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Abstract: High-dimensional count data poses significant challenges for
statistical analysis, necessitating effective methods that also preserve ex-
plainability. We focus on a low rank constrained variant of the Poisson log-
normal model, which relates the observed data to a latent low-dimensional
multivariate Gaussian variable via a Poisson distribution. Variational in-
ference methods have become a golden standard solution to infer such a
model. While computationally efficient, they usually lack theoretical statis-
tical properties with respect to the model. To address this issue we propose
a projected stochastic gradient scheme that directly maximizes the log-
likelihood. We prove the convergence of the proposed method when using
importance sampling for estimating the gradient. Specifically, we obtain a
rate of convergence of O(T−1/2 + N−1) with T the number of iterations
and N the number of Monte Carlo draws. The latter follows from a novel
descent lemma for non convex L-smooth objective functions, and random
biased gradient estimate. We also demonstrate numerically the efficiency of
our solution compared to its variational competitor. Our method not only
scales with respect to the number of observed samples but also provides
access to the desirable properties of the maximum likelihood estimator.

MSC2020 subject classifications: Primary 00X00, 00X00; secondary
00X00.
Keywords and phrases: Dimension reduction, importance sampling, mul-
tivariate count data, Poisson log-normal model, projected stochastic gradi-
ent descent.

1. Introduction

Multivariate count data are prevalent in a widening range of applications such
as ecology, genomics, microbiology, astronomy, and economy, just to name a few.
This ubiquity has prompted the development of numerous statistical models, as
unlike continuous multivariate distributions, a generic universal multivariate dis-
tribution for count data does not exist [27]. Most of the successful proposals are
latent variable models belonging to the family of generalized multivariate mixed
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models (GMMM). The latter offers the strength of model-based approaches, en-
abling the incorporation of external covariates and allowing the latent variables
to be constrained in various ways to perform a specific task — regression, vari-
able selection, and dimension reduction — while controlling the complexity of
the model. These strengths contribute to the unwavering popularity of these
models in the aforementioned fields of application, where both modeling and
interpretability are essential prerequisites.

Significant milestones in the literature include a few generic frameworks ini-
tially developed through applications in ecology, where count and abundance
tables have long been the norm. The generalized linear latent variable models
(GLLVM) of [33] are instances of generalized multivariate mixed models with
low-dimensional latent variables, where the distribution of observed responses
usually belongs to the exponential family. The Hierarchical Modeling of Species
Communities (HMSC), presented in [34], also falls within the class of gener-
alized linear latent variable models with additional layers in the modeling of
the latent variables. Multivariate Poisson Log-Normal models (PLN), as pre-
sented in [14], are yet another instance of the expansive family of generalized
linear latent variable models. The latter confers the advantage of developing a
generic and versatile framework capable of addressing various tasks, including
dimension reduction, regression, clustering, discriminant analysis.

These modeling frameworks encounter the usual inference issues inherent to
latent variable models. Specifically, direct and exact likelihood maximization is
difficult since it requires evaluating an integral over a space of the latent vari-
able dimension. Hence, direct numerical integration approaches [2] are limited
to small-scale problems involving solely a few variables. Approaches based on
Markov chain Monte Carlo (MCMC) techniques can handle medium-size prob-
lems but are computationally expensive [25, 42]. Alternatively, methods based
on Laplace approximations exhibit greater computational efficiency but can po-
tentially be inaccurate [21]. An indirect approach relies on the Expectation-
Maximization (EM) algorithm, a well-established method for inference in in-
complete data models since [16]. However, the M-step is practically intractable
in GMMM, as it requires computing an expectation with respect to the dis-
tribution of the latent variable conditional on the observations. MCMC tech-
niques can obviously be used in such a setting [e.g., 30], though displaying the
same shortcomings. More recently, the growing size of datasets and the porting
of these methods to other fields of application where the number of variables
expands drastically, such as genomics, have sparked interest in variational ap-
proaches [23, 5, 26, 33] as they provide a good compromise between accuracy
and computational efficiency.

In the context of PLN models, which is the focus of this paper, [14] have ex-
tensively used this variational approach in conjunction with the EM algorithm
and adapted it to several contexts, including dimension reduction, clustering,
sparse covariance. The implementation provided in [15] is efficient and can deal
with problems with thousands of observations and hundreds — even a couple
of thousands — of variables. The resulting estimator can be shown to converge
to the maximum of the surrogate likelihood function and enjoy asymptotical
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normality [44]. However, these results pertain to the surrogate model and gen-
erally differ from the natural properties of an M-estimator associated with the
likelihood [43]. In particular, while the maximum reached by the variational
estimator seems at least empirically to coincide with the maximum likelihood
estimator (MLE), there is no genuine estimator of the variance of the varia-
tional estimator that can be used to measure uncertainty properly: although
the bootstrap method or the jackknife estimator could be used to build an es-
timator of the variance of the estimate, the variational solution is marred by
the lack of relevant statistical guarantees. Consequently, the design of efficient
algorithms that can directly maximize the likelihood and inherit the desirable
properties of MLEs is still a key research issue for GMMM, particularly for
PLN models. Such an algorithm allows a more direct assessment of estimator
uncertainty by means of asymptotic variance estimates. It is in this spirit that
[40] propose a variant of the Monte Carlo EM scheme that combines composite
likelihood and importance sampling methods with a focus on applications in
synecology. While the approach benefits from the properties of the maximum
composite likelihood estimator, it necessitates splitting the data into overlap-
ping blocks containing a small number of variables. The mimimum number of
blocks required grows quadratically in the number of variables (or species). As
the computational complexity of their Monte Carlo EM increases linearly with
the number of blocks, the solution is primarily suited for problems involving a
few dozen variables but does not scale up efficiently to larger problems from a
computational perspective.

Contributions This paper introduces a projected stochastic gradient descent
(SGD) scheme based on self-normalized importance sampling to obtain gradi-
ent estimates for optimizing the marginal likelihood of the observed data in
the Poisson log-normal model, subject to a rank constraint on the latent space.
This model, introduced by [11], can be seen as a probabilistic version of Prin-
cipal Component Analysis (PCA) with Poisson emission law, and its standard
inference solution is a variational Expectation-Maximization (VEM) algorithm.
Estimating parameters according to the maximum likelihood principle with
Monte Carlo simulations is a long-standing idea for an unnormalized statistical
model — a class of challenging models due to their intractable partition func-
tion which is a highly multidimensional integral depending on the parameters.
For instance, Monte Carlo maximum likelihood estimation [19] uses importance
sampling to estimate the partition function while contrastive divergence [24]
estimates the gradient of the log partition function via Monte Carlo methods.
More recently, the noise-contrastive estimation [22] reformulates the initial prob-
lem to avoid estimating the partition function or its gradient. Here, we rely on
the fact that incomplete data models share similarities with the unnormalized
models in that, under mild regularity conditions, the inference resumes to deal
with an intractable integral, namely the score function for the observed likeli-
hood [31]. We show that the PLN-PCA model falls within the set of incomplete
data models for which the score function is written as an expected value with
respect to the conditional distribution of the latent given the observed and can
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thereby be estimated by simulation methods. The rank constraint ensures that
the importance sampling estimator can handle problems with up to thousands
of variables in the emission space, provided that the dimension of the latent
space is controlled and limited to some tens. The projection step onto a con-
vex compact set specifically guarantees that the objective function is L-smooth.
We also show that it ensures a bounded mean squared error and bias for the
gradient estimator. Such properties are common in the literature [20, 32, 38].

Our major contribution is a novel convergence theorem for the gradient
method presented. To establish the result within the context of a self-normalized
importance sampling estimator, we first present a general descent lemma appli-
cable under minimal assumptions — specifically, L-smoothness, and bounded
bias and quadratic error for the gradient estimator. To the best of our knowledge,
it is the first result on projected stochastic gradient schemes for potentially both
non convex objective functions and random biased gradient estimators. Given
T iterations of our method and N Monte Carlo draws, we obtain a theoretical
rate of O(T−1/2+N−1) for the gradient mapping norm. This convergence rate is
consistent with those demonstrated in the literature, albeit in different contexts.
For a non-convex setting with an unbiased gradient estimator, Ghadimi and Lan
[20] derive an O(T−1/2) convergence rate for the gradient’s norm objective, while
Mai and Johansson [32] achieve the same rate for the gradient mapping norm
but when a projection step is added. In situations where the gradient estimator
is biased, with a bound b on the bias, Ajalloeian and Stich [3] retrieve a rate of
O(T−1/2 + b), but only when no projection step is performed.

The paper also includes an efficient implementation of our algorithm using
JAX library [7], and GPU computing. As a by-product, we provide a PyTorch
[36] version of the VEM solution, enabling the analysis of large-scale datasets
with hundreds of thousands of observations and tens of thousands of variables.

Outline The paper begins with an introduction to the standard multivariate
PLN model and its PCA version in Section 3. We then present our stochas-
tic gradient scheme with convergence guarantees in Section 4. In Section 5,
we propose a sequentially adapted Gaussian mixture distribution to serve as a
valid importance sampling proposal distribution within our algorithm. Finally,
Section 6 details a simulation study on synthetic data and an application to
genomic data, where we deal with the problem of dimension reduction and visu-
alization of a transcriptomic single-cell dataset. Technical details are postponed
till Appendices A–D.

2. Notations and conventions

Let p and q be positive integers. The vector space of all p×q-matrices over a ring
A is denoted by Mp×q(A). The subset of all symmetric, positive and definite
p× p-matrices over R is denoted by Sp++. We denote by ⟨·, ·⟩ the scalar product
on a real p-space Rp, and ∥·∥ its associated norm. The matrix norm induced
by ∥·∥ on Mp×p(R) is also denoted by ∥·∥. Diag(x) is a diagonal matrix with
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diagonal equal to x for x a vector. When applied to matrices or vectors, simple
functions like log, exp or square apply element-wise. The vector full of zeros of
size p is denoted 0p.

We denote by M1(Rp) the set of probability measures on Rp. Given a proba-
bility measure π ∈ M1(Rp), Mπ is the set of probability measures that dominates
π. The product measure

∏n
i=1 π on Rd×n is denoted by π⊗n. We use the same

notation to refer to a measure and its associated density, meaning that if π is ab-
solutely continuous with respect to the Lebesgue measure λ, π(dx) = π(x)λ(dx).
The expectation with respect to π is denoted by Eπ . When there is no ambiguity
regarding the integration measure, we simply use the notation E.

We denote by N (µ,S) a p-dimensional Gaussian variable with mean µ ∈ Rp
and variance S ∈ Sp++ and N (x;µ,S) its density evaluated at x ∈ Rp. We
denote by P(λ) a Poisson variable with rate λ > 0.

The Kullback–Leibler divergence between π ∈ M1(Rp) and µ ∈ Mπ is defined
by

KL(π ∥ µ) =
∫

log
π(x)

µ(x)
π(dx).

The entropy of a random variable X distributed according to π ∈ M1(Rp) is
defined by

Hπ(X) = −
∫

log π(x)π(dx).

Given X ⊆ Rp, a differentiable function f : Rp → R is said to be L−smooth
on X with L ≥ 0 if its gradient is L−Lipschitz on X , namely, for any θ,θ′ ∈ X ,

∥∇θf(θ)−∇θf(θ′)∥ ≤ L∥θ − θ′∥.

3. Dimension reduction in multivariate Poisson log-normal models

Background: Multivariate Poisson log-normal model Consider a data
matrix Y = (Yij) ∈ Mn×p(N) storing n i.i.d. observations of a p-dimensional
random vector Yi = (Yi1, . . . , Yip) ∈ Np, i = 1, . . . , n. The multivariate Poisson
lognormal model [see 2, for its original formulation] relates each of the observed
vector Yi to a latent (or unobserved) p-dimensional Gaussian vector Zi, whose
covariance matrix Σ describes the underlying structure of dependence between
the p variables. Following a formalism similar to that of GMMM, the model can
also encompass a main effect due to a linear combination of d observed covari-
ates xi ∈ Rd (including a vector of intercepts), and some possible user-specified
offsets oi = (oij) ∈ Rp to take into account the sampling efforts between the
samples. The model assumes that the observations Yij are independent condi-
tionnally on Zi = (Zij), and that the conditional distribution p(Yij | Zij) is a
Poisson distribution, namely,

{Zi}1≤i≤n i.i.d. : Zi ∼ N (0q,Σ);

{Yij}1≤i≤n
1≤j≤p

ind. | {Zi}1≤i≤n : Yij | Zij ∼ P
(
exp(Zij +B⊤

j xi + oij)
)
,

(1)
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where B = [B1, . . . ,Bp] ∈ Md×p(R) is a latent matrix of regression parameters.
In this framework, the main goal is to estimate the vector of parameters θ =
(B,Σ) ∈ RD, with D = dp+ p(p+ 1)/2, from the data matrices Y and X.

