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Abstract
A cuspidal serial robot can change inverse kinematic solutions (IKS) without crossing singularities because it has
multiple IKS in a singularity-free region. This property of robots has been researched for over thirty years but has
not been taken seriously when designing new robots. The presented work points out issues related to nonsingular
change of IKS and path planning specific to the cuspidal robots present in existing commercial robots used in various
applications. The multiple IKS at the initial end-effector pose allows the user to choose an initial IKS that may lead to a
continuous and repeatable path. We analyze in detail how the initial IKS choice affects the prescribed path’s feasibility
and repeatability. Cuspidal robots can be used safely if the workspace is analyzed, considering the cuspidality property.
For these reasons, we propose a path testing and planning methodology that considers different path scenarios. Given
the rise of unconventional designs in 6R robots, the identification of cuspidal properties in the design phase of a robot is
of paramount importance. We recall all the known criteria for cuspidality and propose new methods to decide if a given
6R robot is cuspidal. Accordingly, a practical guideline is proposed for deciding the cuspidality of a generic 6R robot.

Keywords
Cuspidal robots, Nonsingular change of solutions, kinematics, serial robots, path planning

1 Introduction
In recent years, the robotics industry has been inclined to
explore unconventional designs for 6R robots. The widely
implemented design with a wrist partitioned geometry,
known as the ’Puma-type’ or ’anthropomorphic robot,’ is
expensive to assemble and sensitive to manufacturing errors.
This is because the last three axes intersect at a point,
forming a wrist architecture. Almost all collaborative robots
across the industry have adopted the introduction of an
offset in the wrist, such as FANUC CRX-10ia/L, Yaskawa
HC10DTP, and Universal Robots, to name a few. The wrist
partitioned assembly is a nongeneric geometry of a 6R robot
that results in the well-known kinematic properties such as
simplified inverse kinematic model Pieper (1968), and every
IKS separated by singularities in the joint space Wenger
and Chablat (2022). These special kinematic properties are
not guaranteed if one deviates from this architecture. An
offset in the wrist may lead to an overlooked property called
cuspidality, highlighted in this paper. Cuspidal robots refer
to robots whose joint space has at least one singularity-free
connected region, referred to as aspect Borrel and Liegeois
(1986); Wenger (1992), with multiple inverse kinematic
solutions (IKS). This enables the robot to travel between two
IKS without crossing inverse kinematic singularities, and this
property is termed cuspidality. Historically, the term cuspidal
comes from the fact that the existence of a cusp point in
the set of singularity curves mapped in a cross-section of
the workspace of a 3R orthogonal robot is a necessary
and sufficient condition for it to be cuspidal El Omri and
Wenger (1995). This condition was later extended to generic
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3R robots Salunkhe et al. (2022b). No work extending the
necessary and sufficient condition to 6R robots has been
reported. The term cuspidal was used in the context of 6R
robots by Wenger and Chablat (2022) and Wenger (1997).
Note that cuspidality has also been studied in the context
of parallel robots Macho et al. (2012), Zein et al. (2008).
The advantage of anthropomorphic robots is that their IKS
can be calculated in closed form, and thus, the computation
is fast and accurate. A closed-form solution for similar
architectures, but with an offset in the wrist, is presented in
Gosselin and Liu (2014); Trinh et al. (2015); Zohour et al.
(2021). These works confirm that robots with offset in the
wrist have more than 8 IKS. It is shown for these robots
that there exist multiple regions with different numbers of
IKS in the workspace separated by critical values Salunkhe
et al. (2023). Such a workspace presents the possibility of
moving from one region to another, i.e., crossing critical
values, which makes the path planning problem harder to
handle.

Wenger (2004) first recognized issues in path planning
for cuspidal robots in 3R robots. This work highlighted the
importance of considering different scenarios specific to the
path planning of cuspidal robots. Recently, a few issues in
the path planning of Jaco Gen2 (6 DoF version with a non-
spherical wrist) were presented by Verheye (2021), where
the robot jumped off the desired trajectory. The kinematic
analysis presented in Salunkhe et al. (2023) confirmed that
this robot is cuspidal. The work also illustrated the relation
between the path planning issues and the robot’s cuspidal
property. There has been a dearth of attention towards
cuspidality while designing a 6R robot, which has led to an
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increasing number of cuspidal robots in the market. Most
commercial cuspidal robots are sold under the category of
cobots. The path planning issues in cuspidal robots render
them unsuitable for tasks that depend upon the action
of external agents. As the deployment of cuspidal robots
becomes ubiquitous, it is imperative to have a practical
guideline for path planning that considers cuspidality.

Deciding cuspidality of 6R robots is challenging because
the singularities depend on four joints. The set of
singularities is a union of three-dimensional manifolds on a
four-dimensional torus, T4. This results in a more complex
topology than in 3R robots whose joint space is 2-torus,
T2. As a consequence of the higher dimensional space, no
visualization can be used to acknowledge any result unlike in
3R robots. Few industrial robots were analyzed individually
for studying the cuspidal nature Wenger and Chablat (2022);
Capco et al. (2020), but no work was published regarding a
generic 6R robot until recently. The latest work on deciding
cuspidality was presented in Chablat et al. (2022). The
presented algorithm is generic and certified, i.e., an algorithm
that provides worst-case and beyond worst-case performance
guarantees Makarychev and Makarychev (2020), but it is
challenging to implement.

The main contributions presented in the article are:

1. Issues in path planning of commercial cuspidal
robots (Section 4): the unique identification of IKS in
commercial software and consequences of cuspidality
on path planning are presented. Several types of
paths and scenarios occurring in cuspidal robots are
demonstrated to highlight the importance of avoiding
cuspidal robots in collaborative tasks.

2. Path planning algorithm (Section 4.4): we propose
a practical path planning algorithm considering
non-cuspidal and cuspidal robots. It considers several
scenarios specific to the path planning of cuspidal
robots.

3. Deciding algorithm (Section 5): a practical algorithm
to decide if given Denavit-Hartenberg (D-H) parame-
ters correspond to a cuspidal robot or not is proposed.
It combines the previously known results along with
analysis of the determinant of the Jacobian matrix to
accelerate the decision time.

This paper is organized as follows: Section 2 presents
the chronology and relevant work in the field of kinematic
analysis of 6R robots. Section 3 puts forth the necessary
terminologies and the background for the work presented in
the following sections. Section 4 discusses the issues in path
planning of cuspidal robots. The path-planning algorithm of
cuspidal robots is discussed here in detail. A few examples
from existing commercial cuspidal robots are shown to
highlight the importance of the algorithm. In section 5, the
practical algorithm for deciding cuspidality is presented.
Later, we present the classification of existing robots based
on cuspidality. We conclude the presented work with a few
remarks on cuspidal robots and their consequences on path
planning.

2 Related work
This section summarizes the related work on the topics
of inverse kinematics, cuspidal robots, and path planning
methodologies of 6R robots.

2.1 Kinematic analysis
The work of Pieper (1968) presented the inverse kinematic
model (IKM) of a 3R robot as an intersection of a conic
with a unit circle. This analysis was used in extending the
cuspidality analysis for 3R robots Salunkhe et al. (2022b);
Thomas (2015); Salunkhe et al. (2022a); Smith and Lipkin
(1990). In 1986, Primrose (1986) proved that 6R robots
have up to 16 solutions over C using projective geometry.
One of the most recent advances in the inverse kinematics
of 6R robots was presented by Husty et al. (2007) where
the geometric interpretation of the IKM was presented. The
advantage of this method is that it uses equations linear in all
but two variables, and thus is fast and accurate. This method
was extended for robots with prismatic joints by Capco and
Manongsong (2019).

