q. Then, KLinðoÞ and
KNLðoÞ were obtained by means of the equation:

1 U2
1

.

.

.
.
.
.

1 U2
q

2

6

6

6

4

3

7

7

7

5

KLinðoÞ
KNLðoÞ

( )

¼

Kðo;U1Þ
.
.
.

Kðo;UqÞ

8

>

>

<

>

>

:

9

>

>

=

>

>

;

(15)

which is solved by a Moore–Penrose inversion. The number of tests q has to be greater than two

so that the solution can be compared to a least square approximation.

3. Restoring force model

Elastomer specimens have a hysteretic behaviour that can be described by a global

force–deflection loop [18–22]. Existing models are limited when they are formulated from the

envelope curves of the loop, which can be time and velocity dependent. Coulomb’s model is too

simple. Dalh’s model has constant envelope lines while the models of Krasnosel’skii and Duhem-

Madelung are much too general, see Ref. [23]. Bouc’s [24] and Wen’s model [25,26] are difficult to

formulate from the envelope curves.

3.1. General restoring force model

In Ref. [27], an original and general hysteretic operator for modelling the force–deflection loop

is presented. It can model various shapes of possible behaviour: softening, hardening or a

combination of both. A simplified formulation permits expressing it as follows:

dR

dt
¼ b

du

dt
h� R sgn

du

dt

� �� �

(16)

with u being the deflection, b a constant, h the following equation:

h ¼ 1

2
ðhu þ hlÞsgn

du

dt

� �

þ ðhu � hlÞ
� �

(17)

containing the upper hu and lower hl envelope curves between which the restoring force R must

remain. Measurement of the force–deflection loops permits the identification of these parameters,

in particular the envelope curves.

The response of a structure equipped with such a specimen is easily predicted by coupling the

first differential equation of the restoring force model (16) with the second-order differential

equations governing the behaviour of the structure and containing the restoring force in their

second member. A step-by-step time integration scheme permits predicting the transient and

harmonic forced response [28].
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3.2. Dynamic modulus

In order to collect and compare common results with the equivalent rheological model, the

dynamic equivalent stiffness modulus can be extracted from the force–deflection loops established

with the proposed restoring force model. Classically, harmonic investigation requires the use of

dynamic equivalent stiffness ke and loss factor Ze, which are assumed to be constant during one cycle.

They are extracted from the simulated and measured loops using the following classical formulae:

ke ¼
Rmax � Rmin

umax � umin

, (18)

Ze ¼
ðRmax � RminÞju¼0

Rmax � Rmin

(19)

which permit expressing complex stiffness k:

k ¼ keð1þ jZeÞ (20)

or

k ¼ kr þ jki (21)

with j ¼
ffiffiffiffiffiffiffi

�1
p

.

4. Elastomer specimen under traction–compression tests

4.1. Experimental investigation

The traction–compression tests, see Figs. 1 and 2, were carried out on a cylindrical mount made

of carbon black filled rubber (diameter, 43mm; height, 60mm). Fixed at one of its ends, it was

subjected to axial harmonic deflection with different amplitudes and forcing frequencies. The

quasi-static tests were performed with a frequency of 0.0032Hz and a 19mm triangular deflection

amplitude while the dynamic tests were performed with a 10–50Hz swept sine deflection for

several amplitudes from 0.2 to 1.0mm. The complex modulus Kðo; b0Þ is evaluated by computing

the ratio between the harmonic input displacement UðtÞ ¼ b0e
iot and the associated output force

F ðtÞ ¼ F0e
iot on the same harmonic. The swept sine tests permit obtaining the global nonlinear

behaviour across the entire frequency band.

From the measurement of the dynamic modulus, it can be concluded that both frequency and

amplitude dependencies exist. The dynamic modulus increases with frequency, see Fig. 3, which is

clearly due to viscous dissipation, and decreases with amplitude, see Fig. 4. The rubber used for

the compression specimen contains very little carbon black filler. The damping properties of this

type of material are amplitude quasi-independent.

4.2. Dynamic modulus from the equivalent rheological model

The Volterra development predicts the general form of the dynamic modulus expressed by

formula (14), as a function of the amplitude and the frequency, in the case of harmonic response
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and of a nonlinear viscoelastic specimen. It has been demonstrated [29] that the harmonic test is

very sensitive to nonlinearities and permits identifying the Volterra series.

Let n; p and k represent three different amplitude levels of the forcing deflection. The following

function

gkðo; nÞ ¼
KnðoÞ � KpðoÞ
KkðoÞ � KpðoÞ

(22)

Fig. 2. Block diagram of the traction–compression test rig.

