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Abstract: High-dimensional count data poses significant challenges for
statistical analysis, necessitating effective methods that also preserve ex-
plainability. We focus on a low rank constrained variant of the Poisson log-
normal model, which relates the observed data to a latent low-dimensional
multivariate Gaussian variable via a Poisson distribution. Variational in-
ference methods have become a golden standard solution to infer such a
model. While computationally efficient, they usually lack theoretical statis-
tical properties with respect to the model. To address this issue we propose
a projected stochastic gradient scheme that directly maximizes the log-
likelihood. We prove the convergence of the proposed method when using
importance sampling for estimating the gradient. Specifically, we obtain a
rate of convergence of O(T−1/2 + N−1) with T the number of iterations
and N the number of Monte Carlo draws. The latter follows from a novel
descent lemma for non convex L-smooth objective functions, and random
biased gradient estimate. We also demonstrate numerically the efficiency of
our solution compared to its variational competitor. Our method not only
scales with respect to the number of observed samples but also provides
access to the desirable properties of the maximum likelihood estimator.

MSC2020 subject classifications: Primary 00X00, 00X00; secondary
00X00.
Keywords and phrases: Dimension reduction, importance sampling, mul-
tivariate count data, Poisson log-normal model, projected stochastic gradi-
ent descent.

1. Introduction

Multivariate count data are prevalent in a widening range of applications such as
ecology, genomics, microbiology, astronomy, and economy, just to name a few.
This ubiquity has prompted the development of numerous statistical models,
as unlike continuous multivariate distributions, a generic universal multivariate
distribution for count data does not exist (Inouye et al., 2017). Most of the
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successful proposals are latent variable models belonging to the family of gen-
eralized multivariate mixed models (GMMM). The latter offers the strength of
model-based approaches, enabling the incorporation of external covariates and
allowing the latent variables to be constrained in various ways to perform a
specific task — regression, variable selection, and dimension reduction — while
controlling the complexity of the model. These strengths contribute to the un-
wavering popularity of these models in the aforementioned fields of application,
where both modeling and interpretability are essential prerequisites.

Significant milestones in the literature include a few generic frameworks ini-
tially developed through applications in ecology, where count and abundance
tables have long been the norm. The generalized linear latent variable models
(GLLVM) of Niku et al. (2019) are instances of generalized multivariate mixed
models with low-dimensional latent variables, where the distribution of observed
responses usually belongs to the exponential family. The Hierarchical Modeling
of Species Communities (HMSC), presented in Ovaskainen et al. (2017), also
falls within the class of generalized linear latent variable models with additional
layers in the modeling of the latent variables. Multivariate Poisson Log-Normal
models (PLN), as presented in Chiquet, Mariadassou and Robin (2021), are yet
another instance of the expansive family of generalized linear latent variable
models. The latter confers the advantage of developing a generic and versatile
framework capable of addressing various tasks, including dimension reduction,
regression, clustering, discriminant analysis.

These modeling frameworks encounter the usual inference issues inherent to
latent variable models. Specifically, direct and exact likelihood maximization is
difficult since it requires evaluating an integral over a space of the latent variable
dimension. Hence, direct numerical integration approaches (Aitchison and Ho,
1989) are limited to small-scale problems involving solely a few variables. Ap-
proaches based on Markov chain Monte Carlo (MCMC) techniques can handle
medium-size problems but are computationally expensive (Hui, 2016; Tikhonov
et al., 2020). Alternatively, methods based on Laplace approximations exhibit
greater computational efficiency but can potentially be inaccurate (Gómez-
Rubio, 2020). An indirect approach relies on the Expectation-Maximization
(EM) algorithm, a well-established method for inference in incomplete data
models since Dempster, Laird and Rubin (1977). However, the M-step is prac-
tically intractable in GMMM, as it requires computing an expectation with
respect to the distribution of the latent variable conditional on the observa-
tions. MCMC techniques can obviously be used in such a setting (e.g., Karlis,
2005), though displaying the same shortcomings. More recently, the growing size
of datasets and the porting of these methods to other fields of application where
the number of variables expands drastically, such as genomics, have sparked
interest in variational approaches (Hall, Ormerod and Wand, 2011; Blei, Ku-
cukelbir and McAuliffe, 2017; Hui et al., 2017; Niku et al., 2019) as they provide
a good compromise between accuracy and computational efficiency.

In the context of PLN models, which is the focus of this paper, Chiquet,
Mariadassou and Robin (2021) have extensively used this variational approach
in conjunction with the EM algorithm and adapted it to several contexts, in-
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cluding dimension reduction, clustering, sparse covariance. The implementation
provided in Chiquet et al. (2023) is efficient and can deal with problems with
thousands of observations and hundreds — even a couple of thousands — of
variables. The resulting estimator can be shown to converge to the maximum
of the surrogate likelihood function and enjoy asymptotical normality (Westling
and McCormick, 2019). However, these results pertain to the surrogate model
and generally differ from the natural properties of an M-estimator associated
with the likelihood (van der Vaart, 1998). In particular, while the maximum
reached by the variational estimator seems at least empirically to coincide with
the maximum likelihood estimator (MLE), there is no genuine estimator of the
variance of the variational estimator that can be used to measure uncertainty
properly: although the bootstrap method or the jackknife estimator could be
used to build an estimator of the variance of the estimate, the variational so-
lution is marred by the lack of relevant statistical guarantees. Consequently,
the design of efficient algorithms that can directly maximize the likelihood and
inherit the desirable properties of MLEs is still a key research issue for GMMM,
particularly for PLN models. Such an algorithm allows a more direct assessment
of estimator uncertainty by means of asymptotic variance estimates. It is in this
spirit that Stoehr and Robin (2024) propose a variant of the Monte Carlo EM
scheme that combines composite likelihood and importance sampling methods
with a focus on applications in synecology. While the approach benefits from the
properties of the maximum composite likelihood estimator, it necessitates split-
ting the data into overlapping blocks containing a small number of variables.
The mimimum number of blocks required grows quadratically in the number
of variables (or species). As the computational complexity of their Monte Carlo
EM increases linearly with the number of blocks, the solution is primarily suited
for problems involving a few dozen variables but does not scale up efficiently to
larger problems from a computational perspective.

Contributions This paper introduces a projected stochastic gradient descent
(SGD) scheme based on self-normalized importance sampling to obtain gradi-
ent estimates for optimizing the marginal likelihood of the observed data in the
Poisson log-normal model, subject to a rank constraint on the latent space. This
model, introduced by Chiquet, Mariadassou and Robin (2018a), can be seen as
a probabilistic version of Principal Component Analysis (PCA) with Poisson
emission law, and its standard inference solution is a variational Expectation-
Maximization (VEM) algorithm. Estimating parameters according to the max-
imum likelihood principle with Monte Carlo simulations is a long-standing idea
for an unnormalized statistical model — a class of challenging models due to
their intractable partition function which is a highly multidimensional integral
depending on the parameters. For instance, Monte Carlo maximum likelihood
estimation (Geyer, 1994) uses importance sampling to estimate the partition
function while contrastive divergence (Hinton, 2002) estimates the gradient of
the log partition function via Monte Carlo methods. More recently, the noise-
contrastive estimation (Gutmann and Hyvärinen, 2012) reformulates the initial
problem to avoid estimating the partition function or its gradient. Here, we rely
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on the fact that incomplete data models share similarities with the unnormal-
ized models in that, under mild regularity conditions, the inference resumes to
deal with an intractable integral, namely the score function for the observed
likelihood (Louis, 1982). We show that the PLN-PCA model falls within the set
of incomplete data models for which the score function is written as an expected
value with respect to the conditional distribution of the latent given the observed
and can thereby be estimated by simulation methods. The rank constraint en-
sures that the importance sampling estimator can handle problems with up to
thousands of variables in the emission space, provided that the dimension of the
latent space is controlled and limited to some tens. The projection step onto
a convex compact set specifically guarantees that the objective function is L-
smooth. We also show that it ensures a bounded mean squared error and bias for
the gradient estimator. Such properties are common in the literature (Ghadimi
and Lan, 2013; Mai and Johansson, 2021; Scaman, Malherbe and Santos, 2022).

Our major contribution is a novel convergence theorem for the gradient
method presented. To establish the result within the context of a self-normalized
importance sampling estimator, we first present a general descent lemma appli-
cable under minimal assumptions — specifically, L-smoothness, and bounded
bias and quadratic error for the gradient estimator. To the best of our knowledge,
it is the first result on projected stochastic gradient schemes for potentially both
non convex objective functions and random biased gradient estimators. Given
T iterations of our method and N Monte Carlo draws, we obtain a theoretical
rate of O(T−1/2+N−1) for the gradient mapping norm. This convergence rate is
consistent with those demonstrated in the literature, albeit in different contexts.
For a non-convex setting with an unbiased gradient estimator, Ghadimi and Lan
(2013) derive an O(T−1/2) convergence rate for the gradient’s norm objective,
while Mai and Johansson (2021) achieve the same rate for the gradient mapping
norm but when a projection step is added. In situations where the gradient esti-
mator is biased, with a bound b on the bias, Ajalloeian and Stich (2021) retrieve
a rate of O(T−1/2 + b), but only when no projection step is performed.

The paper also includes an efficient implementation of our algorithm using
JAX library (Bradbury et al., 2018), and GPU computing. As a by-product, we
provide a PyTorch (Paszke et al., 2019) version of the VEM solution, enabling
the analysis of large-scale datasets with hundreds of thousands of observations
and tens of thousands of variables.

Outline The paper begins with an introduction to the standard multivariate
PLN model and its PCA version in Section 3. We then present our stochas-
tic gradient scheme with convergence guarantees in Section 4. In Section 5,
we propose a sequentially adapted Gaussian mixture distribution to serve as a
valid importance sampling proposal distribution within our algorithm. Finally,
Section 6 details a simulation study on synthetic data and an application to
genomic data, where we deal with the problem of dimension reduction and visu-
alization of a transcriptomic single-cell dataset. Technical details are postponed
till Appendices A–D.
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2. Notations and conventions

Let p and q be positive integers. The vector space of all p×q-matrices over a ring
A is denoted by Mp×q(A). The subset of all symmetric, positive and definite
p× p-matrices over R is denoted by Sp++. We denote by ⟨·, ·⟩ the scalar product
on a real p-space Rp, and ∥·∥ its associated norm. The matrix norm induced
by ∥·∥ on Mp×p(R) is also denoted by ∥·∥. Diag(x) is a diagonal matrix with
diagonal equal to x for x a vector. When applied to matrices or vectors, simple
functions like log, exp or square apply element-wise.

We denote by M1(Rp) the set of probability measures on Rp. Given a proba-
bility measure π ∈ M1(Rp), Mπ is the set of probability measures that dominates
π. The product measure

∏n
i=1 π on Rd×n is denoted by π⊗n. We use the same

notation to refer to a measure and its associated density, meaning that if π is ab-
solutely continuous with respect to the Lebesgue measure λ, π(dx) = π(x)λ(dx).
The expectation with respect to π is denoted by Eπ . When there is no ambiguity
regarding the integration measure, we simply use the notation E.

We denote by N (µ,S) a p-dimensional Gaussian variable with mean µ ∈ Rp
and variance S ∈ Sp++ and N (x;µ,S) its density evaluated at x ∈ Rp. We
denote by P(λ) a Poisson variable with rate λ > 0.

The Kullback–Leibler divergence between π ∈ M1(Rp) and µ ∈ Mπ is defined
by

KL(π ∥ µ) =
∫

log
π(x)

µ(x)
π(dx).

The entropy of a random variable X distributed according to π ∈ M1(Rp) is
defined by

Hπ(X) = −
∫

log π(x)π(dx).

