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Equivalent rheological and restoring force models for
predicting the harmonic response of elastomer specimens
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This article presents two theoretical approaches that simulate the visco-elastic behaviour of elastomer
specimens. The first approach, based on an equivalent rheological model, provides a dynamic modulus
extracted from a Volterra development of the visco-elastic constitutive law using either relaxation or creep
kernels. The second approach establishes a restoring force model based on a first-order differential equation
that relates the restoring force to the deflection, the forcing frequency and deflection amplitude dependence
being taken into account by the envelope curves of the force—deflection loop.

The two models proposed are first applied to an elastomer cylinder mount made of a small quantity of
carbon black filler and then to elastomer plates made of a large quantity of black filler. The cylinder and
plates specimens are subjected to traction—compression and shear tests, respectively.

In order to compare the two approaches, the dynamic modulus of the second approach is extracted by
applying classical formulae to the force—deflection loop obtained with the restoring force model. Moreover
experimental investigations permit comparing the simulated and measured dynamic modulus and
validating the two theoretical approaches proposed.

*Corresponding author. Tel.: +33472438202; fax: +33472438930.
E-mail address. regis.dufour@insa-lyon.fr (R. Dufour).



1. Introduction

Elastomer specimens are widely used as vibration isolators in particular in automotive
applications. Their visco-elastic behaviour is delicate and complicated to model due to nonlinear
dependence on pre-load, deflection, temperature and forcing frequency. The modelling of such
behaviour requires experimental investigations that detect significant geometric and material
nonlinearities. Consequently, the associated constitutive laws are quite complex. Hyper-elastic
models are often used to fit nonlinear quasi-static force—deflection curves. Numerous specific
formulations of strain energy functions have been proposed to describe the hyper-elastic
properties of incompressible as well as compressible materials. A partial overview can be found in
Ref. [1]. Phenomenological models include the generalised Rivlin model and the Ogden model.
Other models are based on statistical theory in which vulcanised rubber is regarded as a three-
dimensional network of long chain molecules connected at a several points.

The theory of linear visco-elasticity is used to model the rate-dependent properties of rubber.
Linearity and the Boltzmann superposition principle provide a hereditary integral that represents
memory effects observed in creep and relaxation experiments carried out on elastomers [2]. For
incompressible materials like rubber, an integral relates isochoric stress to isochoric strain.
Incompressibility yields a non-determined hydrostatic pressure. Visco-elastic material models are
often constructed by analogy with spring and dash-pot systems [3]. Relaxation kernels are
traditionally approximated by the superposition of rheological elements (linear springs and
dampers). These models can also be formulated using fractional rheological elements. The main
advantage of the fractional derivative model is that it reduces the number of parameters to be
identified [4]. Both rheological and fractional models provide very good agreement with the
frequency dependence observed in the dynamic modulus. In recent years, many authors have
introduced rate-independent friction in one-dimensional models to take into account amplitude
dependency. A combined viscous and frictional model is obtained by adding “friction elastic”
elements to the generalised Maxwell model. This approach is widely used in automotive
engineering [5]. Most of these models are of unidirectional macroscopic type and cannot be
generalised easily to incorporate multidimensional loading. Moreover they remain linear i.e., they
are unable to predict amplitude dependency and nonlinearities due to heavy strains.

The theory of nonlinear visco-elasticity must be used to take into account finite strains and
small harmonic oscillations superposed on large static displacements. Pipkin [6] and Lockett [7]
gave the general form of the nonlinear visco-elastic function, taking into account isotropy and
incompressibility. In Refs. [8—10], nonlinear visco-elastic models are linearised to take into
account small harmonic oscillations superposed on large static ones. As discussed by many
authors [11,12], all these constitutive equations can be implemented in finite element models and
many algorithms have been developed for this purpose, but the high number of degrees of
freedom (dof) necessary makes the procedure complex.

