
HAL Id: hal-04712790
https://hal.science/hal-04712790v1

Submitted on 30 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Heterogeneous SplitFed: Federated Learning with
Trainable and Untrainable Clients

Juliana N D da Silva, Stefan Duffner, Virginie Fresse

To cite this version:
Juliana N D da Silva, Stefan Duffner, Virginie Fresse. Heterogeneous SplitFed: Federated Learning
with Trainable and Untrainable Clients. International Conference on Federated Learning Technologies
and Applications (FLTA), Sep 2024, Valence (Espagne), Spain. �hal-04712790�

https://hal.science/hal-04712790v1
https://hal.archives-ouvertes.fr

Heterogeneous SplitFed: Federated Learning with
Trainable and Untrainable Clients

Juliana N. D. da Silva∗†, Stefan Duffner∗, Virginie Fresse†
∗ INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, LIRIS, UMR5205, 69621 Villeurbanne, France

{juliana.damurie, stefan.duffner}@insa-lyon.fr
†Hubert Curien Laboratory, UMR CNRS 5516, 42000 Saint-Etienne, France

{virginie.fresse}@univ-st-etienne.fr

Abstract—With the advent of edge computing and distributed
learning paradigms, the integration of low-resource devices
and embedded systems within these frameworks has become
a focal point of numerous research initiatives. These resource
constraints, particularly in memory and computational capacity,
are exacerbated by the demands of increasingly complex neural
network models that are deployed on such devices. SplitFed
Learning (SFL) has been proposed as an innovative approach that
combines two prominent distributed machine learning strategies,
namely federated learning (FL) and split learning (SL), which
facilitates model usage among clients with resource limitations
while preserving their privacy. However, there are specific devices
where training is difficult or impossible, which SFL, FL, or SL do
not consider. For instance, devices based on Field Programmable
Gate Arrays (FPGAs) may face such challenges. Despite this,
these devices could still benefit from the federation and contribute
to it with their own data. Therefore, in this paper, we introduce a
new federated learning approach for deep neural networks, called
Heterogeneous SplitFed Learning (HSFL), designed to support
low-resource clients that are only capable of performing model in-
ference and that can cope with heterogeneous data, thus enabling
their active participation. This enhances privacy while improving
model performance in collaboration with clients owning more
substantial computational resources. We demonstrate empirically
on image classification benchmarks and common deep learning
models that HSFL can match the performance of other FL
approaches that accommodate heterogeneous data, maintaining
efficacy and including clients with limited resources.

Index Terms—Federated Learning, heterogeneous devices, het-
erogeneous data, edge computing

I. INTRODUCTION

As the number of interconnected devices continues to grow,
collecting user data through increasingly varied methods, there
is a corresponding rise in legislative measures. Notable exam-
ples include the General Data Protection Regulation (GDPR)
[1] and California Privacy Rights Act (CPRA) [2], designed
to safeguard users against the unauthorized dissemination of
their personal information. In response to these challenges,
edge computing and distributed machine learning have been
advanced as potential solutions [3, 4]. These technologies
promise to enhance user proximity to computational resources,
thereby delivering expedited, low-latency services that priori-
tize privacy [5].

Federated Learning (FL) [4, 6, 7, 8] aims to decentralize
machine learning processes from the cloud infrastructure,
enabling client-side training while preserving data privacy. In

this approach, a shared model is maintained in the cloud,
which is continuously updated and improved based on the
weights of each client’s model. Subsequently, the refined joint
model is redistributed to the clients for further enhancement.

For clients with resource limitations who still need to train
a complex model in the cloud without sharing their private
data, Split Learning (SL) emerges as a viable solution [9].
This method divides the neural network model into two parts:
one belonging to the client and the other to the server. The
client trains on its private data and then sends its ”smashed
data” and labels to the server. The server then trains its part
of the model and returns the activations and training results to
the client, enabling the client to perform the backpropagation
step and update its model. However, SL doesn’t allow you
to combine the models of several clients, so you can’t take
advantage of all the data that may be distributed across several
locations.