Given X ⊆ Rp, a differentiable function f : Rp → R is said to be L−smooth
on X with L ≥ 0 if its gradient is L−Lipschitz on X , namely, for any θ,θ′ ∈ X ,

∥∇θf(θ)−∇θf(θ′)∥ ≤ L∥θ − θ′∥.

3. Dimension reduction in multivariate Poisson log-normal models

Background: Multivariate Poisson log-normal model Consider a data
matrix Y = (Yij) ∈ Mn×p(N) storing n i.i.d. observations of a p-dimensional
random vector Yi = (Yi1, . . . , Yip) ∈ Np, i = 1, . . . , n. The multivariate Poisson
lognormal model (see Aitchison and Ho, 1989, for its original formulation) re-
lates each of the observed vector Yi to a latent (or unobserved) p-dimensional
Gaussian vector Zi, whose covariance matrix Σ describes the underlying struc-
ture of dependence between the p variables. Following a formalism similar to
that of GMMM, the model can also encompass a main effect due to a linear
combination of d observed covariates xi ∈ Rd (including a vector of intercepts),
and some possible user-specified offsets oi = (oij) ∈ Rp to take into account
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the sampling efforts between the samples. The model assumes that the observa-
tions Yij are independent conditionnally on Zi = (Zij), and that the conditional
distribution p(Yij | Zij) is a Poisson distribution, namely,

{Zi}1≤i≤n i.i.d. : Zi ∼ N (0q,Σ);

{Yij}1≤i≤n
1≤j≤p

ind. | {Zi}1≤i≤n : Yij | Zij ∼ P
(
exp(Zij +B⊤

j xi + oij)
)
,

(1)

where B = [B1, . . . ,Bp] ∈ Md×p(R) is a latent matrix of regression parameters.
In this framework, the main goal is to estimate the vector of parameters θ =
(B,Σ) ∈ RD, with D = pm+ p(p+ 1)/2, from the data matrices Y and X.

Poisson lognormal-model with low-rank constraint Throughout this
paper, we focus on the PCA variant of model (1) as introduced in Chiquet, Mari-
adassou and Robin (2018a). The latter is derived by adding a rank constraint
on the latent covariance matrix, such that rank(Σ) = q < p. The constraint
alleviates the number of parameters to estimate, which can become prohibitive
when the number of variables p is large in (1). This key feature is particularly
relevant in the perspective of importance sampling. Indeed, this allows us to
deal with problems where the dimension of the observation space is potentially
large, in contrast with the number of parameters in the model and the dimen-
sion of the latent space, where the particles are sampled. The PCA version
can be written in a hierarchical framework by adding a layer with, for each
individual, a q-dimensional standard Gaussian vector Wi, and introducing an
individual-specific linear function fi : Rq → Rp defined for all w ∈ Rq as

fi(w;B,C) = Cw +B⊤xi + oi,

where C ∈ Mp×q(R) encodes the embedding of the observations into a space of
lower dimension. The model is then written as

{Wi}1≤i≤n i.i.d. : Wi ∼ N (0q, Iq);

{Zi}1≤i≤n i.i.d. : Zi = CWi +B⊤xi + oi;

{Yij}1≤i≤n
1≤j≤p

ind. | {Zi}1≤i≤n : p (Yij | Zij) =
exp {YijZij − exp(Zij)}

Yij !
.

(2)

We refer to Model (2) as PLN-PCA. Adopting the PCA terminology, C is the
p×q matrix of loadings, and Wi represents the vector of scores of the i-th obser-
vation in the low-dimensional latent subspace, whose dimension q corresponds
to the number of components.

The vector of unknown parameters to be estimated is now θ = (B,C) ∈ Rd,
with d = p(q +m) that is significantly smaller than D when q ≪ p, the typical
case at play in a context of dimension reduction. The complete log-likelihood
of Model (2) can be written, up to additive constants with respect to model
parameters, as

n∑
i=1

log pθ(Yi,Wi) =

n∑
i=1

⟨Yi,Zi⟩ −
p∑
j=1

exp(Zij)−
1

2
∥Wi∥2

 .
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Without any further assumption on C, remark that θ is not identifiable since
the distribution of Zi is invariant when multiplying C by any orthogonal matrix.
However, since Yi depends on C solely through the covariance Σ = CC⊤, it
is enough to have the identifiability for the model parametrized by (B,Σ). We
will discuss this point further when introducing the gradient ascent algorithm.

4. Biased stochastic gradient descent

4.1. Solution to maximum likelihood principle

Estimation of θ is achieved by maximizing the likelihood of the observed data
pθ(Y), or equivalently by solving the optimization problem

θ⋆ = argmin
θ∈X

ℓ(θ), ℓ(θ) = − 1

n

n∑
i=1

log pθ(Yi), (3)

where ℓ is referred to as the loss function. Optimizing such a function is not
straightforward because the marginal pθ(Yi) requires integrating out the latent
variable Wi.

Reminder on the EM approach The Expectation-Maximization algorithm
(Dempster, Laird and Rubin, 1977) circumvent this issue by using a decompo-
sition of the log-likelihood of the observed data Yi into

log pθ(Yi) =

∫
Rq

log pθ(Yi,w)pθ(dw | Yi)−
∫
Rq

log pθ(w | Yi)pθ(dw | Yi)

= E [log pθ(Yi,Wi) | Yi,θ] +Hpθ(· | Yi)(Wi),

The algorithm proceeds by evaluating the conditional expectation of the com-
plete log-likelihood using the current estimates θ(t) of the model parameters:

Q(θ | θ(t)) =
n∑
i=1

E
[
log pθ(Yi,Wi)

∣∣∣ Yi,θ
(t)
]
.

By iteratively maximizing this quantity, the algorithm generates a sequence that
converges under suitable regularity conditions to the maximum likelihood esti-
mator θ⋆ (Wu, 1983; Boyles, 1983). However, the conditional pθ(Wi | Yi) is
intractable for the PLN model and its PCA extension. To address this chal-
lenge, variational inference approximates pθ(Wi | Yi) with a surrogate distri-
bution ϕψ(V) from a parametric family P. For instance, Chiquet, Mariadas-
sou and Robin (2018b, 2019) resorted to multivariate Gaussian distributions
N (mVEM

i ,SVEM
i ) with diagonal covariance matrix. The Variational EM method

alternates between updates of the variational parameter ψ and the model pa-
rameter θ, aiming to maximize a lower bound of the log-likelihood, defined as

log pθ(Yi)−KL [ϕψ(Wi)∥pθ(Wi | Yi)] = Eϕψ [log pθ(Yi,V)] +Hϕψ (V).

At convergence, the variational solution is associated with

ϕψ = argmin
ϕ∈P

KL [ϕ∥pθ(· | Yi)] . (4)
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Stochastic gradient scheme In contrast to existing methods, we propose
to address the optimization problem (3) directly with an SGD scheme. Our
approach leverages that the Louis principle applies to Model (2), as outlined
below (see Appendix A for a proof).

Proposition 4.1. For all individual i = 1, . . . , n, the incomplete log-likelihood
θ 7→ log pθ(Yi) of Model (2) is twice continuously differentiable on Rd and its
score function can be written as

si(θ) =

∫
Rq

∇θ log pθ(Yi,w)pθ(dw | Yi) = E [∇θ log pθ(Yi,Wi) | Yi,θ] . (5)

While the intractability of the conditional distribution renders exact cal-
culation infeasible even for a small value of q, identity (5) is instrumental in
estimating the score function with Monte Carlo methods and designing an SGD
scheme. Given a learning rate γ ∈ R∗

+ and an initial point θ(1) ∈ Rd, the SGD
scheme recursively defines a sequence {θ(t)}t∈N∗ through the equation

θ(t+1) = θ(t) − γĝ(t), (6)

where ĝ(t) is a possibly biased estimator of ∇θℓ(θ(t)). Here we explore the oppor-
tunity of importance sampling methods (Kahn, 1949; Kahn and Harris, 1951)
to define ĝ(t). Indeed, the lack of closed-form for pθ(Wi | Yi) hinders Monte
Carlo methods that rely on exact samples from it. However, importance sam-
pling overcomes this difficulty by changing the integration measure. For any
θ ∈ Rd, it approximates pθ(· | Yi) with a random probability measure based
on weighted samples from a probability density function νi(· ;θ), possibly de-
pending on θ and referred to as proposal distribution, such that pθ(· | Yi) is
absolutely continuous with respect to νi(· ;θ). The importance sampling method
is then based on the following identity

si(θ) =

∫
Rq

pθ(v | Yi)

νi(v;θ)
∇θ log pθ(Yi,v)νi(dv;θ).

To circumvent the issue of evaluating the intractable distribution in the above,
the method leverages a tractable non-normalized version of the conditional dis-
tribution, namely the joint distribution. Let us introduce the Radon-Nikodym
derivative of pθ(Yi, ·) with respect to νi(· ;θ):

ρθ,i(v) =
pθ(Yi,v)

νi(v;θ)
, v ∈ Rq.

The score can be written as

si(θ) =

∫
Rq

ρθ,i(v)∇θ log pθ(Yi,v)νi(dv;θ)

/∫
Rq

ρθ,i(v)νi(dv;θ) .

Thereby, given N ∈ N∗ independent samples vi,1, . . . ,vi,N from νi(· ;θ), the
self-normalized importance sampling (SNIS) estimator of si(θ) is

ŝNi (θ) =

N∑
r=1

ρθ,i(vi,r)∇θ log pθ (Yi,vi,r)

/
N∑
s=1

ρθ,i(vi,s) . (7)
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Algorithm 1: Importance Sampling based Gradient Descent (ISGD)
Input: initial point θ(1), learning rate γ, number of iterations T , number of Monte

Carlo draws N .
Output: the sequence θ(1), . . . ,θ(T+1)

for t = 1 to T do
Sample i uniformly in {1, . . . , n};
Sample (vi,1, . . . ,vi,N ) from ν⊗N

i (· ;θ(t));
Update θ(t+1) = PΘ(θ(t) − γĝ(t)) with ĝ(t) = −ŝNi (θ

(t)) as in Equation (7);
end

A possible solution is then to define ĝ(t) by averaging the estimator (7) across
individuals. In what follows, we rely on a mini-batch strategy where we use
a single individual at a time. Specifically, at iteration t ∈ N∗, we draw an
individual i(t) uniformly in {1, . . . , n} and the gradient estimator within the
update Equation (6) is

ĝ(t) = −ŝNi(t)(θ
(t)). (8)

4.2. Convergence guarantees

The SNIS estimator (7) is strongly consistent, but exhibits bias for a fixed sample
size N . As shown in this section, controlling this bias is essential to ensure the
convergence of our algorithm. This requires imposing further constraints on
the optimization problem. In the remainder of the paper, let Θ ⊂ Rd be a
nonempty, compact, and convex set. In place of the standard update (6), we
employ a projected SGD algorithm, which is defined by

θ(t+1) = PΘ(θ(t) − γĝ(t)), (9)

where PΘ stands for the orthogonal projection on Θ. Algorithm 1 summarizes
the overall scheme. Formally, the projection step ensures that all iterates remain
bounded, which in turn guarantees the L-smoothness and the bounded gradient
conditions commonly assumed in the literature to establish convergence prop-
erties.

Preliminary result for L-smooth functions In the following, we delve into
the analysis of an SGD algorithm (i) for non-convex and constrained optimiza-
tion with L-smooth objective, (ii) with a gradient estimator that is both biased
and random. To the best of our knowledge, no established convergence theorem
exists for these conditions. Mai and Johansson (2021, Lemma 3.2) achieve a
similar result but for unbiased gradient estimator. Let F : Rd → R be defined
by

F (θ) = ℓ(θ) + IΘ(θ), IΘ(θ) =

{
0 if θ ∈ Θ,

∞ if θ /∈ Θ.
(10)
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For a real η > 0, its Moreau envelope is

Fη(θ) = inf
θ′∈Rd

{
F (θ′) +

1

2η
∥θ − θ′∥2

}
.