Poisson lognormal-model with low-rank constraint Throughout this
paper, we focus on the PCA variant of model (1) as introduced in [11]. The
latter is derived by adding a rank constraint on the latent covariance matrix,
such that rank(Σ) = q < p. The constraint alleviates the number of parame-
ters to estimate, which can become prohibitive when the number of variables
p is large in (1). This key feature is particularly relevant in the perspective of
importance sampling. Indeed, this allows us to deal with problems where the
dimension of the observation space is potentially large, in contrast with the num-
ber of parameters in the model and the dimension of the latent space, where
the particles are sampled. The PCA version can be written in a hierarchical
framework by adding a layer with, for each individual, a q-dimensional stan-
dard Gaussian vector Wi, and introducing an individual-specific linear function
fi : Rq → Rp defined for all w ∈ Rq as

fi(w;B,C) = Cw +B⊤xi + oi,

where C ∈ Mp×q(R) encodes the embedding of the observations into a space of
lower dimension. The model is then written as

{Wi}1≤i≤n i.i.d. : Wi ∼ N (0q, Iq);

{Zi}1≤i≤n i.i.d. : Zi = CWi +B⊤xi + oi;

{Yij}1≤i≤n
1≤j≤p

ind. | {Zi}1≤i≤n : p (Yij | Zij) =
exp {YijZij − exp(Zij)}

Yij !
.

(2)

We refer to Model (2) as PLN-PCA. Adopting the PCA terminology, C is the
p×q matrix of loadings, and Wi represents the vector of scores of the i-th obser-
vation in the low-dimensional latent subspace, whose dimension q corresponds
to the number of components.

The vector of unknown parameters to be estimated is now θ = (B,C) ∈ Rd,
with d = p(q +m) that is significantly smaller than D when q ≪ p, the typical
case at play in a context of dimension reduction. The complete log-likelihood
of Model (2) can be written, up to additive constants with respect to model
parameters, as

n∑
i=1

log pθ(Yi,Wi) =

n∑
i=1

⟨Yi,Zi⟩ −
p∑
j=1

exp(Zij)−
1

2
∥Wi∥2

 .

Without any further assumption on C, remark that θ is not identifiable since
the distribution of Zi is invariant when multiplying C by any orthogonal matrix.
However, since Yi depends on C solely through the covariance Σ = CC⊤, it
is enough to have the identifiability for the model parametrized by (B,Σ). We
will discuss this point further when introducing the gradient ascent algorithm.
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4. Biased stochastic gradient descent

4.1. Solution to maximum likelihood principle

Estimation of θ is achieved by maximizing the likelihood of the observed data
pθ(Y), or equivalently by solving the optimization problem

θMLE = argmin
θ∈X

ℓ(θ), ℓ(θ) = − 1

n

n∑
i=1

log pθ(Yi), (3)

where ℓ is referred to as the loss function. Optimizing such a function is not
straightforward because the marginal pθ(Yi) requires integrating out the latent
variable Wi. We refer to θMLE as the maximum likelihood estimator.

Reminder on the EM approach The Expectation-Maximization algorithm
[16] circumvent this issue by using a decomposition of the log-likelihood of the
observed data Yi into

log pθ(Yi) =

∫
Rq

log pθ(Yi,w)pθ(dw | Yi)−
∫
Rq

log pθ(w | Yi)pθ(dw | Yi)

= E [log pθ(Yi,Wi) | Yi,θ] +Hpθ(· | Yi)(Wi),

The algorithm proceeds by evaluating the conditional expectation of the com-
plete log-likelihood using the current estimates θ(t) of the model parameters:

Q(θ | θ(t)) =
n∑
i=1

E
[
log pθ(Yi,Wi)

∣∣∣ Yi,θ
(t)
]
.

By iteratively maximizing this quantity, the algorithm generates a sequence
that converges under suitable regularity conditions to the maximum likelihood
estimator θ⋆ [45, 6]. However, the conditional pθ(Wi | Yi) is intractable for
the PLN model and its PCA extension. To address this challenge, variational
inference approximates pθ(Wi | Yi) with a surrogate distribution ϕψ(V) from
a parametric family P. For instance, [12, 13] resorted to multivariate Gaussian
distributions N (mVEM

i ,SVEM
i ) with diagonal covariance matrix. The Variational

EM method alternates between updates of the variational parameter ψ and the
model parameter θ, aiming to maximize a lower bound of the log-likelihood,
defined as

log pθ(Yi)−KL [ϕψ(Wi)∥pθ(Wi | Yi)] = Eϕψ [log pθ(Yi,V)] +Hϕψ (V).

At convergence, the variational solution is associated with

ϕψ = argmin
ϕ∈P

KL [ϕ∥pθ(· | Yi)] . (4)
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Stochastic gradient scheme In contrast to existing methods, we propose
to address the optimization problem (3) directly with an SGD scheme. Our
approach leverages that the Louis principle applies to Model (2), as outlined
below (see Appendix A for a proof).

Proposition 4.1. For all individual i = 1, . . . , n, the incomplete log-likelihood
θ 7→ log pθ(Yi) of Model (2) is twice continuously differentiable on Rd and its
score function can be written as

si(θ) =

∫
Rq

∇θ log pθ(Yi,w)pθ(dw | Yi) = E [∇θ log pθ(Yi,Wi) | Yi,θ] . (5)

While the intractability of the conditional distribution renders exact cal-
culation infeasible even for a small value of q, identity (5) is instrumental in
estimating the score function with Monte Carlo methods and designing an SGD
scheme. Given a learning rate γ ∈ R∗

+ and an initial point θ(1) ∈ Rd, the SGD
scheme recursively defines a sequence {θ(t)}t∈N∗ through the equation

θ(t+1) = θ(t) − γĝ(t), (6)

where ĝ(t) is a possibly biased estimator of ∇θℓ(θ(t)). Here we explore the op-
portunity of importance sampling methods [28, 29] to define ĝ(t). Indeed, the
lack of closed-form for pθ(Wi | Yi) hinders Monte Carlo methods that rely
on exact samples from it. However, importance sampling overcomes this dif-
ficulty by changing the integration measure. For any θ ∈ Rd, it approximates
pθ(· | Yi) with a random probability measure based on weighted samples from a
probability density function νi(· ;θ), possibly depending on θ and referred to as
proposal distribution, such that pθ(· | Yi) is absolutely continuous with respect
to νi(· ;θ). The importance sampling method is then based on the following
identity

si(θ) =

∫
Rq

pθ(v | Yi)

νi(v;θ)
∇θ log pθ(Yi,v)νi(dv;θ).

To circumvent the issue of evaluating the intractable distribution in the above,
the method leverages a tractable non-normalized version of the conditional dis-
tribution, namely the joint distribution. Let us introduce the Radon-Nikodym
derivative of pθ(Yi, ·) with respect to νi(· ;θ):

ρθ,i(v) =
pθ(Yi,v)

νi(v;θ)
, v ∈ Rq.

The score can be written as

si(θ) =

∫
Rq

ρθ,i(v)∇θ log pθ(Yi,v)νi(dv;θ)

/∫
Rq

ρθ,i(v)νi(dv;θ) .

Thereby, given N ∈ N∗ independent samples vi,1, . . . ,vi,N from νi(· ;θ), the
self-normalized importance sampling (SNIS) estimator of si(θ) is

ŝNi (θ) =

N∑
r=1

ρθ,i(vi,r)∇θ log pθ (Yi,vi,r)

/
N∑
s=1

ρθ,i(vi,s) . (7)
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Algorithm 1: Importance Sampling based Gradient Descent (ISGD)
Input: initial point θ(1), learning rate γ, number of iterations T , number of Monte

Carlo draws N .
Output: the sequence θ(1), . . . ,θ(T+1)

for t = 1 to T do
Sample i uniformly in {1, . . . , n};
Sample (vi,1, . . . ,vi,N ) from ν⊗N

i (· ;θ(t));
Update θ(t+1) = PΘ(θ(t) − γĝ(t)) with ĝ(t) = −ŝNi (θ

(t)) as in Equation (7);
end

A possible solution is then to define ĝ(t) by averaging the estimator (7) across
individuals. In what follows, we rely on a mini-batch strategy where we use
a single individual at a time. Specifically, at iteration t ∈ N∗, we draw an
individual i(t) uniformly in {1, . . . , n} and the gradient estimator within the
update Equation (6) is

ĝ(t) = −ŝNi(t)(θ
(t)). (8)

4.2. Convergence guarantees

The SNIS estimator (7) is strongly consistent, but exhibits bias for a fixed sample
size N . As shown in this section, controlling this bias is essential to ensure the
convergence of our algorithm. This requires imposing further constraints on
the optimization problem. In the remainder of the paper, let Θ ⊂ Rd be a
nonempty, compact, and convex set. In place of the standard update (6), we
employ a projected SGD algorithm, which is defined by

θ(t+1) = PΘ(θ(t) − γĝ(t)), (9)

where PΘ stands for the orthogonal projection on Θ. Algorithm 1 summarizes
the overall scheme. Formally, the projection step ensures that all iterates remain
bounded, which in turn guarantees the L-smoothness and the bounded gradient
conditions commonly assumed in the literature to establish convergence prop-
erties.

Preliminary result for L-smooth functions In the following, we delve into
the analysis of an SGD algorithm (i) for non-convex and constrained optimiza-
tion with L-smooth objective, (ii) with a gradient estimator that is both biased
and random. To the best of our knowledge, no established convergence theorem
exists for these conditions. Mai and Johansson [32, Lemma 3.2] achieve a similar
result but for unbiased gradient estimator. Let F : Rd → R be defined by

F (θ) = ℓ(θ) + IΘ(θ), IΘ(θ) =

{
0 if θ ∈ Θ,

∞ if θ /∈ Θ.
(10)
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For a real η > 0, its Moreau envelope is

Fη(θ) = inf
θ′∈Rd

{
F (θ′) +

1

2η
∥θ − θ′∥2

}
.

The Moreau envelope is useful from an optimization perspective, as it has the
same set of minimizers as F , while being differentiable, unlike F . This character-
istic is instrumental in analyzing the convergence of proximal gradient methods
such as the one from Equation (9). Our following result yields control over the
Moreau envelope, providing we have a L-smooth loss function and a gradient
estimator ĝ(t) with bounded mean squared error and bias (see Appendix B for
proof).

Lemma 4.2 (Descent lemma). Let consider the gradient scheme as defined by
Equation (9). Assume that

(i) the function ℓ is L-smooth on Θ, and denote Γ = supθ∈Θ∥∇θℓ(θ)∥;
(ii) for t ∈ N∗, one has

σ(t) = E
[
∥ĝ(t) −∇θℓ(θ(t))∥2

∣∣∣ θ(t)] <∞,

ξ(t) =
∥∥∥E [ĝ(t) ∣∣∣ θ(t)]−∇θℓ(θ(t))

∥∥∥ <∞.

Then, for any real constant η ∈ (0, 1/max{2Γ + L, 2L}],

E
[
Fη(θ(t+1))

∣∣∣ θ(t)] ≤ Fη(θ(t))−
γ

2
∥∇Fη(θ(t))∥2

+
γ + γ2Γ

η
ξ(t) +

γ2

2η
(σ(t) + Γ2).

(11)

Remark that Γ is finite as the gradient is L-Lipschitz continuous on a bounded
set. Consequently the interval (0, 1/max{2Γ + L, 2L}] is nonempty.

Applicability to the PLN-PCA model We now demonstrate that the loss
function for the PLN-PCA model and the importance sampling estimate (8)
satisfy the assumptions from Lemma 4.2.