2.2 Cuspidal robots
Before 1988, it was believed that the IKS of a 6R robot
were always separated by the locus of critical points of the
forward kinematic map Borrel and Liegeois (1986). This
idea was discarded in 1988, and two counter-examples were
presented in Innocenti and Parenti-Castelli (1998), establish-
ing the existence of cuspidal robots. Cuspidality was then
also shown in 3R robots by Burdick (1989). As the wrist
partitioned geometries of 6R robots are noncuspidal and the
IKS of these robots are thus well separated by singularities,
the implications of 6R cuspidal robots were not studied
rigorously. The 3R robots, on the other hand, have extensive
results based on cuspidality Wenger (1992); El Omri and
Wenger (1995). Figure 1 illustrates an example of nonsingu-
lar change of solutions. Figure 1a shows the singularities in
the joint space parameterized by θ2 − θ3 only as θ1 does not
affect the singularities. In Figure 1b, the critical values in ρ =√
x2 + y2 and z are shown. The workspace is parameterized

in ρ and z as they are only functions of θ2 and θ3. The
term cuspidal robots was coined since a nonsingular change
of solutions in the joint space is equivalent to encircling
a cusp point of the locus of critical values of the forward
kinematic map projected onto a surface in the workspace
of the robot. It was proved for orthogonal 3R robots, i.e.,
an arrangement with three mutually perpendicular revolute
axes, that the existence of a cusp point was a necessary
and sufficient condition to be cuspidal El Omri and Wenger
(1995). The complete parameter space was mapped leading
to the validation of the proof of this condition. Wenger
(1998) and Baili et al. (2004) used homotopy classification
to further analyze 3R robots. Baili et al. (2004) presented the
classification of orthogonal robots in terms of the number of
cusps while Paganelli (2008) studied the classification of 3R
robots concerning the aspects, thus extending the previous
work Wenger (1998).
The IRB 6400C robot from ABB was first introduced in

the assembly lines to save the space required by robots
by changing the first axis positioning. This robot was then
pulled back from the assembly lines, and the reasons for this
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(a) singularities in θ2 − θ3 plane (b) critical values in ρ− z
plane.

Figure 1. An example of nonsingular change of solutions in
joint space and workspace. The yellow and green region are the
singularity-free regions, defined as aspects.
Robot parameters: d = [0, 1, 0],a = [1, 3, 1], α = [−π

2
,
π

2
, 0].

Path in the joint space (θ2, θ3): from (−2.5,−0.386) to
(−1.57, 2.08) via (−1.57, 0.785).

were unclear. It was later reported that this robot was indeed
cuspidal Wenger and Chablat (2022), and the authors suspect
that the issues related to path planning in cuspidal robots
were encountered by the engineers. Another robot, GMF150,
was analyzed by Wenger (1997), and it is concluded that this
robot is cuspidal in theory, but due to strong joint limits,
the robot operates in a 2 IKS region such that the IKS are
always separated by a singularity. A major change from the
conventionally deployed design came with the introduction
of an offset in the wrist of anthropomorphic robots and
three parallel axes in the 6R robot. These designs are so
popular that almost all robot manufacturing companies have
a version of this such as the FANUC CRX series, UR5 from
Universal Robots, Yaskawa’s HC10DTP, and Gen Lite3 from
Kinova Robotics. It is reported that robots similar to the
UR5 architecture are non-cuspidal. The determinant of the
Jacobian matrix of such robots factor in partitions in the joint
space Capco et al. (2020). This results from the fact that
UR5-like robots have a 3R planar subchain. Since anthropo-
morphic robots vary from this structure, adding an offset in
the wrist almost always leads to a cuspidal design, as shown
in Section 5. An example of such a design that deviates from
the wrist-partitioned anthropomorphic architecture is JACO
Gen2 (version with non-spherical wrist) which is reported to
be cuspidal Salunkhe et al. (2023).
Deciding on cuspidality for a given robot allows a designer
to make better decisions based on the designs’ advantages
and challenges in the path planning of cuspidal robots. The
identification of cuspidality in 3R robots has been completely
presented in El Omri and Wenger (1995) and Salunkhe et al.
(2022b) from which the necessary and sufficient condition
for a 3R robot to be cuspidal was put forth. This work also
presented proof for the existence of reduced aspects (see
section 3) in generic 3R robots. No results on the reduced
aspects are available for 6R robots. The cuspidality analysis
of 3R robots can be extended to 6R robots with a wrist at the
end or the beginning as the rotation and translation part of the
end effector pose (EE-pose) is decoupled for these simplified
architectures. There has been no attempt to develop a unified

framework to decide cuspidality for generic 6R robots before
2022, but few industrial robots were individually analyzed
for cuspidal behavior.
Recently, a certified algorithm was proposed for nonredun-
dant nR robots with the aim of deciding cuspidality Chablat
et al. (2022). It implements various algorithms in computer
algebra. Though certified, implementing this algorithm is an
ongoing engineering challenge and is currently computation-
ally expensive. Moreover, it cannot be used with collision
constraints.

3 Preliminaries
In this section, we discuss the definitions relevant to cuspidal
robots and path planning in cuspidal robots.

3.1 Inverse kinematics
The subspace of SE (3) formed by the reachable poses of a
given 6R robot is called the workspace of the robot, W ⊂
SE (3). The joint configuration of a robot is denoted as q
and is a point in the joint space, J ⊆ T6, where, Tn is an
n-torus. Let x be the EE-pose in SE (3) corresponding to q.
The mapping between J and W , denoted by f : J → W ,
defines the forward kinematics

x = f(q),x ∈ W,q ∈ J .

The elements in the pre-image f−1(x) are the inverse
kinematic solutions (IKS) of x. In this paper, original D-
H parameters are used Denavit and Hartenberg (1955). The
conventions used in this parameterization are presented in
Figure 2.

Axis i− 1

Axis i

Axis i+ 1

θi

Link i− 1
Link i

ai

di

αi−1

zi−1 yi−1

xi−1

zi yi
xi

Figure 2. Conventions of the original D-H parameters used in
this work.

The algorithms discussed in Section 5 implement the HuPf
algorithm to obtain the IKS of a generic 6R robot. Readers
are encouraged to refer to Capco and Manongsong (2019);
Husty et al. (2007) for detailed implementation where the
IKM is presented as an algorithm. A comparison of the
HuPf algorithm to other algorithms for inverse kinematics
was performed in Angerer and Hofbaur (2013) for industrial
setup. As accuracy is more important than speed for deciding
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cuspidality, the HuPf algorithm is the most reliable algorithm
for cuspidality analysis of 6R robots.

3.2 Singularities in serial robots
The set of singularities (S) contain all critical points of
f in J that correspond to the configurations in the joint
space where the geometric Jacobian of the forward kinematic
map, J, loses rank, i.e. when the determinant of J is zero
(det(J) = 0). The critical values are the images of the
critical points in W . Kohli and Spanos (1985) showed that
for a critical value, the roots of the univariate polynomial
used to solve the inverse kinematics have a multiplicity of 2
or more for a 3R robot. This result can also be extended to
6R robots, as there is always a loss/gain of IKS upon crossing
the locus of critical values.