The Moreau envelope is useful from an optimization perspective, as it has the
same set of minimizers as F , while being differentiable, unlike F . This character-
istic is instrumental in analyzing the convergence of proximal gradient methods
such as the one from Equation (9). Our following result yields control over the
Moreau envelope, providing we have a L-smooth loss function and a gradient
estimator ĝ(t) with bounded mean squared error and bias (see Appendix B for
proof).

Lemma 4.2 (Descent lemma). Let consider the gradient scheme as defined by
Equation (9). Assume that

(i) the function ℓ is L-smooth on Θ, and denote Γ = supθ∈Θ∥∇θℓ(θ)∥;
(ii) for t ∈ N∗, one has

σ(t) = E
[
∥ĝ(t) −∇θℓ(θ(t))∥2

∣∣∣ θ(t)] <∞,

ξ(t) =
∥∥∥E [ĝ(t) ∣∣∣ θ(t)]−∇θℓ(θ(t))

∥∥∥ <∞.

Then, for any real constant η ∈ (0, 1/max{2Γ + L, 2L}],

E
[
Fη(θ(t+1))

∣∣∣ θ(t)] ≤ Fη(θ(t))−
γ

2
∥∇Fη(θ(t))∥2

+
γ + γ2Γ

η
ξ(t) +

γ2

2η
(σ(t) + Γ2).

(11)

Remark that Γ is finite as the gradient is L-Lipschitz continuous on a bounded
set. Consequently the interval (0, 1/max{2Γ + L, 2L}] is nonempty.

Applicability to the PLN-PCA model We now demonstrate that the loss
function for the PLN-PCA model and the importance sampling estimate (8)
satisfy the assumptions from Lemma 4.2.

Proposition 4.3. Under Model (2), for any nonempty compact subset Θ ⊂ Rd,
we have that

(i) for any individual i = 1, . . . , n, there exists a real

0 < ζi = inf
θ∈Θ

pθ(Yi);

(ii) there exists a real L ≥ 0 such that the objective function ℓ, as defined in
(3), is L-smooth on Θ.

Regarding Assumption (ii) of Lemma 4.2, we should note that both σ(t)

and ξ(t) are driven by, respectively, the mean squared error and the bias of the
importance sampling estimate (7). Agapiou et al. (2017, Theorem 2.3) yield
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sufficient conditions to have control over the bias and error. The latter led to
the subsequent assumptions on the proposal distribution for our optimization
problem.

Assumption 1. For all individual i ∈ {1, . . . , n}, the proposal distribution νi
is chosen such that

λi = sup
(θ,V)∈Θ×Rq

ρθ,i(V) <∞,

βi = sup
θ∈Θ

Eνi(· ;θ)
[
∥∇θ log pθ(Yi,V)∥41

]
<∞.

Following the work of Agapiou et al. (2017), we obtain finite bound when
integrating the mean squared error and the bias of the importance sampling
estimate (7) with respect to the random mini-batch index i(t) (see Appendix C
for proof).

Proposition 4.4. Let {i(t)}t∈N∗ and {θ(t)}t∈N∗ be the associated random se-
quences generated by Algorithm 1. Under Model (2), if Assumption 1 holds, then,
for all t ∈ N,

σ
(t)
IS = E

[∥∥∥ŝNi(t)(θ(t))−∇ log pθ(t)

(
Yi(t)

)∥∥∥2 ∣∣∣∣ θ(t)] ≤ d

N
Mσ,

ξ
(t)

IS = E
[∥∥∥E [ŝNi(t)(θ(t))−∇ log pθ(t)

(
Yi(t)

) ∣∣∣ θ(t), i(t)]∥∥∥ ∣∣∣ θ(t)] ≤ √
d

N
Mξ,

where Mσ and Mξ are two finite and positive constants given by

Mσ =
12

n

n∑
i=1

λ2i
√
βi

ζ2i

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)
,

Mξ =
4

n

n∑
i=1

λ2iβ
1/4
i

ζ2i

{
2 +

√
3

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)}
,

with λi and βi as in Assumption 1.

As detailled in the proof of Theorem 4.5 in Appendix C, this result implies
the conditions required on σ(t) and ξ(t), since there is a constant A such that

σ(t) ≤ A
(
σ
(t)
IS + ξ

(t)

IS + 1
)
, and ξ(t) ≤ ξ

(t)

IS .

Convergence of the gradient mapping As the local minimum of the loss
function may lie outside the compact set Θ, we cannot prove that the norm
of ∇ℓ(θ) becomes arbitrarily small within Algorithm 1. Instead, in the context
of gradient methods incorporating a projection step, the convergence rate is
characterized in terms of the norm of the gradient mapping G(t)

η (Drusvyatskiy
and Paquette, 2019) defined for any real η > 0 by

G(t)
η =

θ(t) − PΘ(θ(t) − η∇ℓ(θ(t)))
η

. (12)
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This mapping is a tailored gradient objective, specifically modified to handle the
projection step, whose norm is equivalent to the gradient norm of the Moreau
envelope (see Lemma B.3). Our next result shows that the norm of the gradient
mapping for Algorithm 1 can be rendered arbitrarily small, provided we use a
sufficiently large number of iterations T and particles N .

Theorem 4.5. Let θ(1) ∈ Θ be an initial value and γ0 ∈ R∗
+ a user-specified ini-

tial learning rate. Under Model (2), if Assumption 1 holds, then for any T ∈ N∗

and any real constant η ∈ (0, 1/max{2Γ, L}], the sequence {θ(t)}1≤t≤T defined
by Algorithm 1 with γ = γ0/

√
T satisfies

(13 )

1

T

T∑
t =1

E
[
∥G(t)

η ∥2
]
≤ 2τ

γ0(Lη + 1)
√
T

(
ℓ(θ(1))− ℓ(θ⋆) +

γ20(Lη + 1)

2η

[
∆2

+ Γ2 +
d

N

{
Mσ +

2(∆ + Γ)√
d

Mξ

}])
+

2τ
√
d

ηN
Mξ,

with L the smoothness constant of ℓ(·), Γ = supθ∈Θ∥∇ℓ(θ)∥, constants Mσ and
Mξ as defined in Proposition 4.4, and

τ =
(2Lη + 1)2

Lη + 1

(
1 +

√
Lη

Lη + 1

)2

, ∆ = max
i=1,...,n

sup
θ∈Θ

∥∇θℓ (θ) +∇θ log pθ (Yi)∥ .

Remark 1. While the upper bound 1/max{2Γ, L} is unknown, Algorithm 1 does
not depend on the choice of η in practice, and therefore neither Γ nor L need
to be estimated.

5. Importance sampling proposal choice

In this section, we propose a specific choice of proposal distribution that satisfies
Assumption 1, namely a mixture distribution. Mixture distributions are often
chosen for this task (e.g., Cappé et al., 2008) because of their flexibility as
parametric models. In what follows, we leverage the model structure and focus
on two-component Gaussian mixture distributions. Given two real constants
α ∈ [0, 1] and δ > 0, denote the two-component Gaussian mixture with mean
µ ∈ Rq and covariance S ∈ Sq++ by

GM(·;µ,S, α, δ) = (1− α)N (·;µ,S) + αN (·;µ, δIq). (14)

For each individual i = 1, . . . , n, the proposal distribution νi(· ;θ) is set to such
a mixture, and µ and S are iteratively adapted according to the current estimate
θ(t) (see Algorithm 2). However, to ensure convergence, it is necessary to impose
conditions on (14) (see Appendix D for proof).

Lemma 5.1. Let α ∈ (0, 1] and δ > 1. If for any i = 1, . . . , n, θ 7→ µi(θ) ∈ Rq
and θ 7→ Si(θ) ∈ Sq++ are continuous on Θ, then the proposal distribution
defined by

νi(· ;θ) = GM(·;µi(θ),Si(θ), α, δ) (15)
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fulfils Assumption 1.

Constraining the parameter δ to live in (1,+∞) is sufficient to guarantee
that the Radon–Nikodym derivative ρθ,i is uniformly bounded with respect to
θ ∈ Θ. However, this does not ensure an efficient gradient estimator in terms of
error or bias. The bias and the error are both related to the Kullback–Leibler
divergence KL[pθ(· | Yi)∥νi(· ;θ)] (Agapiou et al., 2017; Chatterjee and Di-
aconis, 2018). Specifically, these results show that the estimator exhibits en-
hanced efficiency for a fixed computational budget, as the Kullback–Leibler di-
vergence decreases. Adaptive importance sampling addresses the minimization
of ν 7→ KL[pθ(· | Yi)∥ν] over a given class of probability measure. For instance,
the Population Monte Carlo proposed by Cappé et al. (2008) provides a solution
when the proposal is a mixture distribution. Nevertheless, implementing such
methods within an SGD scheme can be computationally intensive. Indeed, the
target distribution of the adaptive scheme changes at each iteration of the gra-
dient scheme, necessitating a full run of the adaptive method at each iteration.

Practical implementation In the following, we present a simpler heuristic
that is efficient for the class of problems presented in this paper, albeit not
optimal in terms of the Kullback–Leibler divergence. We consider using the
mean and covariance of the conditional distribution pθ(Wi | Yi), namely

µi(θ) = E[Wi | Yi,θ], Si(θ) = V[Wi | Yi,θ]. (16)

Both functions are continuous on Θ (see Appendix D). Moreover, the parameter
α can be interpreted as a regularization parameter. Indeed, in the limiting case
α = 0, the proposal distribution as defined in (15) resumes to the optimal
Gaussian proposal distribution, that is

νi(· ;θ) = argmin
ν∈F

KL[pθ(· | Yi)∥ν], F =
{
N (µ,S) ; µ ∈ Rq, S ∈ Sq++

}
.

(17)
While the Radon–Nikodym derivative ρθ,i with respect to such a proposal may
not necessarily be bounded for any θ ∈ Θ, it points out the effect of α. The
mixture distribution (15) balances a component that informs on the intractable
conditional distribution and a regularization or defensive component that plays
a similar role to that of Cappé et al. (2008). Practically speaking, we should opt
for a small value of α to improve the efficiency of the importance sampling.

Both µi(θ) and Si(θ) are unknown and must be estimated. Obviously, we
can use the importance sampling method, since we could simply recycle the
particles simulated to estimate the gradient. However, such a solution may lead
to poorly conditioned and non-positive definite matrix estimates for Si(θ). A
more robust alternative can be achieved using the Hessian of the log-complete
likelihood:

SHi (θ) = −
[
∇2

w log pθ (Yi,w)|w=µi(θ)

]−1

=
[
Iq +C⊤ Diag[exp{fi(µi(θ);B,C)}]C

]−1
. (18)
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Algorithm 2: Adaptive Importance Sampling based Gradient Descent
Input: initial point θ(1), learning rate γ, number of iterations T , number of Monte

Carlo draws N , mixture parameter 0 < α ≤ 1, parameter δ > 0.
Output: the sequence θ(1), . . . ,θ(T+1)

for t = 1 to T do
Sample i uniformly in {1, . . . , n};
Compute the estimate µ̂i of µi(θ

(t)) as defined in Equation (16) ;
Compute the estimate Ŝi of Si(θ

(t)) as defined in Equations (16) or (18) ;
Set νi = GM(·; µ̂i, Ŝi, α, δ);
Sample (vi,1, . . . ,vi,N ) from ν⊗N

i (· ;θ(t));
Compute θ(t+1) = PΘ(θ(t) − γĝ(t)) with ĝ(t) = −ŝNi (θ

(t)) as in Equation (7);
end

This alternative stems from the second order Taylor expansion of the complete
log-likelihood, and has been used in various contexts, such as posterior approx-
imation (Tierney and Kadane, 1986) and importance sampling (Owen, 2013,
Chapter 9). Interestingly, for a Gaussian distribution, the Taylor expansion ex-
actly relates the curvature of the scalar field at its mode to the variance, namely
SHi (θ) corresponds to the variance. In contrast to a Monte Carlo estimate of
the covariance of the conditional distribution, it directly follows from Equation
(18) that the Hessian of the log-complete likelihood, and consequently its in-
verse, is definite positive. Moreover, Lemma 5.1 also applies to this choice of
covariance matrix, since the function θ 7→ SHi (θ) is continuous as a composition
of continuous functions.