The main objective of this article is to propose two models using simplified approximations
based either on a rheological formulation, or on the restoring force model for the possible
prediction of the harmonic response of a structure equipped with elastomer specimens. In this
paper the aim is to obtain the dynamic modulus extracted from the two proposed theoretical
approaches and compare them to the experimental results. Section 2 presents an equivalent
rheological model using only a few dof. In particular the dynamic modulus is provided by a



Volterra development of the visco-elastic constitutive law. Section 3 is devoted to the description
of the restoring force model and establishes the force—deflection loops from which the dynamic
modulus can be extracted. Then, the two proposed approaches are applied to traction—compres-
sion tests carried out on an elastomer mount with a small quantity of carbon black filler (see
Section 4) and to shear tests performed on elastomer plates with a large quantity of black filler
(see Section 9).

2. Equivalent rheological model

The behaviour of an elastomer specimen obviously depends on its geometry and constitutive
material. The proposed rheological model uses only a few dof and a constitutive law.

2.1. Constitutive equation

Stress is expressed as a function of strain history. Green and Rivlin [13-15] derived integral
approximations for this function by using the Weierstrass theorem on the polynomial
approximation of continuous functions. Pipkin [6] proposed a generic form of the development,
expanded as a 3-order Volterra series containing one-dimensional kernels to take into account
1sotropy and incompressibility. This form has also been used by Lockett [7] to discuss experiments
carried out to identify relaxation kernels. Following Refs. [6,7], the constitutive equation is
formulated as follows:

Si(1) = —p()C;;' + SHD) + S0 + Si0), (1)

where p(7) is a non-determined hydrostatic pressure, C; are the components of the right
Cauchy—Green tensor and S}j, S;,S?j are the components of the 3-order Volterra series of the
second Piola—Kirchoff stress tensor linked to the Green—Lagrange strain tensor E(z) by the
following equation:

S}j(t) = /Z r(t— T)Eij(’f) dr,
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where ri(2;) are the relaxation kernels that link the deviatory stress matrix components with the
strain. Constant kernels reduce the development to nonlinear elastic behaviour. Linear visco-
elasticity corresponds to the first term of the development, where the first kernel r(¢) is a
monotonic function of ¢, with r;(c0)#0 being used to capture the elastic response. This kernel is
classically approximated by using a Prony series [16] or fractional derivative models [4]. The



second- and third-order relaxation functions can be approximated by using a decreasing
exponential [17].

2.2. Rayleigh—Ritz expansion

According to the Rayleigh—Ritz method, the displacement u and the virtual displacement u* of
a point M are expanded as a linear combination of a chosen and admissible kinematic
displacement function matrix (M),

w(M, 1) = o (PF(M),  uf(M, 1) = a3 ()P} (M) VM (x1,x2,%3), 3)

where a and a* are the vector and the virtual vector, respectively, of the kinematical parameters.
The approximation based on only one kinematic displacement field &;, yields the following
approximation of the Green—Lagrange strain tensor:

1 fou(n) du(n\ 1 (due(t) du(a)
EU(I)‘E(@XJ + a}f)+§<axj aXl-)
= U(t)E1; + U Ey, 4)

E 157 and Ez,-j are calculated from the displacement field ®; as follows:
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U2 [2\0X; 0X;
where Ug denotes the displacement of the constrained face of the elastomer specimen. In order to

obtain an analytical expression of the nonlinear time response, let the principle of virtual work be
Wi = W?* . In the case of a one-dimensional loading, the external virtual work is reduced to

it — ext*
w* = F(t)U%, (6)

ext
where U7, denotes the virtual displacement of the constrained face. Using a material description,
the internal mechanical virtual work is written as follows, see also Ref. [1]:
ou* Ou; ou*
wio= [ Sj=—=dQ —— Sk = dQ,, 7
int 2 y aXJ 0+ anXk kj aXJ 0 ()
where Qg stands for the volume in the non-deformed configuration. Hence, including
approximation (3) in the principle of virtual work yields an expression of the nonlinear force:

F(t) = SiE;dQo+2U(t) | SjiEo; dQ. (8)

Qo Qo
Experimental dynamic results from a non-pre-loaded specimen permit fitting the parameters of
the model. This corresponds to the case of nonlinear viscoelasticity, where nonlinearities are
purely constitutive. Since there are no large strains, the second-order terms in the Green—
Lagrange strain tensor are not taken into account. Therefore S = &, and only the terms from the
linear part of the mechanical internal work are taken into account in the expression of the internal



virtual work. Under these assumptions, Eq. (8) is reduced to

F(t):al/ Vl(l—T)U(‘E)d‘C-l-bz/ / Vz(l—’El,t—’Ez)U(Tl)U(Tz)d‘C1 dz,
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where ay, by, c3; and c¢3, are known parameters which take into account the geometry
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2.3. Dynamic modulus