The singularities of 6R robots are known to be
independent of the first joint angle, θ1, and the last
joint angle, θ6, Innocenti and Parenti-Castelli (1998). This
allows us to reduce the 6-dimensional joint space to T4

parameterized by θ2, θ3, θ4 and θ5. In the following part of
the article, J ⊆ T4 will denote the joint space parameterized
by θi, i ∈ {2, 3, 4, 5}.

Aspect: The largest singularity-free connected regions in
the joint space of a robot are defined as aspects Borrel and
Liegeois (1986). Figure 1a shows two aspects of the joint
space of a 3R robot. The joint space is parameterized in θ2
and θ3 only as the singularities of 3R robot are independent
of θ1 Burdick (1989).

It is noted in Pai and Leu (1992) that the critical points of
generic maps form smooth manifolds and their dimension is
related to the rank of the Jacobian by a simple formula. A
generic robot has a generic kinematic map. It is to be noted
that such robots do not form a special class of robots rather
the contrary and thus the term generic.
Generic robot: A Robot whose singularities are the union of
sets of smooth manifolds is a generic robot.

Cusp: A cusp is a point in the locus of critical values of a
3R robot that satisfies the following conditions El Omri and
Wenger (1995):

M(t3, R, z) = 0

∂M

∂t3
(t3, R, z) = 0

∂2M

∂t2
(t3, R, z) = 0

(1)

where, for an end-effector (EE) position (x, y, z), R =
x2 + y2 + z2, and t3 = tan θ3

2 . The function, M(t3, R, z),
is a polynomial of degree four in t3. This polynomial is
obtained by eliminating the joint variable t2 from the forward
kinematic function. Moreover, the cusp also has to satisfy:

∂3M

∂t33
(t3, R, z) ̸= 0 (2)

to exclude quadruple roots. However, it was shown in Pai
and Leu (1992) that quadruple roots cannot exist in generic
3R robots, and the above condition is thus always satisfied

here. So, in the context of a generic 3R robot, the cusp in the
workspace relates only to satisfying (1).

IKS set: Denote with

Ix = {q ∈ Tn |x = f(q)} (3)

the set of IKS for a given end effector pose x of a n-DOF
robot. The IKS can be computed using, e.g., the HuPf-
algorithm Husty et al. (2007) or a robot-specific approach
such as Gosselin and Liu (2014) for the Kinova Jaco robot.
For a non-redundant robot, i.e. dimW = dim Im (f) ≤ n,
the IKS set consists of a finite number nx of IKS i.e.
Ix = {q1, . . . ,qnx}.

Set of candidate solutions: A necessary condition for
two distinct IKS to belong to the same aspect, is that the
determinant of the Jacobian has the same sign. We obtain
a reduced set from the set of all IKS at a given pose,
which qualifies after the necessary condition is imposed.
This reduced set of IKS is defined as the set of candidate IKS
for an initial solution q0 and EE-pose x and is introduced as:

Rq0,x := {q ∈ Ix | sign(detJ(q0)) = sign(detJ(q))}
(4)

Nonsingular change of solutions: Let q1 and q2 be two
IKS for the EE-pose x and σ(q1,q2, t) be a path between
these two points, where t ∈ [0, 1] is a parameter such
that σ(q1,q2, 0) = q1 and σ(q1,q2, 1) = q2. σ(q1,q2, t) is
defined as a nonsingular change of solutions if and only if:

σ(q1,q2, t) ∩ S = ∅ (5)

Connectivity problem: The problem of finding a path
connecting two IKS qi,qj ∈ Rq0,x, i ̸= j, in the same
aspect while satisfying (5) is referred to as the connectivity
problem. Two IKS solving the connectivity problem are
called ’connected’

Cuspidal robot: A cuspidal robot without collision or
joint limit constraints can be defined as a robot with at least
one aspect with more than one IKS. Alternatively, it can
be defined as a robot for which a nonsingular change of
solutions exists.

∃σ(q1,q2, t) ∩ S = ∅ |q1,q2 ∈ Rq0,x (6)

Repeatable path: A path in the joint space that can follow
a given closed path in the workspace infinitely many times is
defined as a repeatable path. A repeatable path can involve a
nonsingular change of solutions.

Regular closed path: A regular closed path is a repeatable
path such that the initial IKS is the same as the final IKS.
Such a path is a closed loop in the workspace as well as in
the joint space.

Non-repeatable path: Given a loop in the workspace, a
path in the joint space that can execute the loop only once
is defined as a non-repeatable path. The initial IKS of such
a path cannot be the same as the final IKS (as it would
be a regular closed path). Thus, a non-repeatable path is
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necessarily a nonsingular change of solutions and, thus, a
property of cuspidal robots.

Infeasible (resp. feasible) path: The path in the joint
space that cannot (resp. can) traverse a defined path in the
workspace starting from a given IKS without discontinuity
is referred to as an infeasible (resp. feasible) path.

4 Path planning for cuspidal robots
In this section, we present the issues occurring due to the
presence of multiple regions with different numbers of IKS
in a cuspidal robot’s workspace. Different scenarios are
presented to highlight the classification of different types of
paths specific to cuspidal robots. A path-planning algorithm
for cuspidal robots is presented at the end of the section.
The proposed algorithm can be implemented on existing
commercial cuspidal robots to mitigate the issues in path
planning. Numerous methods for following prescribed EE-
paths can be found in the literature. Some strategies adapt
the prescribed path in order to deal with singularities S of
the inverse kinematic map Wampler (1986); Maciejewski
and Klein (1989). Astudillo et al. (2022) presents a tunnel
following approach in case deviations of the EE path are
allowed, e.g., gluing, bin-picking. In this paper, we are in the
context of scenarios where the EE-path is strictly prescribed,
such as process tasks. Furhtermore, only cases with forwad
movement along the prescribed paths are considered, since
retracing is often not admissible e.g. welding, painting
procresses. This means that the path planner is not allowed
to adapt/retrace the EE-path in case of kinematic problems.

4.1 Issues with IKS identification
The wrist partitioned 6R robot such as KUKA KR5 has
eight IKS and the det(J) of such robots factors into three
components (detailed in section 5.2.2). These IKS can be
unambiguously identified according to the sign of each
factor of det(J). If we denote the elbow position, shoulder
position, and wrist position with boolean value, then the eight
configurations (three factors with boolean values, 23 = 8)
for such a robot are shown in Figure 3. Changing from
one configuration to another necessarily means that the two
IKS are separated by a singularity such that the ‘operation
mode’ does not change unless we cross the singularity. A
configuration allows one to identify the operation mode
of the robot without ambiguity. This can act as a type
of classification when the configurations are identified by
geometric differences, e.g. elbow up, shoulder right, etc.
An IKS, on the other side, is simply a pre-image of the
pose in the workspace. It is to be noted that a geometric
interpretation may not always be possible for configurations.
For example, in a 3R noncuspidal robot with four real IKS,
the solutions are separated by singularities, but these IKS do
not necessarily hold on intuitive distinction. In such cases, a
given configuration can be checked for the aspect to which
it belongs, and it can be assured that the robot will stay
in this configuration unless we have crossed a singularity.
Each symbol in Figure 4 represents an IKS in an aspect. If
there are four IKS separated in four aspects, then they can
be represented by four different symbols while for the robots

(a) Configuration elbow(up)-
shoulder(right)-wrist(unflip)

(b) Configuration elbow(up)-
shoulder(left)-wrist(unflip)

(c) Configuration elbow(up)-
shoulder(right)-wrist(flip)

(d) Configuration elbow(up)-
shoulder(left)-wrist(flip)

(e) Configuration
elbow(down)-shoulder(right)-
wrist(unflip)

(f) Configuration
elbow(down)-shoulder(left)-
wrist(unflip)

(g) Configuration
elbow(down)-shoulder(right)-
wrist(flip)

(h) Configuration
elbow(down)-shoulder(left)-
wrist(flip)

Figure 3. The eight configurations of a wrist-partitioned
anthropomorphic robot.

where we have four IKS separated in three aspects, at least
two IKS will have identical symbols. An example joint space
of a noncuspidal robot is shown in Figure 4a, where the four
IKS are separated by the singularities allowing one to claim
that there are four configurations of the robots. Figure 4b
on the other side is an example joint space of a cuspidal
robot with four IKS separated into three aspects. The two
IKS, marked as solid circles, in the same aspect in this figure
cannot be uniquely identified, and thus cannot be classified
as a configuration.