6. Simulation study

Datasets Both synthetic data and real data analysis are based on the sc-
MARK dataset (Diaz-Mejia, 2021). The latter is a benchmark for single-cell
Ribonucleic acid (scRNA) data designed to serve as an RNA-seq equivalent of
the MNIST dataset — each cell being labeled by one of the 28 possible cell
types. It corresponds to n = 19998 samples (cells), p = 14059 features (gene
expression), and the design matrix resumes to an intercept (d = 1).

Competitors We compare different variants of our algorithm corresponding
to specific choices of the proposal distribution νi(·;θ):

• ISGD-VEM: we set the proposal distribution to the variational distribu-
tion ϕψ, as defined in Equation (4). Although it differs from the optimal
proposal distribution (17), it represents a natural choice as it serves as
the optimal Gaussian surrogate for the conditional distribution in terms
of the Kullback–Leibler divergence ϕ 7→ KL[ϕ∥pθ(· | Yi)].

• ISGD-VEMmix: there is no guarantee that the Radon–Nikodym deriva-
tive with respect to the VEM proposal is bounded, and thus ensures the
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convergence of Algorithm 1. To address this, we introduce a defensive
component in this version, and consider

νi(· ;θ) = GM(· ;mVEM
i ,SVEM

i , α, δ),

where mVEM
i and SVEM

i are the mean and covariance of the variational
distribution ϕψ.

• AISGD-SNIS: it corresponds to Algorithm 2 and the choice of the mix-
ture distribution

νi(· ;θ) = GM(· ; m̂i(θ), Ŝi(θ), α, δ),

where m̂i(θ) and Ŝi(θ) are the SNIS estimators the mean and the covari-
ance of the conditional distribution pθ(· | Yi).

• AISGD-Hessian: it corresponds to Algorithm 2 and the choice of the
mixture distribution

νi(· ;θ) = GM(· ; m̂i(θ),S
H
i (θ), α, δ),

with SHi (θ), as defined in Equation (18).

All these methods are initialized with the variational estimator θ̂
VEM

fitted the
standard VEM algorithm implemented in pyPLNmodels1.

6.1. Synthetic data

Data generation We consider simulation settings such that n = 250 indi-
viduals, p = 30 variables, d = 1 covariate (that is, one intercept), and rank
constraints q = 3, 5, 15. The offset term o is set to zero. For each value of q,
we mimic the scMARK dataset by sampling m = 1, . . . ,M = 10 datasets with
parameters θ⋆(q,m) as follows:

(i) draw n individuals from the scMARK dataset and then select the p vari-
ables with the highest variance;

(ii) fit the standard PLN Model (1) on that reduced dataset with VEM from
which we get B0

(m) ∈ Md×p(R) and Σ0
(m) ∈ Sp++;

(iii) set B⋆
(q,m) to B0

(m) and Σ⋆
(q,m) to the best q-rank approximation of Σ0

(m)

derived from SVD.
(iv) generate a count matrix Y(q,m) according to Model (2) for each θ⋆(q,m) =(

B⋆
(q,m),Σ

⋆
(q,m)

)
.

Experimental design Each algorithm is initialized at the variational esti-
mate θ̂

VEM
and run for a total of 200 epochs with two regimes of batch sizes

B = 250 and 1 along iterations. Batches of size 250 — which correspond to
the full dataset — are used for the first 180 epochs. During these, the gradient

1https://github.com/PLN-team/pyPLNmodels

https://github.com/PLN-team/pyPLNmodels
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estimator is computed as the average of the SNIS estimators (7) over B indi-
viduals simultaneously drawn from the dataset. Namely, let I denotes the set
of randomly drawn individuals, we use

ĝ(t) = − 1

B

∑
i∈I

sNi (θ(t)).

This initial part of the run can be viewed as a burn-in period that necessitates
less computational effort. We adopt this practical approach based on empirical
observations that the batch size has no significant impact on the convergence
of our method. Our study focuses on the last 20 epochs with a batch size of 1,
which corresponds to T = 5000 iterations of Algorithm 1. We set the mixture
hyperparameters to α = 0.001 and δ = 1.1, and use N = 500, 1000, 5000 samples
for the SNIS estimator (7). The learning rate γ is determined via a grid search.

Quality of the importance sampling proposal distribution The pro-
posal distributions νi(· ;θ) of the four competitors are compared at initialization
with the three following metrics:

• the Kullback–Leibler divergence KL[νi(· ;θ)∥pθ (· | Yi)], which gives a dis-
crepancy measure in terms of the variational objective function, and thus
provides a comparison between the proposal distribution and the vari-
ational distribution. Given a N -sample vi,1, . . . ,vi,N from νi(· ;θ), its
Monte Carlo estimator is

− log(N)− 1

N

N∑
r=1

log(ωθ,i,r), ωθ,i,r =
ρθ,i(vi,r)∑N
s=1 ρθ,i(vi,s)

.

• the Kullback–Leibler divergence KL[pθ (· | Yi) ∥νi(· ;θ)], which relates to
the efficiency of the importance sampling scheme in terms of bias and
quadratic error. Its Monte Carlo estimator is

log(N) +

N∑
r=1

ωθ,i,r log(ωθ,i,r).

• The Effective Sample Size (ESS), which assesses how accurately the weigh-
ted samples from the importance sampling method approximates the tar-
get distribution pθ (· | Yi): a higher effective sample size indicates a better
empirical approximation of the target distribution. It is estimated by(

N∑
r=1

ω2
θ,i,r

)−1

.

The results are displayed in Figure 1.
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Figure 1. Distribution of the Kullback–Leibler divergence KL[νi(· ;θ)∥pθ (· | Yi)] (top row),
the Kullback–Leibler divergence KL[pθ (· | Yi) ∥νi(· ;θ)] (middle row), and the effective sample
size (bottom row) as a function of the number of Monte Carlo draws N , the rank constraint q,
and the inference algorithms (AISGD-SNIS, AISGD-Hessian, ISGD-VEMmix, ISGD-VEM)
at initialization (that is θ(0) = θ̂

VEM
). Each boxplot is based on M = 10 synthetic datasets,

with each metric estimated using the specified N Monte Carlo draws.

A key distinction between the ISGD-VEM proposal and other methods is the
use of a Gaussian mixture distribution. A comparison between ISGD-VEMmix
and ISGD-VEM highlights the impact of adding a defensive component to the
variational solution. As shown in the bottom row of Figure 1, the defensive com-
ponent does not yield improvement in terms of the variational objective function.
However, the ISGD-VEMmix proposal offers equivalent performances regarding
the importance sampling method (middle and bottom rows of Figure 1).

Furthermore, the comparison of ISGD-VEMmix with the two AISGD vari-
ants (SNIS and Hessian) enables to evaluate the impact of replacing the diagonal
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covariance from the variational distribution with either the conditional covari-
ance estimate or the curvature estimate. Unsurprisingly, AISGD-SNIS becomes
numerically unstable when we do not have enough Monte Carlo draws for a
given rank constraint q. It is well known that estimating a covariance matrix is
much more demanding when the dimension of the sample space increases. From
the variational point of view (top row of Figure 1), AISGD-SNIS and AISGD-
Hessian do not exhibit significant improvement compared to ISGD-VEMmix,
with the exception of the q = 15 case where all methods performs similarly.
This suggests that as the value of q increases, the covariance candidates are
able to encompass more information about the conditional distribution than
variational solutions. Finally, providing sufficient Monte Carlo draws are avail-
able, both AISGD-SNIS and AISGD-Hessian consistently demonstrate superior
performance for the importance sampling scheme in comparison to variational-
based proposals (middle and top row of Figure 1). Overall, AISGD-Hessian offers
the most favourable practical performances.

Estimator performances We assess the performance of the resulting estima-
tor θ(T ) by comparing it to the initialization θ(0) = θ̂

VEM
using the likelihood

ratio pθ(0)(Y)/pθ(T )(Y), estimated by

n∏
i=1

(
N∑
r=1

ωθ(0),i,r

/
N∑
r=1

ωθ(T ),i,r

)
,

and the relative efficiency in terms of Root Mean Squared Error (RMSE), that
is (E[∥θ(0) − θ⋆∥2]/E[∥θ(T ) − θ⋆∥2])1/2 estimated on the M dataset for each q.
Following the previous conclusions, we only provide a comparison for AISGD-
SNIS and AISGD-Hessian. The results are displayed in Figure 2. We observe an
increase in the likelihood and a reduction of the RMSE for both methods.

6.2. Inference on the scMARK dataset

Due to memory limitations, we cannot address the problem with the original
p = 14059 features. We make the inference for a dataset reduced to the n = 50
samples and p = 30 features with the largest variance.

For each rank constraint q = 3, 5, 15, we perform 30 independent runs of
AISGD-Hessian initialized at θ(0) = θ̂

VEM
for 250 epochs, a batch size B =

1, 10, 50, and N = 1000 Monte Carlo draws. We do not consider the AISGD-
SNIS variant since the robust version exhibits better performances, as illustrated
in Section 6.1.

We monitor both the marginal log-likelihood and the gradient norm along the
iterations. The results are presented in Figure 3. Although we have theoretical
guarantees solely for a batch of size 1, we observe similar behavior of the method
for larger batch sizes. The norm of the gradient of the objective function and
the negative marginal log-likelihood decrease with T , suggesting that the VEM
may not converge to the maximum likelihood estimator. Interestingly, it appears
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Figure 2. Distribution of the likelihood log-ratio log{pθVEM (Y)/ pθ(T ) (Y)} (top row),
and the Root Mean Squared Error (RMSE) relative efficiency (E[∥θVEM − θ⋆∥2]

/
E[∥θ(T ) −

θ⋆∥2])1/2 specifically for Σ (middle row) and B (bottom row), as a function of the rank
constraint q, and the inference algorithms (AISGD-SNIS, AISGD-Hessian). Each boxplot is
based on M = 10 synthetic datasets, with the likelihood estimated using the specified N Monte
Carlo draws. The log-likelihood ratio is omitted from the visualization for AISGD-SNIS when
q = 15 due to its significantly high value above zero.

that the larger the q, the more our method gains in comparison to the standard
VEM approach. This can be attributed to the use of proposal distributions with
full covariance structure, providing additional insights compared to the diagonal
approximation used in the VEM.
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Figure 3. Numerical illustration of Theorem 4.5 on the scMARK dataset, reduced to n = 50

samples and p = 30 variables, for AISGD-Hessian initialized with the VEM estimator θ̂
VEM

.
The boxplots represent the distribution of the log-likelihood (top row) and the gradient of the
objective function (bottom row) over 30 independent runs as a function of the rank constraint
q, the number of epochs, and the batch size.

