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Monotone weak distributive laws over the lifted
powerset monad in categories of algebras
Quentin Aristote Envelope

Université Paris Cité, CNRS, Inria, IRIF, F-75013, Paris, France

Abstract
Noticing the similarity between the monotone weak distributive laws combining two layers of non-
determinisms in sets and in compact Hausdorff spaces, we study whether the latter law can be
obtained automatically as a weak lifting of the former. This holds partially, but does not generalize
to other categories of algebras: we then characterize when exactly monotone weak distributive laws
over powerset monads in categories of algebras exist, exhibiting a law combining probabilities and
non-determinism in compact Hausdorff spaces and showing on the other hand that such laws do not
exist in a lot of other cases.
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1 Introduction and preliminaries

In the study of the semantics of programming languages, and since the seminal work of
Moggi [29], effectful computations are usually modeled with monads: an effectful function of
type X Y is interpreted as a function of type X → TY , where the monadic structure on
T allows for having identities and compositions of such effectful functions. When considering
several effects at the same time, a natural question arises: given monads corresponding to
two effects, is it possible to construct a monad that corresponds to the combination of these
two effects? In particular, combining probabilities and non-determinism has been a very
popular subject of study in the topological and (dually) domain-theoretic setting: see for
instance the introduction to [24] for an extensive bibliography on the topic.

The most straightforward way to combine two monads S and T would be to compose their
underlying functors, but unfortunately in general the resulting endofunctor ST may not carry
the structure of a monad. For this to hold, one usually requires the existence of a distributive
law of T over S, a natural transformation TS ⇒ ST satisfying four axioms involving the
units and multiplications of the two monads [4]. Such a distributive law makes ST into a
monad, and its data is equivalent to the data of a lifting of S to the Eilenberg-Moore category
EM(T) of T-algebras or to the data of an extension of T to the Kleisli category Kl(S) of free
S-algebras.

Unfortunately, distributive laws turn out to be not so common: proving that some specific
pairs of monads do not admit any distributive law between them has been the focus of several
works [25, 32, 15], culminating in [34] where general techniques for proving the absence of
distributive laws between monads on Set, so-called “no-go theorems”, are exhibited. Among
the culprits are the powerset monad P and the probability distributions monad D: there is
no distributive law PP⇒ PP nor DP⇒ PD.
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2 Monotone weak distributive laws in categories of algebras

A next step in combining monads is thus to weaken the requirements asked for by
distributive laws. In [6] a 2-categorical theory of such weakened distributive laws, where the
axioms relating to the units of the monads are relaxed, is developed. This theory encompasses
two orthogonal kinds of weakened laws, both called weak distributive laws: those of [31],
extensively studied in [8, 9, 7], and those more recently put light on in [18] and given further
instances of in [22, 23, 10]. This work focuses on the latter kind of laws: in the following
a weak distributive law of T over S will thus be a natural transformation of type TS⇒ ST
(again), where only three of the four axioms of distributive laws are required. Such a weak
distributive law need not make ST into a monad, but do so of a retract of it when the
category is well-behaved. Weak laws TS⇒ ST are equivalent to weak extensions of T to Kl(S)
— extensions of the semi-monad underlying T, i.e. of its endofunctor and multiplication
but not of its unit — or, when the category is well-behaved, weak liftings of S to EM(T) —
liftings of S up to a retraction.

Weak extensions are a precious tool for building weak distributive laws, because monotone
extensions to Rel — the category of sets and relations, which also happens to be the category
of free algebras of the powerset monad P on Set — admit a nice characterization: this makes
it possible to find weak distributive laws without having to guess their formulæ anymore,
and the monotonicity of the extension is a strong indicator that the resulting law will be
semantically interesting. In the context of weak distributive laws, this strategy was first
used by Garner [18], who exhibited a law PP⇒ PP, but also a law βP⇒ Pβ combining the
ultrafilter monad β and the powerset monad and whose corresponding weak lifting turned out
to be the Vietoris monad V of closed subsets on the category KHaus of compact Hausdorff
spaces (the algebras of β [27]). The same strategy was then used for instance in [22], where a
law DP⇒ PD, combining probabilities and non-determinisim, is described.

In fact, most non-trivial weak distributive laws in the literature (trivial ones are described
in [20]) are laws of type TP⇒ PT built using this strategy. On the other hand, in [23] the goal
was to find weak distributive laws in other categories than Set, and it was reached as a law
VV⇒ VV, combining two layers of non-determinism in a continuous setting, was described.
This last law was also built by constructing a monotone weak extension, and its formula is
thus very close to that of the law PP⇒ PP. In topological settings, non-determinism can
also be combined with probabilities: weak distributive laws for this purpose are constructed
by hand in a very recent pre-print [19].

The goal of the present work is to take over this program of finding non-Set-based weak
distributive laws: we focus here in categories of algebras, which fit in the general framework
for monotone weak laws presented in [23]. In particular, we notice in Lemma 11 that the
law VV⇒ VV is not only very similar to the law PP⇒ PP, but is also actually some sort of
weak lifting of it. We thus study whether there is a general framework for not only weakly
lifting monads (as weak distributive laws do), but also weakly lifting weak distributive laws
themselves: this framework should yield or simplify the construction of the law VV⇒ VV,
and hopefully generalize it to other categories of algebras, in particular EM(P) and EM(D)
which have weakly lifted powerset monads thanks to the laws PP⇒ PP and DP⇒ PD.

This question is largely related to the problem of composing weak distributive laws, which
was investigated in [21] from the point of view of the Yang-Baxter equations — the usual tool
for composing and lifting plain distributive laws [14]. We end up getting a general “no-go
theorem” for monotone weak laws over weakly lifted powerset monads: in that sense this
work is also close in spirit to [34], where general no-go theorems for (strict) distributive laws
are given. While not restricted to monotone distributive laws, these theorems are unlikely
to generalize to our setting because they are based on the correspondance between monads
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and algebraic theories, which is mostly restricted to Set and does not have any obvious
generalization to semi-monads — to which weak distributive laws are deeply related.

This article is organized as follows. In Section 2, we recall definitions and notations for
and give examples of monads and weak distributive laws, as well as the framework of [23] for
monotone weak distributive laws in regular categories. This culminates in Lemma 11, where
we notice that the law VV⇒ VV is some sort of weak lifting of the law PP⇒ PP. The next
two sections focus on lifting weak distributive laws: in Section 3 we study the approach of
the Yang-Baxter equation, showing it indeed allows for weakly lifting weak laws but does not
apply to the examples we consider; while in Section 4 we focus on the monotonicity of the
laws, giving a simple characterization for the existence of monotone weak laws in categories
of algebras and applying it to several examples. We conclude in Section 5.

Our main contributions are the following:
we show that, while the law VV ⇒ VV is a kind of weak lifting of the law PP ⇒ PP
(Lemma 17), this lifting does not come from a Yang-Baxter equation (Corollary 15), the
usual approch to lifting laws: it is an instance of a general no-go theorem for Yang-Baxter
equations involving the law PP⇒ PP (Proposition 14);
we characterize the Kleisli category of the weak lifting S of a monad S to the algeb-
ras of a monad T as the category of T-algebras and Kl(S)-morphisms between them
(Proposition 21);
we identify an abstract class of morphisms in any category of algebras, which we call de-
composable morphisms (Definition 23), and which encompass in particular both open maps
between compact Hausdorff spaces and disintegration in convex algebras (Example 24);
these decomposable morphisms play a central role in characterizing the Kleisli categories
of weakly lifted powerset monads as subcategory of relations (Theorem 26): it follows that
monads must preserve these decomposable morphisms to have monotone weak distributive
laws over weakly lifted powerset monads, and this is in fact a sufficient condition for
monads that are themselves weak liftings (Corollary 34);
concrete instances of this result are then easily derived: we recover independently the law
combining probabilities and non-determinism in compact Hausdorff spaces and recently
exhibited in [19] (Theorem 35), but we observe otherwise that monotone weak distributive
laws over weakly lifted powerset monads in categories of algebras seem very rare (Table 1).

2 Preliminaries

In this section we first recall the theory of weak distributive laws from [18] and the tools
that come along, especially the ones developed in [23]. The reader is assumed to be familiar
with the basics of category theory, an introduction to which appearing for instance in [11].

2.1 Monads and (weak) distributive laws
I Definition 1 (monad). A monad on a category C is the data

(
T, ηT, µT)

, often abbreviated
T, of an endofunctor T: C → C and natural transformations ηT: Id → T and µT: TT → T
satisfying the axioms µT ◦ TηT = id = µT ◦ ηTT and µT ◦ TµT = µT ◦ µTT.

I Example 2 (monads). In this work we will be particularly concerned with the following
monads on Set. Thereafter X and Y are sets, x is an element of X and f :X → Y is a
function.
The powerset monad P. PX = {subsets of X}; for e ⊆ X, (Pf)(e) = f [e] = {f(x′) | x′ ∈ e};

ηP
X(x) = {x}; for E ⊆ PX, µP

X(E) =
⋃
E.
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The probability distributions monad D. DX is the set of finitely-supported probability
distributions on X, i.e. functions ϕ:X → [0, 1] such that ϕ−1([0, 1]) is finite and∑
x∈X ϕ(x) = 1; Df is the pushforward along f given by (Df)(ϕ)(y) =

∑
x∈f−1(y) ϕ(x)

for ϕ ∈ DX and y ∈ Y ; ηD
X(x) is the Dirac δx for x ∈ X, i.e. the probability distribution

such that δx(x) = 1; and µD computes the mean of a distribution of distributions, so that
for Φ ∈ DDX, µD(Φ)(x) =

∑
ϕ∈DX Φ(ϕ) · ϕ(x).

The ultrafilter monad β. βX is the set of maximal filters on X, where filters are sets E ∈
PPX that are non-empty, up-closed (for inclusion), stable under finite intersections and do
not contain the empty set; for an ultrafilter E ∈ βX, (βf)(E) = {e′ ⊇ f(e) | e ∈ E}; ηβX(x)
is the principal filter {e ∈ PX | x ∈ e}; and, for E ∈ ββX, µβX(E) =

⋃
{
⋂
e | e ∈ E}.

We will also be concerned with a topological analogue of the powerset monad, defined on the
category KHaus of compact Hausdorff spaces and continuous functions. Let X and Y be a
compact Hausdorff space, x ∈ X, and f :X → Y be a continuous function.
The Vietoris monad V. VX is the space of closed subsets of X equipped with the to-

pology for which a subbase is given by the sets �u = {c ∈ VX | c ⊂ u} and ♦u =
{c ∈ VX | c ∩ u 6= ∅} where u ranges among all open sets of X; (Vf)(c) = f [c] =
{f(x) | x ∈ c} for c ∈ VX; ηV

X(x) = {x}; and µV
X(C) =

⋃
C for C ∈ VVX.

Weak distributive laws are a certain type of natural transformations involving monads.

I Definition 3 ((weak) distributive law [18, Definition 9]). A monad T weakly distributes over
a monad S when there is a weak distributive law of T over S, i.e. a natural transformation
ρ: TS ⇒ ST such that the Diagrams (η+), (µ−), and (µ+) below commute. A (strict)
distributive law is a weak distributive law that moreover has the diagram (η−) below commute.

S

TS ST

ηTS SηT

ρ

(η−)
TTS TST STT

TS ST

Tρ

µTS

ρT

SµT

ρ

(µ−)

T

TS ST

TηS ηST

ρ

(η+)
TSS STS SST

TS ST

ρS

TµS

Sρ

µST

ρ

(µ+)

If ρ: TS⇒ ST is a distributive law, ST,
ηST = ηSηT and µST = µSµT ◦SρT form a
monad [4]. If it is only a weak distributive
law this is not the case anymore, because
µST ◦ ηSTST is not the identity anymore,
only an idempotent (its composite with
itself is itself). But suppose now it is a
split idempotent, i.e. that there is a functor S • T and natural transformations p: ST⇒ S • T
and i: S • T⇒ ST such that p ◦ i = id and i ◦ p = µST ◦ ηSTST. Then S • T can be made into
a monad [18] with unit ηS•T = p ◦ ηSηT and multiplication µS•T = p ◦ µSµT ◦ SρT ◦ ii: the
monad S • T is called the weak composite of S and T.

I Example 4 (weak distributive laws). In this work we will be particularly concerned with
the following weak distributive laws:

in Set, the weak distributive law λP/P: PP ⇒ PP given by Equation (1) below has for
weak composite the monad P • P of sets of subsets closed under non-empty unions [18];
in KHaus, there is a weak distributive law λV/V: VV⇒ VV given by Equation (2) below [23];
in Set, the weak distributive law λD/P: DP ⇒ PD given by Equation (3) below has
for weak composite the monad P • D of convex sets of finitely supported probability
distributions [22].

λ
P/P
X (E) =

{
e′ ∈ PX

∣∣∣ e′ ⊆
⋃
E and ∀e ∈ E, e ∩ e′ 6= ∅

}
(1)

λ
V/V
X (C) =

{
c′ ∈ VX

∣∣∣ c′ ⊆
⋃
C and ∀c ∈ C, c ∩ c′ 6= ∅

}
(2)

λ
D/P
X (Φ) =

{(
µD
X ◦ Df

)
(Φ)

∣∣ f : PX → DX and ∀e ∈ PX,Φ(e) 6= 0⇒ f(e) ∈ De
}

(3)
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At this point the curious reader may ask two questions: how do we actually find these
weak distributive laws — the formulas in Example 4 are not trivial — and how exactly is the
monad structure on S • T constructed. These two questions will respectively be answered
in the next two sections, which give two other equivalent presentations of weak distributive
laws.

2.2 Regular categories and monotone (weak) extensions
Given a monad S, one may form its Kleisli category Kl(S), which is intuitively the category
of S-effectful arrows of C: its objects are those of C, its arrows X Y are those arrows
X → SY in C, the identity arrow X X is given by ηS

X :X → SX, and the composite of

two arrows f :X Y and g:Y Z is given by the composition X f−→ SY Sg−→ SSZ µS
Z−−→ SZ

in C. Kl(S) comes with an adjunction FS: C � Kl(S) :US, such that USFS = S: the left
adjoint FS sends objects on themselves and an arrow f :X → Y to the pure effectful arrow
X

f−→ Y
ηS

Y−−→ SY , and the right adjoint US sends an object X on SX and an effectful arrow
f :X → SY to the arrow SX Sf−→ SSY µS

−→ Y . The unit of the adjunction is ηS and its counit
is the natural transformation εS: FSUS ⇒ Id (in Kl(S)) with components the effectful arrows
idSX : SX → SX.

An endofunctor T: C → C extends to Kl(S) if there is an endofunctor T: Kl(S) → Kl(S)
such that TFS = FST. If T and T′ have extensions T and T′, a natural transformation
α: T⇒ T′ extends to Kl(S) if α, given by αFS = FSα, is a natural transformation T ⇒ T′.

I Definition 5 (extensions of monads). Let S be a monad on C. A monad
(
T, ηT, µT)

on C
weakly extends to Kl(S) when T and µT extend to Kl(S). It extends to Kl(S) when ηT also
extends to Kl(S).

Giving an extension of a monad T to Kl(S) is equivalent to giving a distributive law
ρ: TS⇒ ST, just like giving a weak extension thereof is equivalent to giving a weak distributive
law of the same type [18]: in both cases, the law ρ induces the extension which sends f :X →
SY to TX Tf−−→ TSY ρ−→ STY , and is computed from the extension as ρ = USTεSFS ◦ ηSTS.
In particular Example 4 also yields examples of weak extensions.

Monotone extensions.