Numerical methods to calculate the IKS of a generic
robot are widely used, including in open path planning
libraries. When planning a path for a cuspidal robot, a sudden
jump off the path can occur if an IKS is missed along the
path. This can lead to an undesired outcome thus, analytic
solutions or algebraic methods must be used to get all the
IKS. We study the case of IKS identification attempted
by FANUC on their CRX-10ia/L robot. This robot comes
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(a) Joint space of a noncuspidal
robot with 4 IKS in 4 aspects.

(b) Joint space of a cuspidal robot
with 4 IKS existing in 3 aspects.

Figure 4. Joint space of two robots highlighting cases where a
unique identification of IKS is possible or not possible.The IKS,
in the same aspect, have the same symbols.

with commercial software ROBOGUIDE® from FANUC
for analyzing different IKS and simulating the robot. We
know that the CRX-10ia/L robot has up to sixteen IKS
Salunkhe (2023); Thomas and Porta (2024), but the software
presents up to eight solutions at any given EE-pose, and
how the other eight IKS are discarded is unclear. Apart
from missing IKS, the software unconventionally assigns a
configuration to the eight solutions. Conventionally, the eight
configurations are identified as (N/Y)(R/L)(U/D) meaning
(No/Yes (flip) - Right/Left (shoulder) - Up/Down (elbow))
as presented in Figure 3. Furthermore, the configurations
for wrist-partitioned robots allow one to identify the IKS
of the robot. This is possible for noncuspidal robots. As we
know CRX-10ia/L is a cuspidal robot; it is confusing to study
the configurations specified by the ROBOGUIDE® software.
Contrary to previous convention, ROBOGUIDE® software
classifies the configurations in (N/F)(U/D)(T/B) (No flip/Flip
- Up/Down (elbow) - Top/Bottom (shoulder)), and this
classification is ambiguous. We investigate the issues with
unique identification of IKS by considering an example of
EE-pose in ROBOGUIDE®, with the Cartesian coordinates
as:
X = -467.719 mm, Y = 313.112 mm, Z = -173.618 mm, W =
-179.398 degree, P = -0.804 degree, R = -3.321 degree
Upon experimentation with the software, it is confirmed that
the configuration, as classified by the software, does not
necessarily change while traversing a path between two IKS.
The ambiguity in the configuration classification is shown
by two of the IKS as displayed by ROBOGUIDE® in Figure
5. Figure 5a is classified as FUT configuration, which is
interpreted as Flip (yes), Up (elbow), and Top (shoulder),
while the Figure 5b is classified as FDB which can be
interpreted as Flip-Down-Bottom configuration. It can be
seen that the posture for Figure 5b does not correspond to
the elbow-down configuration. This is a misinterpretation of
the configuration and can create confusion during the path
planning of such robots. The issue for cuspidal robots is not
the mislabeling of the configuration, but the absence of the
possibility of unique identification of IKS in cuspidal robots.

4.2 Types of paths
Different algorithms that can be used for path planning of
noncuspidal robots have been presented in Gutierrez et al.

(a) An IKS with configuration mentioned as FUT

(b) An IKS with configuration mentioned as FDB

Figure 5. Two IKS of CRX-10ia/L at EE-pose with different
configurations as presented by the ROBOGUIDE® software.
The software provides the robot’s joint values (top) and EE-pose
(bottom).

(2022). In a wrist-partitioned 6R robot, a given path in
the joint space can be declared infeasible due to multiple
reasons, such as unreachable poses in the path, singularities,
joint limits, and internal collisions. It is important to note
that if a path is infeasible for such a robot, it is impossible
to change the IKS to execute the prescibed path in the
workspace, EE path, without crossing a singularity. A
feasible path in the joint space for noncuspidal robots is
always repeatable as the robots do not undergo a nonsingular
change of solutions, and thus path feasibility implies path
repeatability. This is not true for cuspidal robots, and the
path feasibility depends on the initial IKS Wenger (2004).
As cuspidal robots can undergo a nonsingular change of
solutions while following a closed EE path, a feasible path
may not necessarily be repeatable. An example of a feasible
but non-repeatable path in a commercial cuspidal robot was
discussed in Salunkhe et al. (2023). For an open EE path,
the feasibility of a corresponding path in the joint space
depends on the initial IKS and the possibility of changing
the IKS before executing the path. The case of changing
IKS and making an infeasible path feasible is of prime
importance in commercial cuspidal robots that are used
in collaborative tasks. A time optimal trajectory planning
algorithm considering nonsingular change of solutions is
presented in Marauli et al. (2023). Figure 6 presents the
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complete classification of possible paths in the workspace
for a cuspidal robot. If the path is a closed loop in the
workspace, then we have a further classification of feasible
paths depending on their repeatability. A repeatable path can
correspond to a regular path (see Section 3) or a nonsingular
change of solutions. We consider two closed paths in two
different cuspidal robots to illustrate the different types of
paths in a cuspidal robot. Figure 9 shows a closed path in a
2D slice of the workspace of the Jaco robot (refer to Figure
7). Figure 9b shows the θ3 value of each IKS along the
path. As the path is a closed loop, the IKS at the beginning
of the path should match the final IKS. In Figure 9b, the
top side is considered to be glued to the bottom side as
θ3 is equal modulo 2π. As the path discussed is a closed
path in the workspace, the IKS of the EE-pose of the path
after each iteration is equal to the IKS of the EE-pose at
the start of the path. As there are eight IKS for the starting
pose of the trajectory, there are eight possible trajectories,
denoted as Tni and Tpi, i ∈ {1..4}. The blue (resp. red)
color paths are the solutions in an aspect with det(J) > 0
(resp. det(J) < 0) and are denoted as Tpi (resp. Tni). It is
to be noted that the paths Tn1(resp. Tn2) and Tp1(resp. Tp2)
are two distinct paths in the joint space. As we plot a single
joint value, they might appear connected in Figure 9b.A
similar closed path has been treated in detail by Salunkhe
et al. (2023). It was shown that the 8 IKS belong to two
separate aspects such that a nonsingular change of solutions
can be performed between any two IKS corresponding to
blue (resp. red) paths. An example of nonsingular change
of solutions between two IKS in aspects with det(J) > 0
(resp. det(J) < 0) is shown in Figure 8a (resp. 8b). The path
in the joint space shown in Figure 8a is a linear interpolation
between q1 = [−2.89,−0.41, 2.61,−2.79, 3.03− 0.33]
and q2 = [3.01,−0.42, 2.43, 0.53, 3.01, 2.25] via
[0,−0.39, 2.76,−1.11, 2.50, 0]. The path in the
joint space in Figure 8b is a linear interpolation
between q3 = [−2.89,−0.42, 2.44, 2.75,−3.04, 0.28]
and q4 = [3.00,−0.42, 2.65,−0.44,−2.98, 3.05] via
[0,−1.47, 3.49, 2.95,−2.74, 0]. The vectors q1..4 are
the IKS of the EE-pose corresponding to the following
transformation matrix:

T =


0.935 −0.289 0.204 440.45
0.291 0.957 0.0221 60.38
−0.201 0.0386 0.979 560.56

0 0 0 1


where T[1..3, 1..3] is the rotation matrix representing the
orientation of the EE-pose while the vector T[1..3, 4] is
the position of the EE-pose in millimeters. Among the eight
paths in the joint space shown in Figure 9b, Tp2 and Tp3 are
continuous paths with the same initial and final IKS. These
paths are regular closed paths. Due to their discontinuity
Tp1, Tn2, Tn3 or Tp4 are infeasible paths. The paths Tn1 and
Tn4 are continuous but not repeatable since the initial and
final IKS are different. In such cases, the path is continuous.
It can be traversed once but can not be repeated as the
final IKS corresponds to an initial IKS that leads to an
infeasible path (i.e., traversing Tn1 will lead to traversing
Tn2 if the path would be repeated). It is worth noting that
no repeatable path without crossing singularity is possible
when the robots start a path from an IKS belonging to the

red paths, i.e., Tn1, Tn2, Tn3, Tn4. On the other hand, in
Innocenti and Parenti-Castelli (1998), continuous repeatable
paths with unequal initial and terminal IKS were discussed.
Figure 10 shows an example from Innocenti and Parenti-
Castelli (1998) of such paths denoted with T1 and T2. These
paths describe a nonsingular change of IKS that is continuous
and repeatable, i.e., the terminal IKS of T1 is the initial
IKS of T2. These examples are illustrated in Extension 1.
Several paths crossing multiple regions in the workspace
of commercial cuspidal robots are presented in Salunkhe
(2023).

4.3 Types of scenarios
As discussed in the previous section, more types of paths
in the joint space exist in a cuspidal robot than in a
noncuspidal robot. This fact directly implies that we also
encounter different scenarios in the path planning. The
scenarios relevant for industrial applications are pick-and-
place operations, repetitive tasks forming a closed path in
the workspace (e.g., welding, surface inspection), or point-
to-point trajectories. We will discuss path planning in the
context that the path to be followed in the workspace is fixed,
and the planning is done in the joint space.

Scenarios in closed paths in workspace: These scenarios
are often encountered in process tasks such as welding or
inspection applications. The robot is expected to follow
a given EE path in the workspace and return to its initial
EE-pose. Such EE path can be repetitive, like welding in an
assembly line, or can be one-time tasks such as inspecting
a unique part. In the case of nonrepetitive tasks, a path in
the joint space leading to a nonsingular change of solutions
is acceptable, while repetitive tasks should be regular
paths that are declared feasible. In special cases where the
nonsingular change of solutions is repeatable, such paths
can be declared suitable for repetitive tasks but may face
issues such as collisions with the environment. For this
reason, a EE path specified in the workspace has to be
analyzed for the intersection with critical values. Every path
in the joint space corresponding to the prescribed EE path is
a regular path if the EE path does not cross critical values.
If the EE path intersects the critical values, verifying and
comparing the initial IKS with the final IKS is important.
An example of a closed loop EE path crossing critical values
is shown in Figure 9. To complete the closed path in the
workspace, starting from the IKS corresponding to either
Tn1, Tp2, Tp3 or Tn4 is important. Furthermore, if the task is
repetitive, IKS belonging to Tn1 and Tn4 should be declared
infeasible even though the given path in the joint space is
continuous in the first repetition. The paths in joint space
illustrated in Figure 9b confirm that the feasibility of the
path in joint space depends upon the choice of initial IKS in
cuspidal robots.

Scenarios in open paths in workspace: These scenarios
are simpler than the closed paths in the workspace. A typical
example of this scenario is an open path of welding that
starts at an EE-pose and terminates at another EE-pose. In
such a case, the robot is not expected to return to its initial
pose. If the EE path does not cross critical values , then
every path in the joint space corresponding to the EE path
is feasible. The feasibility of the paths in joint space for the
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Figure 6. The classification of possible paths in joint space to follow a prescribed path in the workspace for cuspidal robots.

Figure 7. Jaco Gen 2 (6 DoF) robot from Kinova robotics.
(Source: https://www.kinovarobotics.com/product/gen2-robots)

EE path that cross the critical values depends on the choice
of initial IKS. In the example EE path shown in Figure 9a,
the EE paths a → b, b → c, c → d and d → a can be
considered as open paths in workspace individually. The EE
paths b → c and c → d do not cross any critical values. At
the EE-pose corresponding to the point b (resp. c), thus, any
IKS can be chosen to reach c (resp. d). But, for EE paths
a → b and d → a, the choice of initial IKS is important.
It is observed in Salunkhe et al. (2023) that the choice of
good initial IKS depends on which boundary of the region
with 8 IKS is crossed. These boundaries of a region with 8
IKS (green color region in Figure 9a) in the workspace are
examples of components of critical values. For a cuspidal
robot, if an EE path crosses two distinct components of
critical values Wenger (2004); Salunkhe et al. (2022b), then
a feasible path in joint space cannot always be guaranteed.

4.4 Path planning framework
Based on the types of paths in the joint space and scenarios
in cuspidal robots, as shown in previous subsections, we
propose a path-planning algorithm for cuspidal robots.
This algorithm addresses all the scenarios discussed in

(a) Nonsingular change of solutions in aspect with det(J) ≥ 0.

(b) Nonsingular change of solutions in aspect with det(J) ≤ 0.

Figure 8. The det(J) plot against the discrete path in the joint
space from one IKS to another IKS of the EE-pose represented
by T

the previous subsection. The proposed algorithm can be
implemented in commercial cuspidal robots such as the Jaco
Gen2 robot from Kinova Robotics and the CRX series from
FANUC. The algorithm is divided into two parts; the first
deals with the open paths in the workspace, and the second
deals with the scenarios related to closed-loop paths in the
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(a) A closed path in the workspace of Jaco robot crossing multiple connected regions. The yellow, purple, and green colors denote
the regions with 4, 6, and 8 IKS, respectively.

(b) Value of θ3 along the closed path in Figure 9a, with regions of 4, 6 and 8 IKS. Blue (Tpi) and red (Tni) paths correspond to solutions in an
aspect with det(J) > 0 and det(J) < 0, respectively.

Figure 9. A closed loop path in the workspace of the commercial cuspidal robot Jaco Gen2, and the evolution of θ3 along the path
(see Extension 1).

workspace.

Algorithm for open paths in workspace: The flowchart in
Figure 11 explains the algorithm for open paths for a cuspidal
robot. The primary consideration in such cases is the path’s
intersection with the critical values. If the EE path intersects
the critical values, we can verify the connectivity of the EE
path starting from every IKS of the initial pose of the EE
path. It is known that the number of IKS either increases or
decreases upon crossing a critical value and traveling from a
region with a lower number of IKS is never a problem as
we gain extra IKS. To this end, the EE path is evaluated
at discrete values of the path parameter, i.e., an equidistant

discretization of t ∈ [0, 1], which results in a finite number
of EE-poses. At each of these EE-poses, the IKS is computed
using an appropriate algorithm (e.g., HuPf algorithm Husty
et al. (2007)). We then propose choosing an EE-pose along
the EE path corresponding to a region with the least number
of IKS. The connectivity of every IKS of this EE-pose with
a chosen initial IKS (at the beginning of the EE path) is
investigated. If an IKS is connected, the forward connectivity
of the IKS (at the chosen EE-pose) with the final IKS (at the
end of the path) is investigated. A path in the joint space is
declared feasible if an IKS is connected to both the initial
and final IKS. After repeating the connectivity check of every
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Figure 10. θ2 value along the repeatable path that corresponds
to a nonsingular change of solution (path mentioned in
Innocenti and Parenti-Castelli (1998)).