The dynamic modulus is calculated using a harmonic displacement assumption:
U(1) = L(Uoe" + Tpe ™). (11)

The force is calculated from Eq. (9), by using the harmonic balance method. Restricting the
development to the first harmonic, the only terms that remain are those from the first and the
third kernels. There is no term associated with the fundamental harmonic coming from the
second-order kernel, and the dynamic modulus can be written as follows:

F((D, Uo)

. 1.
K(w,Uy) = = ajioK(w) + ) 0’| Uo*(c31K31(0) + c3K3(w)), (12)

where Kj(w) are related to the Fourier transform of the relaxation kernels using the following
relationships:

o0
Ki(w) = / ri(X)e ¥ dx,
0
K}k(())) = [%31((('05 w, —CU) + k}k((}), —, (U) + [%31((_(’03 , CU),
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o Jo Jo
Hence, for any geometry, the dynamic modulus can be written as a function of the frequency and
the amplitude. Eq. (12) can be written as follows:
K(w, Up) = Kiin(®) + | Ug|*Kni(w), (14)

where Ky ,(w) and Ky (w), deduced from Eqgs. (12) and (13), need to be estimated experimentally
for each forcing frequency. In order to evaluate these functions, ¢ experimental tests were carried



out at different levels of displacement which gave K(w, U;) withi = 1,2,...,q. Then, Ky () and
Ky (w) were obtained by means of the equation:

1 U? K(w, Uy)
K Lin(w)
= : (15)
Kni()
q K(O), Uq)
which is solved by a Moore—Penrose inversion. The number of tests ¢ has to be greater than two
so that the solution can be compared to a least square approximation.

3. Restoring force model

Elastomer specimens have a hysteretic behaviour that can be described by a global
force—deflection loop [18-22]. Existing models are limited when they are formulated from the
envelope curves of the loop, which can be time and velocity dependent. Coulomb’s model is too
simple. Dalh’s model has constant envelope lines while the models of Krasnosel’skii and Duhem-
Madelung are much too general, see Ref. [23]. Bouc’s [24] and Wen’s model [25,26] are difficult to
formulate from the envelope curves.

3.1. General restoring force model

In Ref. [27], an original and general hysteretic operator for modelling the force—deflection loop
is presented. It can model various shapes of possible behaviour: softening, hardening or a
combination of both. A simplified formulation permits expressing it as follows:

dR du du
E:ﬂa<h—ngn<a>) (16)

with u being the deflection, f a constant, /4 the following equation:

du

1
=5 (0 + hosen(57) + = ) (1

containing the upper /4, and lower /; envelope curves between which the restoring force R must
remain. Measurement of the force—deflection loops permits the identification of these parameters,
in particular the envelope curves.

The response of a structure equipped with such a specimen is easily predicted by coupling the
first differential equation of the restoring force model (16) with the second-order differential
equations governing the behaviour of the structure and containing the restoring force in their
second member. A step-by-step time integration scheme permits predicting the transient and
harmonic forced response [28].



3.2. Dynamic modulus

In order to collect and compare common results with the equivalent rheological model, the
dynamic equivalent stiffness modulus can be extracted from the force—deflection loops established
with the proposed restoring force model. Classically, harmonic investigation requires the use of
dynamic equivalent stiftness k., and loss factor 7, which are assumed to be constant during one cycle.
They are extracted from the simulated and measured loops using the following classical formulae:

e s
(Rinax — Rumin)lu=o
T = Ruux — Ronin (1
which permit expressing complex stiffness k:
k = ke(1+jn,) (20)
or
k =k, + jk; (21)
with j = v/—1.