If Kl(S) carries more structure than just that of a category then it is natural to ask that
extensions of functors preserve this additional structure: the more structure preserved, the
more semantically canonical the resulting law. For instance, recall that Kl(P) is the category
Rel of sets and relations and that relations between two sets are ordered by inclusion. An
extension of an endofunctor that preserves this order, and the resulting law, are called
monotone. It turns out that such monotone extensions to relations can be defined and
characterized in any regular category, as described in [23] and recalled now.

Let C be a finitely complete category. The kernel pair of an arrow f :X → Y is the
pullback p1, p2:X×Y X → X of the cospan X f−→ Y

f←− X. Assume C has all the coequalizers
of these kernel pairs: these coequalizers are called regular epimorphisms. C is then called
regular if these conditions are satisfied and if the regular epimorphisms are stable under
pullbacks1. Regular categories then enjoy the fact that every arrow f :X → Y may be

1 a class of arrows is stable under pullbacks when for every pullback square a ◦ b = c ◦ d, if a is in the
class then so is d
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factored as a regular epimorphism (denoted with �) followed by a monomorphism (denoted
with ↪→), and this factorization is unique up to unique isomorphism — one should think
of it as factoring an arrow through its image. Set is a canonical example of such a regular
category.

Regular categories are useful because they are categories where we can speak of relations: if
C is a regular category, a C-relation between two objects X and Y is a subobject r:R ↪→ X×Y .
Relations are preordered: r:R ↪→ X × Y is smaller than s:S ↪→ X × Y , written r ≤ s,
when there is a monomorphism m:R ↪→ S such that s ◦ m = r. One may form the
category Rel(C) with objects those of C and arrows X ! Y the equivalence classes of
relations between X and Y . The identity on X is the diagonal 〈idX , idX〉:X ↪→ X × X,

R×Y S

R S

X Y Z

y

rX
rY sY

sZ

and composition of relations r = 〈rX , rY 〉:R ↪→ X × Y and
s = 〈sY , sZ〉:S ↪→ Y ×Z, written s ·r:X ! Z, is constructed as
in the diagram on the left — by considering the pullback R×Y
S → R × S of R rY−−→ Y

sY←−− S, and taking the monomorphism
in the factorization of R ×Y S → R × S rX ×sZ−−−−→ X × Z. The

graph functor Graph : C → Rel(C) sends objects to themselves and an arrow f :X → Y

to the relation 〈idX , f〉:X ↪→ X × Y . There is also a contravariant transpose functor
−†: Rel(C)→ Rel(C) that sends objects on themselves and a relation 〈rX , rY 〉:R ↪→ X × Y
to 〈rY , rX〉:R ↪→ Y ×X. All in all, a relation 〈f, g〉:R ↪→ X × Y can also be written as the
composite Graph g · (Graph f)†: we will often omit Graph and write directly g · f†.

X

Y1 ×Z Y2

Y1 Z Y2

y

If Kl(S) is a wide2 subcategory of Rel(C) (with Graph being the
left adjoint in the Kleisli adjunction), an extension to Kl(S) can be
constructed by first finding a monotone extension to Rel(C) and then
restricting this extension to Kl(S). This is a very useful technique
because such monotone extensions to Rel(C), called relational exten-
sions, have a very nice characterization in terms or near pullbacks: a square is a near pullback
when its limiting morphism into the corresponding pullback is a regular epimorphism —
as in the diagram on the right. A functor between regular categories is said to be nearly
cartesian when it sends pullbacks on near pullbacks and preserves3 regular epimorphisms,
or equivalently when it preserves near pullbacks, while a natural transformation α: F⇒ G
between nearly cartesian functors is nearly cartesian as well when its naturality squares
α ◦ Ff = Gf ◦ α are near pullbacks.

I Theorem 6 ([23, Theorem 6]). Let F: C→ D be a functor between regular categories. F has
a relational extension, i.e. an order-preserving functor Rel(F) : Rel(C) → Rel(D) such that
Rel(F) Graph = Graph F, if and only if F is nearly cartesian. In that case there is only one
possible such Rel(F), given by Rel(F)

(
g · f†)

= (Fg) · (Ff)†.
Let F,G: C ⇒ D be two such functors and α: F⇒ G be a natural transformation between

them. Then Rel(α), given by Rel(α) Graph = Graph α, is a natural transformation Rel(F)⇒
Rel(G), called the relational extension of α, if and only if α is nearly cartesian.

Just like we omit to write Graph , we will often omit to write the functor Rel, and instead
write F for Rel(F) (g · f†) = Fg · (Ff)† and α for Rel(α).

I Example 7 (monotone extensions). Set is a regular category whose regular epimorphisms
are the surjections and such that Rel(Set) = Rel ∼= Kl(P). The endofunctors and the

2 a wide subcategory is a subcategory that contains all objects of the bigger category
3 throughout this work we will say that a functor preserves a class of diagrams whenever it sends any

diagram in that class to a diagram in that class
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multiplications of the monads P and D are nearly cartesian, hence P and D have monotone
weak extensions to Kl(P): this is how the weak distributive laws PP⇒ PP and DP⇒ PD
of Example 4 were constructed [18, 22]. KHaus is also a regular category: its regular
epimorphisms are the surjective continuous functions and Rel(KHaus) is the category of
compact Hausdorff spaces and closed relations, i.e. closed subsets of X × Y , while Kl(V)
is the category of compact Hausdorff spaces and continuous relations, i.e. closed relations
r:X ! Y such that r−1[u] is open in X for every open u of Y . The endofunctor and
multiplication of V are nearly cartesian hence they have a relational extension, which restricts
to continuous relations: this yields a monotone weak extension of V to Kl(V), and this is
how the weak distributive law VV⇒ VV of Example 4 was constructed [23].

2.3 Weak liftings

Let T be a monad over a category C. Its category of algebras EM(T) is the category whose
objects are pairs (A, a) of a C-object A and a C-arrow a: TA → A, and whose arrows
(A, a)→ (B, b) are those C-arrows A→ B such that f ◦ a = b ◦Tf — the identity morphism
is the one with the identity as its underlying C-arrow, and composition of morphisms is
done by composing the underlying C-arrows. Just like for Kl(T), there is an adjunction
FT: C � EM(T) :UT such that UTFT = T: the left adjoint FT sends an algebra (A, a) to
its carrier object A and a morphism (A, a) → (B, b) to the underlying arrow A → B,
while UT sends an object X to the free T-algebra on X, given by the pair

(
TX,µT

X

)
, and

an arrow f :X → Y to the morphism
(
TX,µT

X

)
→

(
TY, µT

Y

)
with underlying C-arrow

Tf : TX → TY . There is finally a natural transformation εT: FTUT → Id (in EM(T)) given by
UTεT

(A,a) = a: TA→ A.

I Definition 8 (weak liftings [6, Definitions 4.1 and 4.2]). A weak lifting of an endofunctor
S: C → C to EM(T) is the data of an endofunctor S: EM(T) → EM(T) along with natural
transformations πT

S : SUT ⇒ UTS and ιTS : UTS ⇒ SUT — also written πS and ιS when not
ambiguous — such that πS ◦ ιS = id.

Let α: S⇒ R be a natural transformations between two C-endofunctors with weak liftings
(S, πS, ιS) and (R, πR, ιR). If a natural transformation α: S ⇒ R has Diagram (π), Diagram (ι)
or both Diagrams (π) and (ι) below commute, it is respectively a weak π-, weak ι- or a weak
lifting thereof.

UTS SUT

UTR RUT

πT
S

UTα αUT

πT
R

(π)
SUT UTS

RUT UTR

ιTS

UTααUT

ιTR

(ι)
As discussed in [6], weak π- and weak ι-

liftings are necessarily unique and given by
UTα = πT

R ◦α ◦ ιTS if they exist. Their existence
is moreover fully characterized:

I Theorem 9 ([6, Proposition 4.3 and Theorem 4.4]). Suppose idempotents split in C. Then
having a weak lifting of S: C → C to EM(T) is equivalent to having a law ρ: TS ⇒ ST that
has Diagram (µ+) commute.

Fix now liftings S and R of S and R given by laws ρ: TS⇒ ST and σ: TR⇒ RT. Then,
α: S⇒ R respectively has a weak π-, weak ι- or weak lifting if and only if it makes Diagram (7),
Diagram (8) or both Diagrams (7) and (8) below commute. The latter case holds equivalently
if and only if σ ◦ Tα = αT ◦ ρ.

This correspondance is moreover compositional: the composition of the weak (resp. weak
π-, weak ι-) liftings of two functors is a weak (resp. weak π-, weak ι-) lifting of their
composite.
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TS ST

TTS TST TRT RTT RT

TS TR

ρ

TηTS αT
Tρ TαT σT RµT

ηTTS

Tα

σ

(7)

(8)

In [18], Garner instantiates Theorem 9 to give another presentation of weak distributive
laws: if idempotents split in C, a weak distributive law TS⇒ ST is equivalently given by a
weak lifting of

(
S, ηS, µS)

to EM(T), i.e. by weak liftings of S, ηS and µS, respectively coming
from Diagrams (µ−), (η+), and (µ+). That these two natural transformations weakly lift
respectively means that Diagrams (π ◦ η) and (ι ◦ η) and Diagrams (π ◦ µ) and (ι ◦ µ) below
commute. When Diagram (η−) also commutes, ρ is a (strict) distributive law and this weak
lifting is a (strict) lifting: πS and ιS are both the identity.

UT

SUT UTS

ηSUT UTηS

πT
S

(π ◦ η)

SSUT SUTS UTSS

SUT UTS

SπT
S

µSUT

πT
S S

UTµS

πT
S

(π ◦ µ)

UT

UTS SUT

UTηS ηSUT

ιTS

(ι ◦ η)

UTSS SUTS SSUT

UTS SUT

ιTS S

UTµS

SιTS

µSUT

ιTS

(ι ◦ µ)

I Example 10 (weak liftings). All idempotents split in Set (they factor through their image).
The algebras of P are the complete join-semilattices (we write EM(P) ∼= JSL): the weak
lifting corresponding to the law PP⇒ PP is the monad of subsets closed under non-empty
joins [23]. The algebras of D are the barycentric algebras, also called convex spaces (we
write EM(D) ∼= Conv): the weak lifting corresponding to the law DP⇒ PD is the monad of
convex-closed subsets [22]. Finally, there is also a weak distributive law βP⇒ Pβ. Assuming
the axiom of choice, the algebras of β are the compact Hausdorff spaces [27] (we write
EM(β) ∼= KHaus): the corresponding weak lifting is the Vietoris monad V. In that case πP
computes the topological closure of a subset, while ιP embeds the set of closed sets into the
set of all subsets.

Write κT
S for the composite ιTS ◦ πT

S . Then κT
S FT is the idempotent ST⇒ ST (which splits

into πT
S FT and ιTS FT) and the weak composite monad can finally be obtained as the composite

of the adjunction F: C � EM(T) :U with any adjunction for S, so that S • T = UTSFT,
ηS•T = UTηSFT ◦ ηT and µS•T = UTµSFT ◦ UTSεTSFT.

3 Weakly lifting weak distributive laws

With Example 10 and the fact that V is a weak lifting of P to KHaus in mind, we may now
notice that not only are the two laws PP⇒ PP (1) and VV⇒ VV (2) very similar, but the
second one seems to be some kind of weak lifting to KHaus ∼= EM(β) of the first one:

I Lemma 11. UβλV/V = πPV ◦ PπP ◦ λP/PUβ ◦ PιP ◦ ιPV.

Is this just a coincidence, or is this an instance of Theorem 9? And in the latter case,
can the weak distributivity of λV/V be automatically derived from that of λP/P, and does
this law PP⇒ PP also weakly lift to laws on other categories of algebras where the powerset
monad weakly lifts, say EM(P) and EM(D)?
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3.1 The Yang-Baxter equation for weak distributive laws
TRS RTS

TSR RST

STR SRT

σS
RρTτ

ρR
Sσ

τT

(YB)
The standard way to lift (strict) distributive laws is
to use the so-called Yang-Baxter equation. Consider
three monads

(
T, ηT, µT)

,
(
S, ηS, µS)

and
(
R, ηR, µR)

and three weak distributive laws ρ: TS⇒ ST, σ: TR⇒
RT and τ : SR⇒ RS. The Yang-Baxter equation for these three laws holds when diagram (YB)
above commutes. If these laws are strict distributive laws, then it is well-known since [14] that
the Yang-Baxter equation is enough to show that Rρ ◦ σS: TRS⇒ RST is a distributive law
of T over RS, and that the distributive law τ : SR⇒ RS lifts to a distributive law τ : SR ⇒ RS
in EM(T). The composition of weak distributive laws using the Yang-Baxter equation was
investigated in [21]. A notable result is the following:

I Proposition 12 ([21, Theorem 4.3]). If the weak distributive laws ρ: TS⇒ ST, σ: TR⇒ RT
and τ : SR ⇒ RS have Diagram (YB) commute, then πS

RFST ◦ Rρ ◦ σS ◦ TιSRFS is a weak
distributive law T(R • S)⇒ (R • S)T.

The Yang-Baxter equation thus allows for weakly lifting R•S to EM(T). More importantly
for our purpose, we show it also allows for weakly lifting the weak distributive law SR⇒ RS:

I Theorem 13. Weak distributive laws ρ: TS ⇒ ST, σ: TR ⇒ RT and τ : SR ⇒ RS satisfy
the Yang-Baxter equation if and only if τ : SR⇒ RS weakly lifts to EM(T), i.e. if there is a
natural transformation τ : SR ⇒ RS such that Diagrams (14) and (15) commute. If this holds,
τ is a weak distributive law, and the weak composite R • S and the weak lifting R • S (recall
that R • S weakly lifts to EM(T) by Proposition 12) can be chosen to be equal (as monads).

SRUT SUTR UTSR

RSUT RUTS UTRS
τUT UTτ

SπR πSR

RπS πRS

(14)
UTSR SUTR SRUT

UTRS RUTS RSUT

UTτ τUT

ιSR SιR

ιRS RιS

(15)

When Theorem 13 holds it immediately follows that Uτ = πRS◦RπS◦τUT◦SιR◦ιSR, which
is exactly the result we got in Lemma 11 for τ = λV/V: VV⇒ VV and τ = λP/P: PP⇒ PP. It
would thus be a reasonable conjecture that λβ/P: βP⇒ Pβ, λβ/P: βP⇒ Pβ and λP/P: PP⇒ PP
satisfy the Yang-Baxter equation, from which we would immediately retrieve the weak
distributivity of λV/V: VV ⇒ VV but also learn that the weak composite V • V is a weak
lifting of P • P. Unfortunately, the Yang-Baxter equation does not hold in that case. A
rather simple way to see this is to notice that λV/V does not make Diagram (15) commute,
i.e. it is not a ι-lifting of λP/P. More generally, we show the following no-go theorem for
weak ι-liftings:

I Proposition 14. Let λT/P: TP⇒ PT be a weak distributive law with corresponding weak
lifting P, and write PPA =

(
PιP ◦ ιPP

) [
UTPP(A, a)

]
when (A, a) is a T-algebra. If there

is such an (A, a) such that {A} ∈ PPA and P∗A /∈ PPA (where P∗A = {E ⊆ A | E 6= ∅}),
then λP/P: PP⇒ PP does not have a weak ι-lifting to EM(T).

I Corollary 15. There is no weak ι-lifting (let alone weak liftings) of λP/P to KHaus, JSL or
Conv.