7. Discussion

The paper explores the opportunity of a projected stochastic gradient scheme
for inferring the parameters of a PLN-PCA model. Unlike competing variational
approaches, our method allows to retrieve statistical guarantees on the result-
ing estimate. representing a significant step forward for the practitioners. This
enables the construction of uncertainty measures and statistical tests. We have
illustrated the benefits of our method on synthetic and real datasets using mix-
ture distributions as proposals. Obviously we could resort to any distribution
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provided it satisfies Assumption 1. A future work could be to investigate the
potential of normalizing flows as proposal distribution, especially for larger rank
constraints.

While we have proven the convergence for the PLN-PCA model using an
importance sampling-based gradient estimator, the descent lemma 4.2 opens
new vista for latent variable models. Indeed, its minimal assumptions offers
broader applicability, and it can serve as the corner stone for extending Theorem
4.5 to models with L-smooth loss function and arbitrary random and biased
gradient estimator.

A natural extension is to consider models where the emission distribution be-
longs to a natural (or canonical) exponential family. While deriving regularity
of the log likelihood, and hence a score estimator, assessing the L-smoothness of
the loss function is relatively straightforward for some families — typically when
the natural parameter space is the entire vector space —, such as the Binomial
distribution. Additional technical conditions may however be required for fam-
ilies with constrained natural parameter spaces, like the negative-Binomial or
Gamma distributions. These conditions might involve integrability constraints
on the moments of the emission distribution with respect to the latent distri-
bution or modifications to the link function fi to account for the parameter
constraints.

Beside addressing the inference for other models, the assumption of lemma
4.2 on the gradient estimator allows to consider other, possibly more elaborated,
simulation based method to estimate the gradient, such as diffusion models.
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Appendix A: Properties of the PLN-PCA model

Lemma A.1. Under Model (2), for any compact set Θ ⊂ Rd, for all individual
i ∈ {1, . . . , n}, there exists two constants KΘ

i > 0 and κΘi ∈ R, such that for
any θ ∈ Θ

log pθ (Yi | Wi) ≤ KΘ
i ∥Wi∥+ κΘi .

Proof. Given i ∈ {1, . . . , n}, θ = (B,C) ∈ Rd, due to the conditional indepen-
dance, we have for Zi = (Zij) as defined by Equation (2),

log pθ(Yi | Wi) = ⟨Yi,Zi⟩ −
p∑
j=1

exp(Zij)

Since exp is convex and differentiable on R, for any z, z0 ∈ R, we have

exp(z) ≥ exp(z0) + (z − z0) exp(z0).

It follows

log pθ(Yi | Wi) ≤ ⟨Yi,Zi⟩ − exp(z0)

p∑
j=1

Zij −
p∑
j=1

(1− z0) exp(z0).

Using the definition of Zi from Equation (2), we set

Ki(θ) = C⊤{Yi − exp(z0)1p},

κi(θ) = ⟨Yi − exp(z0)1p,B
⊤xi + oi⟩ −

p∑
j=1

(1− z0) exp(z0).

Then,
log pθ(Yi | Wi) ≤ ⟨Ki(θ),Wi⟩+ κi(θ),

and using the Cauchy–Schwarz inequality we get

log pθ(Yi | Wi) ≤ ∥Ki(θ)∥∥Wi∥+ κi(θ).

The functions Ki and κi are linear with respect to the parameter coordinates
and, consequently, continuous on Rd, and hence on Θ. Therefore, we can define
the upper boundsKΘ

i = supθ∈Θ∥Ki(θ)∥ and κΘi = supθ∈Θ κi(θ), which provides
the result.
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Proposition 4.1. For all individual i = 1, . . . , n, the incomplete log-likelihood
θ 7→ log pθ(Yi) of Model (2) is twice continuously differentiable on Rd and its
score function can be written as

si(θ) =

∫
Rq

∇θ log pθ(Yi,w)pθ(dw | Yi) = E [∇θ log pθ(Yi,Wi) | Yi,θ] . (5)

Proof. The result is a direct application of the dominated convergence theorem.
Indeed, for all individual i = 1, . . . , n, the likelihood writes as

pθ(Yi) =

∫
Rq

pθ(Yi | w)N (dw;0q, Iq).

The function θ 7→ pθ(Yi | Wi) is twice continuously differentiable on Rd as a
composition of such functions. Moreover, each component Zij , j = 1, . . . , p, is a
linear function of the components of θ, and for r, s = 1, . . . , d,

∂

∂θr
Zij =

m∑
k=1

xik1θr=Bkj
+

q∑
k=1

Wik1θr=Cjk
,

∂2

∂θs∂θr
Zij = 0. (19)

Consequently, given a component θr, there is a unique index in {1, . . . , p} such
that the first partial derivative is non-zero. Denote by j and k such indices for
the partial derivatives with respect to θr and θs, respectively. We then have

∂

∂θr
pθ(Yi | Wi) = pθ(Yi | Wi) {Yij − exp(Zij)}

∂

∂θr
Zij ,

∂2

∂θs∂θr
pθ(Yi | Wi) = pθ(Yi | Wi)

[
{Yij − exp(Zij)} {Yik − exp(Zik)}

∂

∂θr
Zij

∂

∂θs
Zik

− exp(Zij)
∂

∂θr
Zij

∂

∂θs
Zij

]
.

It follows from (19) that for any r = 1, . . . , d, and any j = 1, . . . , p∣∣∣∣ ∂∂θrZij
∣∣∣∣ ≤ ∥xi∥+ ∥Wi∥.

Given a non-empty open and bounded set Θ ⊂ Rd, it follows from Lemma A.1
that it exists two constants KΘ

i > 0 and κΘi such that for any θ ∈ Θ

pθ(Yi | Wi) ≤ exp
(
KΘ
i ∥Wi∥+ κΘi

)
.

On the other hand, for any θ ∈ Θ, any j = 1, . . . , p

|Zij | ≤ AΘ∥Wi∥+RΘ
i , with AΘ = sup

θ∈Θ
∥θ∥, RΘ

i = ∥xi∥ sup
θ∈Θ

∥θ∥+ max
j=1,...,p

|oij |.

Consequently, for any j = 1, . . . , p, since exp(Zij) ≤ exp(|Zij |),

|Yij−exp(Zij)| ≤ exp(|Zij |) {∥Yi∥ exp(−|Zij |) + 1} ≤ exp
(
AΘ∥Wi∥+RΘ

i

)
(∥Yi∥+ 1) .
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Thereby, for any j = 1, . . . , p,∣∣∣∣{Yij − exp(Zij)}
∂

∂θr
Zij

∣∣∣∣ ≤ (∥xi∥+ ∥Wi∥) (∥Yi∥+ 1) exp
(
AΘ∥Wi∥+RΘ

i

)
∣∣∣∣exp(Zij) ∂

∂θr
Zij

∂

∂θs
Zij

∣∣∣∣ ≤ (∥xi∥+ ∥Wi∥)2 exp
(
AΘ∥Wi∥+RΘ

i

)
≤ (∥xi∥+ ∥Wi∥)2 exp

(
2AΘ∥Wi∥+ 2RΘ

i

)
,

where the last inequality follows because AΘ and RΘ
i are both positive. Finally,

we get that on Θ∣∣∣∣ ∂∂θr pθ(Yi | Wi)

∣∣∣∣ exp(−∥Wi∥2

2

)
≤ (∥xi∥+ ∥Wi∥) (∥Yi∥+ 1)QΘ

i (Wi, 1)∣∣∣∣ ∂

∂θs∂θr
pθ(Yi | Wi)

∣∣∣∣ exp(−∥Wi∥2

2

)
≤ (∥xi∥+ ∥Wi∥)2

{
(∥Yi∥+ 1)

2
+ 1
}
QΘ
i (Wi, 2),

with

QΘ
i (Wi, k) = exp

{
−1

2
∥Wi∥2 +

(
KΘ
i + kAΘ

)
∥Wi∥+ κΘi + kRΘ

i

}
.

Crucially, each of these upper bounds is a Lebesgue integrable function on Rq
that does not depend on θ ∈ Θ. Consequently, we can conclude that the likeli-
hood is twice continuously differentiable on Θ with the dominated convergence
theorem. Since the result holds for any open and bounded set Θ ⊂ Rd, for all
θ ∈ Rd, we can apply it to an open d-ball with center θ. Therefore, the likelihood
is twice continuously differentiable on Rd. Moreover

∇θpθ(Yi) =

∫
Rq

∇θpθ(Yi | w)N (dw;0q, Iq)) =

∫
Rq

∇θpθ(Yi,w)dw.

For all Yi ∈ Np, the likelihood θ 7→ pθ(Yi) is positive on Rd. Indeed, the
integrand is positive everywhere since, by definition

w 7→ pθ(Yi | w) =

p∏
j=1

p(Yij | zij), (zi1, . . . , zip)
⊤ = fi(w;B,C),

and for any z ∈ R, y 7→ p(y | z) is positive on N. The continuous differentiability
of the log-likelihood follows directly by composition. Finally,

∇θ log pθ(Yi) =
1

pθ(Yi)

∫
Rq

∇θpθ(Yi,w)dw =

∫
Rq

pθ(Yi,w)∇θ log pθ(Yi,w)

pθ(Yi)
dw

=

∫
Rq

∇θ log pθ(Yi,w)pθ(dw | Yi).
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Proposition 4.3. Under Model (2), for any nonempty compact subset Θ ⊂ Rd,
we have that

(i) for any individual i = 1, . . . , n, there exists a real

0 < ζi = inf
θ∈Θ

pθ(Yi);

(ii) there exists a real L ≥ 0 such that the objective function ℓ, as defined in
(3), is L-smooth on Θ.

Proof. Let Θ ⊂ Rd be a nonempty compact set.

(i) From Proposition 4.1, the likelihood of the observed data θ 7→ pθ(Yi)
is continuous on the compact set Θ. Thus, it is bounded and attains its
bounds on Θ. Moreover, the likelihood of the observed data is positive on
Rd, so is its lower bound on Θ.

(ii) A direct consequence of Proposition 4.1, is that θ 7→ ∇ℓ(θ) is continuous
differentiable on the compact set Θ. Therefore, it is Lipschitz continuous.

Appendix B: Intermediate optimization results and proof of Lemma
4.2

In this Section, we consider results for minimizing a function ℓ on Rd. We denote
Θ ⊂ Rd a compact and convex set.

Lemma B.1 (Non-expansiveness, Bertsekas (1999, Prop 2.1.3)). The projection
PΘ satisfies the non-expansiveness property, namely for all θ,θ′ ∈ Rd∥∥PΘ(θ)− PΘ(θ

′)
∥∥ ≤

∥∥θ − θ′
∥∥ .

For a real η > 0, the proximal operator of F as defined in Equation (10) is
given by

proxηF (θ) = argmin
θ′∈Rd

{
F (θ′) +

1

2η
∥θ − θ′∥2

}
.

Lemma B.2 (Drusvyatskiy and Paquette (2019, Lemma 4.3)). If the func-
tion ℓ is L-smooth, for any real constant η < 1/L, the Moreau envelope Fη is
differentiable on Rd and relates to the proximal operator through the following
equation

∇Fη(θ) =
1

η
{θ − proxηF (θ)} .
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Lemma B.3 (Drusvyatskiy and Paquette (2019, Theorem 4.5)). If the function
ℓ is L-smooth, for any real constant η > 0, the gradient mapping G(t)

η , as defined
in Equation (12), satisfy the following inequality

∥G(t)
η ∥ ≤

(
1 +

Lη

Lη + 1

)(
1 +

√
Lη

Lη + 1

)
∥∇F η

Lη+1
(θ(t))∥.

A differentiable function f : Rd 7→ R is said to be µ-strongly-convex, µ ∈ R∗
+,

if for all θ,θ′ ∈ Rd,

f(θ′) ≥ f(θ) +
〈
∇θf(θ),θ′ − θ

〉
+
µ

2
∥θ − θ′∥2.