To this end, Thapa et al. [10] proposed SplitFed Learning
(SFL), a method that combines Split Learning (SL) and
Federated Learning (FL). This approach enables clients with
resource constraints to train models without sharing their data,
addressing the issue of time overhead inherent in SL. Addition-
ally, SFL introduces the approach of model aggregation like
in standard FL, further enhancing its effectiveness. Despite the
solution proposed by Thapa et al. [10], we can still face issues
with devices limited by memory constraints, or those incapable
of training models and solely performing model inference.
These devices may include smart sensors, FPGAs, or small
embedded systems.

Within FL research, one topic of study concerns settings
with non independently and identically distributed (IID) data,
where clients may have different data classes and varying
amounts of data. This non-IID data reflects the heterogeneity
in real-life scenarios, where clients possess different and un-
balanced datasets. Incorporating such data into FL remains an
open challenge [11]. Another challenge regarding heterogene-
ity is the varying resources among clients, such as different
computational capacities and memory limitations.

Some solutions, such as model pruning, gradient compres-
sion, and other techniques, can reduce the cost of running a
neural network model on resource-constrained devices with a
minor reduction in accuracy. However, none of these solutions
consider devices that lack the capability to train a model while

still maintaining privacy when participating in FL.
Our contributions can be summarized as follows:
• We propose a new federated learning approach that

enables the participation of clients that have private data
but do not have the necessary computational resources
and capacities to perform the local training by effectively
collaborating with other clients that have these capabili-
ties.

• Our approach is flexible and not only integrates clients
of different capacities and resource limits but also copes
well with non-IID and extremely heterogeneous data
distributions as we will show experimentally.

In this paper, we demonstrate a proof of concept and
focus on the algorithmic aspects evaluating the classification
performance of different variants of our approach, showing
that the inclusion of untrainable clients with their data is
beneficial for the entire federation. However, we will not
cover any practical implementations on hardware and specific
resources-limited devices.

II. BACKGROUND AND RELATED WORK

The foundation of Federated Learning (FL) lies in the
FedAvg algorithm, introduced in the seminal paper on FL [6].
In this algorithm, a global model is initialized and distributed
to all participating clients. Each client then receives the model
and performs local training for a predefined number of epochs.
Subsequently, the locally updated model weights are sent
back to the global server. Aggregation occurs by averaging
the set of model parameters from all clients, resulting in a
new set of global model parameters. Communication costs
are reduced by allowing clients to perform multiple epochs of
local training before transmitting their parameters. However, in
heterogeneous environments the performance may deteriorate
the global performance, as the local iterations can cause the
local optimal model to diverge from the global optimal model.

To address these challenges, alternatives such as FedProx
[12] and FedDyn [13] have been developed. These algorithms
introduce a regularization term during the model loss calcula-
tion, which accounts for the distance between the global and
local model parameters. This penalty on large discrepancies
helps mitigate divergence, allowing clients with heterogeneous
data and computational capabilities to perform varying num-
bers of local updates without significantly deviating from the
global model. Nevertheless, this approach still requires that
each client can train the complete model.

The SplitFed Federated Learning framework (version 1)
SFLV1 [10] offers a solution for conducting FL with resource-
limited clients by splitting the model into two parts: a client
model and a server model. On the server, models are executed
in parallel and subsequently aggregated using FL algorithms
like FedAvg. This approach results in a globally optimized
model based on contributions from all clients, while allow-
ing resource-limited clients to perform backpropagation and
optimize their local models.

Among the works addressing resource heterogeneity and
limitations, several studies focus on model pruning, model

rescaling, and distillation as strategies to adapt models for
clients with varying capabilities. These techniques aim to
maintain model performance while accommodating the diverse
resource constraints of participating clients.

For example, HeteroFL [14] is a model rescaling method
for enabling heterogeneous clients to train local models with
different levels of complexity. Clients can use a subset of
the global model’s parameters, facilitating more efficient and
tailored training processes. HeteroFL also addresses the limi-
tations of traditional Batch Normalization [15] by introducing
Static Batch Normalization (sBN), which has shown superior
performance in producing consistent and improved results.
However, clients with limited resources are constrained to
having local models with fewer parameters, leading to lower
performance.

Another approach called FedDF [16] proposes a knowledge
distillation framework to cope with heterogeneous environ-
ments and models. The algorithm uses unlabeled data in the
distillation process, which can be generated by Generative
Adversarial Networks (GAN), and model fusion. The perfor-
mance of the framework depends on the effectiveness of the
synthetic data and the distillation process.