I Remark 16. It is not hard to show that the Yang-Baxter equation holding for ρ: TS⇒ ST,
σ: TR⇒ RT and τ : SR⇒ RS is also equivalent to ρ: TS⇒ ST having an extension ρ: TS ⇒ ST
to Kl(R). In the case of λβ/P: βP⇒ Pβ, β is in fact a lax monad on Rel whose algebras are
the topological spaces [3]. Unfortunately, we have just shown that the Yang-Baxter equation
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does not hold for λβ/P: βP ⇒ Pβ, λP/P: PP ⇒ PP and λP/P: PP ⇒ PP, and so do not get a
way to weakly lift P to topological spaces for free.

Theorem 13 does have some concrete instances: in [21], Goy gives a substantial number
of examples of triples of weak distributive laws for which the Yang-Baxter equation holds,
although these examples all involve at least one strictly distributive law out of the three.

3.2 The π-Yang-Baxter equation
We still do not have an explanation for why λV/V looks so much like λP/P. But λV/V being
a weak lifting of λP/P is not a necessary condition for retrieving Lemma 11: in fact, λV/V

being only a weak ι- or π-lifting of λP/P would be enough. We saw in Corollary 15 that the
weak ι-lifting hypothesis was a dead-end: how about λV/V being a weak π-lifting of λP/P?
This turns out to be true, although the proof is of course more involved than that of the
weaker Lemma 11.

I Lemma 17. λV/V: VV⇒ VV is a weak π-lifting of λP/P: PP⇒ PP.

Theorem 13 adapts to weak π-liftings, hence we immediately retrieve as a consequence of
Lemma 17 that λV/V: VV⇒ VV is a weak distributive law.

I Proposition 18. Weak distributive laws ρ: TS⇒ ST, σ: TR⇒ RT and τ : SR⇒ RS satisfy
the π-Yang-Baxter equation, given by Diagram (π-YB), if and only if τ : SR ⇒ RS weakly
π-lifts to EM(T), i.e. if there is a natural transformation τ : SR ⇒ RS such that Diagram (14)
commutes. If this holds, τ is a weak distributive law.

We also retrieve that λV/V is a monotone weak distributive law:

I Proposition 19. Consider a monotone weak distributive law λS/P: SP ⇒ PS in Set that
has a weak π-lifting to EM(T). If the components of κP: PUT ⇒ PUT are monotone functions
(they preserve inclusion of subsets) then λS/P : SP ⇒ PS is also a monotone weak distributive
law.

TSR TRS RTS RST

STR RSTT

SRT RST TRST RTST

Tτ

ρR

σS Rρ

Sσ

RSµT

τT ηTRST σST

RρT

(π-YB)
Of course the point of Propositions 18 and 19

is that they make it easier to exhibit weak dis-
tributive laws in categories of algebras. Still, work-
ing with Diagram (π-YB) may be quite tedious, as
it involves up to four composed layers of functors.
In fact in Lemma 17 we did not use this π-Yang-Baxter equation at all, instead we directly
proved that λV/V was a weak π-lifting because we were already able to take for granted that
its components were morphisms of β-algebras, i.e. continuous functions. Another problem
with Proposition 18 is that even if we manage to disprove its prerequisites for some examples,
we only get that there is no weak π-lifting of the weak distributive law, but we do not learn
anything about other possible meaningful weak distributive laws in the category of algebras.

For all of these reasons we do not try to apply Proposition 18 to weakly π-lift λP/P: PP⇒
PP to EM(P) and EM(D), and immediately turn towards another approach in Section 4
instead: we try to weakly lift the conditions for the existence of monotone weak distributive
laws (described in Section 2.2). This is a reasonable strategy because monotone laws are
easier to reason about (all non-trivial weak distributive laws described in the literature are
monotone) and are closer to being fully characterized, meaning we should hopefully be able
to prove no-go theorems for monotone weak distributive laws. In fact we will prove that
there is no such law PP ⇒ PP in EM(P) or EM(D), so that by Proposition 19 λP/P cannot
weakly π-lift to EM(P) nor to EM(D).
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4 Weakly lifting monotone weak distributive laws

Let T be a monad on a regular category C. It is folklore that, under mild conditions, EM(T)
is regular as well. For instance on Set, all finitary monads, and even all monads if the axiom
of choice is assumed to be true, have regular categories of algebras [12, Theorems 3.5.4 and
4.3.5]. Here we will assume that T is a nearly cartesian functor, but the following result also
holds for monads that preserve reflexive coequalizers.

I Theorem 20 (categories of algebras are regular). Let T be a monad with nearly cartesian
endofunctor on a regular category C. Then EM(T) is regular and UT creates finite limits and
near pullbacks (a square is a near pullback in EM(T) if and only if its image by UT is so in
C).

Consider weak distributive laws ρ: TS⇒ ST, σ: TR⇒ RT and τ : SR⇒ RS on C. When
τ : SR⇒ RS is a monotone weak distributive law thanks to the framework of [23], it is now
natural to ask when there is also a monotone weak distributive law SR ⇒ RS in EM(T)
arising in the same way: it is for instance the case for T = β and S = R = P.

To apply the framework for monotone weak distributive laws of [23] to monads S and R,
we need to characterize Kl

(
R

)
as a subcategory of relations — we do this in Section 4.1 —

and then prove that S and µS are nearly cartesian and investigate when the extension of S
to Rel(EM(T)) restricts to Kl

(
R

)
— we do this in Section 4.2. We finally apply our results in

Section 4.3.

4.1 Kleisli categories of weakly lifted monads
Let us forget about regular categories and internal relations for an instant and first describe
the Kleisli categories of a weakly lifted monad R in terms of the Kleisli category of R itself.

I Proposition 21. Let σ: TR ⇒ RT be a weak distributive law in a category C where
idempotents split, so that R has a weak lifting R to EM(T) and T a weak extension T to Kl(R).
Then Kl

(
R

)
-arrows (A, a) (B, b) are in one-to-one correspondance with Kl(R)-arrows

f :A B such that f ◦ FRa = FRb ◦ Tf .

Assume that the framework of [23] applies: Kl(R) is a wide subcategory of Rel(C) (and
the left adjoint coincides with the graph functor Graph : C→ Rel(C)), T and µT are nearly
cartesian and the weak extension of

(
T, ηT, µT)

to Kl(R) is the restriction of the relational
extension of T and µT to Rel(C). By Theorems 6 and 20, UT has a relational extension
Rel

(
UT)

: Rel(EM(T)) → Rel(C), and by Proposition 21 Kl
(
R

)
correspond to C-relations

ψ:A ! B that are in Kl(R) and such that ψ · a = b · Tψ. This category is itself a wide
subcategory of Rel(EM(T)):

I Lemma 22. When the endofunctor T is nearly cartesian, a C-relation ψ:A! B is the
image of an EM(T)-relation (A, a) ! (B, b) by the faithful functor Rel

(
UT)

: Rel(EM(T))→
Rel(C) if and only if ψ · a ≥ b · Tψ.

We now describe in more concrete terms which EM(T)-relations are arrows in Kl
(
P

)
.

Decomposable T-algebra morphisms play a central role in this description:

I Definition 23 (decomposable morphisms of algebra). Let T be a monad on a category C
such that EM(T) is regular. A T-algebra morphism f :X → Y is called decomposable when
the square f ◦ εT

X = εT
Y ◦ FTUTf is a near pullback.

Given a jointly monic span 〈ψX , ψY 〉 in EM(T), the corresponding relation ψ = ψY · ψ†
X

is called decomposable when ψX is so.
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I Example 24 (decomposable morphisms and relations in categories of algebras over Set). In
EM(β) ∼= KHaus, a continuous map is decomposable if and only if it is open (it preserves open
sets), and decomposable relations are the continuous ones, i.e. those relations ψ:X ! Y

such that ψ−1[u] is open in X for every open subset u of Y .
In EM(P) ∼= JSL, ψ:X ! Y is decomposable if and only if for every family (xi)i∈I

of elements of X and every y ∈ Y such that
(∨

i∈I xi, y
)
∈ ψ, there is a family (yi)i∈I of

elements of Y such that (xi, yi) ∈ ψ for all i ∈ I and
∨
i∈I yi = y.

In EM(D) ∼= Conv, ψ:X ! Y is decomposable if and only if for every x ∈ X, every
disintegration of x as a barycenter x =

∑n
i=1 λixi and every y ∈ Y such that (x, y) ∈ ψ, y

disintegrates as a barycenter y =
∑n
i=1 λiyi such that (xi, yi) ∈ ψ for all i ∈ I.

I Lemma 25. When UT creates near pullbacks, µT is nearly cartesian if and only if every
free algebra morphism FTf :

(
X,µT

X

)
→

(
Y, µT

Y

)
is decomposable.

We are now able to state the main result of this section.

I Theorem 26. When the endofunctor T is nearly cartesian, a relation ψ: (A, a) ! (B, b)
is decomposable if and only if UTψ · a = b · TUTψ. If µT is also nearly cartesian and Rel(T)
restricts to Kl(R) ↪→ Rel(C) for some monad R on C, then the Kleisli category Kl

(
R

)
of

the corresponding weakly lifted monad R on EM(T) has for arrows (A, a) (B, b) the
decomposable relations ψ: (A, a) ! (B, b) in EM(T) such that UTψ is in Kl(R).

I Corollary 27. If T has a monotone weak distributive law over P in Set, the Kleisli category
of the lifted powerset monad P on EM(T) is the category of T-algebras and decomposable
relations between them.

I Remark 28 (subobject classifiers in categories of algebras). Recall that an elementary
topos is a regular category such that the Graph functor has a right adjoint [17, §1.911];
the corresponding monad is called the powerset monad. If C is an elementary topos with
powerset monad P, and if T is a monad on C such that the endofunctor T and the natural
transformation µT are nearly cartesian, then by Theorem 26 EM(T) is an elementary topos
as soon as every T-algebra morphism is decomposable. We retrieve for instance that the
categories of group actions (algebras for monads G × − where G is a group) are toposes,
because the corresponding morphisms of algebras are easily shown to all be decomposable.

This is not a necessary condition for a category of algebras to be an elementary topos: it
is well known that categories of monoid actions (algebras for monads M ×− where M is a
monoid) are toposes, but there are equivariant morphisms that are not decomposable.

If EM(T) is an elementary topos as in Remark 28, P1 classifies subobjects in the sense
that subobjects X ↪→ Y are in one-to-one correspondance with morphisms Y → P1, where 1
is the terminal object [17, §1.912].

This can be generalized when Theorem 26 holds as follows: R1 classifies decomposition-
closed subobjects, in the sense that decomposable monomorphisms X ↪→ Y are in one-to-one
correspondance with morphisms Y → R1 (the correspondance comes from the adjunction
Kl

(
R

)
(Y, 1) ∼= EM(T)

(
Y,R1

)
). For instance, the Vietoris monad on KHaus ∼= EM(β) classifies

clopen subsets of compact Hausdorff spaces, the non-empty-join-closed powerset monad on
JSL ∼= EM(P) classifies downwards-closed subsets of join-semilattices, and the convex-closed
powerset monad on Conv ∼= EM(D) classifies walls, i.e. subsets E such that if x ∈ E and∑n
i=1 xi = x, xi ∈ E as well for all 1 ≤ i ≤ n (walls appear for instance in the structure

theorem for convex algebras, which state that every convex algebra is a subalgebra of the
Płonka sum of its walls [30, Theorem 4.5]).
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4.2 Monotone extensions to Kleisli categories of weakly lifted monads
In Section 4.1 we assumed T had a monotone weak distributive law over R coming from a
relational extension of T and µT, and described the Kleisli category of the corresponding
weakly lifted monad R. Suppose now there is another monad S that weakly lifts to EM(T)
and that also has a monotone weak distributive law over R coming from a relational extension
of S and µS. When do we also get a monotone weak distributive law of S over R coming
from a relational extension of S and µS?

For the relational extension to exist, we need S and µS to be nearly cartesian. This
always holds:

I Lemma 29. Let C be a regular category where idempotents split, and suppose T is nearly
cartesian. If F: C→ C is nearly cartesian and weakly lifts to EM(T), then its weak lifting is
nearly cartesian. If α: F⇒ G between two such functors is nearly cartesian and weakly lifts
to EM(T), then its weak lifting is nearly cartesian as well.

S thus has a relational extension Rel
(
S

)
. By adapting Theorem 6, we can not only

characterize when relational extensions restrict to Kl
(
R

)
, but when any endofunctor or natural

transformation has a monotone extension to Kl
(
R

)
. We can even state this characterization

more generally, without necessarily speaking of decomposable morphisms: we do this now.

I Definition 30. Let Γ be a wide subcategory of a regular category C such that, in C,
Γ-arrows are stable under pullbacks (in C);
if f ◦ e is a Γ-arrow and e is a regular epimorphism (in C), f is a Γ-arrow.

Then we define C · Γ† to be the wide subcategory of Rel(C) whose arrows are the C-relations
ψ:X ! Y given by jointly monic spans 〈ψX , ψY 〉 such that ψX is a Γ-arrow, and we write
GraphΓ : C→ C · Γ† for the restriction of Graph : C→ Rel(C) to C · Γ†.

We also define a Γ† · C-square to be a square a ◦ b = c ◦ d such that a or c is a Γ-arrow.

I Definition 31. Let C and D be two regular categories with respective wide subcategories Γ
and ∆ as in Definition 30. Let F be a functor C→ D. A (Γ,∆)-relational extension of F is a
functor FΓ,∆: C · Γ† → D ·∆† such that FΓ,∆GraphΓ = Graph∆ FΓ,∆. If α: F⇒ G is a natural
transformations between functors C→ D with (Γ,∆)-relational extensions FΓ,∆ and GΓ,∆, a
(Γ,∆)-relational extension is a (necessarily unique) natural transformation αΓ,∆: FΓ,∆ ⇒ GΓ,∆
such that αΓ,∆GraphΓ = Graph∆ αΓ,∆.

I Theorem 32. Let C, D, Γ, ∆ and F: C → D be as in Definition 31. F has a monotone
(Γ,∆)-relational extension if and only if the following two conditions hold:

F restricts to a functor Γ→ ∆;
F sends near pullback Γ† · C-squares on near pullback (necessarily ∆† ·D-) squares (this is
always true when F is nearly cartesian).

Such a monotone (Γ,∆)-relational extension, if it exists, is necessarily unique and given by
FΓ,∆(g · f)† = Fg · (Ff)†.

Let α: F ⇒ G be a natural transformation between two functors C → D having such
monotone (Γ,∆)-relational extensions. α has a (necessarily unique) (Γ,∆)-relational extension
if and only if its has near pullbacks for its naturality squares along Γ-morphisms (this is
always true when α is nearly cartesian).

A first corollary, while not especially ground-breaking, is the following:

I Corollary 33. In Set, a monad
(
T, ηT, µT)

with nearly cartesian endofunctor and multi-
plication also has a (necessarily unique) monotone weak distributive law over the monad P∗
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of non-empty subsets, and over the monad Pf of finite subsets if and only if T preserves
functions with finite pre-images of elements.

We could more generally characterize the existence of monotone weak distributive laws
over these powerset monads for any monad on Set. Still, Corollary 33 is already enough to
prove that P has monotone weak distributive laws over Pf and P∗, that D has a monotone
weak distributive law over P∗ but not over Pf , and that β has a monotone weak distributive
law over P∗. A more impactful corollary — we will apply it repeatedly in Section 4.3 — is
the following:

I Corollary 34. Let T be a monad on Set equipped with a monotone weak distributive law
TP ⇒ PT, and let S be a monad on EM(T). If there is a monotone weak distributive law
SP ⇒ PS, S preserves decomposable T-algebra morphisms. Moreover if S is itself the weak
lifting of a monad on Set that has a weak distributive law over P, than the previous condition
is not only necessary, but also sufficient.