Fig. 1. Photo of the traction–compression test rig.
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is plotted in Fig. 5 for several values of n. Parameters k and p are fixed to 1 and 0.2mm,

respectively. The results highlight that the evolutions of the real part of g1 are relatively constant

versus frequency and confirm that the amplitude and frequency dependencies are uncoupled. For

each forcing frequency, the values of KLinðoÞ and KNLðoÞ that minimize the error with

experimental data are sought, see Eq. (15) and Fig. 6.

Thus it can be claimed that the Volterra expansion permits obtaining the dynamic modulus as a

function of the amplitude with good accuracy, at least for a specimen with very few little carbon

black filler.
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Fig. 3. Traction–compression tests. Measured real (a) and imaginary (b) parts of the dynamic modulus versus forcing

frequency.
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Fig. 4. Traction–compression tests. Measured real (a) and imaginary (b) parts of the dynamic modulus versus

deflection amplitude.
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4.3. Dynamic modulus from the restoring force model

The experimental quasi-static loop permits identifying the parameters of the restoring force

model. The triangular deflection is approximated with a Fourier series using 10 coefficients to

obtain the velocity and its sign, see Fig. 7, and to take into account the successive cycles

u

uc
¼ 2

p2

X

10

n¼0

1

ð2nþ 1Þ2
cos 2pf ð2nþ 1Þ tþ 1

4f

� �� �

, (23)

Fig. 5. Traction–compression test, with no pre-load. Real part of Eq. (22) with p ¼ 0:2 and k ¼ 1.

Fig. 6. Traction–compression test. Real (a) and imaginary (b) parts of the dynamic modulus measured and predicted

with the rheological approach.
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where uc is the maximum deflection of each loop while f is the forcing frequency. Constant b is

adjusted at 6000 by comparing the areas of the measured and predicted loops while the envelope

curves are approximated by using the least-square method:

hu ¼ �794560u2 þ 47280uþ 71:783� 50 1� uc

0:019

� �2
� �

ð0:741þ 0:005f Þ, (24)

hl ¼ �583400u2 þ 49012u� 47:769þ 18 1� uc

0:019

� �2
� �

ð0:741þ 0:005f Þ. (25)

The quasi-static force–deflection loops of the elastomer cylinder mount measured and predicted

by using relations (16), (17), (23), (24) and (25) are compared in Fig. 8.

The harmonic force–deflection loops dependant on forcing frequency f are plotted in Figs. 9a

and b for an 11 and 50Hz forcing frequency. The global slope of the loop increases with the

forcing frequency. This is also described by Figs. 9c and d, which show the extracted real and

imaginary parts of the complex stiffness by using relations (18)–(21). The restoring force model

proposed satisfactorily describes the experimental harmonic behaviour of the cylindrical mount

under traction–compression.

The hardening–softening behaviour of the loops plotted in Figs. 8 and 9a is mainly due to the

geometric configuration imposed by the compression–traction test.
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Fig. 7. Approximated time history triangular deflection and its time derivative for the traction–compression test.
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5. Elastomer specimen under shear tests

5.1. Experimental investigation

The shear tests were carried out on a pair of elastomer (also carbon black filled rubber) plates

placed opposite each other, see Fig. 10.

They were subjected to axial harmonic deflection having different amplitudes and forcing

frequencies. Only a positive triangular deflection was applied for the quasi-static test (frequency of

0.01Hz and amplitude of 3.5mm). The dynamic tests were performed using a sine excitation with

a (10–100Hz) frequency range and an (0–1.0mm) amplitude range.

The shear specimen contained more carbon black filler than the specimen used for the

compression test. The measurement of the dynamic modulus shows that amplitude dependency is

more pronounced for this specimen and that the evolution of the dynamic modulus function of

the amplitude is substantially nonlinear, see Fig. 11.

5.2. Dynamic modulus from equivalent rheological model

Formula (22) is investigated again in the case of the shear test. The quasi-constant changes of

the real and imaginary parts of function gk show that the amplitudes and frequency dependencies

can be uncoupled even if the specimen is heavily filled rubber, see Fig. 12.

For each forcing frequency, the values of KLinðoÞ and KNLðoÞ which minimize the error with

the experimental data are sought, see Eq. (15). A Volterra expansion to order 3 predicts a
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Fig. 8. Traction–compression test at f ¼ 0:0032Hz. Quasi-static force–deflection loops measured (solid line) and

predicted (dotted line) with the restoring force model.