IKS of the selected EE-pose with the IKS of the initial EE-
pose and the IKS of the final EE-pose, the feasible paths in
the joint space can be further optimized for execution.

Algorithm for closed paths in workspace: The flowchart
in Figure 12 explains the algorithm to be adapted in case
of closed EE path for a cuspidal robot. This case presents
more scenarios, and the choices are complicated. As shown, a
path in joint space can be continuous yet not repeatable. The
main consideration in such cases is whether a nonsingular
change of solutions is acceptable for declaring a path in joint
space feasible. The continuity of a path in joint space can be
checked in the same manner as discussed in the algorithm
for open paths in workspace. A connected path in joint space
is not enough to declare the feasibility, and the type of task
should be known beforehand to optimize and execute a given
closed path in the workspace. This algorithm accounts for all
the cases that can occur in commercial robots.

The types of paths in joint space, the different scenarios,
and the algorithm proposed for path planning in cuspidal
robots suggest that the complete EE path to be followed
should be known before execution. This implies that cuspidal
robots are NOT suitable for tasks where the path to be
followed depends on the agent acting on the robot. In
such tasks, the interaction is unpredictable, and the path is
calculated in real time. This is an important observation and
a key contribution of the paper, as almost all the commercial
cuspidal robots in the industry exist under the category of
collaborative robots or cobots.

5 Deciding cuspidality

In this section, we discuss the limitations of existing methods
in deciding cuspidality and propose a generic method that
can be applied to all 6R robots and incorporate the joint
limits and collision constraints too. This method is easy to
implement and computationally inexpensive for a cuspidal
robot. We propose a complete algorithm that can be used
to decide the cuspidality of a 6R robot. It combines all the
previously known results and considers the analysis of the
determinant of Jacobian to accelerate the decision time.

5.1 Effect of constraints on cuspidality
analysis

The definition of cuspidality and the necessary and sufficient
condition for cuspidality in a 3R robot discussed in Salunkhe
et al. (2022b) is valid without considering joint limits and
collision constraints. Joint limits in 3R robots can lead to
cases where the cusps in the workspace are inaccessible, yet
a nonsingular change of solutions exists. This qualifies the
robot as cuspidal even without respecting the necessary and
sufficient conditions. It is helpful to note that the cuspidality
analysis should only extend beyond checking the necessary
and sufficient condition while considering joint limits and
collision constraints. The certified algorithm proposed in
Chablat et al. (2022) can incorporate the joint limits as
long as the constraints are expressed algebraically. Another
important constraint that affects the workspace and cuspidal
behavior of a 6R robot is the collisions of different links. The
internal collision between links limits a robot’s workspace to
a great extent, which impacts the cuspidality analysis. The
necessary and sufficient condition and the certified algorithm
proposed fail to incorporate the collision constraint. The
constraints are neither smooth nor algebraically expressible,
making them hard to incorporate into the certified algorithm.

5.2 Algorithm for deciding cuspidality
In this section, we propose an algorithm capable of deciding
a robot’s cuspidality by incorporating both joint limits and
internal link collision constraints.

5.2.1 6R robots with simplified architectures Simplified
architectures of 6R have special conditions on the
arrangement of joints and link lengths such as parallel,
orthogonal, or intersecting joint axes. Some examples of
these architectures are the 6R robots with a planar 3R sub-
chain or with a wrist (3 intersecting axes) in the architecture.
The results for cuspidality from 3R robots can be extended
to the wrist-partitioned 6R robots Wenger and Chablat
(2022), where the last three joints form the wrist. This is
attributed to the position and orientation of such robots
being decoupled. The wrist singularity in such robots is well
known, and the orientation solutions are always separated by
wrist singularity. This makes the wrist a noncuspidal robot,
so the cuspidal nature of the complete 6R robot depends
on the cuspidal nature of the 3R robot, which is formed
by the first three axes only. The necessary and sufficient
condition derived for a generic 3R robot used the geometric
interpretation of the IKM for the proof. It is shown in
Pieper (1968) that this geometric interpretation holds even
for wrist-partitioned robots if the first three joints form the
wrist kinematics. This suggests that all the theorems proved
for a generic 3R robot can be extended to wrist-partitioned
6R robots with a wrist at the end or the beginning of the
robot. Apart from the above results, the UR5 robot is also
noncuspidal Capco et al. (2020) with eight solutions in eight
aspects. In the next section, we present the importance of
analyzing the determinant of the Jacobian matrix and present
new conditions for a robot to be noncuspidal.

5.2.2 Determinant analysis As the number of aspects is
defined by the regions separated by the locus of critical
points, studying the determinant of the Jacobian matrix of a
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Figure 11. Path planning algorithm for scenarios with open paths in cuspidal robots.

generic 6R robot is of great interest. A simplified determinant
for a 6R robot can be derived symbolically by using the
preferential Jacobian as mentioned in Gorla and Renaud
(1984) and Khalil and Dombre (2004). Analyzing the factors
of the determinant of the Jacobian plays a fundamental
role in orthogonal 3R robots. We discuss an example of
anthropomorphic architecture with a wrist at the end. To
analyze this example, we substitute D-H parameters a3 =
a4 = a5 = d5 = α2 = 0. The det(J) of such a robot is

det(J) = C cos(θ3) sin(θ5) (sin(α3)d4 sin(θ2 + θ3) + a2 cos(θ2) + a1)

(7)
where C = a2d4 sin(α1) sin(α3) sin(α4) sin(α5) is a con-
stant. As the determinant factors in three components, it is
readily seen that at least eight aspects exist in the joint space
of such a robot. These aspects arise due to the transversal
intersection of the components that produce at least two
aspects each. Upon geometric analysis of IKM, it can be
shown that the components cos θ3 and sin θ5 give four
IKS separated by singularities. They determine the elbow
(up/down) and wrist (flip/unflip) configurations respectively.

The third component produces two aspects; thus, the eight
IKS of such architecture are always separated by singulari-
ties.
A similar argument shows that the determinant of a UR5
robot takes the following form

det(J) =9097 sin(θ5) sin(θ3) (1707 cos(θ2) sin(θ3)

cos(θ4) + 1707 cos(θ2) sin(θ4) cos(θ3)

− 1707 sin(θ2) sin(θ3) sin(θ4)+

1707 sin(θ2) cos(θ4) cos(θ3)−
4265 cos(θ2) cos(θ3) + 4265 sin(θ2)

sin(θ3)− 4873 cos(θ2))

(8)

If the determinant factors are divided into at least three
components, the number of aspects is at least eight, and
the geometric analysis of IKM may be able to conclude on
cuspidality. This leads to the following question: Can we
identify 6R robots with simplified architectures such that
the det(J) is factored in at least three factors? The det(J)
is a function of 14 D-H parameters that define the robot’s
architecture. These 14 parameters are d2..5, a1..5, α1..5, and
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Figure 12. Path planning algorithm for scenarios with closed-loop paths in cuspidal robots.

the classification space is huge. The identification can be
simplified by providing two values for each parameter. If the
parameter is a length parameter, i.e. di or ai, then it can be
either 0 or a symbolic value. For the axes alignment, only
orthogonal (αi =

π
2 radians) and parallel (αi = 0 radians)

arrangements were considered. This analysis investigates the
number of components of the det(J) obtained from the
preferential Jacobian. The total types of robots investigated

are 214 = 16384, and 832 types of robots(∼ 5%) were found
to be of simplified architecture. The D-H parameters of
some of these robots are mentioned in Appendix B. The
symbolic values of the length parameters can take any
nonzero value and the robot preserves the factored form of
det(J). This result is a doorway for designers to investigate
new designs that are noncuspidal and may have advantages in
specific cases. The orthogonal robots exhibit better dynamic
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properties compared with the anthropomorphic architectures
Nguyen et al. (2012), and exploring different noncuspidal
designs with simplified IKM will be interesting.