Lemma B.4. If the function ℓ is L-smooth, then, for any real constant η ∈
(0, 1/L), and any θ̄ ∈ Rd, the following function is (η−1 − L)-strongly convex

f : θ 7→ ℓ(θ) +
1

2η
∥θ − θ̄∥2.

Proof. Let θ,θ′ ∈ Rd. We have

f(θ) +
〈
∇f(θ),θ′ − θ

〉
= ℓ(θ) +

1

2η
∥θ − θ̄∥2 +

〈
∇ℓ(θ) + η−1(θ − θ̄),θ′ − θ

〉
.

(20)
According to Bubeck (2015, Lemma 3.4), since ℓ is L−smooth, it satisfies for
all θ,θ′ ∈ Rd ∣∣ℓ(θ′)− ℓ(θ)−

〈
∇ℓ(θ),θ′ − θ

〉∣∣ ≤ L

2
∥θ′ − θ∥2. (21)

It directly follows that

ℓ(θ) + ⟨∇ℓ(θ),θ′ − θ⟩ − L

2
∥θ − θ′∥2 ≤ ℓ(θ′).

Combining the latter inequality with Equation (20) yields

f(θ) +
〈
∇f(θ),θ′ − θ

〉
+
η−1 − L

2
∥θ − θ′∥2

≤ ℓ(θ′) +
1

2η

(
∥θ − θ̄∥2 + 2⟨θ − θ̄,θ′ − θ⟩+ ∥θ − θ∥2

)
For a scalar product and its associated norm, the identity ∥a + b∥2 = ∥a∥2 +
2⟨a, b⟩+ ∥b∥2 gives

f(θ) +
〈
∇f(θ),θ′ − θ

〉
+
η−1 − L

2
∥θ − θ′∥2 ≤ ℓ(θ′) +

1

2η
∥θ′ − θ̄∥ = f(θ′).

Since η−1 + L > 0, we can conlude that f is (η−1 + L)-strongly convex.



/Importance sampling based gradient method for PLN-PCA 29

Lemma B.5. If the function ℓ is L-smooth, then for any θ ∈ Θ, and any real
constant η ∈ (0, (2Γ + L)−1], with Γ = supθ∈Θ∥∇θℓ(θ)∥, we have

∥θ − proxηF (θ)∥ ≤ 1.

Proof. Given θ ∈ Θ, we show that any point at a distance more than one from
θ is not proxηF (θ). This implies that necessarily

∥θ − proxηF (θ)∥ ≤ 1.

Let θ′ ∈ Rd be a point such that ∥θ − θ′∥ > 1. According to Bubeck (2015,
Lemma 3.4), since ℓ is L−smooth, it satisfies for all θ,θ′ ∈ Rd

ℓ(θ) ≤ ℓ(θ′) + ⟨∇ℓ(θ′),θ − θ′⟩+ L

2
∥θ′ − θ∥2. (22)

Let first assume that θ′ ∈ Θ. Using successively the Cauchy–Schwarz inequality,
the positive bound Γ and the assumption ∥θ − θ′∥ > 1, we get

⟨∇ℓ(θ′),θ − θ′⟩ ≤ ∥∇ℓ(θ′)∥∥θ − θ′∥ < Γ∥θ − θ′∥2. (23)

It results from Equation (22) and Equation (23) that

ℓ(θ) < ℓ(θ′) +

(
Γ +

L

2

)
∥θ′ − θ∥2.

For η ≤ (2Γ + L)−1, we have (Γ + L/2) ≤ 1/(2η). Moreover, the functions F
and ℓ coincide on Θ, so that

F (θ) < F (θ′) +
1

2η
∥θ′ − θ∥2.

We can therefore conclude that θ′ ̸= proxηF (θ). Conversely, if θ′ /∈ Θ, by defini-
tion of F , we also have that θ′ ̸= proxηF (θ).

Lemma 4.2 (Descent lemma). Let consider the gradient scheme as defined by
Equation (9). Assume that

(i) the function ℓ is L-smooth on Θ, and denote Γ = supθ∈Θ∥∇θℓ(θ)∥;
(ii) for t ∈ N∗, one has

σ(t) = E
[
∥ĝ(t) −∇θℓ(θ(t))∥2

∣∣∣ θ(t)] <∞,

ξ(t) =
∥∥∥E [ĝ(t) ∣∣∣ θ(t)]−∇θℓ(θ(t))

∥∥∥ <∞.
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Then, for any real constant η ∈ (0, 1/max{2Γ + L, 2L}],

E
[
Fη(θ(t+1))

∣∣∣ θ(t)] ≤ Fη(θ(t))−
γ

2
∥∇Fη(θ(t))∥2

+
γ + γ2Γ

η
ξ(t) +

γ2

2η
(σ(t) + Γ2).

(11)

Proof. Given t ∈ N∗ and η ∈ (0,max{2Γ + L, 2L}−1], we define the virtual
iterates θ̄(t) as

θ̄
(t)

= proxηF(θ
(t)) = argmin

θ∈Rd

{
F (θ) +

1

2η
∥θ − θ(t)∥2

}
.

Note that θ̄(t) ∈ Θ. Indeed, according to the definition of the Moreau envelope

F
(
θ̄
(t)
)
= Fη(θ(t))−

1

2η

∥∥∥θ̄(t) − θ(t)∥∥∥2 ≤ F(θ(t)).

The upper bound is finite, since θ(t) as defined in (9) is within the compact Θ.
The operator F is thus finite at θ̄(t), and consequently θ̄(t) ∈ Θ since F takes
infinite value outside of Θ.

As the virtual iterates are within Θ, the definition of the Moreau envelope
yields

Fη(θ(t+1)) ≤ ℓ
(
θ̄
(t)
)
+

1

2η

∥∥∥θ(t+1) − θ̄(t)
∥∥∥2 . (24)

Using the definition of θ(t+1) and the fact that θ̄(t) ∈ Θ, we obtain from Lemma
B.1

1

2η

∥∥∥θ(t+1) − θ̄(t)
∥∥∥2 =

1

2η

∥∥∥PΘ(θ(t) − γĝ(t))− PΘ

(
θ̄
(t)
)∥∥∥2

≤ 1

2η

∥∥∥θ(t) − γĝ(t) − θ̄(t)
∥∥∥2 .

The bilinearity of the scalar product gives∥∥∥θ(t) − γĝ(t) − θ̄(t)
∥∥∥2 =

∥∥∥θ(t) − θ̄(t)∥∥∥2 + 2γ
〈
θ̄
(t) − θ(t), ĝ(t)

〉
+ γ2∥ĝ(t)∥2

,

and the inequality (24) becomes

Fη(θ(t+1)) ≤ ℓ
(
θ̄
(t)
)
+

1

2η

∥∥∥θ(t) − θ̄(t)∥∥∥2 + γ

η

〈
θ̄
(t) − θ(t), ĝ(t)

〉
+
γ2

2η
∥ĝ(t)∥2

≤ Fη(θ(t)) +
γ

η

〈
θ̄
(t) − θ(t), ĝ(t)

〉
+
γ2

2η
∥ĝ(t)∥2

.

Therefore,

E
[
Fη(θ(t+1))

∣∣∣ θ(t)] ≤ Fη(θ(t)) +
γ

η

〈
θ̄
(t) − θ(t),E

[
ĝ(t)

∣∣∣ θ(t)]〉
+
γ2

2η
E
[
∥ĝ(t)∥2

∣∣∣ θ(t)] .
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We now study more in detail the second and the third terms of the right-hand
side.

Regarding the second term, we have〈
θ̄
(t) − θ(t),E

[
ĝ(t)

∣∣∣ θ(t)]〉 =
〈
θ̄
(t) − θ(t),∇θℓ(θ(t))

〉
+
〈
θ̄
(t) − θ(t), b(t)

〉
,

where b(t) stands for the bias of the gradient estimate, namely

b(t) = E
[
ĝ(t)

∣∣∣ θ(t)]−∇θℓ(θ(t)).

By combining the Cauchy–Schwarz inequality with Lemma B.5, which applies
since η ≤ (2Γ + L)−1, we get〈

θ̄
(t) − θ(t), b(t)

〉
≤
∥∥∥θ̄(t) − θ(t)∥∥∥∥b(t)∥ ≤ ∥b(t)∥.

Since the function ℓ is L-smooth, we can use the inequality (21), namely〈
θ̄
(t) − θ(t),∇θℓ(θ(t))

〉
≤ ℓ

(
θ̄
(t)
)
− ℓ(θ(t)) +

L

2

∥∥∥θ̄(t) − θ(t)∥∥∥2 .
In conclusion we obtain〈
θ̄
(t) − θ(t),E

[
ĝ(t)

∣∣∣ θ(t)]〉 ≤ ℓ
(
θ̄
(t)
)
− ℓ(θ(t)) +

L

2

∥∥∥θ̄(t) − θ(t)∥∥∥2 + ∥b(t)∥.
(25)

We aim at obtaining a bound not depending on the virtual iterates. As η−1 ≥
2L > L, Lemma B.4 applies, and the function

g : θ 7→ ℓ(θ) +
1

2η
∥θ − θ(t)∥2

is (η−1 − L)-strongly convex. By definition, this function achieves a minimum
at θ̄(t). Consequently its gradient is 0 at that point and the strong-convexity
gives

ℓ(θ(t)) ≥ ℓ
(
θ̄
(t)
)
+

1

2η

∥∥∥θ̄(t) − θ(t)∥∥∥2 + η−1 − L

2

∥∥∥θ(t) − θ̄(t)∥∥∥2 .
Using this last inequality, Equation (25) becomes〈
θ̄
(t) − θ(t),E

[
ĝ(t)

∣∣∣ θ(t)]〉 ≤− 1

2η

∥∥∥θ̄(t) − θ(t)∥∥∥2 − η−1 − 2L

2

∥∥∥θ̄(t) − θ(t)∥∥∥2
+ ∥b(t)∥

≤− 1

2η

∥∥∥θ̄(t) − θ(t)∥∥∥2 + ∥b(t)∥,

since η−1 ≥ 2L. Finally, using Lemma B.2 leads to

1

2η

∥∥∥θ̄(t) − θ(t)∥∥∥2 =
1

2η
∥η∇Fη(θ(t))∥2

=
η

2
∥∇Fη(θ(t))∥2

.
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So far, we have hence proven that

E
[
Fη(θ(t+1))

∣∣∣ θ(t)] ≤ Fη(θ(t))−
γ

2
∥∇Fη(θ(t))∥2

+
γ

η
∥b(t)∥+

γ2

2η
E
[
∥ĝ(t)∥2

∣∣∣ θ(t)] .
We now focus on the third term. The bilinearity of the scalar product gives

E
[
∥ĝ(t)∥2

∣∣∣ θ(t)] = σ(t) − ∥∇θℓ(θ(t))∥2
+ 2

〈
E
[
ĝ(t)

∣∣∣ θ(t)] ,∇θℓ(θ(t))〉
= σ(t) + ∥∇θℓ(θ(t))∥2

+ 2⟨b(t),∇θℓ(θ(t))⟩.
The Cauchy-Schwarz inequality along with the definition of the bound Γ yields

E
[
∥ĝ(t)∥2

∣∣∣ θ(t)] ≤ σ(t) + Γ2 + 2Γ∥b(t)∥.

It follows that

E
[
Fη(θ(t+1))

∣∣∣ θ(t)] ≤ Fη(θ(t))−
γ

2
∥∇Fη(θ(t))∥2

+
γ + γ2Γ

η
∥b(t)∥+

γ2

2η
(σ(t) + Γ2).