12



Acc
ep

te
d 

M
an

us
cr

ip
t

-20 -15 -10 -5 0 5 10 15 20
-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

R
e
s
to

ri
n
g
 f
o
rc

e
 (

N
)

Loops at 11 Hz

Loops at 50 Hz

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

20

40

60

80

R
e
s
to

ri
n
g
 F

o
rc

e
 (

N
)

Loop at 11 Hz

Loop at 50 Hz

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

55

60

65

70

75

80

Amplitude (mm) Amplitude (mm)

Amplitude (mm)Amplitude (mm)

R
e
a
l 
d
y
n
a
m

ic
 s

ti
ff
n
e
s
s
 p

a
rt

 (
N

/m
m

)

Model 11 Hz 

Experiment 11 Hz

Model 50 Hz

Experiment 50 Hz

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Im

a
g
d
y
n
a
m

ic
 p

a
rt

 (
N

/m
m

) 

Model 11 Hz

Experiment 11 Hz

Model 50 Hz

Experiment 50 Hz

(a) (b)

(d)(c)

Fig. 9. Traction–compression test at 11 and 50Hz. Force–deflection loops versus 1.5–19mm (a) and 1mm (b)

deflection amplitudes. Real (c) and imaginary (d) parts of the dynamic modulus measured and predicted with the

restoring force model.

Fig. 10. Elastomer plates subjected to a shear test.
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quadratic dependency on amplitude. This expansion is not satisfactory, see Fig. 13, since the

convexities of the predicted and measured dynamic modulus versus amplitude oppose each other.

One solution to this is to use more than three kernels, which is computer time consuming while

another possibility is to develop the function using creep kernels instead of relaxation kernels.

Let the inversion of expression (9) yield the following expression for the velocity:

_UðtÞ ¼
Z 1

0

h1ðtÞF ðt� tÞdtþ
Z 1

0

Z 1

0

h2ðt1; t2ÞF ðt� t1ÞF ðt� t2Þdt1 dt2

þ
Z 1

0

Z 1

0

Z 1

0

h3ðt1; t2; t3ÞF ðt� t1ÞF ðt� t2ÞF ðt� t3Þdt1 dt2 dt3, ð26Þ

Fig. 11. Shear test. Measured real (a) and imaginary (b) parts of the dynamic modulus versus deflection for several

frequencies.

Fig. 12. Shear test, with no pre-load. Real (a) and imaginary (b) parts of Eq. (22) with p ¼ 0:05 and k ¼ 1.
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where hk are the creep functions. In this case, the form of the dynamic compliance is

U

F ðoÞ ¼ HðoÞ ¼ HLinðoÞ þ jF ðoÞj2HNLðoÞ, (27)

where the corresponding compliances and HLinðoÞ and HNLðoÞ can be calculated from the

expression of the Fourier transform of the relaxation functions KkðoÞ following a procedure

detailed in Ref. [12]. A least square method permits finding the values ofHLinðoÞ andHNLðoÞ that
best fit the compliance deflection curve (for each value of the frequency). Eq. (27) is better adapted

than Eq. (14) for describing the deflection amplitude dependency.

The dynamic characteristics extracted from this model are then compared in Figs. 14 and 15

with the measured data. The expansion using creep kernels is satisfactory for the real and the

imaginary parts of the stiffness.

5.3. Dynamic modulus from the restoring force model

As in Section 4.3, the experimental quasi-static loop permits adjusting the parameters of the

restoring force model: b ¼ 2� 105 and the triangular deflection is approximated with a Fourier

series using 10 coefficients, see also Fig. 16:

u

uc
¼ 1

2
� 4

p2

X

10

n¼0

1

ð2nþ 1Þ2
cosð2pf ð2nþ 1ÞtÞ. (28)

Introducing the maximum amplitude makes the curve available for harmonic excitation. To do

this, the ordinate axis is divided by the maximum value hc � 730N and the abscissa axis by the

Fig. 13. Shear test and relaxation kernels. Measured and predicted real (a) and imaginary (b) parts of the dynamic

stiffness versus deflection for several forcing frequencies.
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maximum deflection uc ¼ 0:0035m. Using the least square method yields:

hu

hc
¼ 0:71þ 0:36

u

uc

� �3

� 0:69e�2:20ðu=ucÞ, (29)

hl

hc
¼ 0:006þ 0:79

u

uc

� �

� 0:00003e8:75ðu=ucÞ. (30)

Fig. 14. Shear test and creep kernels. Measured and predicted real (a) and imaginary (b) parts of the dynamic

compliance versus deflexion for several frequencies.