Proposition 4.3. Under Model (2), for any nonempty compact subset Θ ⊂ Rd,
we have that

(i) for any individual i = 1, . . . , n, there exists a real

0 < ζi = inf
θ∈Θ

pθ(Yi);

(ii) there exists a real L ≥ 0 such that the objective function ℓ, as defined in
(3), is L-smooth on Θ.

Regarding Assumption (ii) of Lemma 4.2, we should note that both σ(t)

and ξ(t) are driven by, respectively, the mean squared error and the bias of
the importance sampling estimate (7). Agapiou et al. [1, Theorem 2.3] yield



/Importance sampling based gradient method for PLN-PCA 11

sufficient conditions to have control over the bias and error. The latter led to
the subsequent assumptions on the proposal distribution for our optimization
problem.

Assumption 1. For all individual i ∈ {1, . . . , n}, the proposal distribution νi
is chosen such that

λi = sup
(θ,V)∈Θ×Rq

ρθ,i(V) <∞,

βi = sup
θ∈Θ

Eνi(· ;θ)
[
∥∇θ log pθ(Yi,V)∥41

]
<∞.

Following the work of [1], we obtain finite bound when integrating the mean
squared error and the bias of the importance sampling estimate (7) with respect
to the random mini-batch index i(t) (see Appendix C for proof).

Proposition 4.4. Let {i(t)}t∈N∗ and {θ(t)}t∈N∗ be the associated random se-
quences generated by Algorithm 1. Under Model (2), if Assumption 1 holds, then,
for all t ∈ N,

σ
(t)
IS = E

[∥∥∥ŝNi(t)(θ(t))−∇ log pθ(t)

(
Yi(t)

)∥∥∥2 ∣∣∣∣ θ(t)] ≤ d

N
Mσ,

ξ
(t)

IS = E
[∥∥∥E [ŝNi(t)(θ(t))−∇ log pθ(t)

(
Yi(t)

) ∣∣∣ θ(t), i(t)]∥∥∥ ∣∣∣ θ(t)] ≤ √
d

N
Mξ,

where Mσ and Mξ are two finite and positive constants given by

Mσ =
12

n

n∑
i=1

λ2i
√
βi

ζ2i

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)
,

Mξ =
4

n

n∑
i=1

λ2iβ
1/4
i

ζ2i

{
2 +

√
3

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)}
,

with λi and βi as in Assumption 1.

As detailled in the proof of Theorem 4.5 in Appendix C, this result implies
the conditions required on σ(t) and ξ(t), since there is a constant A such that

σ(t) ≤ A
(
σ
(t)
IS + ξ

(t)

IS + 1
)
, and ξ(t) ≤ ξ

(t)

IS .

Convergence of the gradient mapping As the local minimum of the loss
function may lie outside the compact set Θ, we cannot prove that the norm
of ∇ℓ(θ) becomes arbitrarily small within Algorithm 1. Instead, in the context
of gradient methods incorporating a projection step, the convergence rate is
characterized in terms of the norm of the gradient mapping G(t)

η [18] defined for
any real η > 0 by

G(t)
η =

θ(t) − PΘ(θ(t) − η∇ℓ(θ(t)))
η

. (12)
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This mapping is a tailored gradient objective, specifically modified to handle the
projection step, whose norm is equivalent to the gradient norm of the Moreau
envelope (see Lemma B.3). Our next result shows that the norm of the gradient
mapping for Algorithm 1 can be rendered arbitrarily small, provided we use a
sufficiently large number of iterations T and particles N .

Theorem 4.5. Let θ(1) ∈ Θ be an initial value and γ0 ∈ R∗
+ a user-specified ini-

tial learning rate. Under Model (2), if Assumption 1 holds, then for any T ∈ N∗

and any real constant η ∈ (0, 1/max{2Γ, L}], the sequence {θ(t)}1≤t≤T defined
by Algorithm 1 with γ = γ0/

√
T satisfies

1

T

T∑
t =1

E
[
∥G(t)

η ∥2
]
≤ 2τ

γ0(Lη + 1)
√
T

(
ℓ(θ(1))− ℓ(θMLE)

+
γ20(Lη + 1)

2η

[
∆2 + Γ2 +

d

N

{
Mσ +

2(∆ + Γ)√
d

Mξ

}])
+

2τ
√
d

ηN
Mξ,

(13 )

with L the smoothness constant of ℓ(·), Γ = supθ∈Θ∥∇ℓ(θ)∥, constants Mσ and
Mξ as defined in Proposition 4.4, and

τ =
(2Lη + 1)2

Lη + 1

(
1 +

√
Lη

Lη + 1

)2

, ∆ = max
i=1,...,n

sup
θ∈Θ

∥∇θℓ (θ) +∇θ log pθ (Yi)∥ .

Remark 1. While the upper bound 1/max{2Γ, L} is unknown, Algorithm 1 does
not depend on the choice of η in practice, and therefore neither Γ nor L need
to be estimated.

5. Importance sampling proposal choice

In this section, we propose a specific choice of proposal distribution that satisfies
Assumption 1, namely a mixture distribution. Mixture distributions are often
chosen for this task [e.g., 9] because of their flexibility as parametric models.
In what follows, we leverage the model structure and focus on two-component
Gaussian mixture distributions. Given two real constants α ∈ [0, 1] and δ > 0,
denote the two-component Gaussian mixture with mean µ ∈ Rq and covariance
S ∈ Sq++ by

GM(·;µ,S, α, δ) = (1− α)N (·;µ,S) + αN (·;µ, δIq). (14)

For each individual i = 1, . . . , n, the proposal distribution νi(· ;θ) is set to such
a mixture, and µ and S are iteratively adapted according to the current estimate
θ(t) (see Algorithm 2). However, to ensure convergence, it is necessary to impose
conditions on (14) (see Appendix D for proof).
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Lemma 5.1. Let α ∈ (0, 1] and δ > 1. If for any i = 1, . . . , n, θ 7→ µi(θ) ∈ Rq
and θ 7→ Si(θ) ∈ Sq++ are continuous on Θ, then the proposal distribution
defined by

νi(· ;θ) = GM(·;µi(θ),Si(θ), α, δ) (15)

fulfils Assumption 1.

Constraining the parameter δ to live in (1,+∞) is sufficient to guarantee that
the Radon–Nikodym derivative ρθ,i is uniformly bounded with respect to θ ∈ Θ.
However, this does not ensure an efficient gradient estimator in terms of error or
bias. The bias and the error are both related to the Kullback–Leibler divergence
KL[pθ(· | Yi)∥νi(· ;θ)] [1, 10]. Specifically, these results show that the estimator
exhibits enhanced efficiency for a fixed computational budget, as the Kullback–
Leibler divergence decreases. Adaptive importance sampling addresses the min-
imization of ν 7→ KL[pθ(· | Yi)∥ν] over a given class of probability measure. For
instance, the Population Monte Carlo proposed by [9] provides a solution when
the proposal is a mixture distribution. Nevertheless, implementing such meth-
ods within an SGD scheme can be computationally intensive. Indeed, the target
distribution of the adaptive scheme changes at each iteration of the gradient
scheme, necessitating a full run of the adaptive method at each iteration.

Practical implementation In the following, we present a simpler heuristic
that is efficient for the class of problems presented in this paper, albeit not
optimal in terms of the Kullback–Leibler divergence. We consider using the
mean and covariance of the conditional distribution pθ(Wi | Yi), namely

µi(θ) = E[Wi | Yi,θ], Si(θ) = V[Wi | Yi,θ]. (16)

Both functions are continuous on Θ (see Appendix D). Moreover, the parameter
α can be interpreted as a regularization parameter. Indeed, in the limiting case
α = 0, the proposal distribution as defined in (15) resumes to the optimal
Gaussian proposal distribution, that is

νi(· ;θ) = argmin
ν∈F

KL[pθ(· | Yi)∥ν], F =
{
N (µ,S) ; µ ∈ Rq, S ∈ Sq++

}
.

(17)
While the Radon–Nikodym derivative ρθ,i with respect to such a proposal may
not necessarily be bounded for any θ ∈ Θ, it points out the effect of α. The
mixture distribution (15) balances a component that informs on the intractable
conditional distribution and a regularization or defensive component that plays
a similar role to that of [9]. Practically speaking, we should opt for a small value
of α to improve the efficiency of the importance sampling.

Both µi(θ) and Si(θ) are unknown and must be estimated. Obviously, we
can use the importance sampling method, since we could simply recycle the
particles simulated to estimate the gradient. However, such a solution may lead
to poorly conditioned and non-positive definite matrix estimates for Si(θ). A
more robust alternative can be achieved using the Hessian of the log-complete
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Algorithm 2: Adaptive Importance Sampling based Gradient Descent
Input: initial point θ(1), learning rate γ, number of iterations T , number of Monte

Carlo draws N , mixture parameter 0 < α ≤ 1, parameter δ > 0.
Output: the sequence θ(1), . . . ,θ(T+1)

for t = 1 to T do
Sample i uniformly in {1, . . . , n};
Compute the estimate µ̂i of µi(θ

(t)) as defined in Equation (16) ;
Compute the estimate Ŝi of Si(θ

(t)) as defined in Equations (16) or (18) ;
Set νi = GM(·; µ̂i, Ŝi, α, δ);
Sample (vi,1, . . . ,vi,N ) from ν⊗N

i (· ;θ(t));
Compute θ(t+1) = PΘ(θ(t) − γĝ(t)) with ĝ(t) = −ŝNi (θ

(t)) as in Equation (7);
end

likelihood:

SHi (θ) = −
[
∇2

w log pθ (Yi,w)|w=µi(θ)

]−1

=
[
Iq +C⊤ Diag[exp{fi(µi(θ);B,C)}]C

]−1
. (18)

This alternative stems from the second order Taylor expansion of the com-
plete log-likelihood, and has been used in various contexts, such as posterior
approximation [41] and importance sampling [35, Chapter 9]. Interestingly, for
a Gaussian distribution, the Taylor expansion exactly relates the curvature of
the scalar field at its mode to the variance, namely SHi (θ) corresponds to the
variance. In contrast to a Monte Carlo estimate of the covariance of the con-
ditional distribution, it directly follows from Equation (18) that the Hessian of
the log-complete likelihood, and consequently its inverse, is definite positive.
Moreover, Lemma 5.1 also applies to this choice of covariance matrix, since the
function θ 7→ SHi (θ) is continuous as a composition of continuous functions.

6. Simulation study

Competitors We compare different variants of our algorithm corresponding
to specific choices of the proposal distribution νi(· ;θ):

• ISGD-VEM: we set the proposal distribution to the variational distribu-
tion ϕψ, as defined in Equation (4). Although it differs from the optimal
proposal distribution (17), it represents a natural choice as it serves as
the optimal Gaussian surrogate for the conditional distribution in terms
of the Kullback–Leibler divergence ϕ 7→ KL[ϕ∥pθ(· | Yi)].

• ISGD-VEMmix: there is no guarantee that the Radon–Nikodym deriva-
tive with respect to the VEM proposal is bounded, and thus ensures the
convergence of Algorithm 1. To address this, we introduce a defensive
component in this version and consider

νi(· ;θ) = GM(· ;mVEM
i ,SVEM

i , α, δ),



/Importance sampling based gradient method for PLN-PCA 15

where mVEM
i and SVEM

i are the mean and covariance of the variational
distribution ϕψ.

• AISGD-SNIS: it corresponds to Algorithm 2 and the choice of the mix-
ture distribution

νi(· ;θ) = GM(· ; m̂i(θ), Ŝi(θ), α, δ),

where m̂i(θ) and Ŝi(θ) are SNIS estimators of the mean and the covariance
of the conditional distribution pθ(· | Yi).

• AISGD-Hessian: it corresponds to Algorithm 2 and the choice of the
mixture distribution

νi(· ;θ) = GM(· ; m̂i(θ),S
H
i (θ), α, δ),

with SHi (θ), as defined in Equation (18).

All these methods are initialized with the variational estimator θVEM fitted with
the standard VEM algorithm implemented in pyPLNmodels1. Throughout the
numerical study, the mixture hyperparameters are set to α = 0.001 and δ = 1.1.

6.1. Synthetic data

Data generation We consider simulation settings with n = 300 individuals,
p = 150 variables, d = 1 covariate (that is, one intercept), and rank constraints
q = 3, 5 and 15. The offset term o is set to zero. For each value of q, we sample
M = 100 datasets Y(q,m), m = 1, . . . ,M , according to the PLN-PCA model (2)
with the following regression parameters

B⋆kj ∼ N (2, 1) , k = 1, . . . ,m, j = 1, . . . , p.