ScaleFL [17] tries to address these problems by combining
rescaling strategies and knowledge distillation, also focusing
on clients that are heterogeneous in terms of resources and
data. To adapt the neural network model on clients, it uses the
’scale down deep neural network’ mechanism, which adjusts
the model in depth and width, as well as knowledge distillation
during the aggregation process. One of the disadvantages
of ScaleFL is the complexity of the aggregation algorithm,
which can make the effective combination of local models a
significant challenge, especially in environments with a wide
diversity of resources among clients.

Although these existing approaches can effectively incor-
porate heterogeneous clients with limited resources to some
extend, none of them is capable of including clients that are not
able to train at all and that can only do inference (e.g. FPGA-
based devices, smart sensors or other low-resource IoT de-
vices). Our proposed federated learning approach enables the
effective collaboration of trainable and untrainable clients such
that the data from all clients benefits the overall federation
without compromising the privacy of each individual client.

III. HETEROGENOUS SPLITFED

A. System Architecture and Data

We consider the problem where we aim to implement
federated learning among K heterogeneous clients. Among
these K clients, we can identify J clients with resource
limitations, who are unable to perform the training of the
neural network, i.e. gradient computation, backpropagation
and weight update. These clients are referred to as untrainable
clients. Additionally, within this set of K clients, there are L
clients who have the capacity to train a complete model; these
are termed trainable clients. Thus, we have K = J

⋃
L.

Each client k has a local dataset Dk that remains fixed
during training. Therefore, we consider the total dataset to

Fed Server Client TC

Client TC

Client TC

.

.

.

 Full Model

Split Server
Server-side

model portion

Cl
ie

nt
 U

C

Cl
ie

nt
 U

C

Cl
ie

nt
 U

C

. . .

Client-side
model portion

Fig. 1. Overview of the Heterogeneous SplitFed Learning (HSFL) approach. In the solution, we have Trainable Clients (TC) represented in black on the right
side, which possess the complete model W . On the left side, in blue, are the Untrainable Clients (UC) who face certain limitations; they only have a portion
of the model. These clients perform only inference using their input data. Afterward, the final part of the model is trained on the split server, and the set of
parameters from the models trained on the split server is sent to the FedServer to be aggregated with the parameter sets from the TCs. Once the FedServer
completes the aggregation, it returns the set of parameters to each client and also to the split server, which maintains separate copies of each client’s model.

be represented by D, where D =
⋃K

k=1Dk. The dataset D
contains a total of C classes, with an example from this dataset
denoted by X = (x, y).

As in SFL, there is a Fed Server and a Split Server (called
Main Server in SFL). However their role and tasks are slightly
different in our approach. Figure 1 illustrates the overall
system architecture and training procedure. The Fed Server
is collecting the models from all clients, trainable and un-
trainable, combines them according to the chosen aggregation
algorithm (here FedAvg) and sends the combined model back
to the corresponding devices. Whereas the Split Server is
responsible for doing the inference and training of the server-
side model (i.e. last layers) of the untrainable clients and
communicates these models with the Fed Server. The training
procedure is detailed in the next section.

This setting is different from the SFL approach since :
• A subset of clients performs only inference on the client-

side model (i.e., the first layers) without engaging in
training;

• The trainable clients contain the full model;
• Model aggregation is performed entirely on the Fed

Server.
These distinctions enable our approach to effectively learn
a deep neural network model in a federated and privacy-

preserving manner with a heterogeneous set of devices both
in terms of computational and memory resources and in terms
of client data distributions.

B. Training

As in traditional SL, the full model is divided into two parts:
the client part (WC), i.e. the first layers up to the ”cut layer”
(green and blue layers in Fig. 1), and the server part (WS),
i.e. the last layers of the neural network (brown and red layers
in Fig. 1).