5.2.3 Generic case of 6R robot An algorithm that
considers joint limits and collision constraints to decide
upon the cuspidality of a 6R robot is important for real-
life applications. Thus, a practical algorithm, similar to
Marauli et al. (2023), based on solving an optimal-path-
planning (OPP) problem, is proposed. To decide cuspidality,
the OPP problem has to be solved for the whole workspace
until a connection of at least two IKS is found. Since
checking the whole workspace using numerical approaches
is computationally demanding, it is discretized into a
finite nW points xk ∈ W , k ∈ {1 . . . nW}. The discretized
workspace impacts the decision on cuspidality, which is
discussed in more detail when explaining the algorithm.

The connectivity problem consists of finding a nonsingular
path between two different IKS (qi,qj) ∈ Ix. Therefore,
a measure of distance to the singularity is required. In the
literature, various methods to measure the distance exist,
such as the kinematic manipulability Doty et al. (1995),
condition number, smallest eigenvalue, or determinant of the
Jacobian, to name a few. We use det(J) since it plays an
essential role in cuspidality analysis.

Optimal-Path-Planning problem: Given an initial IKS
q0 ∈ Ix to an arbitrary EE-pose x. Find a nonsingular path
q(t) connecting q0 with a valid IKS q1 ∈ Rq0,x. The goal is
to find a path as far as possible to any singularity. Therefore,
the smallest value of the determinant along the path

inf
t

sign(detJ(q0)) detJ(q(t)) (9)

is maximized. The multiplication with the sign of the initial
determinant enables the use of the function inf also for
negative values, i.e., detJ(q0) < 0. A negative value of (9)
results in an invalid solution since condition (5) is not met.
As smooth joint paths q(t) are desirable, an integrator chain

z′ = f(z,u) =
[
(q′)

T
, (q′′)

T
, (q′′′)

T
]T

is used to receive a three times differentiable path. The state

zT =
[
qT , (q′)

T
, (q′′)

T
]

consists of the path and the first two derivatives, while the
third derivative being the input u = q′′′ of the differential
equation. The derivative with respect to the path parameter t
is denoted as ()′ = ∂()/∂t. The OPP problem is then written
as a nonlinear optimization problem,

max
z,u

(
inf
t

sign(detJ(q0)) detJ(q)
)
,

s.t. z′ = f(z,u), q(0) = q0, q(1) = q1,

z ≤ z ≤ z, u ≤ u ≤ u,

for t ∈ [0, 1]. (10)

The geometric lower and upper bounds are denoted by ()

and (). These bounds can be used to incorporate joint limits
and influence the geometric derivatives. The OPP problem
is solved with a multiple shooting approach Bock and

Plitt (1984) implemented in MATLAB 2020 using CasADi
Andersson et al. (2019) and Ipopt Wächter and Biegler
(2006) as solver. It is worth noting that the value of the
objective function can be negative exactly at the optimal
point.

The Algorithm: The OPP problem is solved for all discrete
EE-poses xk, k ∈ {1 . . . nW}, until a connection between
two distinct IKS is found. To this end, the optimization
problem (10) is solved for a given initial and terminal
IKS q0 ∈ Ix, q1 ∈ Rq0,x of a chosen EE-pose e.g. x0. If
a feasible solution is found (i.e., a positive value of the
objective), the connectivity problem is solved, and the robot
is cuspidal. If the optimization is unsuccessful, a different
terminal IKS q1 ∈ Rq0,x of the same EE-pose x0 is chosen
and the problem is solved again. If no connection could
be found e.g. x0, then a different EE-pose xk,k ̸= 0, is
picked and the procedure is repeated. If all grid points xk

are checked unsuccessfully, no assertion about cuspidality
can be made. It is worth noting that a grid refinement of
the workspace (or a different grid) can lead to a reliable
check of cuspidality since only a finite number of points in
the workspace are considered in the procedure. Algorithm 1
details the implementation.

Algorithm 1 Proposed cuspidality deciding algorithm for a
generic 6R robot.
Require: Discretized workspace EE-poses {x1 . . .xnW}

for all k ∈ {1..nW} do
- compute IKS and pick initial q0 ∈ Ixk

for all q1 ∈ Rq0,xk
and q1 ̸= q0 do

- solve OPP problem (10)
if successful then

- connectivity found ⇒ break
if connectivity found then

- robot is cuspidal
else

- no assertion about cuspidality possible

Numerical aspects: Algorithm 1 takes care of numerical
difficulties encountered by the fact that different revolute
joint angles are equal modulo 2π. Since these joints can
rotate freely, clockwise and counterclockwise rotations must
be considered. The joint coordinates are defined by a n-
torus Tn. Therefore, adding ±2kπ with k ∈ N0 does not
change the IKS, i.e. x = f(q) = f(q± 2kπ). Only solutions
within the interval q ∈ [−2π, 2π] must be considered for
practical applications. Consider planning singularity-free
trajectories for a 3R robot (D-H parameters in Figure 1)
connecting the IKS in one aspect, as shown in Figure 13a. A
nonsingular trajectory between q1 and q2 is readily found.
On the other hand, planning a trajectory between q3 and
q4 without crossing a singularity is not possible since the
OPP problem (10) does not consider the periodicity of the
joint coordinates. Extending the solution space of q4 to the
interval [−2π, 2π], i.e. adding multiple of ±2π element-
wise, enables connecting the IKS q3 and q4 without crossing
a singularity as shown in Figure 13b. This results in a
counterclockwise rotation of the third joint.

The self-intersection of the set of singularities leads to a
higher number of aspects and thus to a higher possibility
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(a) singular connection
between IKS q3 and q4

(b) singularity-free connection
between IKS q3 and q4

Figure 13. Example for considering clockwise and
counterclockwise rotations in the IKS.

of a noncuspidal robot. Such robots are of nongeneric type
and it has been noted Pai and Leu (1992) that given a
class of manipulators, almost all forward kinematic maps,
f : J → W , are generic and the nongeneric maps form a
thin set of the class. Observing the parameter space for
3R robots, it is not hard to expect that the neighborhood
of a nongeneric design almost always leads to a cuspidal
robot. This makes the practical algorithm very useful as the
nongeneric cases are identified with the determinant analysis,
and the generic cases are analyzed by using the Algorithm 1.
In contrast to the certified algorithm, presented in Chablat
et al. (2022), the proposed algorithm is easier to implement
while maintaining a reasonable runtime. Solving the IKS of
a generic 6R robot with the HuPf algorithm takes an average
of 10ms, and the connectivity query (deciding cuspidality of
one robot) required an average of 8.52 seconds. These results
are achieved by using a PC with 32 Gb RAM and Intel i7
12th gen processor. In case all the points (of the discretized
workspace) are to be investigated, the computation time
depends on the resolution of the discretization. This case
was never encountered as all the noncuspidal robots are
already separated by using previously known results or the
analysis of the determinant. The algorithm presented in
Figure 14 can be automated to decide the cuspidality of
almost all 6R robots. This algorithm will be inconclusive
while analyzing those noncuspidal robots that neither have
a det(J) that factors in at least 3 components nor do
any known results apply to the robot. We have analyzed
3240 robots with varying parameters for cuspidality, and
the algorithm presented in Figure 14 was able to decide the
cuspidal nature of each robot.