The covariance matrix Σ⋆ is set to the closest rank-q approximation using sin-
gular value decomposition of the Toeplitz matrix (tjk), j, k = 1, . . . , p, defined
as

tjk = 3× 1j=k + u|j−k|,

where u is drawn uniformly between 0.6 and 0.8.

Experimental design Each algorithm runs for a total of 1010 epochs with
two regimes of batch sizes, B = n and B = 1, used along iterations. We resort to
the full dataset for the first 1000 epochs. During this initial phase, the gradient
estimator is computed as the average of SNIS estimators (7) over all individuals,
namely

ĝ(t) = − 1

n

n∑
i=1

sNi (θ(t)).

The latter is based on Rprop updates [37]. We refer the reader to Appendix E.1
for additional details on the use of Rprop. This practical approach is motivated

1https://github.com/PLN-team/pyPLNmodels

https://github.com/PLN-team/pyPLNmodels
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by the empirical observations that Rprop updates tend to converge much faster
than the original updates using a single learning rate and could serve as a warm-
up phase. Our study focuses on the last 10 epochs with a batch size of 1. This
setting corresponds to T = 3000 iterations of Algorithm 1. The learning rate γ is
determined via a grid search. We present results corresponding toN = 500, 1000,
or 2000 samples for the SNIS estimator (7).

Quality of the importance sampling proposal distribution The pro-
posal distributions νi(· ;θ) of the four competitors are compared at initialization
with the three following metrics:

• the Kullback–Leibler divergence KL[νi(· ;θ)∥pθ (· | Yi)], which gives a dis-
crepancy measure in terms of the variational objective function, and thus
provides a comparison between the proposal distribution and the vari-
ational distribution. Given a N -sample vi,1, . . . ,vi,N from νi(· ;θ), its
Monte Carlo estimator is

− log(N)− 1

N

N∑
r=1

log(ωθ,i,r), ωθ,i,r =
ρθ,i(vi,r)∑N
s=1 ρθ,i(vi,s)

.

• the Kullback–Leibler divergence KL[pθ (· | Yi) ∥νi(· ;θ)], which relates to
the efficiency of the importance sampling scheme in terms of bias and
quadratic error. Its Monte Carlo estimator is

log(N) +

N∑
r=1

ωθ,i,r log(ωθ,i,r).

• The Effective Sample Size (ESS), which assesses how accurately the weigh-
ted samples from the importance sampling method approximates the tar-
get distribution pθ (· | Yi): a higher effective sample size indicates a better
empirical approximation of the target distribution. It is estimated by(

N∑
r=1

ω2
θ,i,r

)−1

.

The results are displayed in Figure 1. A key distinction between the ISGD-
VEM proposal and other methods is the use of a Gaussian mixture distribution.
A comparison between ISGD-VEM and ISGD-VEMmix highlights the impact
of adding a defensive component to the variational solution. As shown in the top
row of Figure 1, the defensive component does not yield improvement in terms of
the variational objective function. However, the ISGD-VEMmix proposal offers
equivalent performances regarding the importance sampling method (middle
and bottom rows of Figure 1).

Furthermore, the comparison of ISGD-VEMmix with the two AISGD vari-
ants (SNIS and Hessian) enables the evaluation of the impact of replacing the
diagonal covariance from the variational distribution with either the conditional
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Figure 1. Distribution of the Kullback–Leibler divergence KL[νi(· ;θ)∥pθ (· | Yi)] (top row),
the Kullback–Leibler divergence KL[pθ (· | Yi) ∥νi(· ;θ)] (middle row), and the effective sample
size (bottom row) as a function of the number of Monte Carlo draws N , the rank constraint q,
and the inference algorithms (AISGD-SNIS, AISGD-Hessian, ISGD-VEMmix, ISGD-VEM)
at initialization, that is θ(1) is the VEM estimate. Each boxplot is based on M = 100 synthetic
datasets, with each metric estimated using the specified N Monte Carlo draws.

covariance estimate or the curvature estimate. Unsurprisingly, AISGD-SNIS be-
comes numerically unstable when we do not have enough Monte Carlo draws
for a given rank constraint q. It is well known that estimating a covariance
matrix is much more demanding when the dimension of the sample space in-
creases. From the variational point of view (top row of Figure 1), AISGD-
SNIS and AISGD-Hessian do not exhibit significant improvement compared
to ISGD-VEMmix. However, providing sufficient Monte Carlo draws are avail-
able, both AISGD-SNIS and AISGD-Hessian consistently demonstrate superior
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performance for the importance sampling scheme in comparison to variational-
based proposals (middle and bottom row of Figure 1). The lower values for the
KL[pθ (· | Yi) ∥νi(· ;θ)] indicate a better control over bias and variance, while
the performances in terms of ESS demonstrates that AISGD solutions are robust
and efficient when the dimension q increases. Overall, AISGD-Hessian offers the
most favorable practical performances. In what follows, we thus focus solely on
AISGD-Hessian.

Asymptotic normality of the regression coefficient A key property of
the MLE is the asymptotic normality that provides tests and confidence intervals
on the model parameters. This property is not guaranteed by the variational
estimator, maximizing a surrogate log-likelihood (often called ELBO). In order
to assess the ability of our method to provide valid tests and confidence intervals
for each, say, regression parameter Bkj , we examine the standardized estimates

B̃kj =
(
B̂kj −B⋆kj

)/√
V̂[B̂kj ] (19)

where B⋆kj denotes the true value, and V̂[B̂kj ] stands for the estimated variance
of B̂kj . Recall that the Fisher information matrix (FIM) is defined as

I(θ) = Eθ
[
∇θ log pθ(Y1) {∇θ log pθ(Y1)}⊤

]
. (20)

According to the M-estimator theory, the (asymptotic) variance of B̂kj is given
by the diagonal term corresponding to Bkj of the inverse of the FIM, and the
distribution of the B̃(m)

kj across simulations m = 1, . . . ,M should be close to a
standard normal.

We illustrate the fit of the test statistics, as defined in (19), to the standard
normal distribution at three different stages of the estimation procedure. The
first stage corresponds to the VEM initialization, that is B̂kj = B̂VEM

kj , and
a variational proxy for the unknown (asymptotic) variance of the variational
estimator. This solution assumes that the evidence lower bound can be used
in place of the log-likelihood in the definition (20). We refer to this solution as
variational FIM. The second stage corresponds to the first iteration of Algorithm
2. The test statistics are also computed for B̂kj = B̂VEM

kj , but instead of using
the variational FIM, we compute a Monte Carlo estimator of the FIM, referred
to as SNIS FIM, given by

Îθ(θ) =
1

n

n∑
i=1

ŝNi (θ)
{
ŝNi (θ)

}⊤
. (21)

The third stage corresponds to the end of the optimization scheme, that is, test
statistics computed for B̂kj = B̂

(T )
kj . The FIM at that point is also estimated

using the Monte Carlo estimator (21).
We first perform a Kolmogorov-Smirnov test for the three aforementioned

stages with q = 5 and N = 1000. Figure 2 represents Kolmogorov-Smirnov
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Figure 2. Distribution of the p-values of the Kolmogorov-Smirnov test for the distribution
of the standardized estimates B̃kj , as defined in (19), over M = 100 simulations (n = 300,
p = 150, q = 5, and d = 1) at three different stages: initial state θ(1) (VEM estimate)
with variational FIM (left) and with SNIS FIM (middle), and final state θ(T ) of AISGD-
Hessian with SNIS FIM (right). AISGD-Hessian is run with N = 1000 Monte Carlo draws.
Each boxplot is built across the d× p normalized coefficients B̃kj . Red dashed line [−−]: the
α = 5% significance threshold.

p-values associated with the d × p regression parameter Bkj . The figure shows
that the normality hypothesis is not rejected for the AISGD-Hessian. However,
as we could expect, it is rejected for the VEM standardized estimates.

Figure 3 first illustrates why a departure from normality is observed for the
standardized variational estimates on certain regression coefficients. The vari-
ational FIM solution significantly underestimates the variance (left column),
implying, for instance, that using a full-based variational approach would lead
to too narrow confidence intervals. Similar results were reported on the PLN
model in [40]. Conversely, the SNIS FIM offers a satisfying and more accurate
estimate of the variance (middle and right columns). The VEM estimator also
exhibits bias (middle column). Further examination of additional qq-plots (not
displayed here) indicates that VEM tends to overestimate the regression coeffi-
cients. Finally, the right column of Figure 3 shows that AISGD-Hessian corrects
this bias and thus provides a good fit of the test statistics to the standard
normal.

Conclusion AISGD-Hessian is a compelling method for inferring the param-
eters of a PLN PCA model. The algorithm offers an estimation procedure with
valid uncertainty measures (or statistical tests). In contrast, the variational so-
lution leads to unreliable outputs due to the approximation used throughout
the VEM scheme and the crude variational FIM estimate.
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Figure 3. qq-plots of the standardized regression coefficients B̃1j (j = 7, 22, 30), as defined
in (19), over M = 100 simulations (n = 300, p = 150, q = 5, and d = 1) at three different
stages: initial state θ(1) (VEM estimate) with variational FIM (left) and with SNIS FIM
(middle), and final state θ(T ) of AISGD-Hessian with SNIS FIM (right). AISGD-Hessian is
run with N = 1000 Monte Carlo draws. x-axis: standard normal quantiles, y-axis: quantiles
of B̃1j (black dot [•]), red dashed lines [−−]: 95% bounds for the standard normal qq-plot,
black solid line [−]: perfect fit.

6.2. Inference on real data

Dataset Real data analysis is based on the scMARK dataset [17]. The latter
is a benchmark for single-cell Ribonucleic acid (scRNA) data designed to serve
as an RNA-seq equivalent of the MNIST dataset — each cell being labeled by
one of the 28 possible cell types. It corresponds to n = 19998 samples (cells)
and p = 14059 features (gene expression).

Due to memory limitations, we cannot address the problem with the original
p = 14059 features. Therefore, we perform inference on a dataset reduced to
n = 300 randomly chosen samples from the two most prevalent cell types (T
cells CD4+ and T cells CD8+), focusing on the p = 100 features with the
largest variance. The offset term o is set to zero. The two cell types are used as
covariates, such that for each cell i, the covariates are given by

xi1 =

{
1 if cell i is a T cells CD4+
0 else

, xi2 = 1− xi1.
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Illustration of Theorem 4.5 For each rank constraint q = 3, 5, 15, we
perform 10 runs of the AISGD-Hessian version of Algorithm 2 initialized at
θ(1) = θVEM for 100 epochs and N = 5000 Monte Carlo draws. In Figure 4, we
monitor the negative marginal log-likelihood and the gradient norm, averaged
over the 10 runs, over the iterations. We observe a significant gain in terms
of the marginal log-likelihood, suggesting that VEM has not converged to the
maximum likelihood estimator. Interestingly, AISGD-Hessian proves to be in-
creasingly more efficient as q increases. This behavior could result from using
proposal distributions with a full covariance structure, which provides additional
insights on the underlying geometry as compared to the diagonal approxima-
tion used in VEM. On the other hand, the norm of the gradient of the objective
function decreases in average with T as stated by Theorem 4.5.

Parameters significance A major interest of our method is to achieve max-
imum likelihood estimation, but also to gain in interpretability thanks to an
accurate estimation of the variance of PLN PCA parameters estimates. This al-
lows practitioners to perform statistical tests and determine if a covariate has a
significant effect or not. Figure 5 presents the confidence intervals for regression
coefficients obtained at the initial and final iterations of a run of the AISGD-
Hessian method on the reduced scMARK dataset with q = 5. As detailed in
Section 6.1, we used here a warm-up phase of 2000 epochs, a batch size of
n = 300 and N = 1000 Monte Carlo draws. We solely represent the coefficients
whose estimates lie between −1 and 2, leaving 34 coefficients out of the 200
available.