The untrainable clients STC
t at round t use only the

client part of the model WC and perform only inference on
their side. These clients send the output of their model, the
”smashed data” Aj and labels Yj to the Split Server, which
will train the server part of the model WS

j (j ∈ SUC
t). After

completing a training round for all untrainable clients, the Split
Server sends its local weights WS

j,t to the Fed Server.
In parallel, the trainable clients ST

t perform training on the
full model, and after a training round, they send their local
weights of the complete model (i.e. all layers) to the Fed
Server. The Fed Server then aggregates the two models – the
client and server model – and returns the global model weights
to the respective clients and server. The complete view of the

approach is summarized in Figure 1, and the training algorithm
is described more formally in Algorithms 1, 2 and 3.

Privacy is ensured on all clients. On trainable clients, local
data is never transmitted. On untrainable clients, we follow
the principle of SFL where only activations of intermediate
layers (”smashed data”) are transmitted. In our case, we use
deep convolutional neural network, and smashed data are
feature map activations of relatively ”late” layers that make
reconstruction of the input (images) very difficult.

Algorithm 1: Heterogeneous SplitFed with Trainable

and Untrainable Clients
Notations: STC

t : set of L Trainable Clients at time t,

SUC
t : set of J Untrainable Clients at time t,

St: set of K Trainable + Untrainable Clients at time t

Fed Server executes:
Initialize WC

0 ,WS
0 (global client and server-side

model);

Send WC
0 to all K clients ;

Send WS
0 to L Trainable Clients and Split Server;

for round t= 0,1,. . . do
forall l in STC

t (in parallel) do
WC

l,t,W
S
l,t ← ProcessTrainableClient() ;

forall j in SUC
t (in parallel) do

WS
j,t ← ProcessUntrainableClient() ;

ml ←
∑

l∈SUC
t

nl ;

WC
t+1,←

∑
l∈SUC

t

nl

ml
WC

l,t // aggregate WC ;

mk ←
∑

k∈St
nk ;

WS
t+1,←

∑
k∈St

nk

mk
WS

k,t // aggregate WS ;

Send WC
t+1,W

S
t+1 to all K clients ;

Split Server executes:
Retrieve updated models WS

j,t from FedServer ;

while client data batches to process do
Retrieve Aj , Yj from client j ;

Ŷj ← ForwardPropagationServer();

L = L(Ŷj , Yj);

// Compute gradients and back-propagate

∇L ← LossGradients() ;

WS
j,t ←WS

j,t − η · ∇L;

Send WS
j,t to Fed Server (j ∈ SUC

t) ;

IV. EXPERIMENTS

Datasets. We conducted experiments in image classification
using the FEMNIST [18], CIFAR-10, and CIFAR-100 [19]
datasets. We utilized the standard training and testing splits as

Algorithm 2: ProcessTrainableClient()

Retrieve model updates WC
l,t,W

S
l,t from FedServer ;

B ← (split Dl into batches of size B) ;

for e← 1..E do
for batch b ∈ B do

// Perform forward propagation

Ŷl ← ForwardPropagationTrainableClient();

L = L(Ŷl, Yl);

// Compute gradients and back-propagate

∇L ← LossGradients() ;

// Wl,t = (WC
l,t,W

S
l,t)

Wl,t ←Wl,t − η · ∇L;

Send updated WC
l,t,W

S
l,t to Fed Server ;

Algorithm 3: ProcessUntrainableClient()

Retrieve model updates WC
j,t from FedServer ;

B ← (split Dj into batches of size B) ;

for e← 1..E do
for batch b ∈ .B do

// Perform forward propagation on client

// to compute smashed data

Aj ← ForwardPropagationUntrainableClient();

Send Aj , Yj to Split Server ;

detailed in Table I. To enhance model robustness, we applied
data augmentation techniques, specifically implementing a
random horizontal flip with a probability of 0.5 and random
cropping, following [17].

Dataset Train Size Test Size # Classes Resolution
FEMNIST 37K 5K 62 28x28
CIFAR-10 50K 10K 10 32x32
CIFAR-100 50K 10K 100 32x32

TABLE I
STATISTICS OF THE DATASETS USED IN IMAGE CLASSIFICATION

EXPERIMENTS.

Data heterogenity. In our experiments, all clients partici-
pated in the aggregation during each round. To simulate data
heterogeneity, we divided the data according to a Dirichlet
distribution with a concentration parameter α. We utilized
three levels of non-IID distribution: α = 0.1, α = 1, and
α = 10. In the Dirichlet distribution, an α value closer to zero
represents extreme heterogeneity, while higher values indicate
a more balanced distribution. With α = 0.1 some classes may
be missing (i.e. have 0 examples) for some clients.