4.3 Monotone weak distributive laws in categories of algebras
A first use of Corollary 34 is retrieving the monotone weak distributive law VV ⇒ VV:
once V and µV are shown to be nearly cartesian, we only need to prove that decomposable
morphisms are the open maps (Example 24) instead of proving that Kl(V)-arrows are the
continuous relations, and that V preserves open maps, which is technically much simpler
than proving that V preserves continuous relations, as originally done in [23, Proposition 20].
We are also able to answer quite easily Goy’s [20, Conjecture 7.31] on the weak distributivity
of the Radon monad — the monad of Radon probability measures on a compact Hausdorff
space — over the Vietoris monad:

I Theorem 35. The Radon monad R does not have a monotone weak distributive law over
the Vietoris monad V, but it has (a unique) one over the non-empty Vietoris monad V∗ —
the monad of non-empty closed subsets.

Let us stress the importance of this new weak distributive law: the question of how to
combine probability and non-determinism has been the topic of numerous works (again, see
the introduction of [24]), and this law provides an answer in KHaus that is derived from a
generic construction and thus comes with generic tools, e.g. generalized determinization and
up-to techniques [22, 20]. In a very recent pre-print [19], Goubault-Larrecq also constructs
this law RV∗ ⇒ V∗R as an instance of weak distributive laws between monads of continuous
valuations and non-deterministic choice in more general categories of topological spaces: our
result is more restricted, but we derive the law from generic categorical principles instead of
building it by hand, exhibit its canonicity (it comes from a relational extension), and show
why the non-empty version of the Vietoris monad is needed.

A second use of Corollary 34 is in proving the absence of monotone weak distributive
laws. In Section 3 we were able to prove that the law PP⇒ PP does not weakly lift to EM(P)
nor EM(D), but we were not able to say anything about the existence of other monotone
weak distributive laws PP ⇒ PP. Now, thanks to the framework developed above and in
particular Corollary 34, we are able to prove that such laws cannot exist. We start with
EM(P):

I Example 36. In EM(P) ∼= JSL, let P be the monad of subsets closed under non-empty
joins: the join of a family (Ei)i∈I of non-empty-joins-closed subsets of X is the non-empty-
joins-closed subset

{∨
i∈I xi

∣∣ xi ∈ Ei}. Let f : 4→ 2 (where 2 = {0, 1} and 4 = {0, 1, 2, 3})
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be the function given by f(0) = f(2) = 0 and f(1) = f(3) = 1. Then FPf is decomposable
(by Lemma 25), but PFPf is not. Indeed, let A ∈ PFP4 and B,B1, B2 ∈ PFP2 be as depicted
in Figure 2a (page 15):

(
PFPf

)
(A) = B = B1 ∨ B2 but there are no A1, A2 ∈ PFP4 such

that A = A1 ∨A2 and
(
PFPf

)
(A1) = B1 as well as

(
PFPf

)
(A2) = B2.

P does not preserve decomposable P-algebra morphisms, and thus there is no monotone
weak distributive law PP ⇒ PP. In fact because the counter-example decomposable morphism
is surjective and has finite pre-images, this also proves that there are no monotone weak
distributive laws PP∗ ⇒ P∗P or PPf ⇒ PfP in EM(P).

Because there is a morphism of monads D⇒ P (that sends a probability distribution to
its support), there is a functor EM(P)→ EM(D) which allows us to transfer Example 36 to
EM(D): there are no monotone weak distributive laws PP⇒ PP or PP∗ ⇒ P∗P in EM(D).
But this argument is not entirely satisfying, as the resulting example is that of a morphism
of convex algebras with a very unnatural structure, namely that of complete join-semilattices:
one could imagine restricting to a full subcategory of EM(D) that does not contain these
semilattices, and perhaps P would preserve decomposable morphisms there. As shown by
the following example, due to Harald Woracek and Ana Sokolova (private communication),
this cannot be the case as soon as free convex algebras come in the picture.

I Example 37 ([33]). In EM(D) ∼= Conv, let P be the monad of convex subsets: a convex
combination of some convex subsets of X is the convex set of the corresponding convex
combinations of their points (in X). Let f : {A,B,C} → {B,C} be the function given by
f(A) = f(B) = B and f(C) = C. Then FDf is decomposable (by Lemma 25) but PFDf is
not. Indeed, depicting FD{A,B,C} as the triangle depicted in Figure 2b (page 15), FD{B,C}
is the line segment [BC] and FDf is the vertical projection. Now 1

2{B}+ 1
2 [FC] = [DE] =(

PFDf
)

([GD]), but [GD] itself cannot be disintegrated as the mean of two convex subsets
of ABC, one above B and the other above [FC].

Using similar arguments, we are able to prove the existence or absence of monotone weak
distributive laws over lifted powerset monads in several categories of algebras: these results
are gathered in Table 1. All the negative results in this table come from the non-preservation
of decomposable morphisms, and thus the absence of monotone extensions of the endofunctors
themselves. The topmost row indicates in which category we work. A monad in the second
topmost row has a monotone weak distributive law over a monad in the left column if the
corresponding cell is filled with 3, otherwise it is filled with 7 . In Set, P and P∗ are the
usual powerset monads P and P∗. L is the monad of lists, M that of multisets and MS that

Figure 2 Counterexamples to preservation of decomposability

(a) In JSL.

∅

{0} {1}

{0, 1}

{0, 1, 2, 3}

∅

{0} {1}
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B1 B2

A B

(b) In Conv.

•

• •• • •

•

A

B C

G

D E F

FDf
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Set KHaus JSL Conv Mon CMon

L M D P β MS V R P P M D P MS M D P MS

P 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7

P∗ 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7

Table 1 Existence or absence of monotone weak distributed laws over weakly lifted powerset
monads in categories of algebras.

of modules for a semiring S satisfying the conditions of [10, Theorem 3.1]. Mon ∼= EM(L) is
the category of monoids and CMon ∼= EM(M) that of commutative monoids. Linear theories
distribute over commutative monads [28], hence L and M distribute over M, P, D and MS

when S is commutative, and so these four monads have liftings (in particular weak liftings)
to Mon and CMon.

5 Conclusion

Noticing the similarity between the laws VV⇒ VV and PP⇒ PP, we developed the theory
for weakly lifting weak distributive laws and showed that it only applied partially in this
case. We then focused on the monotonicity of the laws, and gave full characterizations of
monotone weak distributive laws over weakly lifted powerset monads in categories of algebras
by characterizing the Kleisli categories of the latters, a key notion appearing then being that
of decomposable morphisms. We finally applied this result to exhibit a new law RV∗ ⇒ V∗R
for combining probability and non-determinism in KHaus, but also to show that in general
these monotone weak distributive laws seem to be quite rare.

We leave for further work the development of a full 2-categorical theory for iterating
weak distributive laws (in the vein of [14, 7]), which would complete Section 3 but would
likely be scarce in new examples. With monotone laws over powerset-like monads fully
characterized, another natural question is now whether this can be done in other settings,
e.g. in Pos-regular categories [26] or over other monads: the multiset monad for instance is
a good candidate as its Kleisli category can also be described through spans. Finally, the
author believes it would be interesting to develop the theory of decomposable maps, as they
somehow generalize open maps to categories of algebras.
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A Additional tool for the proofs: semi-algebras

Call a semi-monad on a category C the data
(
T, µT)

of an endofunctor T: C → C and a
natural transformation µT: TT → T such that µT ◦ TµT = µT ◦ µTT. In particular, any
monad has an underlying semi-monad, weak distributive laws are really distributive laws
between a monad and a semi-monad, and weak extensions of monads are just extensions of
the underlying semi-monads.

Given a semi-monad T, one may form the category EMs(T) of its semi-algebras: a
semi-T-algebra is a pair (A, a) of an object A of C and of an arrow a: TA → A such that
a ◦ µT

A = a ◦ Ta, and a semi-T-algebra morphism (A, a) → (B, b) is an arrow f :A → B in
C such that f ◦ a = b ◦ Tf — the identity morphism is the one with the identity as its
underlying C-arrow, and composition of morphisms is done by composing the underlying
C-arrows. Just like for EM(T), there are functors FT

s : C � EMs(T) :UT
s such that UT

s FT
s = T,

so that FT
s sends a semi-algebra (A, a) to its carrier object A and a morphism (A, a)→ (B, b)

to the underlying arrow A → B, while UT
s sends an object X to the free T-algebra on X,

given by the pair
(
TX,µT

X

)
, and an arrow f :X → Y to the morphism

(
TX,µT

X

)
→

(
TY, µT

Y

)
with underlying C-arrow Tf : TX → TY . There is a natural transformation εT: FT

sUT
s → Id

(in EMs(T)) given by UT
s ε

T
(A,a) = a: TA→ A.

If T is also a monad, we let EM(T) be the full subcategory of EMs(T) on the T-algebras, i.e.
semi-T-algebras (A, a) such that a◦ηT

A = idA. We write IT for the inclusion EM(T)→ EMs(T),
and FT and UT are the restrictions of FT

s and UT
s to EM(T).

In general if U: D → C is a functor, a lifting of an endofunctor F: C → C along U is
an endofunctor F: D → D such that UF = FU, while a lifting of a natural transformation
α: F→ G between endofunctors with liftings F and G is a natural transformation α such that
Uα = αU.

I Definition 38 (lifting to algebras). Let T be a monad on C. A monad
(
S, ηS, µS)

on C
semi-lifts to EMs(T) when T, ηT and µT lift along UT

s . It lifts to EM(T) when it has a
semi-lifting to EMs(T) that restricts to EM(T).

Giving a lifting of an endofunctor S: C → C along UT
s is equivalent to giving a law

ρ: TS⇒ ST having Diagram (µ+) commute: the law ρ induces the semi-lifting which sends
the semi-T-algebra (A, a) to

(
SA,TSA ρA−−→ STA Sa−→ SA

)
, and is computed from the semi-

lifting as ρ = UT
s ε

TSFT
s ◦ TSηT. If S and R have liftings S and R along UT

s , a natural
transformation α: S⇒ R has a lifting α along UT

s if and only if σ ◦Tα = αT ◦ρ. In particular,
semi-liftings of a monad

(
S, ηS, µS)

to EMs(T) are in one-to-one correspondance with weak
distributive laws TS⇒ ST.

Notice the resemblance with the conditions in Theorem 9: this is not a coincidence, as
we will show next that weak liftings (along UT) can be constructed from liftings along UT

s .

EMs(T) EM(T)

C

IT

KT

FT
s

UT
s

FT

UT

Let T be a monad on a category C where all idempotents
split. It then follows that all idempotents in EMs(T) split as
well. Because there is an idempotent natural transformation
κT: Id⇒ Id in EMs(T) given by UT

s κ
T = UT

s ε
T ◦ ηTUT

s , each κT
A

splits as κT
A = ιTA ◦ πT

A, and the resulting semi-T-algebra in the
middle is actually an algebra. In fact this construction yields a functor KT: EMs(T)→ EM(T)
so that κT splits as πT: Id⇒ ITKT followed by ιT: ITKT ⇒ Id. We then get ITKTf = πT

B ◦f ◦ ιTA
for f :A → B in EMs(T), KTIT = Id and that KT is both left and right adjoint to IT: ιT is
the counit of IT a KT while πT is the unit of KT a IT. To make notations less heavy, if S is a
semi-lifting of S, we also write πT

S for πTS and ιTS for ιTS. We will also omit the superscript
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T from the functors and natural transformations when non-ambiguous.
If S is a lifting of an endofunctor S along UT

s , then S = KSI: EM(T)→ EM(T) is a weak
lifting of S to EM(T). Similarly, if α is the lifting of a natural transformation α along UT

s ,
then α = K α I is a weak lifting of α to EM(T). In particular, if

(
S, ηS, µS)

has a semi-lifting
to S, then S can be made into a monad by composing the adjunction I: EM(T) � EMs(T) :K
with any adjunction that yields S.

B Proofs for Section 3 (Weakly lifting weak distributive laws)

I Lemma 11. UβλV/V = πPV ◦ PπP ◦ λP/PUβ ◦ PιP ◦ ιPV.

Proof. Recall from [18] that, if X is a compact Hausdorff space that we see as a semi-β-algebra,
the X-component of πP is the function PX → VX that takes a subset of a compact Hausdorff
space and outputs its closure, while the X-component of ιP is the function VX → PX that
embeds closed subsets in the set of all subsets. Hence for C a closed set of closed sets,(

PπP ◦ λP/PUβ ◦ PιP ◦ ιPV
)
X

(C) =
{
e

∣∣∣ e ⊆⋃
C and ∀c ∈ C, c ∩ e 6= ∅

}
=

{
c ∈ VX

∣∣∣ d ⊆⋃
C and ∀c ∈ C, c ∩ d 6= ∅

}
=

(
ιPV ◦ UβλV/V

)
X

(C)

(where e denotes the closure of e). Indeed if e ⊆
⋃
C then e ⊆

⋃
C because

⋃
C = µV(C) is

closed, and if e ∩ c 6= ∅ then e ∩ c 6= ∅.
Because πP ◦ ιP = id, UβλV/V = πPV ◦ PπP ◦ λP/PUβ ◦ PιP ◦ ιPV. J

I Theorem 13. Weak distributive laws ρ: TS ⇒ ST, σ: TR ⇒ RT and τ : SR ⇒ RS satisfy
the Yang-Baxter equation if and only if τ : SR⇒ RS weakly lifts to EM(T), i.e. if there is a
natural transformation τ : SR ⇒ RS such that Diagrams (14) and (15) commute. If this holds,
τ is a weak distributive law, and the weak composite R • S and the weak lifting R • S (recall
that R • S weakly lifts to EM(T) by Proposition 12) can be chosen to be equal (as monads).

Proof. We apply Theorem 9: recall that SR and RS have weak liftings SR and RS thanks
to the laws Sσ ◦ ρR and Rρ ◦ σS. Then τ : SR⇒ RS weakly lifts to EM(T) as τ : SR ⇒ RS if
and only if Rρ ◦ σS ◦ Tτ = τT ◦ Sσ ◦ ρR: this is exactly the Yang-Baxter equation. Because
the correspondance is functorial, it preserves any equation satisfied by τ , ηS, ηR, µS and µR

(they all weakly lift to EM(T)): since τ is a weak distributive law, so is τ .
We now prove that πS

RFS: RS ⇒ R • S and ιSRFS: R • S ⇒ RS also weakly lift to EM(T)
as natural transformations RS ⇒ R • S and R • S ⇒ SR. It will then follow, again by
functoriality of the correspondance of Theorem 9, that these two liftings form a splitting of
the idempotent RS ⇒ RS and that R • S can thus be chosen as the weak composite monad
R • S.

We apply Theorem 9 again: RS and R • S have weak liftings RS and R • S thanks to the
laws Rρ ◦ σS and πS

RFST ◦Rρ ◦ σS ◦TιSRFS (see Proposition 12 for the latter). Thus πS
R weakly

lifts to EM(T) if and only if

πS
RFST ◦ Rρ ◦ σS ◦ TιSRFS ◦ TπS

RFS = πS
RFST ◦ Rρ ◦ σS

Similarly, ιSR weakly lifts to EM(T) if and only if

Rρ ◦ σST ◦ ιSRFS = ιSRFST ◦ πS
RFST ◦ Rρ ◦ σS ◦ TιSRFS
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These two results are an immediate consequence of [21, Lemma 4.2] which states that
κS

RFST ◦ Rρ ◦ σS = Rρ ◦ σS ◦ TκS
RFS.