As previously observed in Figure 3, the VEM method seems to overesti-
mate the regression coefficients consistently. By correcting this bias, the AISGD-
Hessian method leads to differences in the interpretation for a few coefficients.
For instance, we could reject the null hypothesis Bkj = 0 for all CD4+ coeffi-
cients at the VEM initialization, implying a positive impact of all the covariates.
Conversely, at the final iteration, the decision changes for CD4+;63, CD4+;45
which are no longer significant. The same observation stands for CD8+;71 and
CD8+;60. Additionally, CD8+;83, which initially has no impact, is found to
have a negative impact at the final iteration.

7. Discussion

The paper explores the opportunity of a projected stochastic gradient scheme
for inferring the parameters of a PLN-PCA model. Unlike competing variational
approaches, our method allows to retrieve statistical guarantees on the result-
ing estimate. representing a significant step forward for the practitioners. This
enables the construction of uncertainty measures and statistical tests. We have
illustrated the benefits of our method on synthetic and real datasets using mix-
ture distributions as proposals. Obviously we could resort to any distribution
provided it satisfies Assumption 1. A future work could be to investigate the
potential of normalizing flows as proposal distribution, especially for larger rank
constraints.
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Figure 4. Negative marginal log-likelihood (top row) and norm of the gradient of the objective
function (bottom row) for AISGD-Hessian as functions of the rank constraint q and the
number of epochs for the scMARK dataset reduced to n = 300 samples and p = 100 variables.
Black solid line [−]: averages over 10 runs of the AISGD-Hessian method initialized with the
VEM estimate and N = 5000 Monte Carlo draws, grey area: 95% confidence regions.

While we have proven the convergence for the PLN-PCA model using an
importance sampling-based gradient estimator, the descent lemma 4.2 opens
new vista for latent variable models. Indeed, its minimal assumptions offers
broader applicability, and it can serve as the corner stone for extending Theorem
4.5 to models with L-smooth loss function and arbitrary random and biased
gradient estimator.

A natural extension is to consider models where the emission distribution be-
longs to a natural (or canonical) exponential family. While deriving regularity
of the log likelihood, and hence a score estimator, assessing the L-smoothness of
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Figure 5. Confidence intervals for regression coefficients of m = 2 cell groups (CD8+
and CD4+ T cells) from the scMARK dataset, reduced to n = 300 samples and p = 100
variables. The intervals are computed at the initial state corresponding to the VEM estimate
(purple), and the final state of a run of AISGD-Hessian with N = 1000 Monte Carlo draws.
The variance was computed using the SNIS FIM estimator (21). x-axis: regression coefficient
value, y-axis: cell type and feature number.

the loss function is relatively straightforward for some families — typically when
the natural parameter space is the entire vector space —, such as the Binomial
distribution. Additional technical conditions may however be required for fam-
ilies with constrained natural parameter spaces, like the negative-Binomial or
Gamma distributions. These conditions might involve integrability constraints
on the moments of the emission distribution with respect to the latent distri-
bution or modifications to the link function fi to account for the parameter
constraints.

Beside addressing the inference for other models, the assumption of lemma
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4.2 on the gradient estimator allows to consider other, possibly more elaborated,
simulation based method to estimate the gradient, such as diffusion models.
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Appendix A: Properties of the PLN-PCA model

Lemma A.1. Under Model (2), for any compact set Θ ⊂ Rd, for all individual
i ∈ {1, . . . , n}, there exists two constants KΘ

i > 0 and κΘi ∈ R, such that for
any θ ∈ Θ

log pθ (Yi | Wi) ≤ KΘ
i ∥Wi∥+ κΘi .

Proof. Given i ∈ {1, . . . , n}, θ = (B,C) ∈ Rd, due to the conditional indepen-
dance, we have for Zi = (Zij) as defined by Equation (2),

log pθ(Yi | Wi) = ⟨Yi,Zi⟩ −
p∑
j=1

exp(Zij)

Since exp is convex and differentiable on R, for any z, z0 ∈ R, we have

exp(z) ≥ exp(z0) + (z − z0) exp(z0).

It follows

log pθ(Yi | Wi) ≤ ⟨Yi,Zi⟩ − exp(z0)

p∑
j=1

Zij −
p∑
j=1

(1− z0) exp(z0).

Using the definition of Zi from Equation (2), we set

Ki(θ) = C⊤{Yi − exp(z0)1p},

κi(θ) = ⟨Yi − exp(z0)1p,B
⊤xi + oi⟩ −

p∑
j=1

(1− z0) exp(z0).

Then,
log pθ(Yi | Wi) ≤ ⟨Ki(θ),Wi⟩+ κi(θ),

and using the Cauchy–Schwarz inequality we get

log pθ(Yi | Wi) ≤ ∥Ki(θ)∥∥Wi∥+ κi(θ).

The functions Ki and κi are linear with respect to the parameter coordinates
and, consequently, continuous on Rd, and hence on Θ. Therefore, we can define
the upper boundsKΘ

i = supθ∈Θ∥Ki(θ)∥ and κΘi = supθ∈Θ κi(θ), which provides
the result.

Proposition 4.1. For all individual i = 1, . . . , n, the incomplete log-likelihood
θ 7→ log pθ(Yi) of Model (2) is twice continuously differentiable on Rd and its
score function can be written as

si(θ) =

∫
Rq

∇θ log pθ(Yi,w)pθ(dw | Yi) = E [∇θ log pθ(Yi,Wi) | Yi,θ] . (5)
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Proof. The result is a direct application of the dominated convergence theorem.
Indeed, for all individual i = 1, . . . , n, the likelihood writes as

pθ(Yi) =

∫
Rq

pθ(Yi | w)N (dw;0q, Iq).

The function θ 7→ pθ(Yi | Wi) is twice continuously differentiable on Rd as a
composition of such functions. Moreover, each component Zij , j = 1, . . . , p, is a
linear function of the components of θ, and for r, s = 1, . . . , d,

∂

∂θr
Zij =

m∑
k=1

xik1θr=Bkj
+

q∑
k=1

Wik1θr=Cjk
,

∂2

∂θs∂θr
Zij = 0. (22)

Consequently, given a component θr, there is a unique index in {1, . . . , p} such
that the first partial derivative is non-zero. Denote by j and k such indices for
the partial derivatives with respect to θr and θs, respectively. We then have

∂

∂θr
pθ(Yi | Wi) = pθ(Yi | Wi) {Yij − exp(Zij)}

∂

∂θr
Zij ,

∂2

∂θs∂θr
pθ(Yi | Wi) = pθ(Yi | Wi)

[
{Yij − exp(Zij)} {Yik − exp(Zik)}

∂

∂θr
Zij

∂

∂θs
Zik

− exp(Zij)
∂

∂θr
Zij

∂

∂θs
Zij

]
.

It follows from (22) that for any r = 1, . . . , d, and any j = 1, . . . , p∣∣∣∣ ∂∂θrZij
∣∣∣∣ ≤ ∥xi∥+ ∥Wi∥.

Given a non-empty open and bounded set Θ ⊂ Rd, it follows from Lemma A.1
that it exists two constants KΘ

i > 0 and κΘi such that for any θ ∈ Θ

pθ(Yi | Wi) ≤ exp
(
KΘ
i ∥Wi∥+ κΘi

)
.

On the other hand, for any θ ∈ Θ, any j = 1, . . . , p

|Zij | ≤ AΘ∥Wi∥+RΘ
i , with AΘ = sup

θ∈Θ
∥θ∥, RΘ

i = ∥xi∥ sup
θ∈Θ

∥θ∥+ max
j=1,...,p

|oij |.

Consequently, for any j = 1, . . . , p, since exp(Zij) ≤ exp(|Zij |),

|Yij−exp(Zij)| ≤ exp(|Zij |) {∥Yi∥ exp(−|Zij |) + 1} ≤ exp
(
AΘ∥Wi∥+RΘ

i

)
(∥Yi∥+ 1) .

Thereby, for any j = 1, . . . , p,∣∣∣∣{Yij − exp(Zij)}
∂

∂θr
Zij

∣∣∣∣ ≤ (∥xi∥+ ∥Wi∥) (∥Yi∥+ 1) exp
(
AΘ∥Wi∥+RΘ

i

)
∣∣∣∣exp(Zij) ∂

∂θr
Zij

∂

∂θs
Zij

∣∣∣∣ ≤ (∥xi∥+ ∥Wi∥)2 exp
(
AΘ∥Wi∥+RΘ

i

)
≤ (∥xi∥+ ∥Wi∥)2 exp

(
2AΘ∥Wi∥+ 2RΘ

i

)
,
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where the last inequality follows because AΘ and RΘ
i are both positive. Finally,

we get that on Θ∣∣∣∣ ∂∂θr pθ(Yi | Wi)

∣∣∣∣ exp(−∥Wi∥2

2

)
≤ (∥xi∥+ ∥Wi∥) (∥Yi∥+ 1)QΘ

i (Wi, 1)∣∣∣∣ ∂

∂θs∂θr
pθ(Yi | Wi)

∣∣∣∣ exp(−∥Wi∥2

2

)
≤ (∥xi∥+ ∥Wi∥)2

{
(∥Yi∥+ 1)

2
+ 1
}
QΘ
i (Wi, 2),

with

QΘ
i (Wi, k) = exp

{
−1

2
∥Wi∥2 +

(
KΘ
i + kAΘ

)
∥Wi∥+ κΘi + kRΘ

i

}
.

Crucially, each of these upper bounds is a Lebesgue integrable function on Rq
that does not depend on θ ∈ Θ. Consequently, we can conclude that the likeli-
hood is twice continuously differentiable on Θ with the dominated convergence
theorem. Since the result holds for any open and bounded set Θ ⊂ Rd, for all
θ ∈ Rd, we can apply it to an open d-ball with center θ. Therefore, the likelihood
is twice continuously differentiable on Rd. Moreover

∇θpθ(Yi) =

∫
Rq

∇θpθ(Yi | w)N (dw;0q, Iq)) =

∫
Rq

∇θpθ(Yi,w)dw.

For all Yi ∈ Np, the likelihood θ 7→ pθ(Yi) is positive on Rd. Indeed, the
integrand is positive everywhere since, by definition

w 7→ pθ(Yi | w) =

p∏
j=1

p(Yij | zij), (zi1, . . . , zip)
⊤ = fi(w;B,C),

and for any z ∈ R, y 7→ p(y | z) is positive on N. The continuous differentiability
of the log-likelihood follows directly by composition. Finally,

∇θ log pθ(Yi) =
1

pθ(Yi)

∫
Rq

∇θpθ(Yi,w)dw =

∫
Rq

pθ(Yi,w)∇θ log pθ(Yi,w)

pθ(Yi)
dw

=

∫
Rq

∇θ log pθ(Yi,w)pθ(dw | Yi).

Proposition 4.3. Under Model (2), for any nonempty compact subset Θ ⊂ Rd,
we have that

(i) for any individual i = 1, . . . , n, there exists a real

0 < ζi = inf
θ∈Θ

pθ(Yi);

(ii) there exists a real L ≥ 0 such that the objective function ℓ, as defined in
(3), is L-smooth on Θ.
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Proof. Let Θ ⊂ Rd be a nonempty compact set.

(i) From Proposition 4.1, the likelihood of the observed data θ 7→ pθ(Yi)
is continuous on the compact set Θ. Thus, it is bounded and attains its
bounds on Θ. Moreover, the likelihood of the observed data is positive on
Rd, so is its lower bound on Θ.

(ii) A direct consequence of Proposition 4.1, is that θ 7→ ∇ℓ(θ) is continuous
differentiable on the compact set Θ. Therefore, it is Lipschitz continuous.

Appendix B: Intermediate optimization results and proof of Lemma
4.2

In this Section, we consider results for minimizing a function ℓ on Rd. We denote
Θ ⊂ Rd a compact and convex set.

Lemma B.1 (Non-expansiveness, Bertsekas [4, Prop 2.1.3]). The projection PΘ

satisfies the non-expansiveness property, namely for all θ,θ′ ∈ Rd∥∥PΘ(θ)− PΘ(θ
′)
∥∥ ≤

∥∥θ − θ′
∥∥ .

For a real η > 0, the proximal operator of F as defined in Equation (10) is
given by

proxηF (θ) = argmin
θ′∈Rd

{
F (θ′) +

1

2η
∥θ − θ′∥2

}
.