The FEMNIST dataset is inherently a federated learning
(FL) dataset, meaning it is originally divided by clients.

FEMNIST CIFAR-10 CIFAR-100

Centralized Learning (CL) 87.02 92.27 64.04
Federated Learning - 4 clients 89.27± 0.82 70, 93± 0.99 51.22± 0.11
Federated Learning - 6 clients 80.15± 0.41 73.76± 0.26 41.04± 0.48

TABLE II
BASELINE RESULTS FOR CENTRALIZED LEARNING AND CLASSICAL

FEDERATED LEARNING (FEDAVG) WITH ALL TRAINING DATA FROM THE
THREE DATASETS.

(TC,UC) FEMNIST Accuracy (%) for Different α Values

α = 0.1 α = 1 α = 10 IID

(2, 0)a 95.1± 0.6 86.8± 1.9 79.2± 5.4 84.3± 0.1
(2, 2)a 94.4± 2.1 87.4± 2.5 84.7± 1.6 86.1± 0.1
(2, 0)b 90.5± 5.5 86.2± 0.8 82.6± 1.7 79.1± 3.3
(2, 4)b 94.0± 2.9 87.0± 3.3 83.6± 1.3 82.3± 1.1
(4, 0)c 93.7± 2.6 86.8± 4.9 84.5± 1.3 78.6± 1.0
(4, 2)c 94.0± 1.4 87.3± 3.2 84.3± 1.1 80.6± 2.5
(4, 0)d 93.7± 2.9 85.5± 0.8 82.6± 3.1 74.6± 0.8
(4, 4)d 92.3± 3.7 84.4± 4.6 81.5± 4.8 77.6± 1.9

TABLE III
AVERAGE ACCURACY (%) WITH STANDARD DEVIATION FOR RESNET-34
ON THE FEMNIST DATASET FOR VARIOUS CONFIGURATIONS. THE FIRST
COLUMN SHOWS THE DATA SPLITS BETWEEN TC AND UC FOR A) 4, B) 6,
C) 6, AND D) 8 CLIENTS IN TOTAL. WHEN UC IS 0, THIS REPRESENTS A
TRADITIONAL FEDERATED LEARNING (FL) SCENARIO WITH ONLY THE

TC DATA PROPORTION.

However, in our experiments, we combined the data from some
clients and redistributed it according to a Dirichlet distribution.

When dividing the data according to the Dirichlet distribu-
tion, we created four configurations: (a) 4 parts divided among
2 TC and 2 UC clients, (b) 6 parts among 2 TC and 4 UC
clients, (c) 6 parts among 4 TC and 2 UC clients, and (d) 8
parts among 4 TC and 4 UC clients. For experiments without
UC clients, we used the same data division but excluded UC
clients, meaning their data was not used in training.

Experimental Setup. We conducted our experiments using
the ResNet-34 architecture, a widely adopted model in fed-
erated learning studies. The model was split between clients
and the server, where the first 7 layers operated on the client
side and the remaining layers on the server. Each experiment
consisted of 200 communication rounds with a single epoch
per round.

We compared our models in terms of classification perfor-
mance, i.e. we computed the average (sample-wise) accuracy
(micro average) on the test sets of the three different datasets
which is distributed among the clients.

Optimization and Training. We employed Stochastic Gra-
dient Descent (SGD) with a learning rate of 0.1 for the FEM-
NIST dataset, and 0.1 for both the CIFAR-10 and CIFAR-100
datasets. The FedAvg algorithm was employed to aggregate
the models across clients.

Results. For comparison, Table II shows the average accu-
racies of ideal baseline methods and scenarios, i.e. centralised
learning (CL) and federated learning (FedAvg) on all training
data with IID splits for 4 and for 6 clients.