Appendix C: Proof of Theorem 4.5

Proposition 4.4. Let {i(t)}t∈N∗ and {θ(t)}t∈N∗ be the associated random se-
quences generated by Algorithm 1. Under Model (2), if Assumption 1 holds, then,
for all t ∈ N,

σ
(t)
IS = E

[∥∥∥ŝNi(t)(θ(t))−∇ log pθ(t)

(
Yi(t)

)∥∥∥2 ∣∣∣∣ θ(t)] ≤ d

N
Mσ,

ξ
(t)

IS = E
[∥∥∥E [ŝNi(t)(θ(t))−∇ log pθ(t)

(
Yi(t)

) ∣∣∣ θ(t), i(t)]∥∥∥ ∣∣∣ θ(t)] ≤ √
d

N
Mξ,

where Mσ and Mξ are two finite and positive constants given by

Mσ =
12

n

n∑
i=1

λ2i
√
βi

ζ2i

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)
,

Mξ =
4

n

n∑
i=1

λ2iβ
1/4
i

ζ2i

{
2 +

√
3

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)}
,

with λi and βi as in Assumption 1.
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Proof. For any t ∈ N, since the individual i(t) is drawn uniformly independently
of θ(t), we have

σ
(t)
IS = E

[
E
[∥∥∥ŝNi(t) −∇ log pθ(t)

(
Yi(t)

)∥∥∥2 ∣∣∣∣ θ(t), i(t)]]
=

1

n

n∑
i=1

E
[∥∥∥ŝNi(t) −∇ log pθ(t)

(
Yi(t)

)∥∥∥2 ∣∣∣∣ θ(t), i(t) = i

]

=
1

n

n∑
i=1

Eν⊗N
i (· ;θ(t))

[∥∥ŝNi −∇ log pθ(t) (Yi)
∥∥2]

and, similarly

ξ
(t)

IS =
1

n

n∑
i=1

∥∥∥E [ŝNi(t) −∇ log pθ(t)

(
Yi(t)

) ∣∣∣ θ(t), i(t) = i
]∥∥∥

=
1

n

n∑
i=1

∥∥∥Eν⊗N
i (· ;θ(t))

[
ŝNi −∇ log pθ(t) (Yi)

]∥∥∥
Consider an individual i ∈ {1, . . . , n} and a parameter θ ∈ Θ. As in Agapiou
et al. (2017), the r-th central moment, r ∈ N∗, of a mesurable function h : Rq →
R with respect to the proposal distribution is denoted

mr[h] = Eνi(· ;θ)
[∣∣h(V)− Eνi(· ;θ) [h(V)]

∣∣r] .
We also denote ϕk, k ∈ {1, . . . , d}, the application that returns the k-th compo-
nent of the score, namely for all V ∈ Rq

ϕk(V) =
∂

∂θk
log pθ(Yi,V).

For a N -sample (V1, . . . ,VN ) from νi(· ;θ), the importance sampling estimate
ŝNi (θ) = (ŝik)1≤k≤d of the score gi, as defined in Equation (5), can thereby be
written as

ŝik =
1∑N

s=1 ρθ,i(Vs)

N∑
r=1

ρθ,i(Vr)ϕk(Vr).

According to Theorem 2.3 in Agapiou et al. (2017), we can guarantee control
over the bias and mean squared error of the importance sampling estimate for
the k-th component of the score, k ∈ {1, . . . , d}, provided that the following
quantity is finite

CMSE,k(θ) =
3

pθ(Yi)2

{
m2[ϕkρθ,i]

+
9

pθ(Yi)2

√
m4[ρθ,i]Eνi(· ;θ)

[
|ϕk(V)ρθ,i(V)|4

]
+

125

pθ(Yi)

√
m6[ρθ,i]Eνi(· ;θ)

[
|ϕk(V)|4

]}
.
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To prove such a statement, first note that by definition

0 < λi, Eνi(· ;θ)
[
|ϕk(V)|4

]
≤ βi. (26)

The monotonicity of the expected value thus yields

Eνi(· ;θ)
[
|ϕk(V)ρθ,i(V)|4

]
≤ λ4iEνi(· ;θ)

[
|ϕk(V)|4

]
≤ λ4iβi.

Furthermore, we use that for all r ∈ N∗, E[|X − E[X]|r] ≤ 2rE[|X|r] (this is a
direct consequence of the Minkowski and Jensen inequalities). Then, we have
for all r ∈ N∗

mr[ρθ,i] ≤ 2rEνi(· ;θ) [ρθ,i(V)r] ≤ 2rλri ,

m2[ϕkρθ,i] ≤ 4Eνi(· ;θ)
[
|ϕk(V)ρθ,i(V)|2

]
≤ 4λ2iEνi(· ;θ)

[
|ϕk(V)|2

]
.

(27)

Finally, the Jensen inequality for the square root function provides that

Eνi(· ;θ)
[
|ϕk(V)|2

]
≤
√
Eνi(· ;θ)

[
|ϕk(V)|4

]
≤
√
βi (28)

Combining the upper-bounds from Equations (26)–(28) leads to

CMSE,k(θ) ≤
12λ2i

√
βi

pθ(Yi)2

{
1 +

9λ2i
pθ(Yi)2

+
250λi
pθ(Yi)

}
.

Since λi and βi are all finite constants, and for any θ ∈ Rd and any Yi ∈ N,
pθ(Yi) is positive, it follows that CMSE,k(θ) is finite. Consequently, Theorem
2.3 in Agapiou et al. (2017) states that

Eν⊗N
i (· ;θ)

[{
ŝik −

∂

∂θk
log pθ(Yi)

}2
]
≤ 1

N
CMSE,k(θ),∣∣∣∣Eν⊗N

i (· ;θ) [ŝik]−
∂

∂θk
log pθ(Yi)

∣∣∣∣ ≤ 2

Npθ(Yi)

{
1

pθ(Yi)

√
m2[ρθ,i]m2[ϕkρθ,i]

+
√
CMSE,k(θ)Eνi(· ;θ) [ρθ,i(V)2]

}
,

where ϕk : V 7→ ϕk(V) − Eνi(· ;θ) [ϕk(U)]. To conclude, we further need to
eliminate the dependence in θ in these upper bounds. For any Yi ∈ Np, the
function θ 7→ pθ(Yi) is bounded below by ζi > 0 on Θ (Proposition 4.3).
Moreover, combining the argument of Equation (27) with the positivity of the
variance and Equation (28), we have

m2[ϕkρθ,i] ≤ 4λ2iEνi(· ;θ)
[∣∣ϕk(V)

∣∣2] ≤ 4λ2iEνi(· ;θ)
[
|ϕk(V)|2

]
≤ 4λ2i

√
βi.
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Overall, these last two bounds in addition with Equations (26)–(28) yield the
conclusion, namely

σ
(t)
IS =

1

n

n∑
i=1

d∑
k=1

Eν⊗N
i (· ;θ)

[{
ŝik −

∂

∂θk
log pθ(Yi)

}2
]

≤ 12d

nN

n∑
i=1

λ2i
√
βi

ζ2i

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)
,

and

ξ
(t)

IS =
1

n

n∑
i=1

√√√√ d∑
k=1

∣∣∣∣Eν⊗N
i (· ;θ) [ŝik]−

∂

∂θk
log pθ(Yi)

∣∣∣∣2

≤ 1

n

n∑
i=1

2
√
d

Nζi

{
1

ζi
4λ2iβ

1/4
i +

√
12λ4i

√
βi

ζ2i

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)}

≤ 4
√
d

nN

n∑
i=1

λ2iβ
1/4
i

ζ2i

{
2 +

√
3

(
1 +

250λi
ζi

+
9λ2i
ζ2i

)}
.

Theorem 4.5. Let θ(1) ∈ Θ be an initial value and γ0 ∈ R∗
+ a user-specified ini-

tial learning rate. Under Model (2), if Assumption 1 holds, then for any T ∈ N∗

and any real constant η ∈ (0, 1/max{2Γ, L}], the sequence {θ(t)}1≤t≤T defined
by Algorithm 1 with γ = γ0/

√
T satisfies

(13 )

1

T

T∑
t =1

E
[
∥G(t)

η ∥2
]
≤ 2τ

γ0(Lη + 1)
√
T

(
ℓ(θ(1))− ℓ(θ⋆) +

γ20(Lη + 1)

2η

[
∆2

+ Γ2 +
d

N

{
Mσ +

2(∆ + Γ)√
d

Mξ

}])
+

2τ
√
d

ηN
Mξ,

with L the smoothness constant of ℓ(·), Γ = supθ∈Θ∥∇ℓ(θ)∥, constants Mσ and
Mξ as defined in Proposition 4.4, and

τ =
(2Lη + 1)2

Lη + 1

(
1 +

√
Lη

Lη + 1

)2

, ∆ = max
i=1,...,n

sup
θ∈Θ

∥∇θℓ (θ) +∇θ log pθ (Yi)∥ .

Proof. According to Proposition 4.3, the function ℓ is L-smooth. Using succes-
sively that the square function and the expectation are increasing on R+, for
any real constant η > 0, Lemma B.3 yields

E
[
∥G(t)

η ∥2
]
≤
(
1 +

Lη

Lη + 1

)2
(
1 +

√
Lη

Lη + 1

)2

E
[
∥∇F η

Lη+1
(θ(t))∥2

]
.

(29)
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To elaborate on the upper bound, we aim at using Lemma 4.2. Therefore, we
first need to prove that we have control over the bias ξ(t) and the mean squared
error σ(t) of the gradient estimates, as defined in Lemma 4.2.

Let t ∈ N∗. Due to the bilinearity of the scalar product, the following identity
holds:

σ(t) = E
[
∥ĝ(t) +∇θ log pθ(t)

(
Yi(t)

)∥2
+ ∥∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

)∥2
∣∣∣ θ(t)]

− 2E
[
⟨ĝ(t) +∇θ log pθ(t)

(
Yi(t)

)
,∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

) ⟩ ∣∣∣ θ(t)]
Note that the first term of the right hand side corresponds to σ(t)

IS . Let bound
the two remaining terms. According to Proposition 4.1, for all i = 1, . . . , n, the
function

θ 7→ ∇θℓ (θ) +∇θ log pθ (Yi)

is continuous on Θ, and thereby bounded. Denote

∆ = max
i=1,...,n

sup
θ∈Θ

∥∇θℓ (θ) +∇θ log pθ (Yi)∥ .

We have
E
[
∥∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

)∥2
∣∣∣ θ(t)] ≤ ∆2

Moreover, i(t) being a uniform random variable on {1, . . . , n} independent of
the sequence θ(t),

E
[
⟨ĝ(t) +∇θ log pθ(t)

(
Yi(t)

)
,∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

) ⟩ ∣∣∣ θ(t)]
= E

[
E
[
⟨ − ŝNi(t)(θ

(t)) +∇θ log pθ(t)

(
Yi(t)

)
,∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

) ⟩ ∣∣∣ θ(t), i(t)]]
= E

[
⟨ − E

[
ŝNi(t)(θ

(t))
∣∣∣ θ(t), i(t)]+∇θ log pθ(t)

(
Yi(t)

)
,∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

) ⟩]
= − 1

n

n∑
i=1

⟨Eν⊗N
i (· ;θ(t))

[
ŝNi (θ(t))

]
−∇θ log pθ(t) (Yi) ,∇θℓ(θ(t)) +∇θ log pθ(t) (Yi) ⟩.

Providing Assumption 1 holds, the Cauchy-Schwarz inequality along with Propo-
sition 4.4 yields

− 2E
[
⟨ĝ(t) +∇θ log pθ(t)

(
Yi(t)

)
,∇θℓ(θ(t)) +∇θ log pθ(t)

(
Yi(t)

) ⟩ ∣∣∣ θ(t)]
≤ 2

n

n∑
i=1

∥Eν⊗N
i (· ;θ(t))

[
ŝNi (θ(t))

]
−∇θ log pθ(t) (Yi)∥∥∇θℓ(θ(t)) +∇θ log pθ(t) (Yi)∥

≤ 2∆
√
d

N
Mξ.