Lemma B.2 (Drusvyatskiy and Paquette [18, Lemma 4.3]). If the function ℓ
is L-smooth, for any real constant η < 1/L, the Moreau envelope Fη is differen-
tiable on Rd and relates to the proximal operator through the following equation

∇Fη(θ) =
1

η
{θ − proxηF (θ)} .

Lemma B.3 (Drusvyatskiy and Paquette [18, Theorem 4.5]). If the function ℓ
is L-smooth, for any real constant η > 0, the gradient mapping G(t)

η , as defined
in Equation (12), satisfy the following inequality

∥G(t)
η ∥ ≤

(
1 +

Lη

Lη + 1

)(
1 +

√
Lη

Lη + 1

)
∥∇F η

Lη+1
(θ(t))∥.

A differentiable function f : Rd 7→ R is said to be µ-strongly-convex, µ ∈ R∗
+,

if for all θ,θ′ ∈ Rd,

f(θ′) ≥ f(θ) +
〈
∇θf(θ),θ′ − θ

〉
+
µ

2
∥θ − θ′∥2.
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Lemma B.4. If the function ℓ is L-smooth, then, for any real constant η ∈
(0, 1/L), and any θ̄ ∈ Rd, the following function is (η−1 − L)-strongly convex

f : θ 7→ ℓ(θ) +
1

2η
∥θ − θ̄∥2.

Proof. Let θ,θ′ ∈ Rd. We have

f(θ) +
〈
∇f(θ),θ′ − θ

〉
= ℓ(θ) +

1

2η
∥θ − θ̄∥2 +

〈
∇ℓ(θ) + η−1(θ − θ̄),θ′ − θ

〉
.

(23)
According to Bubeck [8, Lemma 3.4], since ℓ is L−smooth, it satisfies for all
θ,θ′ ∈ Rd ∣∣ℓ(θ′)− ℓ(θ)−

〈
∇ℓ(θ),θ′ − θ

〉∣∣ ≤ L

2
∥θ′ − θ∥2. (24)

It directly follows that

ℓ(θ) + ⟨∇ℓ(θ),θ′ − θ⟩ − L

2
∥θ − θ′∥2 ≤ ℓ(θ′).

Combining the latter inequality with Equation (23) yields

f(θ) +
〈
∇f(θ),θ′ − θ

〉
+
η−1 − L

2
∥θ − θ′∥2

≤ ℓ(θ′) +
1

2η

(
∥θ − θ̄∥2 + 2⟨θ − θ̄,θ′ − θ⟩+ ∥θ − θ∥2

)
For a scalar product and its associated norm, the identity ∥a + b∥2 = ∥a∥2 +
2⟨a, b⟩+ ∥b∥2 gives

f(θ) +
〈
∇f(θ),θ′ − θ

〉
+
η−1 − L

2
∥θ − θ′∥2 ≤ ℓ(θ′) +

1

2η
∥θ′ − θ̄∥ = f(θ′).

Since η−1 + L > 0, we can conlude that f is (η−1 + L)-strongly convex.

Lemma B.5. If the function ℓ is L-smooth, then for any θ ∈ Θ, and any real
constant η ∈ (0, (2Γ + L)−1], with Γ = supθ∈Θ∥∇θℓ(θ)∥, we have

∥θ − proxηF (θ)∥ ≤ 1.

Proof. Given θ ∈ Θ, we show that any point at a distance more than one from
θ is not proxηF (θ). This implies that necessarily

∥θ − proxηF (θ)∥ ≤ 1.

Let θ′ ∈ Rd be a point such that ∥θ− θ′∥ > 1. According to Bubeck [8, Lemma
3.4], since ℓ is L−smooth, it satisfies for all θ,θ′ ∈ Rd

ℓ(θ) ≤ ℓ(θ′) + ⟨∇ℓ(θ′),θ − θ′⟩+ L

2
∥θ′ − θ∥2. (25)
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Let first assume that θ′ ∈ Θ. Using successively the Cauchy–Schwarz inequality,
the positive bound Γ and the assumption ∥θ − θ′∥ > 1, we get

⟨∇ℓ(θ′),θ − θ′⟩ ≤ ∥∇ℓ(θ′)∥∥θ − θ′∥ < Γ∥θ − θ′∥2. (26)

It results from Equation (25) and Equation (26) that

ℓ(θ) < ℓ(θ′) +

(
Γ +

L

2

)
∥θ′ − θ∥2.

For η ≤ (2Γ + L)−1, we have (Γ + L/2) ≤ 1/(2η). Moreover, the functions F
and ℓ coincide on Θ, so that

F (θ) < F (θ′) +
1

2η
∥θ′ − θ∥2.

We can therefore conclude that θ′ ̸= proxηF (θ). Conversely, if θ′ /∈ Θ, by defini-
tion of F , we also have that θ′ ̸= proxηF (θ).

Lemma 4.2 (Descent lemma). Let consider the gradient scheme as defined by
Equation (9). Assume that

(i) the function ℓ is L-smooth on Θ, and denote Γ = supθ∈Θ∥∇θℓ(θ)∥;
(ii) for t ∈ N∗, one has

σ(t) = E
[
∥ĝ(t) −∇θℓ(θ(t))∥2

∣∣∣ θ(t)] <∞,

ξ(t) =
∥∥∥E [ĝ(t) ∣∣∣ θ(t)]−∇θℓ(θ(t))

∥∥∥ <∞.

Then, for any real constant η ∈ (0, 1/max{2Γ + L, 2L}],

E
[
Fη(θ(t+1))

∣∣∣ θ(t)] ≤ Fη(θ(t))−
γ

2
∥∇Fη(θ(t))∥2

+
γ + γ2Γ

η
ξ(t) +

γ2

2η
(σ(t) + Γ2).

(11)

Proof. Given t ∈ N∗ and η ∈ (0,max{2Γ + L, 2L}−1], we define the virtual
iterates θ̄(t) as

θ̄
(t)

= proxηF(θ
(t)) = argmin

θ∈Rd

{
F (θ) +

1

2η
∥θ − θ(t)∥2

}
.

Note that θ̄(t) ∈ Θ. Indeed, according to the definition of the Moreau envelope

F
(
θ̄
(t)
)
= Fη(θ(t))−

1

2η

∥∥∥θ̄(t) − θ(t)∥∥∥2 ≤ F(θ(t)).
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The upper bound is finite, since θ(t) as defined in (9) is within the compact Θ.
The operator F is thus finite at θ̄(t), and consequently θ̄(t) ∈ Θ since F takes
infinite value outside of Θ.

As the virtual iterates are within Θ, the definition of the Moreau envelope
yields

Fη(θ(t+1)) ≤ ℓ
(
θ̄
(t)
)
+

1

2η

∥∥∥θ(t+1) − θ̄(t)
∥∥∥2 . (27)

Using the definition of θ(t+1) and the fact that θ̄(t) ∈ Θ, we obtain from Lemma
B.1

1

2η

∥∥∥θ(t+1) − θ̄(t)
∥∥∥2 =

1

2η

∥∥∥PΘ(θ(t) − γĝ(t))− PΘ

(
θ̄
(t)
)∥∥∥2

≤ 1

2η

∥∥∥θ(t) − γĝ(t) − θ̄(t)
∥∥∥2 .

The bilinearity of the scalar product gives∥∥∥θ(t) − γĝ(t) − θ̄(t)
∥∥∥2 =

∥∥∥θ(t) − θ̄(t)∥∥∥2 + 2γ
〈
θ̄
(t) − θ(t), ĝ(t)

〉
+ γ2∥ĝ(t)∥2

,

and the inequality (27) becomes

Fη(θ(t+1)) ≤ ℓ
(
θ̄
(t)
)
+

1

2η

∥∥∥θ(t) − θ̄(t)∥∥∥2 + γ

η

〈
θ̄
(t) − θ(t), ĝ(t)

〉
+
γ2

2η
∥ĝ(t)∥2

≤ Fη(θ(t)) +
γ

η

〈
θ̄
(t) − θ(t), ĝ(t)

〉
+
γ2

2η
∥ĝ(t)∥2

.

Therefore,

E
[
Fη(θ(t+1))

∣∣∣ θ(t)] ≤ Fη(θ(t)) +
γ

η

〈
θ̄
(t) − θ(t),E

[
ĝ(t)

∣∣∣ θ(t)]〉
+
γ2

2η
E
[
∥ĝ(t)∥2

∣∣∣ θ(t)] .
We now study more in detail the second and the third terms of the right-hand
side.

Regarding the second term, we have〈
θ̄
(t) − θ(t),E

[
ĝ(t)

∣∣∣ θ(t)]〉 =
〈
θ̄
(t) − θ(t),∇θℓ(θ(t))

〉
+
〈
θ̄
(t) − θ(t), b(t)

〉
,

where b(t) stands for the bias of the gradient estimate, namely

b(t) = E
[
ĝ(t)

∣∣∣ θ(t)]−∇θℓ(θ(t)).

By combining the Cauchy–Schwarz inequality with Lemma B.5, which applies
since η ≤ (2Γ + L)−1, we get〈

θ̄
(t) − θ(t), b(t)

〉
≤
∥∥∥θ̄(t) − θ(t)∥∥∥∥b(t)∥ ≤ ∥b(t)∥.
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Since the function ℓ is L-smooth, we can use the inequality (24), namely〈
θ̄
(t) − θ(t),∇θℓ(θ(t))

〉
≤ ℓ

(
θ̄
(t)
)
− ℓ(θ(t)) +

L

2

∥∥∥θ̄(t) − θ(t)∥∥∥2 .
In conclusion we obtain〈
θ̄
(t) − θ(t),E

[
ĝ(t)

∣∣∣ θ(t)]〉 ≤ ℓ
(
θ̄
(t)
)
− ℓ(θ(t)) +

L

2

∥∥∥θ̄(t) − θ(t)∥∥∥2 + ∥b(t)∥.
(28)

We aim at obtaining a bound not depending on the virtual iterates. As η−1 ≥
2L > L, Lemma B.4 applies, and the function

g : θ 7→ ℓ(θ) +
1

2η
∥θ − θ(t)∥2

is (η−1 − L)-strongly convex. By definition, this function achieves a minimum
at θ̄(t). Consequently its gradient is 0 at that point and the strong-convexity
gives

ℓ(θ(t)) ≥ ℓ
(
θ̄
(t)
)
+

1

2η

∥∥∥θ̄(t) − θ(t)∥∥∥2 + η−1 − L

2

∥∥∥θ(t) − θ̄(t)∥∥∥2 .
Using this last inequality, Equation (28) becomes〈
θ̄
(t) − θ(t),E

[
ĝ(t)

∣∣∣ θ(t)]〉 ≤− 1

2η

∥∥∥θ̄(t) − θ(t)∥∥∥2 − η−1 − 2L

2

∥∥∥θ̄(t) − θ(t)∥∥∥2
+ ∥b(t)∥

≤− 1

2η

∥∥∥θ̄(t) − θ(t)∥∥∥2 + ∥b(t)∥,

since η−1 ≥ 2L. Finally, using Lemma B.2 leads to

1

2η

∥∥∥θ̄(t) − θ(t)∥∥∥2 =
1

2η
∥η∇Fη(θ(t))∥2

=
η

2
∥∇Fη(θ(t))∥2

.

So far, we have hence proven that

E
[
Fη(θ(t+1))

∣∣∣ θ(t)] ≤ Fη(θ(t))−
γ

2
∥∇Fη(θ(t))∥2

+
γ

η
∥b(t)∥+

γ2

2η
E
[
∥ĝ(t)∥2

∣∣∣ θ(t)] .
We now focus on the third term. The bilinearity of the scalar product gives

E
[
∥ĝ(t)∥2

∣∣∣ θ(t)] = σ(t) − ∥∇θℓ(θ(t))∥2
+ 2

〈
E
[
ĝ(t)

∣∣∣ θ(t)] ,∇θℓ(θ(t))〉
= σ(t) + ∥∇θℓ(θ(t))∥2

+ 2⟨b(t),∇θℓ(θ(t))⟩.
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The Cauchy-Schwarz inequality along with the definition of the bound Γ yields

E
[
∥ĝ(t)∥2

∣∣∣ θ(t)] ≤ σ(t) + Γ2 + 2Γ∥b(t)∥.

It follows that

E
[
Fη(θ(t+1))

∣∣∣ θ(t)] ≤ Fη(θ(t))−
γ

2
∥∇Fη(θ(t))∥2

+
γ + γ2Γ

η
∥b(t)∥+

γ2

2η
(σ(t) + Γ2).