Note that it is also possible but much more tedious to prove this result by hand, by
checking that τ as given by Diagrams (14) and (15) is indeed a weak distributive law. J

I Proposition 14. Let λT/P: TP⇒ PT be a weak distributive law with corresponding weak
lifting P, and write PPA =

(
PιP ◦ ιPP

) [
UTPP(A, a)

]
when (A, a) is a T-algebra. If there

is such an (A, a) such that {A} ∈ PPA and P∗A /∈ PPA (where P∗A = {E ⊆ A | E 6= ∅}),
then λP/P: PP⇒ PP does not have a weak ι-lifting to EM(T).

Proof. Suppose there is such an algebra, and consider any λP/P : PP ⇒ PP. Let thus E ∈
UTPP(A, a) be such that

(
PιP ◦ ιPP

)
E = {A}. Then, by Equation (1),

(
λP/P ◦ PιP ◦ ιPP

)
(E) =

λP/P({A}) = P∗A. But P∗A /∈ PPA, hence necessarily
(

PιP ◦ ιPP ◦ UTλP/P
)

(E) ∈ PPA
must be different from P∗A: Diagram (15) does not commute. J

I Corollary 15. There is no weak ι-lifting (let alone weak liftings) of λP/P to KHaus, JSL or
Conv.

Proof. 1. Given a compact Hausdorff space given as a β-algebra (A, a), PPA is the set of
all closed sets (in the Vietoris topology) of closed sets of (A, a). {A} is such a closed set
of closed sets (all singletons and the whole set are always closed in a compact Hausdorff
space) but P∗A is not in general because it contains all non-empty sets, in particular
non-closed sets if there are any (which is the case for the unit interval, for instance).

2. Consider a P-algebra (A, a), i.e. a complete join-semilattice where a: PA→ A computes
the join of a subset. Then PPA is the set of all non-empty-joins-closed sets of non-
empty-joins-closed subsets of A. {A} is such a non-empty-joins-closed set of non-empty-
joins-closed subsets, but P∗A is not in general because it contains all non-empty sets,
in particular non-join-closed subsets if there are any (which is the case of (P2,∪) for
instance).

3. Consider a D-algebra (A, a), i.e. a barycentric algebra where a: DA→ A computes convex
combinations of elements. Then PPA is the set of all convex sets of convex subsets of A.
{A} is such a convex set of convex subsets, but P∗A is not in general because it contains
all non-empty sets, in particular non-convex subsets if there are any (which is the case of
(D2,∪) for instance).

J

I Lemma 17. λV/V: VV⇒ VV is a weak π-lifting of λP/P: PP⇒ PP.

Proof. We want to show that Diagram (14) commutes, i.e. that for any compact Hausdorff
space X and E ∈ PPUβX we have that the two sets{

e
∣∣∣ e ⊆⋃

E and ∀e′ ∈ E, e ∩ e′ 6= ∅
}

(4)

and{
c ∈ VX

∣∣∣ c ⊆⋃
{e | e ∈ E} and ∀c′ ∈ {e | e ∈ E}, c ∩ c′ 6= ∅

}
(5)

are equal.
Notice first that, since µV is a weak π-lifting of µP, we have that

⋃
{e | e ∈ E} =

⋃
E.
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(4) ⊆ (5). Consider some e ⊆
⋃
E such that for every e′ ∈ E, e ∩ e′ 6= ∅. Then e ⊆

⋃
E =⋃

{e | e ∈ E}. Consider now some c ∈ {e | e ∈ E}. If c∩e = ∅, then c is in the open �ec.
Hence there must be some e′ with e′ ∈ E in this open as well, i.e. such that e′ ∩ e = ∅
and thus e′ ∩ e = ∅. Such an e′ does not exist by assumption, hence e ∩ c 6= ∅.
Hence every element of {e | e ⊆

⋃
E and ∀e′ ∈ E, e ∩ e′ 6= ∅} is contained in (5). Because

this latter set is closed in VVX, it follows that (4) ⊆ (5).
(5) ⊆ (4). Consider some c ∈ (5), i.e. some c ∈ VX such that c ⊆

⋃
E and such that for

every c′ ∈ {e | e ∈ E}, c ∩ c′ 6= ∅. Let �u0 ∩
⋂n
i=1 ♦ui be a basic open set of VX that

contains c.
Then c ⊆ u0, so by regularity (see for instance [23, Lemma 21]) and compactness of X
there is an open set u′

0 of X such that c ⊆ u′
0 and u′

0 ⊆ u0. Consider the set e =
⋃
E ∩u′

0.
Then e ⊆ u0, and for every e′ ∈ E, c ∩ e′ 6= ∅ hence u′

0 ∩ e′ 6= ∅ and thus u′
0 ∩ e′ 6= ∅

(because u′
0 is open). And of course since e′ ⊆

⋃
E, u′

0 ∩ e′ ⊆ e ∩ e′ 6= ∅.
Moreover for every 1 ≤ i ≤ n, ui ∩ c 6= ∅ and c ⊆ u′

0 hence (ui ∩ u′
0) ∩ c 6= ∅. Since

c ⊆
⋃
E, (ui∩u′

0)∩
⋃
E 6= ∅ and thus (ui∩u′

0)∩
⋃
E 6= ∅ (ui∩u′

0 is open). We have just
showed that e∩ui 6= ∅ so that e∩ui 6= ∅, and of course e ⊆ u′

0 ⊆ u0: e ∈ �u0∩
⋂n
i=1 ♦ui.

This shows that c is in the closure of {e | e ⊆
⋃
E and ∀e′ ∈ E, e ∩ e′ 6= ∅}, hence in (4).

J

I Proposition 18. Weak distributive laws ρ: TS⇒ ST, σ: TR⇒ RT and τ : SR⇒ RS satisfy
the π-Yang-Baxter equation, given by Diagram (π-YB), if and only if τ : SR ⇒ RS weakly
π-lifts to EM(T), i.e. if there is a natural transformation τ : SR ⇒ RS such that Diagram (14)
commutes. If this holds, τ is a weak distributive law.

Proof. The proof is almost a copy-paste of that of Theorem 13.
We apply Theorem 9: recall that SR and RS have weak liftings SR and RS thanks to the

laws Sσ ◦ ρR and Rρ ◦ σS. Then τ : SR⇒ RS weakly π-lifts to EM(T) as τ : SR ⇒ RS if and
only if the corresponding instance of Diagram (7) commutes: this is exactly Diagram (π-YB)
(up to commuting of natural transformations). Because the correspondance is functorial, it
preserves any equation satisfied by τ , ηS, ηR, µS and µR (they all weakly π-lift to EM(T)):
since τ is a weak distributive law, so is τ . J

I Proposition 19. Consider a monotone weak distributive law λS/P: SP ⇒ PS in Set that
has a weak π-lifting to EM(T). If the components of κP: PUT ⇒ PUT are monotone functions
(they preserve inclusion of subsets) then λS/P : SP ⇒ PS is also a monotone weak distributive
law.

Proof. Recall that morphisms X Y in Kl(P) correspond to functions X → PY , so
that f, g:X → PY are such that f ≤ g if and only if f(x) ⊆ g(x) for every x ∈ X. The
extension of the functor S to Kl(P) then sends a morphism X Y given by the function
f :X → PY to the morphism SX SY given by the composite SX Sf−→ SPY λS/P

−−−→ PSY .
That λS/P is a monotone law means that this extension is monotone, i.e. that if f ≤ g then
λS/P ◦ Sf ≤ λS/P ◦ Sg.

Similarly, morphisms X Y in Kl
(
P

)
correspond to T-algebra morphisms f :X → PY ,

and the morphisms X Y can be ordered by saying that f ≤ g:X → PY if and only
if (ιP)Y ◦ UTf ≤ (ιP)Y ◦ UTg. The extension of the functor S to Kl

(
P

)
sends a morphism

X Y given by a T-algebra morphism f :X → PY to the morphism SX SY given by

the composite SX Sf−−→ SPY λS/P
−−−→ PSY .
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We now show that this extension is monotone. Consider f, g:X → PY in EM(T) such
that ((ιP)Y ◦ UTf)(x) ⊆ ((ιP)Y ◦ UTg)(x) for every x ∈ UTX. Then by monotonicity of λS/P,(

λS/P ◦ S(ιP)Y ◦ SUTf
)

(E′) ⊆
(
λS/P ◦ S(ιP)Y ◦ SUTg

)
(E′)

for every E′ ∈ UTPX. It follows that(
P(πS)Y ◦ λS/P ◦ S(ιP)Y ◦ SUTf ◦ (ιP)X

)
(E) ⊆

(
P(πS)Y ◦ λS/P ◦ S(ιP)Y ◦ SUTg ◦ (ιP)X

)
(E)

for every E ∈ PUTX, and finally by monotonicity of κPS that

(κP)SY ◦P(πS)Y ◦λS/P◦S(ιP)Y ◦SUTf ◦(ιP)X ≤ (κP)SY ◦P(πS)Y ◦λS/P◦S(ιP)Y ◦SUTg◦(ιP)X

Because ιP is a natural transformation and because λS/P is a weak π-lifting of λS/P, this
inequality can be rewritten as

(ιP)SY ◦ UT
(
λS/P ◦ Sf

)
≤ (ιP)SY ◦ UT

(
λS/P ◦ Sf

)
so that the extension of S to Kl

(
P

)
is monotone. J

C Proofs for Section 4 (Weakly lifting monotone weak distributive
laws)

I Lemma 39. Let T be a semi-monad on a regular category C. Then UT
s creates all limits

that C has (in particular kernel pairs). If the endofunctor T is nearly cartesian, EMs(T) is
regular and UT

s creates regular epimorphisms, so that UT
s is in particular nearly cartesian.

Proof. This proof is very similar to the proof that categories of algebras over Set are regular,
which can be found in the literature [12, Theorem 4.3.5].

Let Alg(T) be the category whose objects are pairs (A, a) of an object A of C and of an
arrow a: TA→ A, and whose arrows (A, a)→ (B, b) are given by C-arrows f :A→ B such
that f ◦ a = b ◦Tf : Alg(T) is the category of functorial T-algebras, i.e. T-algebras when T is
seen as an endofunctor. It is well known that the obvious forgetful functor U: Alg(T)→ C
creates limits, so that Alg(T) in particular has all limits that C has [1]: because C is finitely
complete, so is Alg(T). EMs(T) is a subcategory of Alg(T), and limits of semi-T-algebras are
again semi-T-algebras — recall that every finite limite can be constructed from pullbacks
and the terminal object:

the terminal functorial T-algebra (X,x) is a semi-T-algebra: x ◦ µT
X = x ◦ Tx because

X = U (X,x) is terminal in C;
if (X,x) f−→ (Z, z) g←− (Y, y) is a cospan of semi-T-algebras in Alg(T) and (P, p) π−→
(X,x)× (Y, y) is its pullback, then

Uπ ◦ p ◦ µT
P = 〈x ◦ TUπX , y ◦ TUπY 〉 ◦ µT

P

= 〈x ◦ µT
X ◦ TTUπX , y ◦ µT

Y ◦ TTπY 〉
= 〈x ◦ Tx ◦ TTπX , y ◦ Ty ◦ TTπY 〉
= 〈x ◦ TπX ◦ Tp, y ◦ TπY ◦ Tp〉
= Uπ ◦ p ◦ Tp

and Uπ is monic so p ◦ µT
P = p ◦ Tp.
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It immediately follows that UT
s , the restriction of U to EMs(T), creates limits.

We now work in EMs(T). Consider the kernel pair u, v: (P, p) → (X,x) of a T-algebra
morphism f : (X,x)→ (Y, y). Because UT

s preserves pullbacks, UT
s u,UT

s v:P → X is the kernel
pair of UT

s f : let e:X → Q be its coequalizer.
T is nearly cartesian so Te is again a regular epimorphism, i.e. a coequalizer of its

kernel pair, and we now show that it is also a coequalizer of Tu,Tv: TP ⇒ TX. First,
because e ◦ u = e ◦ v is a pullback, the square Te ◦ Tu = Te ◦ Tv is nearly cartesian: writing
u′, v′:P ′ → TX for the kernel pair of Te, there is a regular epimorphism e′: TP � P ′ such
that u′ ◦ e′ = Tu and v′ ◦ e′ = Tv. Suppose now g: TX → TZ is such that g ◦ Tu = g ◦ Tv.
Then because e′ is an epimorphism, g ◦ u′ = g ◦ v′ and g factors uniquely through Te (the
coequalizer of (u′, v′)).

Consider now the composite TX x−→ X
e−→ Q. It satisfies e ◦ x ◦Tu = e ◦ u ◦ p = e ◦ v ◦ p =

e ◦ x ◦ Tv, so it factors through the coequalizer Te of Tu and Tv. We let q: TQ→ Q be the
corresponding colimiting arrow, which satisfies q ◦ Te = e ◦ x by definition. Now (Q, q) is in
fact a semi-T-algebra:

q ◦ µT
Q ◦ TTe = q ◦ Te ◦ µT

X

= e ◦ x ◦ µT
X

= e ◦ x ◦ Tx
= q ◦ Te ◦ Tx
= q ◦ Tq ◦ TTe

Because TTe is a regular epimorphism, it is in particular an epimorphism: q ◦ µT
Q = q ◦ Tq.

e:X → Q is thus a semi-T-algebra morphism by definition.
Similarly, we prove that e: (X,x) → (Q, q) is the coequalizer of u, v: (P, p) → (X,x) in

EMs(T). Consider some morphism of semi-T-algebras g: (X,x)→ (A, a) such that g◦u = g◦v.
Then UT

s g ◦ UT
s u = UT

s g ◦ UT
s v in C, hence UT

s g factors as h ◦ e for some h:Q→ A. We now
show that h is in fact a semi-T-algebra morphism (Q, q)→ (A, a):

h ◦ q ◦ Te = h ◦ e ◦ x
= g ◦ x
= a ◦ Tg
= a ◦ Th ◦ Te

Because Te is an epimorphism, h ◦ q = a ◦ Th.
By construction, e is a regular epimorphism in EM(T) if and only if UTe is so in C, so UT

creates regular epimorphisms. J

I Theorem 20 (categories of algebras are regular). Let T be a monad with nearly cartesian
endofunctor on a regular category C. Then EM(T) is regular and UT creates finite limits and
near pullbacks (a square is a near pullback in EM(T) if and only if its image by UT is so in
C).

Proof. By Lemma 39, EMs(T) is a regular category and UT
s creates finite limits and coequal-

izers of kernel pairs. It is easy to show in the same vein that this restricts to EM(T), i.e. that
limits and coequalizers of kernel pairs of algebras are algebras. Finally because UT creates
pullbacks and regular epimorphisms, it creates near pullbacks. J
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I Proposition 21. Let σ: TR ⇒ RT be a weak distributive law in a category C where
idempotents split, so that R has a weak lifting R to EM(T) and T a weak extension T to Kl(R).
Then Kl

(
R

)
-arrows (A, a) (B, b) are in one-to-one correspondance with Kl(R)-arrows

f :A B such that f ◦ FRa = FRb ◦ Tf .

Proof. Let us first prove that the Kleisli category of the semilifted monad R on EMs(T) is
described as:

its objects are semi-T-algebras (A, a), i.e. objects of EMs(T);
its arrows (A, a)→ (B, b) are Kl(R)-arrows f :A B such that f ◦ FRa = FRb ◦ Tf .

Call directly the category described above Kl
(
R

)
. We will build the adjunction EMs(T) : FR �

UR :Kl
(
R

)
, and, since FR will be bijective on objects, it will immediately follow that Kl

(
R

)
is

indeed the Kleisli category of R.
We let FR : EMs(T) → Kl

(
R

)
be the functor that sends semi-T-algebras on themselves

and semi-T-algebra morphisms f : (A, a)→ (B, b) to the Kl(R)-arrow FRUTf :A B. We
indeed have that FRUTf ◦ FRa = FRb ◦TFRUTf because T is an extension of the endofunctor
T (TFR = FRT), f is a semi-T-algebra morphism and FR is a functor.