Fig. 15. Shear test and creep kernels. Measured (dashed line) and predicted (solid line) real (a) and imaginary (b) parts

of the dynamic stiffness.
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Fig. 16. Fourier series of the time history triangular deflection and its time derivative for the shear test.
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Fig. 17. Shear test. Maximum force–deflection loops measured (dotted line) and predicted (solid line) with the restoring

force model.
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Fig. 17 permits comparing the maximum force–deflection loop measured and predicted by

using relations (16), (17), (29) and (30).

In order to take into account the frequency effect in the absence of experimental loops, it can be

assumed that the loop rotates with a quadratic evolution of the frequency. See the measured

dynamic equivalent stiffness plotted in Fig. 11, which increases with the forcing frequency.

Consequently, relations (29) and (30) become

hu

hc
¼ 0:71þ 0:36

u

uc

� �3

� 0:69e�2:20ðu=ucÞ þ u

uc
ð0:007f � 0:00004f 2Þ, (31)

hl

hc
¼ 0:006þ 0:79

u

uc

� �

� 0:00003e8:75ðu=ucÞ þ u

uc
ð0:007f � 0:00004f 2Þ. (32)

Fig. 18 shows the loops for several deflection amplitudes and forcing frequencies.

Considering several positive harmonic deflection amplitudes (0.01, 0.05, 0.1, 0.5, and 1mm) and

three forcing frequencies (10, 50 and 100Hz), the equivalent dynamic stiffnesses extracted from

the model, see Eqs. (16)–(21), (31) and (32), are compared with the measured real stiffness in Figs.

19 and 20. The restoring force model is satisfactory except for the very lowest deflection amplitude

(0.01mm), see Fig. 20, from which it is difficult to establish the model, since the measured loops

are too small.

Regarding the shear test performed for the positive deflection amplitude only, formula (19)

cannot be used for evaluating the equivalent loss factor.

0 0.5 1 1.5 2 2.5 3 3.5
0

100

200

300

400

500

600

700

800

900

1000

Deflection (mm)

R
e

s
to

ri
n

g
 f
o

rc
e

 (
N

)

Fig. 18. Shear test. Predicted force–deflection loops with the restoring force model for two maximum amplitudes

(dotted lines: 0.01Hz, dashed lines: 50Hz, solid lines: 100Hz).
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6. Conclusion

The visco-elastic behaviour of elastomer specimens was described using either an equivalent

rheological model or a restoring force model. The comparison of the dynamic modulus extracted
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Fig. 19. Shear test. Dynamic equivalent stiffness measured and predicted with the restoring force model.
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from the two models and from the experimental investigation permits validating the two

theoretical approaches.

In the rheological approach, the constitutive laws are expanded by a Volterra series using three

one-dimension kernels. It was shown that relaxation kernels give a satisfactory predicted dynamic

modulus in the case of the traction–compression test which highlights a hardening–softening

behaviour of the cylinder. However, relaxation kernels are limited in the case of the shear test,

which highlights a hardening–hardening behaviour of the squared plate. In the latter case it is

necessary to use a creep kernel to obtain a satisfactory predicted dynamic modulus.

The restoring force model requires experimental force–deflection loops measured for different

deflection amplitudes and forcing frequencies. This model can be generalised since its envelope

curves can be a function of the deflection amplitude, the forcing frequencies and, if necessary, the

pre-load.

Possible prediction of the harmonic response of a structure equipped with elastomer specimens

requires:

1. in the case of the equivalent rheological model, introducing the dynamic modulus in the first

member of the equations of motion and performing a resolution in the frequency domain,

2. in the case of the restoring force model, incorporating the restoring force obtained with the

first-order differential equation in the second member of the equations of the motion and

performing a resolution in the time domain, with the restoring force being updated at each time

step.
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support.

References

[1] G.A. Holzapfel, Non Linear Solid Mechanics, Wiley, New York, 2000.
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transformations, Thèse de doctorat en mécanique, Ecole Nationale des Ponts et Chaussées, France, 1993.

[18] D. Nashif, D.I.G. Jones, J.P. Henderson, Vibration Damping, Wiley, New York, 1985.

[19] D.G. Jones, Handbook of Viscoelastic Vibration Damping, Wiley, New York, 2001.

[20] J.B. Roberts, P.D. Spanos, Random Vibration and Statistical Linearisation, Wiley, New York, 1990.

[21] K. Gjika, R. Dufour, Rigid body and nonlinear mount identification: application to onboard equipment with

hysteretic suspension, Journal of Vibration and Control 5 (1) (1999) 75–94.

[22] K. Gjika, R. Dufour, G. Ferraris, Transient response of structures on viscoelastic or elastoplastic mounts:

prediction and experiment, Journal of Sound and Vibration 198 (3) (1996) 361–378.
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