Appendix C: Proof of Theorem 4.5

Proposition 4.4. Let {i(t)}t∈N∗ and {θ(t)}t∈N∗ be the associated random se-
quences generated by Algorithm 1. Under Model (2), if Assumption 1 holds, then,
for all t ∈ N,

σ
(t)
IS = E

[∥∥∥ŝNi(t)(θ(t))−∇ log pθ(t)

(
Yi(t)

)∥∥∥2 ∣∣∣∣ θ(t)] ≤ d

N
Mσ,

ξ
(t)

IS = E
[∥∥∥E [ŝNi(t)(θ(t))−∇ log pθ(t)

(
Yi(t)

) ∣∣∣ θ(t), i(t)]∥∥∥ ∣∣∣ θ(t)] ≤ √
d

N
Mξ,

where Mσ and Mξ are two finite and positive constants given by

Mσ =
12

n

n∑
i=1

λ2i
√
βi

ζ2i

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)
,

Mξ =
4

n

n∑
i=1

λ2iβ
1/4
i

ζ2i

{
2 +

√
3

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)}
,

with λi and βi as in Assumption 1.

Proof. For any t ∈ N, since the individual i(t) is drawn uniformly independently
of θ(t), we have

σ
(t)
IS = E

[
E
[∥∥∥ŝNi(t) −∇ log pθ(t)

(
Yi(t)

)∥∥∥2 ∣∣∣∣ θ(t), i(t)]]
=

1

n

n∑
i=1

E
[∥∥∥ŝNi(t) −∇ log pθ(t)

(
Yi(t)

)∥∥∥2 ∣∣∣∣ θ(t), i(t) = i

]

=
1

n

n∑
i=1

Eν⊗N
i (· ;θ(t))

[∥∥ŝNi −∇ log pθ(t) (Yi)
∥∥2]
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and, similarly

ξ
(t)

IS =
1

n

n∑
i=1

∥∥∥E [ŝNi(t) −∇ log pθ(t)

(
Yi(t)

) ∣∣∣ θ(t), i(t) = i
]∥∥∥

=
1

n

n∑
i=1

∥∥∥Eν⊗N
i (· ;θ(t))

[
ŝNi −∇ log pθ(t) (Yi)

]∥∥∥
Consider an individual i ∈ {1, . . . , n} and a parameter θ ∈ Θ. As in [1], the r-th
central moment, r ∈ N∗, of a mesurable function h : Rq → R with respect to
the proposal distribution is denoted

mr[h] = Eνi(· ;θ)
[∣∣h(V)− Eνi(· ;θ) [h(V)]

∣∣r] .
We also denote ϕk, k ∈ {1, . . . , d}, the application that returns the k-th compo-
nent of the score, namely for all V ∈ Rq

ϕk(V) =
∂

∂θk
log pθ(Yi,V).

For a N -sample (V1, . . . ,VN ) from νi(· ;θ), the importance sampling estimate
ŝNi (θ) = (ŝik)1≤k≤d of the score gi, as defined in Equation (5), can thereby be
written as

ŝik =
1∑N

s=1 ρθ,i(Vs)

N∑
r=1

ρθ,i(Vr)ϕk(Vr).

According to Theorem 2.3 in [1], we can guarantee control over the bias and
mean squared error of the importance sampling estimate for the k-th component
of the score, k ∈ {1, . . . , d}, provided that the following quantity is finite

CMSE,k(θ) =
3

pθ(Yi)2

{
m2[ϕkρθ,i]

+
9

pθ(Yi)2

√
m4[ρθ,i]Eνi(· ;θ)

[
|ϕk(V)ρθ,i(V)|4

]
+

125

pθ(Yi)

√
m6[ρθ,i]Eνi(· ;θ)

[
|ϕk(V)|4

]}
.

To prove such a statement, first note that by definition

0 < λi, Eνi(· ;θ)
[
|ϕk(V)|4

]
≤ βi. (29)

The monotonicity of the expected value thus yields

Eνi(· ;θ)
[
|ϕk(V)ρθ,i(V)|4

]
≤ λ4iEνi(· ;θ)

[
|ϕk(V)|4

]
≤ λ4iβi.
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Furthermore, we use that for all r ∈ N∗, E[|X − E[X]|r] ≤ 2rE[|X|r] (this is a
direct consequence of the Minkowski and Jensen inequalities). Then, we have
for all r ∈ N∗

mr[ρθ,i] ≤ 2rEνi(· ;θ) [ρθ,i(V)r] ≤ 2rλri ,

m2[ϕkρθ,i] ≤ 4Eνi(· ;θ)
[
|ϕk(V)ρθ,i(V)|2

]
≤ 4λ2iEνi(· ;θ)

[
|ϕk(V)|2

]
.

(30)

Finally, the Jensen inequality for the square root function provides that

Eνi(· ;θ)
[
|ϕk(V)|2

]
≤
√
Eνi(· ;θ)

[
|ϕk(V)|4

]
≤
√
βi (31)

Combining the upper-bounds from Equations (29)–(31) leads to

CMSE,k(θ) ≤
12λ2i

√
βi

pθ(Yi)2

{
1 +

9λ2i
pθ(Yi)2

+
250λi
pθ(Yi)

}
.

Since λi and βi are all finite constants, and for any θ ∈ Rd and any Yi ∈ N,
pθ(Yi) is positive, it follows that CMSE,k(θ) is finite. Consequently, Theorem
2.3 in [1] states that

Eν⊗N
i (· ;θ)

[{
ŝik −

∂

∂θk
log pθ(Yi)

}2
]
≤ 1

N
CMSE,k(θ),∣∣∣∣Eν⊗N

i (· ;θ) [ŝik]−
∂

∂θk
log pθ(Yi)

∣∣∣∣ ≤ 2

Npθ(Yi)

{
1

pθ(Yi)

√
m2[ρθ,i]m2[ϕkρθ,i]

+
√
CMSE,k(θ)Eνi(· ;θ) [ρθ,i(V)2]

}
,

where ϕk : V 7→ ϕk(V) − Eνi(· ;θ) [ϕk(U)]. To conclude, we further need to
eliminate the dependence in θ in these upper bounds. For any Yi ∈ Np, the
function θ 7→ pθ(Yi) is bounded below by ζi > 0 on Θ (Proposition 4.3).
Moreover, combining the argument of Equation (30) with the positivity of the
variance and Equation (31), we have

m2[ϕkρθ,i] ≤ 4λ2iEνi(· ;θ)
[∣∣ϕk(V)

∣∣2] ≤ 4λ2iEνi(· ;θ)
[
|ϕk(V)|2

]
≤ 4λ2i

√
βi.

Overall, these last two bounds in addition with Equations (29)–(31) yield the
conclusion, namely

σ
(t)
IS =

1

n

n∑
i=1

d∑
k=1

Eν⊗N
i (· ;θ)

[{
ŝik −

∂

∂θk
log pθ(Yi)

}2
]

≤ 12d

nN

n∑
i=1

λ2i
√
βi

ζ2i

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)
,
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and

ξ
(t)

IS =
1

n

n∑
i=1

√√√√ d∑
k=1

∣∣∣∣Eν⊗N
i (· ;θ) [ŝik]−

∂

∂θk
log pθ(Yi)

∣∣∣∣2

≤ 1

n

n∑
i=1

2
√
d

Nζi

{
1

ζi
4λ2iβ

1/4
i +

√
12λ4i

√
βi

ζ2i

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)}

≤ 4
√
d

nN

n∑
i=1

λ2iβ
1/4
i

ζ2i

{
2 +

√
3

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)}
.

Theorem 4.5. Let θ(1) ∈ Θ be an initial value and γ0 ∈ R∗
+ a user-specified ini-

tial learning rate. Under Model (2), if Assumption 1 holds, then for any T ∈ N∗

and any real constant η ∈ (0, 1/max{2Γ, L}], the sequence {θ(t)}1≤t≤T defined
by Algorithm 1 with γ = γ0/

√
T satisfies

1

T

T∑
t =1

E
[
∥G(t)

η ∥2
]
≤ 2τ

γ0(Lη + 1)
√
T

(
ℓ(θ(1))− ℓ(θMLE)

+
γ20(Lη + 1)

2η

[
∆2 + Γ2 +

d

N

{
Mσ +

2(∆ + Γ)√
d

Mξ

}])
+

2τ
√
d

ηN
Mξ,

(13 )

with L the smoothness constant of ℓ(·), Γ = supθ∈Θ∥∇ℓ(θ)∥, constants Mσ and
Mξ as defined in Proposition 4.4, and

τ =
(2Lη + 1)2

Lη + 1

(
1 +

√
Lη

Lη + 1

)2

, ∆ = max
i=1,...,n

sup
θ∈Θ

∥∇θℓ (θ) +∇θ log pθ (Yi)∥ .

Proof. According to Proposition 4.3, the function ℓ is L-smooth. Using succes-
sively that the square function and the expectation are increasing on R+, for
any real constant η > 0, Lemma B.3 yields

E
[
∥G(t)

η ∥2
]
≤
(
1 +

Lη

Lη + 1

)2
(
1 +

√
Lη

Lη + 1

)2

E
[
∥∇F η

Lη+1
(θ(t))∥2

]
.

(32)
To elaborate on the upper bound, we aim at using Lemma 4.2. Therefore, we
first need to prove that we have control over the bias ξ(t) and the mean squared
error σ(t) of the gradient estimates, as defined in Lemma 4.2.
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Let t ∈ N∗. Due to the bilinearity of the scalar product, the following identity
holds:

σ(t) = E
[
∥ĝ(t) +∇θ log pθ(t)

(
Yi(t)

)∥2
+ ∥∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

)∥2
∣∣∣ θ(t)]

− 2E
[
⟨ĝ(t) +∇θ log pθ(t)

(
Yi(t)

)
,∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

) ⟩ ∣∣∣ θ(t)]
Note that the first term of the right hand side corresponds to σ(t)

IS . Let bound
the two remaining terms. According to Proposition 4.1, for all i = 1, . . . , n, the
function

θ 7→ ∇θℓ (θ) +∇θ log pθ (Yi)

is continuous on Θ, and thereby bounded. Denote

∆ = max
i=1,...,n

sup
θ∈Θ

∥∇θℓ (θ) +∇θ log pθ (Yi)∥ .

We have
E
[
∥∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

)∥2
∣∣∣ θ(t)] ≤ ∆2

Moreover, i(t) being a uniform random variable on {1, . . . , n} independent of
the sequence θ(t),

E
[
⟨ĝ(t) +∇θ log pθ(t)

(
Yi(t)

)
,∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

) ⟩ ∣∣∣ θ(t)]
= E

[
E
[
⟨ − ŝNi(t)(θ

(t)) +∇θ log pθ(t)

(
Yi(t)

)
,∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

) ⟩ ∣∣∣ θ(t), i(t)]]
= E

[
⟨ − E

[
ŝNi(t)(θ

(t))
∣∣∣ θ(t), i(t)]+∇θ log pθ(t)

(
Yi(t)

)
,∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

) ⟩]
= − 1

n

n∑
i=1

⟨Eν⊗N
i (· ;θ(t))

[
ŝNi (θ(t))

]
−∇θ log pθ(t) (Yi) ,∇θℓ(θ(t)) +∇θ log pθ(t) (Yi) ⟩.

Providing Assumption 1 holds, the Cauchy-Schwarz inequality along with Propo-
sition 4.4 yields

− 2E
[
⟨ĝ(t) +∇θ log pθ(t)

(
Yi(t)

)
,∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

) ⟩ ∣∣∣ θ(t)]
≤ 2

n

n∑
i=1

∥Eν⊗N
i (· ;θ(t))

[
ŝNi (θ(t))

]
−∇θ log pθ(t) (Yi)∥∥∇θℓ(θ(t)) +∇θ log pθ(t) (Yi)∥

≤ 2∆
√
d

N
Mξ.