5.3 Application of the decision algorithm
This section presents the results of implementing the
algorithm to decide on cuspidality. The Algorithm 1
terminates with few iterations in the case of a cuspidal robot.
The algorithm could decide about the cuspidal nature of
every 6R robot that was given as an input. We have a 14-
dimensional parameter space for cuspidality analysis, which
is huge and impossible to visualize. We choose a specific 3-
dimensional parameter space that includes almost all types
of known commercial robots’ architecture to highlight the
importance of cuspidality analysis. Figure 15 shows the
parameter space with d5, α3 and α4 as the basis. All other

D-H parameters for the robot are similar to those of the
FANUC CRX-10ia/L robot. The cube was discretized into
3240 points and the robot corresponding to each point was
analyzed for cuspidality. It was noted that every point inside
the cube, i.e. not lying on the faces, corresponds to the D-
H parameters of a cuspidal robot. The robots belonging to
the face ABFE are degenerate as the det(J) is always
zero. The face ADHE corresponds to anthropomorphic
architectures with the wrist at the end as d5 = 0. It is a
known result that the robots corresponding to the points on
the face ADHE except the one at A are noncuspidal. The
robot corresponding to A is a degenerate robot. The edge
GH corresponds to the robots’ anthropomorphic architecture
with offset in the wrist. The robot corresponding to H is a
wrist-partitioned anthropomorphic robot with an orthogonal
wrist arrangement, thus noncuspidal. Every robot belonging
to edge GH except the point H is a cuspidal robot,
suggesting that adding an offset to the anthropomorphic
architecture almost always leads to a cuspidal robot. The
robots corresponding to face ABCD have a 3R subchain as
α3 = 0. The edge CD corresponds to UR5 like architecture
as α4 = π

2 . Every robot belonging to the face ABCD except
those lying on edge AB (which corresponds to a degenerate
robot) are noncuspidal as the det(J) have three factors into
three components and the robot has a simplified IKM that
can be analyzed geometrically. The robots corresponding
to face DCGH except the edge CD and point H are
cuspidal robots. These robots were found to be cuspidal by
implementing Algorithm 1. The edge HE corresponds to
wrist-partitioned robots with the nonorthogonal arrangement
of the wrist. These robots are noncuspidal as the 3R
positional subchain does not satisfy the necessary and
sufficient condition to be cuspidal. The robots corresponding
to the edge EF are degenerate. The face FGHE, excluding
edges GH,HE, and EF , corresponds to robots with an
offset and a nonorthogonal arrangement of the last three
joints. One such example of a commercial robot is the
Jaco robot Gen2 (nonspherical wrist). These robots are
found to be cuspidal by using the algorithm proposed in
Figure 14. Similarly, all the robots on the face BCGF
except B,C and F were found to be cuspidal in nature.
The robots corresponding to C are UR5 type robots for
whom the det(J) has three factors. This case corresponds
to a noncuspidal robot. Robots corresponding to the face
B and F are degenerate robots. It is concluded from these
results that a robot with generic geometry is almost always a
cuspidal robot. Extending the algorithm, some of the existing
commercial robots are presented in table 1 with the details on
maximum IKS present in the workspace, and their cuspidal
nature.

Table 1. Classification of some of the existing robots according
to cuspidal nature.

Robot Max IKS Nature

ABB IRB 140, KUKA KR5 8 noncuspidal
UR5, UR10 8 noncuspidal

FANUC CRX-10ia/L 16 cuspidal
Kinova Link6 16 cuspidal

JACO Gen2 nonspherical wrist 12 ‡ cuspidal
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Figure 14. The algorithm to decide if a given 6R robot is cuspidal or not.

D C (d5, 0, π
2 )

GH (0, π
2 , π

2 )

A (0, 0, 0) B (d5, 0, 0)

FE

d5

α3

α4

Figure 15. Classification of a 6R robot parameterized in specially chosen three D-H parameters. The rest of the D-H parameters
match that of the FANUC CRX-10ia/L robot.

6 Conclusions and Future work
In this work, the issues in path planning pertinent to cuspidal
robots were discussed. The existing problems, such as
mislabeling of ’configurations’ and incorrect calculations
of IKS due to numerical methods, were highlighted using

‡The maximum number of IKS found by searching the workspace with
100,000 points generated by a low discrepancy sequence.

deployed commercial cuspidal robots as examples. Later,
the major kinematic issues, such as the dependence of path
feasibility as well as path repeatability on the choice of
initial IKS, were discussed. These issues show that cuspidal
robots are unsuitable for collaborative applications. The
consequence of encountering a discontinuity in paths while
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crossing an internal locus of critical values was discussed
with examples in the workspace. Different scenarios possible
in the path planning of cuspidal robots were presented,
highlighting the importance of considering cuspidality while
designing robot path planning algorithms. Though cuspidal
robots can be used in industrial applications in a controlled
environment, their use in collaborative applications is not
favorable as the feasibility of a path cannot be decided
without complete knowledge of the path to be followed.
We proposed a path-planning algorithm for cuspidal robots
that considers different cases arising in cuspidal robots. The
algorithm is capable of selecting good initial IKS that lead
to feasible paths. In case of a bad initial IKS, the algorithm
can suggest a possible nonsingular change of solution to
be executed to make a given path feasible and repeatable.
Considering the importance of deciding cuspidality for
designing 6R robots, different decision methodologies of
the past were presented. A practical algorithm was later
presented to decide upon the cuspidal nature of 6R robots.
The decision algorithm utilizes all the known results, exploits
the form of det(J), and uses numerical approaches to decide
upon the cuspidality of a generic 6R robot. This algorithm
was implemented on thousands of generic architectures to
highlight further that a generic design most likely leads to a
cuspidal robot. Some of the simplified architectures, whose
determinant of the Jacobian has at least three factors were
presented. These robots have simplified IKM and combined
with a simplified form of the determinant, making the
cuspidality analysis of these robots easier.
In the future, a dedicated package for the path planning of
6R robots will be deployed. This will implement algebraic
approaches to solve for IKS and consider the cuspidal
property of the robot. Interfaces that record both the
joint angles and the EE-pose will be designed to replace
the configuration classification of the IKS for cuspidal
robots. Identification of cuspidal nature in robots with
prismatic joints will be considered to extend the catalog of
noncuspidal designs. As many cuspidal cobots are deployed
in collaborative tasks, an algorithm that copes with unknown
environments will be proposed using horizon planning. The
new algorithm will be proposed by using the presented work
as its foundation.
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A Index to Multimedia Extensions
Archives of IJRR multimedia extensions published prior
to 2014 can be found at http://www.ijrr.org, after 2014
all videos are available on the IJRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Extension Media type Description

1 Video Robot simulation of paths
discussed in Figure 9 and
Figure 10.

B Some simplified architectures where the
det(J) has three factors
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