We let UR : Kl
(
R

)
→ EMs(T) be the functor that sends a semi-T-algebra (A, a) to the

semi-T-algebra R (A, a) = (RA,Ra ◦ σA), and a Kl
(
R

)
-arrow (A, a) (B, b) with underlying

Kl(R)-arrow f :A B to the semi-T-algebra morphism R (A, a)→ R (B, b) with underlying
C-arrow URf : RA→ RB. To prove that this is indeed a morphism of semi-T-algebras, apply
UR to the equality f ◦FRa = FRb◦Tf , recall that σ = URTεRFR ◦ηRTR, and use the naturality
of εR: FRUR ⇒ Id and ηR: Id⇒ R:

URf ◦ Ra ◦ σA = Rb ◦ URTf ◦ σA
= Rb ◦ URTf ◦ URTεR

FRA
◦ ηR

TRA

= Rb ◦ URTεR
FRB
◦ URTFRURf ◦ ηR

TRA

= Rb ◦ URTεR
FRB
◦ RTURf ◦ ηR

TRA

= Rb ◦ URTεR
FRB
◦ ηR

TRB ◦ TURf

= Rb ◦ σB ◦ TURf

Notice that URFR = R (because UT
sR = RUT

s ). For the unit of the adjunction, we of
course take the unit ηR of the monad R.

We define the counit εR : FRUR ⇒ Id by letting εR
FR (A,a): (RA,Ra ◦ σA) → (A, a) be the

Kl
(
R

)
-arrow with underlying Kl(R)-arrow εR

FRA
: RA A: using the naturality of εR, that

σ = URTεRFR ◦ ηRTR and that FR a UR is an adjunction, we get

εR
FRA
◦ FRRa ◦ FRσA = FRa ◦ εR

TFRA
◦ FRσA

= FRa ◦ εR
TFRA

◦ FRURTεR
FRA
◦ FRη

R
TRA

= FRa ◦ TεR
FRA
◦ εR

FRTRA ◦ FRη
R
TRA

= FRa ◦ TεR
FRA

The obvious forgetful functor UT
s : Kl

(
R

)
→ Kl(R) is such that UT

s εR = εRUT
s and it is

faithful, hence εR is indeed natural because εR is. In fact we get the four equalities

UT
s FR = FRUT

s

UT
sUR = URUT

s

UT
s ε

R = εRUT
s

UT
s η

R = ηRUT
s
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so by faithfulness of UT
s and UT

s again we immediately get that URε
R ◦ ηRUR = id and

εRFR ◦FR ◦ηR = id from the corresponding equalities for ηR and εR: (FR ,UR , η
R , εR) is indeed

an adjunction, and (UT
s ,U

T
s ) in fact form a morphism of adjunctions. Another way to see this

is that not only does the monad R semilift to EMs(T), but its Kleisli adjunction does as well.
We similarly deduce that the monad arising from this semilifted Kleisli adjunction is

indeed
(

R, ηR , µR
)

, and so because FR is bijective on objects, we have indeed just described
the Kleisli category of R.

Finally, recall that we get the weakly lifted monad R by composing the adjunction IT a KT

with any adjunction for the monad R. We can in particular use the Kleisli adjunction for R:
the adjunction FR IT: EM(T) � Kl

(
R

)
:KTUR has for corresponding monad R. In particular,

we now retrieve the Kleisli category of R as the full subcategory of Kl
(
R

)
on objects which

are images by the left adjoint of objects of EM(T): this is exactly the category described in
the statement of Proposition 21. J

I Lemma 22. When the endofunctor T is nearly cartesian, a C-relation ψ:A! B is the
image of an EM(T)-relation (A, a) ! (B, b) by the faithful functor Rel

(
UT)

: Rel(EM(T))→
Rel(C) if and only if ψ · a ≥ b · Tψ.

Proof. Recall [13, Proposition 1.8]: consider C-arrows f :C → A and g:D → B and
C-relations φ:C ! D and ψ:A ! B respectively given by the jointly monic spans
〈φC , φD〉:S ↪→ C ×D and 〈ψA, ψB〉:R ↪→ A×B. Then, g · φ ≤ ψ · f if and only if there is a
necessarily unique t:S → R such that ψA ◦ t = f ◦ φC and ψB ◦ t = g ◦ φD:

C S D C S D

⇐⇒

A R B A R B

f

φC φD

≥ g f

φC φD

t g

ψA ψB ψA ψB

Consider now an EM(T)-relation ψ: (A, a) ! (B, b), given by a jointly monic span
〈ψ(A,a), ψ(B,b)〉: (R, r) ↪→ (A, a)× (B, b). Then, because UT preserves monomorphisms and
products (it preserves all limits),

〈
UTψ(A,a),UTψ(B,b)

〉
:R ↪→ A×B is a jointly monic span for

the C-relation UTψ. Factor
〈
TUTψ(A,a),TUTψ(B,b)

〉
: TR ↪→ TA×TB as TR � S ↪→ TA×TB,

and call e: TR � S the regular epimorphism in this factorization. Then r factors through e

as well, and because e is an epimorphism, Diagrams (17) and (18) below commute.

TR

TA S TB

A R B

TUTψ(A,a)
e

TUTψ(B,b)

a b

UTψ(A,a) UTψ(B,b)

(17) (18)

By [13, Proposition 1.8], we get that UTψ · a ≥ b · TUTψ.
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Conversely, consider a C-relation ψ:A! B given by a jointly monic span 〈ψA, ψB〉:R ↪→
A×B and such that ψ·a ≥ b·Tψ. Factor 〈TψA,TψB〉: TR→ TA×TB as TA� S ↪→ TA×TB,
and call e: TA � S and φ = 〈φTA, φTB〉:S ↪→ TA × TB the regular epimorphism and
monomorphism in this factorization. We then have the inequality:

TR

TA S TB

A R B

TψA
e

TψB

a

φTA φTB

≥ b

ψA ψB

By [13, Proposition 1.8], we get a C-arrow t:S → R such that ψA ◦ t = a ◦ φTA and
ψB ◦ t = b ◦ φTB. Let r = t ◦ e: TR → R. We now show that (R, r) is a T-algebra, so that
ψA and ψB are actually jointly monic T-algebra morphisms and ψ is an EM(T)-relation. On
the one hand,

ψ ◦ r ◦ ηT
R = 〈a ◦ TψA, b ◦ TψB〉 ◦ ηT

R

= 〈a ◦ ηT
A ◦ ψA, b ◦ ηT

B ◦ ψB〉
= ψ

and on the other hand

ψ ◦ r ◦ µT
R = 〈a ◦ TψA, b ◦ TψB〉 ◦ µT

R

= 〈a ◦ µA ◦ TTψA, b ◦ µT
B ◦ TTψB〉

= 〈a ◦ Ta ◦ TTψA, b ◦ Tb ◦ TTψB〉
= 〈a ◦ TψA ◦ Tr, b ◦ TψB ◦ Tr〉
= ψ ◦ r ◦ Tr

(R, r) is thus indeed a T-algebra because ψ is a monomorphism.
It is easy to see that the correspondence between EM(T)- and C-relations we have just

described is bijective. J

Before looking at examples, let us give two lemmas that will make working with decompos-
ability of morphisms and relations easier.

I Lemma 40. If UT creates near pullbacks, a T-morphism f : (A, a)→ (B, b) is decomposable
if and only if UTf ◦ a = b ◦ TUTf is a near pullback in C. In particular if T is a monad on
Set, this holds if and only if for every x ∈ A and u ∈ TB such that f(x) = b(u), there is
some t ∈ TA such that (Tf)(t) = u and a(t) = x.

Proof. UT creates near pullbacks hence UTf ◦ UTεT
(A,a) = UTεT

(B,b) ◦ UTFTUTf is a near
pullback in C if and only if f ◦ εT

(A,a) = εT
(B,b) ◦ FTUTf is a near pullback in EM(T).

In Set, regular epimorphisms are surjections hence f ◦ a = b ◦Tf is a near pullback if and
only if the limiting function from TA to the pullback A×B TB is surjective, which translates
to what is stated above. J
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I Lemma 41. Suppose UT creates and T preserves regular epimorphisms. If g = h ◦ e is
decomposable and e is a regular epimorphism, then h is decomposable as well. In particular,
if f :R→ X is decomposable then for any g:R→ Y , g · f† is a decomposable relation.

Proof. Consider g:R→ Y , e:R� S and h:S → Y as above. Since g is decomposable, we
have the nearly cartesian square

FTUTR

FTUTX P

X R

FTUTg

εT
R

εT
X

y

g

where P is the pullback of g and εT
X . Because g = h ◦ e and because the composition of two

pullbacks is a pullback, this nearly cartesian square decomposes as

FTUTS FTUTR

FTUTX P ′ P

X S R

FTUTh

FTUTe

εT
R

εT
X

y y

h e

where P ′ is the pullback of h and εT
X . To show that h is decomposable means to show that the

morphism FTUTS → P ′ in the diagram above is a regular epimorphism. We know that the
morphisms FTUTR→ P and P → P ′ are regular epimorphisms — because g is decomposable,
and because pullbacks of regular epimorphisms are regular epimorphisms — hence their
composite is a regular epimorphism as well. Moreover UTe is a regular epimorphism hence
TUTe and thus FTUTe are as well, respectively because T preserves regular epimorphisms
and UT creates them. It follows that this morphism FTUTS → P ′ is indeed a regular
epimorphism: this is a general property of factorization systems [2, Proposition 14.9.1], and
regular epimorphisms and monomorphisms form a factorization system in every regular
category.

Consider now some decomposable f :R → X and some g:R → Y . Factor 〈f, g〉 into a
regular epimorphism e:R� R′ followed by a jointly monic span 〈f ′, g′〉:R′ ↪→ X × Y . Then
f = f ′ ◦ e hence f ′ is decomposable, and the two relations g · f† and g′ · (f ′)† are equal by
definition: g · f† is a decomposable relation. J

I Example 24 (decomposable morphisms and relations in categories of algebras over Set). In
EM(β) ∼= KHaus, a continuous map is decomposable if and only if it is open (it preserves open
sets), and decomposable relations are the continuous ones, i.e. those relations ψ:X ! Y

such that ψ−1[u] is open in X for every open subset u of Y .
In EM(P) ∼= JSL, ψ:X ! Y is decomposable if and only if for every family (xi)i∈I

of elements of X and every y ∈ Y such that
(∨

i∈I xi, y
)
∈ ψ, there is a family (yi)i∈I of

elements of Y such that (xi, yi) ∈ ψ for all i ∈ I and
∨
i∈I yi = y.

In EM(D) ∼= Conv, ψ:X ! Y is decomposable if and only if for every x ∈ X, every
disintegration of x as a barycenter x =

∑n
i=1 λixi and every y ∈ Y such that (x, y) ∈ ψ, y

disintegrates as a barycenter y =
∑n
i=1 λiyi such that (xi, yi) ∈ ψ for all i ∈ I.
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Proof. For the descriptions of decomposable relations, we make use of the characterization
given in the first part of Theorem 26.
In KHaus. This immediately follows from Theorem 26 and the description of Kl(V) given

in [23]. But we can also recover this result by hand: by Lemma 40, a continuous map
f :X → Y is a decomposable β-algebra morphism if and only if for every ultrafilter E on
Y converging to y ∈ Y , and every x ∈ f−1(Y ), there is an ultrafilter E′ on X converging
to x and such that E = {e ⊇ f(e′) | e′ ∈ E′}.

Suppose f is decomposable and consider some x ∈ X and some neighborhood N of
x: N belongs to every ultrafilter converging to x. Consider some ultrafilter E on Y

converging to f(x). Then there is an ultrafilter E′ on X converging to x and such
that E = {e ⊇ f(e′) | e′ ∈ E′}. By definition N ∈ E′, hence f(N) ∈ E. f(N) is thus
a neighborhood of y, and f is open.
Conversely, suppose that f is open, so that if N is a neighborhood of x ∈ X then f(N)
is a neighborhood of f(x). Fix y ∈ Y , E converging to y and x ∈ f−1(y).
Let F =

{
e′ ⊇ f−1(e) ∩N

∣∣ e ∈ E,N ∈ N(x)
}

where N(x) is the filter of neighbor-
hoods of x. Then F is a filter: it is non-empty because X is a neighborhood of x hence
F contains X = f−1(Y ); it is stable under finite intersections because E and N(x) are;
it is upwards-closed by definition; and it does not contain the empty set because every
neighborhood N of x is such that f(N) is a neighborhood of f(x), i.e. f(N) ∈ E and
f(N) interesects every e ∈ E.
Let E′ be any ultrafilter containing F . Then E′ converges to x because it contains
N(x). Moreover f−1(e) ∈ E′ for every e ∈ E, and conversely if f−1(e) ∈ E′ then
f−1(ec) = f−1(e)c is not in E′ so that ec is not in E: because E is an ultrafilter, either
e ∈ E or ec ∈ E, so the former holds.
In other words, E = (βf)(E′) and f is decomposable.

We could prove similarly by hand that decomposable relations are indeed the continuous
ones.

In JSL. A relation
(
A,∨A

)
!

(
B,∨B

)
in JSL given by some ψ:A ! B in Set is decom-

posable if and only if for every a ∈ A, E ∈ PA such that a =
∨A

E and b ∈ B such that
(a, b) ∈ ψ, there is an F ∈ PB such that

∀a′ ∈ E, ∃b′ ∈ F, (a′, b′) ∈ ψ and ∀b′ ∈ F, ∃a′ ∈ E, (a′, b′) ∈ ψ

and
∨B

F = b.
Consider some E = {ai | i ∈ I} so that a =

∨A
i∈I ai and some b ∈ B such that (a, b) ∈

ψ. Then if ψ is decomposable, consider the corresponding F ∈ PB and write Fi =
{b′ ∈ F | (ai, b) ∈ ψ} and bi =

∨B
Fi. By definition of F , every Fi is non-empty and⋃

i∈I Fi = F , so that
∨B
i∈I bi =

∨B
F = b. Moreover ψ ⊆ A × B is a relation of join-

semilattices and (ai, b′) ∈ ψ for every b′ ∈ Fi, hence (ai, bi) =
∨A×B
b′∈Fi

(ai, b′) ∈ ψ as
well.
Conversely, if ψ satisfies the stated property then if

∨A
E = a and (a, b) ∈ ψ,

∨A
e∈E e = a

so there is a family (be)e∈E of elements of B such that (e, be) ∈ ψ and
∨B
e∈E be = b.

Taking F = {be | e ∈ E}, we see that ψ is decomposable.
In Conv. A relation A ! B in Conv given by some ψ:A ! B in Set is decomposable if

and only if for every a ∈ A given as a =
∑n
i=1 λiai with

∑n
i=1 λi = 1, λi 6= 0 and ai ∈ A

for every 1 ≤ i ≤ n, and b ∈ B such that (a, b) ∈ ψ, there are for every 1 ≤ i ≤ n some
mi ≥ 1, (µi,j)1≤j≤mi such that

∑mi

j=1 µij = λi and (bij)1≤j≤mi such that (ai, bij) ∈ ψ for
all 1 ≤ j ≤ mi and

∑n
i=1

∑mi

j=1 µijbij = b.
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Suppose this holds. For every 1 ≤ i ≤ n, let bi = 1
λi

∑mi

j=1 µijbij . Then
∑n
i=1 λibi =∑n

i=1
∑mi

j=1 µijbij = b, and for every 1 ≤ i ≤ n, (ai, bi) = 1
λi

∑mi

i=j µij(ai, bij) ∈ ψ because
ψ ⊆ A×B is a relation of barycentric algebras.
Conversely, consider some a =

∑n
i=1 λiai and b such that (a, b) ∈ ψ as above. If there

is always some (bi)1≤i≤n such that
∑n
i=1 λibi = b and (ai, bi) ∈ ψ, then taking mi = 1,

µi1 = λi and bi1 = bi for every 1 ≤ i ≤ n shows that ψ is decomposable.
J

I Lemma 25. When UT creates near pullbacks, µT is nearly cartesian if and only if every
free algebra morphism FTf :

(
X,µT

X

)
→

(
Y, µT

Y

)
is decomposable.