4. Flastomer specimen under traction—compression tests
4.1. Experimental investigation

The traction—compression tests, see Figs. 1 and 2, were carried out on a cylindrical mount made
of carbon black filled rubber (diameter, 43 mm; height, 60 mm). Fixed at one of its ends, it was
subjected to axial harmonic deflection with different amplitudes and forcing frequencies. The
quasi-static tests were performed with a frequency of 0.0032 Hz and a 19 mm triangular deflection
amplitude while the dynamic tests were performed with a 10-50 Hz swept sine deflection for
several amplitudes from 0.2 to 1.0 mm. The complex modulus K(w, f3,) is evaluated by computing
the ratio between the harmonic input displacement U(f) = e’ and the associated output force
F(t) = Foe'® on the same harmonic. The swept sine tests permit obtaining the global nonlinear
behaviour across the entire frequency band.

From the measurement of the dynamic modulus, it can be concluded that both frequency and
amplitude dependencies exist. The dynamic modulus increases with frequency, see Fig. 3, which is
clearly due to viscous dissipation, and decreases with amplitude, see Fig. 4. The rubber used for
the compression specimen contains very little carbon black filler. The damping properties of this
type of material are amplitude quasi-independent.

4.2. Dynamic modulus from the equivalent rheological model

The Volterra development predicts the general form of the dynamic modulus expressed by
formula (14), as a function of the amplitude and the frequency, in the case of harmonic response



Fig. 1. Photo of the traction—compression test rig.
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Fig. 2. Block diagram of the traction—compression test rig.

and of a nonlinear viscoelastic specimen. It has been demonstrated [29] that the harmonic test is
very sensitive to nonlinearities and permits identifying the Volterra series.
Let n, p and k represent three different amplitude levels of the forcing deflection. The following

function

Ky(w) — Kp(o)

91 = 1 o) = K, ()

(22)
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Fig. 3. Traction—compression tests. Measured real (a) and imaginary (b) parts of the dynamic modulus versus forcing
frequency.
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Fig. 4. Traction—compression tests. Measured real (a) and imaginary (b) parts of the dynamic modulus versus
deflection amplitude.

is plotted in Fig. 5 for several values of n. Parameters k& and p are fixed to 1 and 0.2mm,
respectively. The results highlight that the evolutions of the real part of g, are relatively constant
versus frequency and confirm that the amplitude and frequency dependencies are uncoupled. For
each forcing frequency, the values of Kpj(w) and Knp(w) that minimize the error with
experimental data are sought, see Eq. (15) and Fig. 6.

Thus it can be claimed that the Volterra expansion permits obtaining the dynamic modulus as a
function of the amplitude with good accuracy, at least for a specimen with very few little carbon
black filler.
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with the rheological approach.

4.3. Dynamic modulus from the restoring force model
The experimental quasi-static loop permits identifying the parameters of the restoring force

model. The triangular deflection is approximated with a Fourier series using 10 coefficients to
obtain the velocity and its sign, see Fig. 7, and to take into account the successive cycles

u 2~ 1 !
M_ZE;(%H—I) cos<2nf(2n+1)<t+4f>> (23)

(4

10
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Fig. 7. Approximated time history triangular deflection and its time derivative for the traction—compression test.

where u, is the maximum deflection of each loop while f is the forcing frequency. Constant f5 is
adjusted at 6000 by comparing the areas of the measured and predicted loops while the envelope
curves are approximated by using the least-square method:

hy, = <—794560u2 + 47280u + 71.783 — 50(1

h = <—583400u2 +49012u — 47.769 + 18(1 —

U \2
_m> )(0.741 +0.005/), (24)

ue \?
0'019) )(0.741 +0.0057). (25)

The quasi-static force—deflection loops of the elastomer cylinder mount measured and predicted
by using relations (16), (17), (23), (24) and (25) are compared in Fig. 8.

The harmonic force—deflection loops dependant on forcing frequency f are plotted in Figs. 9a
and b for an 11 and 50 Hz forcing frequency. The global slope of the loop increases with the
forcing frequency. This is also described by Figs. 9c and d, which show the extracted real and
imaginary parts of the complex stiffness by using relations (18)—(21). The restoring force model
proposed satisfactorily describes the experimental harmonic behaviour of the cylindrical mount

under traction—compression.

The hardening—softening behaviour of the loops plotted in Figs. 8 and 9a is mainly due to the
geometric configuration imposed by the compression—traction test.