(TC,UC) CIFAR-10 Accuracy (%) for Different α Values

α = 0.1 α = 1 α = 10 IID

(2, 0)a 91.3 ± 3.1 84.8 ± 5.7 82.6 ± 2.7 78.2 ± 0.5
(2, 2)a 91.3 ± 1.9 88.1 ± 4.7 81.6 ± 1.8 79.3 ± 1.6
(2, 0)b 94.4 ± 0.8 84.6 ± 2.5 74.7 ± 3.6 74.6 ± 0.7
(2, 4)b 90.7 ± 8.0 83.1 ± 3.9 81.0 ± 1.6 75.1 ± 2.3
(4, 0)c 90.9 ± 4.6 88.6 ± 4.3 80.9 ± 4.7 74.9 ± 2.9
(4, 2)c 92.5 ± 3.8 87.6 ± 4.7 81.8 ± 2.5 74.6 ± 1.9
(4, 0)d 96.8 ± 2.4 93.6 ± 2.7 80.1 ± 2.7 73.0 ± 2.9
(4, 4)d 92.2 ± 5.1 86.5 ± 3.8 79.2 ± 5.7 71.2 ± 1.9

TABLE IV
AVERAGE ACCURACY (%) WITH STANDARD DEVIATION FOR RESNET-34

ON CIFAR-10 DATASET.

(TC,UC) CIFAR-100 Accuracy (%) for Different α Values

α = 0.1 α = 1 α = 10 IID

(2, 0)a 77.9± 2.7 64.2± 0.7 50.3± 0.4 48.3± 0.6
(2, 2)a 74.6± 5.5 61.8± 6.2 52.9± 0.7 48.1± 0.2
(2, 0)b 74.3± 5.0 55.2± 1.7 41.6± 0.0 38.2± 0.5
(2, 4)b 71.9± 4.9 56.0± 4.9 42.7± 1.5 38.1± 0.3
(4, 0)c 76.4± 1.8 57.0± 3.0 43.9± 0.5 37.4± 0.3
(4, 2)c 74.0± 3.2 58.1± 3.5 44.5± 1.4 37.8± 0.4
(4, 0)d 77.1± 4.1 53.3± 6.9 31.4± 4.6 21.2± 1.8
(4, 4)d 72.8± 5.5 54.2± 6.1 33.7± 5.0 23.8± 1.8

TABLE V
AVERAGE ACCURACY (%) WITH STANDARD DEVIATION FOR RESNET-34

ON CIFAR-100 DATASET.

Table III shows the average accuracies on the FEMNIST
test set for varying number of trainable and untrainable clients
and with splitting the data into a) 4, b) 6, c) 6, and d) 8
parts. In general, we observe that in the presented examples,
more heterogeneous cases exhibit better performance than
homogeneous ones. This can be attributed to the fact that het-
erogeneous clients have more examples within fewer classes,
allowing them to somehow specialize in those classes. Thus,
although models are aggregated after each round with one
epoch, the parameters of the specialist networks are effectively
utilized and combined. The literature also provides other
examples where heterogeneous cases demonstrate superior
performance, as seen in studies such as [20, 21].

Compared to the ideal baselines of Table II, we can see that
the cases with α = 1 have results close to the CL IID case and
for the cases with α = 0.1 we have better average results than
the CL IID case. For more balanced settings or larger number
of clients, our approach is slightly below the ideal baselines.

When comparing successive lines in Table III, i.e. cases a),
b), c, and d), it can be seen that adding untrainable clients
is beneficial to the overall performance and to the federation.
This is especially the case for IID data and for α > 1. For more
heterogeneous data distributions, the fact of adding untrainable
clients does not harm the performance and at least maintains
the overall accuracy.

Tables IV and V show the results on the CIFAR-10 and

CIFAR-100 datasets respectively. Similar trends to FEMNIST
can be observed. That is, the models attain a higher accuracy
in more heterogeneous settings.

V. CONCLUSION

In this paper, we presented a novel federated learning ap-
proach, called HSFL, that enables the participation in training
of clients that have very limited hardware resources and are not
capable of training a model but can do inference. Our approach
is an extension of the SplitFed method that allows for such a
scenario. We experimentally showed on three different image
classification benchmarks that HSFL can effectivly learn with
a combination of trainable and untrainable clients where the
latter contribute positively to the entire federation. We further
experimented with different levels of heterogeneity of the data
splits between clients and show that our approach is robust to
these data distribution shifts.

In future work, we will investigate further the resource
requirements in terms of network communication, do further
model optimisations like quantisation and knowledge distilla-
tion and also add model personalization to our method.