Proof. µT is nearly cartesian if and only if for every f :X → Y in C, µT
Y ◦ TTf = Tf ◦ µT

X

is a near pullback. But µT = UTεTFT, hence this holds if and only if for every such f ,
UTεT

FTY ◦ UTFTUTFTf = UTFTf ◦ UTεT
FTX is a near pullback, i.e. if and only if every such

FTf is decomposable since UT creates near pullbacks. J

I Theorem 26. When the endofunctor T is nearly cartesian, a relation ψ: (A, a) ! (B, b)
is decomposable if and only if UTψ · a = b · TUTψ. If µT is also nearly cartesian and Rel(T)
restricts to Kl(R) ↪→ Rel(C) for some monad R on C, then the Kleisli category Kl

(
R

)
of

the corresponding weakly lifted monad R on EM(T) has for arrows (A, a) (B, b) the
decomposable relations ψ: (A, a) ! (B, b) in EM(T) such that UTψ is in Kl(R).

Proof. Consider some EM(T)-relation ψ: (A, a) ! (B, b). By Lemma 22, it corresponds to
the C-relation UTψ:A! B, which satisfies UTψ · a ≤ b · TUTψ. By Proposition 21, ψ is in
Kl

(
R

)
if and only if we have moreover that UTψ is in Kl(R) and UTψ · a = b ·TUTψ. We now

show that this last condition is equivalent to ψ being decomposable.
If ψ is decomposable, it is given by a jointly monic span 〈ψ(A,a), ψ(B,b)〉: (R, r) ↪→

(A, a)× (B, b) such that ψ(A,a) is a decomposable morphism. Writing ψA = UTψ(A,a) and
ψB = UTψ(B,b), this means that ψA ◦ r = a ◦ TψA is a near pullback in C. By definition of
the composite of two relations, this is equivalent to saying that ψ†

A · a = r · (TψA)†. But
because ψ(B,b) is a morphism of T-algebras, we also have that ψB · r = b · TψB , and so

UTψ · a = ψB · ψ†
A · a

= ψB · r · (TψA)†

= b · TψB · (TψA)†

= b · TUTψ

Conversely, suppose that ψ given as above is such that UTψ · a = b · UTψ. We now show
that ψA is decomposable: consider the pullback

TR

TA P

A R

TψA

e

r

a

pTAy

pR

ψA

To prove that ψA is decomposable, we need to prove that e: TR→ P in the diagram above
is a regular epimorphism. By definition of the composition of relations, ψ†

A · a = pR · p†
A,

so that b · Tψ = ψ · a = ψB · pR · p†
A. Factor 〈pTA, ψB ◦ pR〉:P → TA × B into the
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regular epimorphism e′:P � P ′ and the jointly monic span 〈p′
TA, p

′
B〉:P ′ ↪→ TA×B. Then

p′
B · (p′

TA)† = ψB · pR · p†
A = b · Tψ = ψB · r · (TψA)†, therefore e′ ◦ e: TR → P ′, as in the

diagram below, must be a regular epimorphism.

TR

P

TA P ′ R ψB

e
TψA r

pTA
e′ pR

p′
TA

p′
B

ψB

We will now show that e′ is a monomorphism and thus an isomorphism, and it will follow
that e must be a regular epimorphism as well. We have the commuting diagram

P P ′ TA×B

TA×R TA×A×B

e′

〈pTA,pR〉

〈p′
TA,p

′
B〉

〈idTA,a〉×idB

idTA×〈ψA,ψB〉

where all the arrows except e are monomorphisms: e is a also a monomorphism. J

I Remark 28 (subobject classifiers in categories of algebras). Recall that an elementary
topos is a regular category such that the Graph functor has a right adjoint [17, §1.911];
the corresponding monad is called the powerset monad. If C is an elementary topos with
powerset monad P, and if T is a monad on C such that the endofunctor T and the natural
transformation µT are nearly cartesian, then by Theorem 26 EM(T) is an elementary topos
as soon as every T-algebra morphism is decomposable. We retrieve for instance that the
categories of group actions (algebras for monads G × − where G is a group) are toposes,
because the corresponding morphisms of algebras are easily shown to all be decomposable.

This is not a necessary condition for a category of algebras to be an elementary topos: it
is well known that categories of monoid actions (algebras for monads M ×− where M is a
monoid) are toposes, but there are equivariant morphisms that are not decomposable.

If EM(T) is an elementary topos as in Remark 28, P1 classifies subobjects in the sense
that subobjects X ↪→ Y are in one-to-one correspondance with morphisms Y → P1, where 1
is the terminal object [17, §1.912].

This can be generalized when Theorem 26 holds as follows: R1 classifies decomposition-
closed subobjects, in the sense that decomposable monomorphisms X ↪→ Y are in one-to-one
correspondance with morphisms Y → R1 (the correspondance comes from the adjunction
Kl

(
R

)
(Y, 1) ∼= EM(T)

(
Y,R1

)
). For instance, the Vietoris monad on KHaus ∼= EM(β) classifies

clopen subsets of compact Hausdorff spaces, the non-empty-join-closed powerset monad on
JSL ∼= EM(P) classifies downwards-closed subsets of join-semilattices, and the convex-closed
powerset monad on Conv ∼= EM(D) classifies walls, i.e. subsets E such that if x ∈ E and∑n
i=1 xi = x, xi ∈ E as well for all 1 ≤ i ≤ n (walls appear for instance in the structure

theorem for convex algebras, which state that every convex algebra is a subalgebra of the
Płonka sum of its walls [30, Theorem 4.5]).

I Lemma 29. Let C be a regular category where idempotents split, and suppose T is nearly
cartesian. If F: C→ C is nearly cartesian and weakly lifts to EM(T), then its weak lifting is
nearly cartesian. If α: F⇒ G between two such functors is nearly cartesian and weakly lifts
to EM(T), then its weak lifting is nearly cartesian as well.
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Proof. Suppose F is nearly cartesian, i.e. preserves near pullbacks, and that it has a weak
lifting F to EM(T). Then it also has a semi-lifting F to EMs(T), and FUT

s = UT
s F is nearly

cartesian as well. Since UT
s creates near pullbacks by Lemma 39, F is nearly cartesian. Now

F ∼= KT F IT, but KT and IT are both left and right adjoints, hence they preserve both limits
and colimits, and thus near pullbacks (regular epimorphisms are preserved as coequalizers of
their kernel pairs). It follows that F preserves near pullbacks.

Suppose α: F⇒ G is a nearly cartesian natural transformation between two such functors
that has a weak lifting α: F ⇒ G to EM(T). Then it also has a semi-lifting α to EMs(T), and
αUT

s = UT
s α is nearly cartesian. Since UT

s creates near pullbacks, α is nearly cartesian. Now
α ∼= KT α IT, hence since KT and IT preserve near pullbacks α is also nearly cartesian. J

I Definition 30. Let Γ be a wide subcategory of a regular category C such that, in C,
Γ-arrows are stable under pullbacks (in C);
if f ◦ e is a Γ-arrow and e is a regular epimorphism (in C), f is a Γ-arrow.

Then we define C · Γ† to be the wide subcategory of Rel(C) whose arrows are the C-relations
ψ:X ! Y given by jointly monic spans 〈ψX , ψY 〉 such that ψX is a Γ-arrow, and we write
GraphΓ : C→ C · Γ† for the restriction of Graph : C→ Rel(C) to C · Γ†.

We also define a Γ† · C-square to be a square a ◦ b = c ◦ d such that a or c is a Γ-arrow.

Proof. We prove that C·Γ† is indeed a category. It contains all the identities of Rel(C) because
both C and Γ contain all the identities of C. Consider jointly monic spans 〈f1, g1〉:R1 ↪→ X×Y
and 〈f2, g2〉:R2 ↪→ Y × Z such that f1 and f2 are in Γ, and let 〈f ′, g′〉:S ↪→ R1 × R2 be
the pullback of g1:R1 → Y and f2:R2 → X. Then by the first property of Γ, f ′ and thus
f1 ◦ f ′ (Γ is a cateogry hence stable under composition) are in Γ. Factor 〈f1 ◦ f ′, g2 ◦ g′〉 into
a regular epimorphism followed by a jointly monic span: by the second property of Γ, the
resulting jointly monic span is also in C · Γ†. J

I Theorem 32. Let C, D, Γ, ∆ and F: C → D be as in Definition 31. F has a monotone
(Γ,∆)-relational extension if and only if the following two conditions hold:

F restricts to a functor Γ→ ∆;
F sends near pullback Γ† · C-squares on near pullback (necessarily ∆† ·D-) squares (this is
always true when F is nearly cartesian).

Such a monotone (Γ,∆)-relational extension, if it exists, is necessarily unique and given by
FΓ,∆(g · f)† = Fg · (Ff)†.

Let α: F ⇒ G be a natural transformation between two functors C → D having such
monotone (Γ,∆)-relational extensions. α has a (necessarily unique) (Γ,∆)-relational extension
if and only if its has near pullbacks for its naturality squares along Γ-morphisms (this is
always true when α is nearly cartesian).

Proof. We adapt the proof of [20, Theorem 5.6], itself taken from [16, §5.3.11].
First note that a C-relation is in C·Γ† as soon as it can be written g ·f† with f in Γ, without

f and g necessarily being jointly monic (and similarly for D and ∆): if 〈f, g〉 = 〈f ′, g′〉 ◦ e
with e a regular epimorphism and f ′ and g′ jointly monic, f ′ ◦ e = f and f ′ is thus also in Γ.
Moreover a C-arrow f is in Γ if and only if f† is in C · Γ (and, again, similarly for D and ∆):
f† is given by the jointly monic span 〈f, id〉.

Recall that for every arrow f :X → Y in a regular category, f†:Y ! X is the unique
relation such that idX ≤ f† · f and f · f† ≤ idY [13, §1.2 and §1.7]. If H: C · Γ† → Rel(D) is
monotone, then for every Γ-arrow f :X → Y ,

Hf · H
(
f†)

= H
(
f · f†)

≤ H(idY ) = idHY
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and

idHX = H(idX) ≤ H
(
f† · f

)
= H

(
f†)
· Hf

and therefore H
(
f†)

= (Hf)†.
In particular if we take H to be a (Γ,∆)-relational extension of F followed by the inclusion

D ·∆† → Rel(D), we get that (Ff)† is in D ·∆†, and thus Ff is in ∆: F restricts to a functor
Γ → ∆. This forces H to be defined on C · Γ†-relations as H(g · f†) = Fg · (Ff)† (for f in
D). Consider now a near pullback Γ† · C-square f ◦ g′ = g ◦ f ′, so that f† · g = g′ · (f ′)†.
Applying H, we get (Ff)† · Fg = Fg′ · (Ff ′)†, hence Ff ◦ Fg′ = Fg ◦ Ff ′ is a nearly cartesian
∆† · D-square.

Conversely, suppose F satisfies the two properties above, and define FΓ,∆: C · Γ† → D ·∆†

by FΓ,∆
(
g · f†)

= Fg · Ff† for jointly monic f and g: because F restricts as a functor Γ→ ∆,
the result is indeed in D · ∆†. FΓ,∆ moreover preserves the identity: FΓ,∆

(
idX · id†

X

)
=

FidX · (FidX)† = idFX · id†
FX . Finally, FΓ,∆ preserves composition:

Given f :R→ X and g:R→ Y (not necessarily jointly monic), write 〈f, g〉 = 〈f ′, g′〉 ◦ e
with e a regular epimorphism and 〈f ′, g′〉 a monomorphism, so that g · f† = g′ · (f ′)†

and FΓ,∆
(
g · f†)

= Fg′ · (Ff ′)† by definition. Since F preserves regular epimorphisms (the
square id ◦ e = id ◦ e is a near pullback Γ† · C-square hence id ◦ Fe = id ◦ Fe is a near
pullback as well), we get that FΓ,∆

(
g · f†)

= Fg′ · (Ff ′)† = Fg · (Ff)†.
Given f :Y → R and g:X → R, write pX :P → X and pY :P → Y for their pullback:
f† · g = pY · p†

X and FΓ,∆
(
f† · g

)
= FpY · (FpX)† by definition. The Γ† · C-square

f ◦ pY = g ◦ pX is a near pullback, hence so is Ff ◦ FpY = Fg ◦ FpX : FΓ,∆
(
f† · g

)
=

FpY · (FpX)† = (Ff)† · Fg.

Consider now some α: F ⇒ G as stated above. αΓ,∆: FΓ,∆ ⇒ GΓ,∆ exists as a natural
transformation if and only if for every 〈f, g〉:R ↪→ X × Y in C · Γ†, i.e. with f in Γ,
αY · Fg · (Ff)† = Gg · (Gf)† · αX . Of course αY · Fg = Gg · αR because α is a natural
transformation F ⇒ G, hence this is true if and only if αR · (Ff)† = (Gf)† · αX (consider
the case g = idR), i.e. if and only if the naturality square αX ◦ Ff = Gf ◦ αR is a near
pullback. J

I Corollary 33. In Set, a monad
(
T, ηT, µT)

with nearly cartesian endofunctor and multi-
plication also has a (necessarily unique) monotone weak distributive law over the monad P∗
of non-empty subsets, and over the monad Pf of finite subsets if and only if T preserves
functions with finite pre-images of elements.

Proof. A Kl(P∗) morphism is a function X → P∗Y , i.e. a relation such that every element of
X is related to at least one element of Y . When seen as jointly monic spans 〈ψX , ψY 〉, these
relations are exactly those such that ψX is surjective. Surjections satisfy the two conditions
of Definition 30 because they are the same thing as regular epimorphisms and Set is regular,
and so we may apply Theorem 32 as nearly cartesian endofunctors preserve in particular
regular epimorphisms.

A Kl(Pf ) morphism is a function X → PfY , i.e. a relation such that every element of X
is related to a finite number of elements of Y . When seen as jointly monic spans 〈ψX , ψY 〉,
these relations are exactly those such that ψX has finite pre-images of elements. These
functions with finite pre-images of elements are easily seen to satisfy the two conditions of
Definition 30, and so we may apply Theorem 32. J
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I Corollary 34. Let T be a monad on Set equipped with a monotone weak distributive law
TP ⇒ PT, and let S be a monad on EM(T). If there is a monotone weak distributive law
SP ⇒ PS, S preserves decomposable T-algebra morphisms. Moreover if S is itself the weak
lifting of a monad on Set that has a weak distributive law over P, than the previous condition
is not only necessary, but also sufficient.

Proof. We have seen in Lemma 41 that in EM(T), decomposable T-morphisms satisfy the
second condition of Definition 30. They must also satisfy the first condition (stability
under pullbacks) because, by Theorem 26, the composite of two decomposable relations is a
decomposable relation: decomposable relations are the arrows of Kl

(
P

)
. We may thus apply

Theorem 32 to characterize monotone extensions to Kl
(
P

)
. J

I Theorem 35. The Radon monad R does not have a monotone weak distributive law over
the Vietoris monad V, but it has (a unique) one over the non-empty Vietoris monad V∗ —
the monad of non-empty closed subsets.