11
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predicted (dotted line) with the restoring force model.

5. Elastomer specimen under shear tests
5.1. Experimental investigation

The shear tests were carried out on a pair of elastomer (also carbon black filled rubber) plates
placed opposite each other, see Fig. 10.

They were subjected to axial harmonic deflection having different amplitudes and forcing
frequencies. Only a positive triangular deflection was applied for the quasi-static test (frequency of
0.01 Hz and amplitude of 3.5 mm). The dynamic tests were performed using a sine excitation with
a (10-100 Hz) frequency range and an (0—1.0 mm) amplitude range.

The shear specimen contained more carbon black filler than the specimen used for the
compression test. The measurement of the dynamic modulus shows that amplitude dependency is
more pronounced for this specimen and that the evolution of the dynamic modulus function of
the amplitude is substantially nonlinear, see Fig. 11.

5.2. Dynamic modulus from equivalent rheological model

Formula (22) is investigated again in the case of the shear test. The quasi-constant changes of
the real and imaginary parts of function g, show that the amplitudes and frequency dependencies
can be uncoupled even if the specimen is heavily filled rubber, see Fig. 12.

For each forcing frequency, the values of Kp;,(w) and Knr(w) which minimize the error with
the experimental data are sought, see Eq. (15). A Volterra expansion to order 3 predicts a

12
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13



1000
900
—— 10 Hz
800} -8 50 Hz
§ —— 100 Hz
= 700}
Z.
o~
600
p—
[P]
a4
500t
400t
300 . :
0 0.2 0.4 0.6 0.8 i

(@)

Amplitude mm

1407
—— 10 Hz
—-©— 50 Hz
100t —-— 100 Hz
g
£ 100
Z
o
g %
—_
60f
0 . . . . :
0 0.2 0.4 0.6 0.8 1

(b

Amplitude mm

Fig. 11. Shear test. Measured real (a) and imaginary (b) parts of the dynamic modulus versus deflection for several

frequencies.
1 r
n=%0.5 mm
08
= L
B 0.6
=)
(]
T o4t
n=10.1 mm
02
0 . . ’ ;
0] 20 40 60 80
(a) Frequency (Hz)

100

(g, (w,n))

-0.05f

Im

n=10.1 mm

-0.1
(b)

Frequency (Hz)

Fig. 12. Shear test, with no pre-load. Real (a) and imaginary (b) parts of Eq. (22) with p = 0.05 and k = 1.

quadratic dependency on amplitude. This expansion is not satisfactory, see Fig. 13, since the

convexities of the predicted and measured dynamic modulus versus amplitude oppose each other.

One solution to this is to use more than three kernels, which is computer time consuming while

another possibility is to develop the function using creep kernels instead of relaxation kernels.
Let the inversion of expression (9) yield the following expression for the velocity:

U(t) = /000 h(DF(t—1)dt + /000 /000 hy(t1, 1) F(t — 1) F(t — 12)dt dt)

+ / / / hy(t1, 12, T)F (1 — 1) F(t — 1)F( — 13) dy doy ds, 26)
0 0 0

14
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where /i are the creep functions. In this case, the form of the dynamic compliance is

= H(©) = Hino) + |F(@)P Hy (0), @)
(w)
where the corresponding compliances and Hyj,(w) and Hnp(w) can be calculated from the
expression of the Fourier transform of the relaxation functions Ki(w) following a procedure
detailed in Ref. [12]. A least square method permits finding the values of Hyi,(w) and Hnr(w) that
best fit the compliance deflection curve (for each value of the frequency). Eq. (27) is better adapted
than Eq. (14) for describing the deflection amplitude dependency.

The dynamic characteristics extracted from this model are then compared in Figs. 14 and 15
with the measured data. The expansion using creep kernels is satisfactory for the real and the
imaginary parts of the stiffness.