REFERENCES

[1] J. P. Albrecht, “How the gdpr will change the world,”
Eur. Data Prot. L. Rev., vol. 2, p. 287, 2016.

[2] P. Bukaty, The California Privacy Rights Act (CPRA)–An
implementation and compliance guide. IT Governance
Ltd, 2021.

[3] G. Bao and P. Guo, “Federated learning in cloud-edge
collaborative architecture: key technologies, applications
and challenges,” Journal of Cloud Computing, vol. 11,
no. 1, p. 94, 2022.

[4] J. Wu, F. Dong, H. Leung, Z. Zhu, J. Zhou, and S. Drew,
“Topology-aware federated learning in edge computing:
A comprehensive survey,” ACM Computing Surveys,
2023.

[5] P. Li, G. Cheng, X. Huang, J. Kang, R. Yu, Y. Wu,
and M. Pan, “Anycostfl: Efficient on-demand federated
learning over heterogeneous edge devices,” in IEEE
INFOCOM 2023-IEEE Conference on Computer Com-
munications. IEEE, 2023, pp. 1–10.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-efficient learning of
deep networks from decentralized data,” in Artificial
intelligence and statistics. PMLR, 2017, pp. 1273–1282.

[7] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao,
“A survey on federated learning,” Knowledge-Based Sys-
tems, vol. 216, p. 106775, 2021.

[8] P. Kairouz, B. H. McMahan et al., “Advances and open
problems in federated learning,” Foundations and Trends
in Machine Learning, vol. 14, no. 1-2, pp. 1–210,
2021. [Online]. Available: https://inria.hal.science/hal-
02406503

[9] O. Gupta and R. Raskar, “Distributed learning of deep
neural network over multiple agents,” Journal of Network
and Computer Applications, vol. 116, pp. 1–8, 2018.

[10] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun,
“SplitFed: When federated learning meets split learning,”
in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 8, 2022, pp. 8485–8493.

[11] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and
J. Feng, “No fear of heterogeneity: Classifier calibration
for federated learning with non-iid data,” 2021.

[12] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar,
and V. Smith, “Federated optimization in heterogeneous
networks,” 2020.

[13] D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. What-
mough, and V. Saligrama, “Federated learning based
on dynamic regularization,” in International Conference
on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=B7v4QMR6Z9w

[14] E. Diao, J. Ding, and V. Tarokh, “HeteroFL: Computation
and communication efficient federated learning for het-
erogeneous clients,” CoRR, vol. abs/2010.01264, 2020.
[Online]. Available: https://arxiv.org/abs/2010.01264

[15] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou,
“FedBN: Federated Learning on Non-IID Features via
Local Batch Normalization,” Sep. 2020. [Online]. Avail-
able: https://openreview.net/forum?id=6YEQUn0QICG

[16] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble
distillation for robust model fusion in federated learning,”
CoRR, vol. abs/2006.07242, 2020. [Online]. Available:
https://arxiv.org/abs/2006.07242

[17] F. Ilhan, G. Su, and L. Liu, “ScaleFL: Resource-adaptive
federated learning with heterogeneous clients,” in 2023
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023, pp. 24 532–24 541.

[18] S. Caldas, P. Wu, T. Li, J. Konečný, H. B. McMahan,
V. Smith, and A. Talwalkar, “LEAF: A benchmark for
federated settings,” CoRR, vol. abs/1812.01097, 2018.
[Online]. Available: http://arxiv.org/abs/1812.01097

[19] A. Krizhevsky, “Learning multiple layers of features
from tiny images,” University of Toronto, Tech. Rep.,
2009, https://www.cs.toronto.edu/ kriz/cifar.html.

[20] Y. Shi, Y. Zhang, Z. Huang, X. Yang, L. Shen, W. Chen,
and X. Wang, “Heterogeneous federated learning with
splited language model,” 2024. [Online]. Available:
https://arxiv.org/abs/2403.16050

[21] R. Ye, Z. Ni, F. Wu, S. Chen, and Y. Wang, “Personalized
federated learning with inferred collaboration graphs,” in
International Conference on Machine Learning. PMLR,
2023, pp. 39 801–39 817.