Proof. See [20, §7.4] for an introduction to radon measures and the Radon monad. Recall
that R sends a compact Haudorff space X on the space RX of Radon probability measures
on X, or equivalently by the Riesz-Markov theorem to the space of positive continuous linear
operators C(X)→ R with norm 1, where C(X) is the Banach space of continuous functions
X → R equipped with the uniform norm: for every such operator ϕ there is a Radon measure
m on X such that ϕ(u) =

∫
X
udm for any u ∈ C(X), and conversely integrating along a

measure defines an operator with the aforementioned properties. RX (seen as the space of
operators) is equipped with the vague topology, i.e. the weakest topology that makes each
evf : RX → R continuous, where f ranges in C(X) and evf is the function that evaluates an
operator at f .

Given f :X → Y in KHaus, ϕ ∈ RX and g ∈ C(Y ), (Rf)(ϕ)(g) = ϕ(g ◦ f). ηR(x) ∈ RX is
the operator that evaluates a continuous function at x ∈ X, and for Φ ∈ RRX and f ∈ C(X),
µR(Φ)(f) = Φ(evf ).

Radon over Vietoris. Consider the inclusion f : 1→ 2. 1 and 2 are sets equipped with the
discrete topology, so that f is an open continuous function. But R1 = 1 and R2 is the
unit interval: a point is never open in the unit interval, hence Rf cannot be open. R does
not preserve open maps, and by Corollary 34 does not have a monotone weak distributive
law RV⇒ VR.

Radon over non-empty Vietoris. First note that V∗ is easily seen to be the weak lifting of
P∗ to KHaus ∼= EM(β). By Theorem 26, Kl(V∗) is the category of relations seen as jointly
monic spans 〈ψX , ψY 〉 such that ψX is open and surjective. All surjective continuous
functions between compact Hausdorff spaces are open, so this boils down to ψX being
surjective, i.e. a regular epimorphism (because Uβ creates regular epimorphisms). Regular
epimorphisms of course satisfy the conditions of Definition 30 in all regular categories,
hence we may apply Theorem 32: because R is is a nearly cartesian endofunctor [23,
Propositions 7.26 and 7.28], it has a monotone extension to Kl(V∗). We now show that
the naturality squares of µR along surjections are near pullbacks, so that µR also extends
to Kl(V∗) and we get a weak distributive law RV∗ ⇒ V∗R.
Consider thus a continuous surjection f :X → Y in KHaus, and recall that Rf is also
surjective [20, Proposition 7.26] (in fact we will simply adapt the proof of preservation
of surjectivity to show our result). Consider some Φ ∈ RRY and ψ ∈ RX such that
µR
Y (Φ) = (Rf)(ψ), i.e. Φ(evg) = ψ(g ◦ f) for every g ∈ C(Y ). Consider a first subspace
V1 of C(RX) consisting of continuous functions of the shape g ◦ Rf for g ∈ C(RY ):
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g ◦ Rf 7→ Φ(g) defines a positive continuous linear operator Ψ1 of norm 1 on V2 (the
definition does not depend on the choice of g because there is only one such choice
as Rf is surjective). Similarly, consider a second subspace V2 of C(RX) consisting of
continuous functions of the shape evg for some g ∈ C(X): then evg 7→ ψ(g) defines
a positive continuous linear operator Ψ2 of norm 1 on V2. If a continuous function
in C(RX) is in V1 ∩ V2, it is of the shape evg◦f = evg ◦ Rf for some g ∈ C(Y ), and
Φ(evg) = ψ(g ◦ f) by assumption: Ψ1 and Ψ2 agree on V1 ∩ V2. This defines a continuous
linear operator on V1 +V2, which extends to a continuous linear operator Ψ on C(RX) by
the Hahn-Banach theorem [5, Theorem 1.12.26]. Now if 1 denotes the constant function
equal to 1, Ψ(1) = Ψ(ev1) = ψ(1) = 1 and Ψ, as a continuous linear functional of norm 1,
must be positive.
We thus found some Ψ ∈ RRX such that (RRf)(Ψ) = Φ and µR

X(Ψ) = ψ: because Uβ
creates near pullbacks, this proves that the commuting square Rf ◦ µR

X = µR
Y ◦ RRf is a

near pullback.
J

I Example 36. In EM(P) ∼= JSL, let P be the monad of subsets closed under non-empty
joins: the join of a family (Ei)i∈I of non-empty-joins-closed subsets of X is the non-empty-
joins-closed subset

{∨
i∈I xi

∣∣ xi ∈ Ei}. Let f : 4→ 2 (where 2 = {0, 1} and 4 = {0, 1, 2, 3})
be the function given by f(0) = f(2) = 0 and f(1) = f(3) = 1. Then FPf is decomposable
(by Lemma 25), but PFPf is not. Indeed, let A ∈ PFP4 and B,B1, B2 ∈ PFP2 be as depicted
in Figure 2a (page 15):

(
PFPf

)
(A) = B = B1 ∨ B2 but there are no A1, A2 ∈ PFP4 such

that A = A1 ∨A2 and
(
PFPf

)
(A1) = B1 as well as

(
PFPf

)
(A2) = B2.

Proof. Suppose indeed there are such A1 and A2. Then A1, A2 ⊆ A and thus {0, 1, 2, 3} ∈
A1 ∪A2 ({0, 1, 2, 3} is join-irreducible in A). This would imply {0, 1} ∈ B1 ∪B2, which does
not hold. J

I Example 37 ([33]). In EM(D) ∼= Conv, let P be the monad of convex subsets: a convex
combination of some convex subsets of X is the convex set of the corresponding convex
combinations of their points (in X). Let f : {A,B,C} → {B,C} be the function given by
f(A) = f(B) = B and f(C) = C. Then FDf is decomposable (by Lemma 25) but PFDf is
not. Indeed, depicting FD{A,B,C} as the triangle depicted in Figure 2b (page 15), FD{B,C}
is the line segment [BC] and FDf is the vertical projection. Now 1

2{B}+ 1
2 [FC] = [DE] =(

PFDf
)

([GD]), but [GD] itself cannot be disintegrated as the mean of two convex subsets
of ABC, one above B and the other above [FC].

Proof. If such a disintegration existed, then the convex subset above B would contain both
B (because D ∈ [DG]) and A (because G ∈ [DG]), hence would be [AB]. The subset above
[FC] would contain at least one point, and hence the mean of these two subsets would have
to contain a non-trivial vertical line segment, which is not the case of [DG]. J

C.1 Proofs for Table 1
Let us first give an additional corollary of Theorems 26 and 32.

I Corollary 42. Let T be a monad on Set equipped with a monotone weak distributive law
TP∗ ⇒ P∗T, and let S be a monad on EM(T). If there is a monotone weak distributive law
SP∗ ⇒ P∗S, S preserves surjective decomposable T-algebra morphisms. Moreover if S is itself
the weak lifting of a monad on Set that has a weak distributive law over P, than the previous
condition is not only necessary, but also sufficient.
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Proof. By Theorem 26, the Kleisli category of P∗ has for arrows X Y the T-relations
given as jointly monic spans 〈ψX , ψY 〉:R ↪→ X×Y such that ψX is decomposable and UTψX
is surjective. The subcategory of surjective decomposable T-algebra morphisms satisfies
the two conditions of Definition 30, as both the subcategory of decomposable T-algebra
morphisms and surjective T-algebra morphisms (regular epimorphisms in EM(T)) do. We
may thus apply Theorem 32 to characterize monotone extensions to Kl

(
P∗

)
. J

For every monad we consider in JSL, Conv, Mon and CMon, we will prove that it does
not have monotone weak distributive law over P by exhibiting a decomposable morphism
that is sent by the underlying endofunctor on a non-decomposable morphism. In fact all
these morphisms will also be surjective, and so by Corollary 42 they will also prove that
these monads do not have monotone weak distributive laws over P∗ .

We do not prove that the example morphisms we exhibit are decomposable, as they will
all be free morphisms and thus immediately be decomposable by Lemma 25.

C.1.1 In Set.

[18] exhibits and proves the monotonicity of the weak distributive laws PP ⇒ PP and
βP⇒ Pβ, [22] does it for the law DP⇒ PD, while [10] does it for the law MSP⇒ PMS . The
(strict) distributive laws LP ⇒ PL and MP ⇒ PM exist because linear theories distribute
over commutative monads [28]. These two laws are monotone, as noticed for instance in [20,
Example 2.23]: the extension corresponding to the law LP⇒ PL is given in [20, Example
1.43] and is easily seen to be monotone, while the law MP⇒ PM is an instance of the law
MSP ⇒ PMS when S = N [10, Remark 3.3]. By Corollary 33, these laws all restrict to
non-empty powersets.

C.1.2 In KHaus.

[23] exhibits the monotone weak distributive law VV ⇒ VV as the primary example for
the framework we started from here. It is interesting to note that after Section 4, this is
straightforward to show: by Example 24, decomposable β-algebra morphisms are exactly the
open maps, and because V is the weak lifting of P to KHaus ∼= EM(β), by Corollary 34 there
is a monotone weak distributive law VV⇒ VV if and only if V preserves open maps. This is
easily seen to be true. Consider indeed some open map f :X → Y , and some open subset u
of X. Then �u = {c ∈ VX | c ⊆ u} is open in VX, and (Vf)[�u] = {f [c] | c ∈ �u} = �f [u]
is open in VY . Similarly ♦u = {c ∈ VX | c ∩ u 6= ∅} is open in VX, and (Vf)[♦u] =
{f [c] | c ∈ ♦u} = ♦f [u]∩�f [X] is open in VY . Because the sets �u and ♦u form a subbasis
of the topology of VX when u ranges among all open sets of X, this proves that Vf is open.

The case of the Radon monad R is handled in Theorem 35. Because V preserves continuous
surjections, by a similar proof it also has a monotone weak distributive law over V∗.

C.1.3 In JSL.

The case PP ⇒ PP is handled in Example 36.

C.1.4 In Conv.

The case PP ⇒ PP is handled in Example 37.
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C.1.5 In Mon.
By Lemma 40, a morphism of monoids f :A→ B is decomposable if and only if for every
f(a) = b1 · · · bn with a ∈ A and bi ∈ B, there are some a1, . . . , an ∈ A such that f(ai) = bi
and a = a1 · · · an.
PP ⇒ PP. Here P = P is the monad of subsets of monoids: if A is a monoid with unit e,

PA is a monoid with unit {e} and multiplication α1α2 = {a1a2 | ai ∈ αi}.
Consider the constant function f : {a, b} → {a}. It extends to a monoid morphism
f∗: {a, b}∗ → {a}∗. Let β = {aa}, β1 = β2 = {a} and α = {ab, ba}: β = β1β2 and
β = f∗[α]. Suppose α1, α2 ∈ P({a, b}∗) are such that f∗[αi] = βi. Then all the words in
αi must have length 1. Hence if α1α2 ⊇ α, α1 and α2 must both contain a and b, which
implies that {aa, bb} ⊂ α1α2 6= α.

DP ⇒ PD. Here D = D is the monad of finitely supported probability distributions on a
monoid: if A is a monoid with unit e, DA is a monoid with unit δe and multiplication
(α1α2)(a) =

∑
a1a2=a α(a1)β(a2).

The counter-example for P can be adapted: δaa = δaδa = (Df)(δab/2 + δba/2).
MSP ⇒ PMS. Let S be a commutative (unital) semiring. Here MS is the monad of S-

linear combinations: if A is a monoid with unit e, MSA is a monoid with unit 1 · e and
multiplication (

∑
i αi · ai)

(∑
j βj · bj

)
=

∑
i,j αiβj · aibj .

The counter-example for P can be adapted: (1 ·a)((1+1) ·a) = (1+1) ·aa = f(1 ·ab+1 ·ba).
If there are α1, α2 ∈ MS ({a, b}∗) such that f∗[α1] = 1 · a, f∗[α2] = (1 + 1) · a and
α1α2 = 1 · ab+ 1 · ba, then α1 = w · a+ x · b and α2 = y · a+ z · b where w, x, y, z ∈ S are
such that w + x = 1, y + z = 1 + 1, wy = 0, wz = 1, xy = 1 and xz = 0. This implies
that z = (w + x)z = wz + xz = 1 and similarly y = (w + x)y = wy + xy = 1, hence that
w = 0 and x = 0 and thus 1 = w+x = 0: S is the trivial semiring and MS is the constant
monad {0}.

MP ⇒ PM. This is the instance S = N of the case MSP⇒ PMS .

C.1.6 In CMon.
By Lemma 40, a morphism of commutative monoids f :A→ B is decomposable if and only
if for every f(a) = m1b1 + · · · + mnbn with a ∈ A, bi ∈ B and mi ∈ N, there are some
a1, . . . , an ∈ A such that f(ai) = bi and a = m1a1 + · · ·+mnan.

PP ⇒ PP. Here P = P is the monad of subsets of monoids: if A is a commutative monoid
with unit 0, PA is a monoid with unit {e} and addition α1 + α2 = {a1 + a2 | ai ∈ αi}.
Consider the constant function f : {a, b, c, d} → {a}. It extends to a commutative monoid
morphism f : {a, b, c, d} × N→ N. Let β = {2a}, β1 = β2 = {a} and α = {a+ b, c+ d}:
β = β1 + β2 and β = f [α]. Suppose α1, α2 are such that f [αi] = βi. Then all the words
in αi must have length 1. Hence if α1 + α2 = α, one of them (and only one of them)
must contain a and the other one must then contain b, and similarly for c and d. Say
a, c ∈ α1 and b, d ∈ α2: then a+ d, b+ c ∈ α1 + α2 and α1 + α2 6= α.

DP ⇒ PD. Here D = D is the monad of finitely-supported probability distributions on a
monoid: if A is a commutative monoid with unit 0, DA is a commutative monoid with
unit δ0 and addition (α1 + α2)(a) =

∑
a1+a2=a α(a1)β(a2).

The counter-example for P can be adapted: δ2a = δa + δa = (Df)(δa+b/2 + δc+d/2).
MSP ⇒ PMS. Let S be a commutative (unital) semiring. Here MS is the monad of S-

linear combinations: if A is a commutative monoid with unit 0 and addition ⊕, MSA
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is a commutative monoid with unit 1 · 0 and addition (
∑
i αi · ai) ⊕

(∑
j βj · bj

)
=∑

i,j αiβj · (ai ⊕ bj).
The counter-example for P can be adapted: (1 · a) ⊕ ((1 + 1) · a) = (1 + 1) · 2a =
f(1 · (a⊕ b) + 1 · (c⊕ d)). If there are α1, α2 ∈ MS({a, b, c, d}×N) such that f(α1) = 1 · a,
f(α2) = (1 + 1) · a and α1 ⊕ α2 = 1 · ab+ 1 · cd, then α1 = xa · a+ xb · b+ xc · c+ xd · d
and α2 = ya · a+ yb · b+ yc · c+ yd · d where xa, xb, xc, xd, ya, yb, yc, yd ∈ S are such that
xa + xb + xc + xd = 1, ya + yb + yc + yd = 1 + 1, xayb + xbya = 1, xcyd + xdyc = 1,
xaya = xbyb = xcyc = xdyd = 0 and xpyq + xqyp = 0 for every other p 6= q ∈ {a, b, c, d}.
Then 1 = (xayb + xbya)(xcyd + xdyc) = 0: S is trivial and MS is the constant monad {0}.
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