5.3. Dynamic modulus from the restoring force model

As in Section 4.3, the experimental quasi-static loop permits adjusting the parameters of the
restoring force model: f =2 x 10° and the triangular deflection is approximated with a Fourier
series using 10 coefficients, see also Fig. 16:

u 1 4 1
=g ?; mcos(27zf(2n + D)o). (28)

u(,’

Introducing the maximum amplitude makes the curve available for harmonic excitation. To do
this, the ordinate axis is divided by the maximum value /. &~ 730 N and the abscissa axis by the
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Fig. 14. Shear test and creep kernels. Measured and predicted real (a) and imaginary (b) parts of the dynamic
compliance versus deflexion for several frequencies.
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Fig. 15. Shear test and creep kernels. Measured (dashed line) and predicted (solid line) real (a) and imaginary (b) parts
of the dynamic stiffness.

maximum deflection #, = 0.0035m. Using the least square method yields:

3
% =0.71 4 0.36 <uﬁ> — 0.69¢220/uc) (29)
hy u 8.75(u/uc)
5= 0.006+0.79( - ) —0.00003¢"7/). (30)
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Fig. 16. Fourier series of the time history triangular deflection and its time derivative for the shear test.
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Fig. 17. Shear test. Maximum force—deflection loops measured (dotted line) and predicted (solid line) with the restoring
force model.
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Fig. 18. Shear test. Predicted force—deflection loops with the restoring force model for two maximum amplitudes
(dotted lines: 0.01 Hz, dashed lines: 50 Hz, solid lines: 100 Hz).

Fig. 17 permits comparing the maximum force—deflection loop measured and predicted by
using relations (16), (17), (29) and (30).

In order to take into account the frequency effect in the absence of experimental loops, it can be
assumed that the loop rotates with a quadratic evolution of the frequency. See the measured
dynamic equivalent stiffness plotted in Fig. 11, which increases with the forcing frequency.
Consequently, relations (29) and (30) become

3
% =0.71 +0.36 <uﬁ> — 0.69¢™2200/ue) 4 5(0.007]” —0.00004f2), (31)
h
;Tl — 0.006 + 0.79 <;’> — 0.00003¢5750/w) uﬁ(o.oov — 0.000047). (32)

Fig. 18 shows the loops for several deflection amplitudes and forcing frequencies.

Considering several positive harmonic deflection amplitudes (0.01, 0.05, 0.1, 0.5, and 1 mm) and
three forcing frequencies (10, 50 and 100 Hz), the equivalent dynamic stiffnesses extracted from
the model, see Egs. (16)—(21), (31) and (32), are compared with the measured real stiffness in Figs.
19 and 20. The restoring force model is satisfactory except for the very lowest deflection amplitude
(0.01 mm), see Fig. 20, from which it is difficult to establish the model, since the measured loops
are too small.

Regarding the shear test performed for the positive deflection amplitude only, formula (19)
cannot be used for evaluating the equivalent loss factor.
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Fig. 19. Shear test. Dynamic equivalent stiffness measured and predicted with the restoring force model.
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Fig. 20. Shear test. Dynamic equivalent stiffness measured (dashed line) and predicted with the restoring force model
(solid line).

6. Conclusion

The visco-elastic behaviour of elastomer specimens was described using either an equivalent
rheological model or a restoring force model. The comparison of the dynamic modulus extracted

19



from the two models and from the experimental investigation permits validating the two
theoretical approaches.

In the rheological approach, the constitutive laws are expanded by a Volterra series using three
one-dimension kernels. It was shown that relaxation kernels give a satisfactory predicted dynamic
modulus in the case of the traction—compression test which highlights a hardening—softening
behaviour of the cylinder. However, relaxation kernels are limited in the case of the shear test,
which highlights a hardening-hardening behaviour of the squared plate. In the latter case it is
necessary to use a creep kernel to obtain a satisfactory predicted dynamic modulus.

The restoring force model requires experimental force—deflection loops measured for different
deflection amplitudes and forcing frequencies. This model can be generalised since its envelope
curves can be a function of the deflection amplitude, the forcing frequencies and, if necessary, the
pre-load.

Possible prediction of the harmonic response of a structure equipped with elastomer specimens
requires:

1. in the case of the equivalent rheological model, introducing the dynamic modulus in the first
member of the equations of motion and performing a resolution in the frequency domain,

2. in the case of the restoring force model, incorporating the restoring force obtained with the
first-order differential equation in the second member of the equations of the motion and
performing a resolution in the time domain, with the restoring force being updated at each time
step.
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