In conclusion, for any t ∈ N∗, we have a finite upper bound for the mean squared
error σ(t), namely

σ(t) ≤ d

N
Mσ +∆2 +

2∆
√
d

N
Mξ = ∆2 +

d

N

(
Mσ +

2∆√
d
Mξ

)
.
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Conversely, leveraging Assumption 1 once again, Proposition 4.4 shows that we
have a finite upper bound for the bias ξ(t). Indeed

ξ(t) =

∥∥∥∥∥ 1n
n∑
i=1

E
[
−ŝNi(t)

∣∣∣ θ(t), i(t) = i
]
+

1

n

n∑
i=1

∇θ log pθ(t)(Yi)

∥∥∥∥∥
=

∥∥∥∥∥ 1n
n∑
i=1

E
[
−ŝNi(t) +∇θ log pθ(t)(Yi(t))

∣∣∣ θ(t), i(t) = i
]∥∥∥∥∥

≤ 1

n

n∑
i=1

∥∥∥E [−ŝNi(t) +∇θ log pθ(t)(Yi(t))
∣∣∣ θ(t), i(t) = i

]∥∥∥ = ξ
(t)

IS ≤
√
d

N
Mξ.

Consequently, Lemma 4.2 applies for any real constant η ∈ (0, 1/max{2Γ, L}],
as

η

Lη + 1
≤ 1

L+max{2Γ, L}
=

1

max{2Γ + L, 2L}
.

After integrating both sides of Equation (11) with respect to θ(t) and plugging
in the aforementionned upper bounds, we get

γ

2
E
[∥∥∥∇F η

Lη+1
(θ(t))

∥∥∥2] ≤ E
[
F η

Lη+1
(θ(t))

]
− E

[
F η

Lη+1
(θ(t+1))

]
+

(γ + γ2Γ)(Lη + 1)
√
d

ηN
Mξ

+
γ2(Lη + 1)

2η

{
∆2 +

d

N

(
Mσ +

2∆√
d
Mξ

)
+ Γ2

}
.

Then, summing along the iterations t = 1, . . . , T yields
T∑
t =1

E
[∥∥∥∇F η

Lη+1
(θ(t))

∥∥∥2] ≤ 2

γ

{
F η

Lη+1
(θ(1))− E

[
F η

Lη+1
(θ(T+1))

]}
+

2(Lη + 1)T
√
d

ηN
Mξ +

γ(Lη + 1)T

η

[
∆2

+
d

N

{
Mσ +

2(∆ + Γ)√
d

Mξ

}
+ Γ2

]
.

For θMLE = argmin θ∈Θ ℓ(θ), according to the definition of the Moreau envelope,
for any θ ∈ Θ

ℓ(θMLE) ≤ Fη/(Lη + 1) (θ) ,

and thus,

1

T

T∑
t =1

E
[∥∥∥∇F η

Lη+1
(θ(t))

∥∥∥2] ≤ 2

γT

{
F η

Lη+1
(θ(1))− ℓ(θMLE)

}
+

2(Lη + 1)
√
d

ηN
Mξ +

γ(Lη + 1)

η

[
∆2

+
d

N

{
Mσ +

2(∆ + Γ)√
d

Mξ

}
+ Γ2

]
.
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Combining the last inequality with Equation (32) and using Fη/(Lη+1)(θ
(1)) ≤

ℓ(θ(1)) since θ(1) ∈ Θ, we get for γ = γ0/
√
T

1

T

T∑
t =1

E
[
∥G(t)

η ∥2
]
≤ 2τ

γ0(Lη + 1)
√
T

{
F η

Lη+1
(θ(1))− ℓ(θMLE)

}
+

2τ
√
d

ηN
Mξ

+
γ0τ

η
√
T

[
∆2 +

d

N

{
Mσ +

2(∆ + Γ)√
d

Mξ

}
+ Γ2

]
.

Appendix D: Results on the importance sampling proposal
distribution

Lemma 5.1. Let α ∈ (0, 1] and δ > 1. If for any i = 1, . . . , n, θ 7→ µi(θ) ∈ Rq
and θ 7→ Si(θ) ∈ Sq++ are continuous on Θ, then the proposal distribution
defined by

νi(· ;θ) = GM(·;µi(θ),Si(θ), α, δ) (15)
fulfils Assumption 1.

Proof. Let i ∈ {1, . . . , n}, α ∈ (0, 1] and δ > 1.

(A1.1) Each component of a mixture distribution being a non-negative func-
tion, we have for any V ∈ Rq and any θ ∈ Rd,

ρθ,i(V) =
pθ(Yi,V)

GM(V;µi(θ),Si(θ), α, δ)
≤ 1

α

pθ(Yi,V)

N (V;µi(θ), δIq)
.

On the compact set Θ, there exist real constants KΘ
i > 0 and κΘi (Lemma A.1)

such that

log
pθ(Yi,V)

N (V;µi(θ), δIq)
≤ KΘ

i ∥V∥+ κΘi − 1

2
∥V∥2 + 1

2δ
∥V − µi(θ)∥

2
+
q

2
log(δ).

Using the Cauchy-Schwarz inequality, we get

∥V − µi(θ)∥
2
= ∥V∥2+∥µi(θ)∥

2−2⟨µi(θ),V⟩ ≤ ∥V∥2+∥µi(θ)∥
2
+2∥V∥∥µi(θ)∥.

θ 7→ µi(θ) is continuous on the compact set Θ, and hence bounded, say by u⋆.
It follows that

∥V − µi(θ)∥
2 ≤ ∥V∥2 + u2⋆ + 2u⋆∥V∥.

Consequently, we can derive an upper bound independent of θ, namely

pθ(Yi,V)

N (V;µi(θ), δIq)
≤ exp

[(
KΘ
i +

u⋆
δ

)
∥V∥ − δ − 1

2δ
∥V∥2 + κΘi +

u2⋆
2δ

+
q

2
log(δ)

]
.

Providing δ > 1, the quadratic term in V overweight any other terms and the
supremum in V is finite:

sup
(θ,V)∈Θ×Rq

ρθ,i(V) ≤ 1

α
sup

(θ,V)∈Θ×Rq

pθ(Yi,V)

N (V;µi(θ), δIq)
<∞.
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(A1.2) Following Equation (22), there is a unique j in {1, . . . , p} such that∣∣∣∣ ∂∂θr log pθ(Yi,Wi)

∣∣∣∣ ≤ (∥xi∥+ ∥Wi∥) {∥Yi∥+ exp(Zij)} .

We then have,∣∣∣∣ ∂∂θr log pθ(Yi,Wi)

∣∣∣∣4 ≤
(
8∥xi∥4 + 8∥Wi∥4

) {
8∥Yi∥4 + 8 exp(4Zij)

}
.

≤ 64∥Yi∥4
(
∥xi∥4 + ∥Wi∥4

)
+ 64 exp(4B⊤

j xi + 4oij)
{
∥xi∥4 + ∥Wi∥4

}
exp

(
4C⊤

j Wi

)
,

where Bj = (B1j , . . . , Bpj)
⊤ and Cj = (Cj1, . . . , Cjq)

⊤ stand for the j-th col-
umn and row of B and C, respectively.

Let show that the upper bound admits a finite expectation with respect to
a multivariate Gaussian distribution N (µ, S), for any µ ∈ Rq and S ∈ Sq++. To
demonstrate this, we use the following identities. For any w ∈ Rq, a straight-
forward rewriting yields

N (w;µ, S) exp
(
4C⊤

j w
)
= N (w;µ+ 4SCj , S) exp

(
4C⊤

j µ+ 8C⊤
j SCj

)
. (33)

Moreover, we have (see for instance [39])

EN (0q,Iq)

[
∥Wi∥4

]
≤ q(q + 2).

Using that

EN (µ,S)

[
∥Wi∥4

]
= EN (0q,Iq)

[
∥µ+ S

1/2Wi∥4
]
≤ 8 ∥µ∥4+8∥S1/2∥4

EN (0q,Iq)

[
∥Wi∥4

]
,

we get
EN (µ,S)

[
∥Wi∥4

]
≤ 8 ∥µ∥4 + 8q(q + 2)∥S1/2∥4

(34)

Equations (33) and (34) thus lead to

Φj(θ, µ, S) = exp
(
4C⊤

j µ+ 8C⊤
j SCj

)
= EN (µ,S)

[
exp

(
4C⊤

j Wi

)]
,

Ψj(θ, µ, S) = exp
(
4C⊤

j µ+ 8C⊤
j SCj

){
8 ∥µ+ 4SCj∥4 + 8q(q + 2)∥S1/2∥4

}
≥ EN (µ,S)

[
∥Wi∥4 exp

(
4C⊤

j Wi

)]
.

Therefore, for any µ ∈ Rq and S ∈ Sq++

EN (µ,S)

[∣∣∣∣ ∂∂θr log pθ(Yi,Wi)

∣∣∣∣4
]
≤ 64∥Yi∥4

{
∥xi∥4 + 8 ∥µ∥4 + 8q(q + 2)∥S1/2∥4

}
+ 64 exp(4B⊤

j xi + 4oij)∥xi∥4Φj(θ, µ, S)
+ 64 exp(4B⊤

j xi + 4oij)Ψj(θ, µ, S).
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If θ 7→ µi(θ) and θ 7→ Si(θ) are continuous on Θ, the functions

θ 7→ Si(θ)
1/2,

θ 7→ (1− α)Φj(θ,µi(θ),Si(θ)) + αΦj(θ,µi(θ), δIq),

θ 7→ (1− α)Ψj(θ,µi(θ),Si(θ)) + αΨj(θ,µi(θ), δIq),

are also continuous on the compact set Θ (by a composition argument), and
therefore bounded on Θ, say by c⋆, ϕ⋆ and ψ⋆ respectively. On the other hand,

exp(4B⊤
j xi + 4oij) ≤ exp(4∥xi∥∥Bj∥+ 4∥oi∥) ≤ exp(4∥xi∥ sup

θ∈Θ
∥θ∥+ 4∥oi∥).

Consequently, with u⋆ the bound of θ 7→ µi(θ) on Θ, for any r ∈ {1, . . . , d},

Eνi(· ;θ)

[∣∣∣∣ ∂∂θr log pθ(Yi,Wi)

∣∣∣∣4
]
≤ 64∥Yi∥4

[
∥xi∥4 + 8u⋆ + 8q(q + 2)

{
(1− α)c4⋆ + αδ4

}]
+ 64 exp(4∥xi∥ sup

θ∈Θ
∥θ∥+ 4∥oi∥)

(
∥xi∥4ϕ⋆ + ψ⋆

)
,

which yields the conclusion.

Lemma D.1. When considering Model (2), for any individual i = 1, . . . , n, and
any k ∈ N∗, the function

θ 7→
∫
Rq

wkpθ(dw | Yi)

is continuous on Rd.

Proof. Let i ∈ {1, . . . , n}, k ∈ N∗, and Θ ⊂ Rd a non-empty bounded and open
set. For any w ∈ Rq and θ ∈ Θ, the Bayes rule yields

pθ(w | Yi) =
pθ(Yi | wi)N (w;0q, Iq)

pθ(Yi)
.

Given w ∈ Rq, θ 7→ pθ(Yi | W) is continuous on Θ, and θ 7→ pθ(Yi) is
continuous and positive on Θ (see Proposition 4.1 and its proof). This proves
the continuity of θ 7→ wkpθ(w | Yi) on Θ.

Additionally, Lemma A.1 and Proposition 4.3 state that there are real con-
stants KΘ

i > 0, κΘi , and ζi > 0, such that for any θ ∈ Θ

∥∥wkpθ(w | Yi)
∥∥ ≤ ∥w∥k

ζi
exp

{
KΘ
i ∥w∥ − 1

2
∥w∥2 + κΘi − q

2
log(2π)

}
.

The upper bound is Lebesgue integrable on Rq and independent of θ ∈ Θ.
Consequently, the dominated convergence theorem yields the continuity on any
non-empty bounded and open set.
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Appendix E: Simulation study

E.1. Note on Rprop updates

Rprop assigns an individual learning rate to each parameter, which is adjusted
based on the gradient. Formally, given A(1) = Id and (η+, η−) = (1.2, 0.5), Rprop
updates correspond to

θ(t+1) = θ(t) −A(t)ĝ(t),

with A(t)
jk = 0 for j ̸= k, j, k = 1, . . . , d and

A
(t)
jk =

{
η+A

(t−1)
kk if ĝ(t)k has same sign than ĝ(t−1)

k

η−A
(t−1)
kk else

, k = 1, . . . , d
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