In conclusion, for any t ∈ N∗, we have a finite upper bound for the mean squared
error σ(t), namely

σ(t) ≤ d

N
Mσ +∆2 +

2∆
√
d

N
Mξ = ∆2 +

d

N

(
Mσ +

2∆√
d
Mξ

)
.
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Conversely, leveraging Assumption 1 once again, Proposition 4.4 shows that we
have a finite upper bound for the bias ξ(t). Indeed

ξ(t) =

∥∥∥∥∥ 1n
n∑
i=1

E
[
−ŝNi(t)

∣∣∣ θ(t), i(t) = i
]
+

1

n

n∑
i=1

∇θ log pθ(t)(Yi)

∥∥∥∥∥
=

∥∥∥∥∥ 1n
n∑
i=1

E
[
−ŝNi(t) +∇θ log pθ(t)(Yi(t))

∣∣∣ θ(t), i(t) = i
]∥∥∥∥∥

≤ 1

n

n∑
i=1

∥∥∥E [−ŝNi(t) +∇θ log pθ(t)(Yi(t))
∣∣∣ θ(t), i(t) = i

]∥∥∥ = ξ
(t)

IS ≤
√
d

N
Mξ.

Consequently, Lemma 4.2 applies for any real constant η ∈ (0, 1/max{2Γ, L}],
as

η

Lη + 1
≤ 1

L+max{2Γ, L}
=

1

max{2Γ + L, 2L}
.

After integrating both sides of Equation (11) with respect to θ(t) and plugging
in the aforementionned upper bounds, we get

γ

2
E
[∥∥∥∇F η

Lη+1
(θ(t))

∥∥∥2] ≤ E
[
F η

Lη+1
(θ(t))

]
− E

[
F η

Lη+1
(θ(t+1))

]
+

(γ + γ2Γ)(Lη + 1)
√
d

ηN
Mξ

+
γ2(Lη + 1)

2η

{
∆2 +

d

N

(
Mσ +

2∆√
d
Mξ

)
+ Γ2

}
.

Then, summing along the iterations t = 1, . . . , T yields
T∑
t =1

E
[∥∥∥∇F η

Lη+1
(θ(t))

∥∥∥2] ≤ 2

γ

{
F η

Lη+1
(θ(1))− E

[
F η

Lη+1
(θ(T+1))

]}
+

2(Lη + 1)T
√
d

ηN
Mξ +

γ(Lη + 1)T

η

[
∆2

+
d

N

{
Mσ +

2(∆ + Γ)√
d

Mξ

}
+ Γ2

]
.

For θ⋆ = argmin θ∈Θ ℓ(θ), according to the definition of the Moreau envelope,
for any θ ∈ Θ

ℓ(θ⋆) ≤ Fη/(Lη + 1) (θ) ,

and thus,

1

T

T∑
t =1

E
[∥∥∥∇F η

Lη+1
(θ(t))

∥∥∥2] ≤ 2

γT

{
F η

Lη+1
(θ(1))− ℓ(θ⋆)

}
+

2(Lη + 1)
√
d

ηN
Mξ

+
γ(Lη + 1)

η

[
∆2 +

d

N

{
Mσ +

2(∆ + Γ)√
d

Mξ

}
+ Γ2

]
.
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Combining the last inequality with Equation (29) and using Fη/(Lη+1)(θ
(1)) ≤

ℓ(θ(1)) since θ(1) ∈ Θ, we get for γ = γ0/
√
T

1

T

T∑
t =1

E
[
∥G(t)

η ∥2
]
≤ 2τ

γ0(Lη + 1)
√
T

{
F η

Lη+1
(θ(1))− ℓ(θ⋆)

}
+

2τ
√
d

ηN
Mξ

+
γ0τ

η
√
T

[
∆2 +

d

N

{
Mσ +

2(∆ + Γ)√
d

Mξ

}
+ Γ2

]
.

Appendix D: Results on the importance sampling proposal
distribution

Lemma 5.1. Let α ∈ (0, 1] and δ > 1. If for any i = 1, . . . , n, θ 7→ µi(θ) ∈ Rq
and θ 7→ Si(θ) ∈ Sq++ are continuous on Θ, then the proposal distribution
defined by

νi(· ;θ) = GM(·;µi(θ),Si(θ), α, δ) (15)
fulfils Assumption 1.

Proof. Let i ∈ {1, . . . , n}, α ∈ (0, 1] and δ > 1.

(A1.1) Each component of a mixture distribution being a non-negative func-
tion, we have for any V ∈ Rq and any θ ∈ Rd,

ρθ,i(V) =
pθ(Yi,V)

GM(V;µi(θ),Si(θ), α, δ)
≤ 1

α

pθ(Yi,V)

N (V;µi(θ), δIq)
.

On the compact set Θ, there exist real constants KΘ
i > 0 and κΘi (Lemma A.1)

such that

log
pθ(Yi,V)

N (V;µi(θ), δIq)
≤ KΘ

i ∥V∥+ κΘi − 1

2
∥V∥2 + 1

2δ
∥V − µi(θ)∥

2
+
q

2
log(δ).

Using the Cauchy-Schwarz inequality, we get

∥V − µi(θ)∥
2
= ∥V∥2+∥µi(θ)∥

2−2⟨µi(θ),V⟩ ≤ ∥V∥2+∥µi(θ)∥
2
+2∥V∥∥µi(θ)∥.

θ 7→ µi(θ) is continuous on the compact set Θ, and hence bounded, say by u⋆.
It follows that

∥V − µi(θ)∥
2 ≤ ∥V∥2 + u2⋆ + 2u⋆∥V∥.

Consequently, we can derive an upper bound independent of θ, namely

pθ(Yi,V)

N (V;µi(θ), δIq)
≤ exp

[(
KΘ
i +

u⋆
δ

)
∥V∥ − δ − 1

2δ
∥V∥2 + κΘi +

u2⋆
2δ

+
q

2
log(δ)

]
.

Providing δ > 1, the quadratic term in V overweight any other terms and the
supremum in V is finite:

sup
(θ,V)∈Θ×Rq

ρθ,i(V) ≤ 1

α
sup

(θ,V)∈Θ×Rq

pθ(Yi,V)

N (V;µi(θ), δIq)
<∞.
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(A1.2) Following Equation (19), there is a unique j in {1, . . . , p} such that∣∣∣∣ ∂∂θr log pθ(Yi,Wi)

∣∣∣∣ ≤ (∥xi∥+ ∥Wi∥) {∥Yi∥+ exp(Zij)} .

We then have,∣∣∣∣ ∂∂θr log pθ(Yi,Wi)

∣∣∣∣4 ≤
(
8∥xi∥4 + 8∥Wi∥4

) {
8∥Yi∥4 + 8 exp(4Zij)

}
.

≤ 64∥Yi∥4
(
∥xi∥4 + ∥Wi∥4

)
+ 64 exp(4B⊤

j xi + 4oij)
{
∥xi∥4 + ∥Wi∥4

}
exp

(
4C⊤

j Wi

)
,

where Bj = (B1j , . . . , Bpj)
⊤ and Cj = (Cj1, . . . , Cjq)

⊤ stand for the j-th col-
umn and row of B and C, respectively.

Let show that the upper bound admits a finite expectation with respect to
a multivariate Gaussian distribution N (µ, S), for any µ ∈ Rq and S ∈ Sq++. To
demonstrate this, we use the following identities. For any w ∈ Rq, a straight-
forward rewriting yields

N (w;µ, S) exp
(
4C⊤

j w
)
= N (w;µ+ 4SCj , S) exp

(
4C⊤

j µ+ 8C⊤
j SCj

)
. (30)

Moreover, we have (see for instance Simon (2002))

EN (0q,Iq)

[
∥Wi∥4

]
≤ q(q + 2).

Using that

EN (µ,S)

[
∥Wi∥4

]
= EN (0q,Iq)

[
∥µ+ S

1/2Wi∥4
]
≤ 8 ∥µ∥4+8∥S1/2∥4

EN (0q,Iq)

[
∥Wi∥4

]
,

we get
EN (µ,S)

[
∥Wi∥4

]
≤ 8 ∥µ∥4 + 8q(q + 2)∥S1/2∥4

(31)

Equations (30) and (31) thus lead to

Φj(θ, µ, S) = exp
(
4C⊤

j µ+ 8C⊤
j SCj

)
= EN (µ,S)

[
exp

(
4C⊤

j Wi

)]
,

Ψj(θ, µ, S) = exp
(
4C⊤

j µ+ 8C⊤
j SCj

){
8 ∥µ+ 4SCj∥4 + 8q(q + 2)∥S1/2∥4

}
≥ EN (µ,S)

[
∥Wi∥4 exp

(
4C⊤

j Wi

)]
.

Therefore, for any µ ∈ Rq and S ∈ Sq++

EN (µ,S)

[∣∣∣∣ ∂∂θr log pθ(Yi,Wi)

∣∣∣∣4
]
≤ 64∥Yi∥4

{
∥xi∥4 + 8 ∥µ∥4 + 8q(q + 2)∥S1/2∥4

}
+ 64 exp(4B⊤

j xi + 4oij)∥xi∥4Φj(θ, µ, S)
+ 64 exp(4B⊤

j xi + 4oij)Ψj(θ, µ, S).
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If θ 7→ µi(θ) and θ 7→ Si(θ) are continuous on Θ, the functions

θ 7→ Si(θ)
1/2,

θ 7→ (1− α)Φj(θ,µi(θ),Si(θ)) + αΦj(θ,µi(θ), δIq),

θ 7→ (1− α)Ψj(θ,µi(θ),Si(θ)) + αΨj(θ,µi(θ), δIq),

are also continuous on the compact set Θ (by a composition argument), and
therefore bounded on Θ, say by c⋆, ϕ⋆ and ψ⋆ respectively. On the other hand,

exp(4B⊤
j xi + 4oij) ≤ exp(4∥xi∥∥Bj∥+ 4∥oi∥) ≤ exp(4∥xi∥ sup

θ∈Θ
∥θ∥+ 4∥oi∥).

Consequently, with u⋆ the bound of θ 7→ µi(θ) on Θ, for any r ∈ {1, . . . , d},

Eνi(· ;θ)

[∣∣∣∣ ∂∂θr log pθ(Yi,Wi)

∣∣∣∣4
]
≤ 64∥Yi∥4

[
∥xi∥4 + 8u⋆ + 8q(q + 2)

{
(1− α)c4⋆ + αδ4

}]
+ 64 exp(4∥xi∥ sup

θ∈Θ
∥θ∥+ 4∥oi∥)

(
∥xi∥4ϕ⋆ + ψ⋆

)
,

which yields the conclusion.

Lemma D.1. When considering Model (2), for any individual i = 1, . . . , n, and
any k ∈ N∗, the function

θ 7→
∫
Rq

wkpθ(dw | Yi)

is continuous on Rd.

Proof. Let i ∈ {1, . . . , n}, k ∈ N∗, and Θ ⊂ Rd a non-empty bounded and open
set. For any w ∈ Rq and θ ∈ Θ, the Bayes rule yields

pθ(w | Yi) =
pθ(Yi | wi)N (w;0q, Iq)

pθ(Yi)
.

Given w ∈ Rq, θ 7→ pθ(Yi | W) is continuous on Θ, and θ 7→ pθ(Yi) is
continuous and positive on Θ (see Proposition 4.1 and its proof). This proves
the continuity of θ 7→ wkpθ(w | Yi) on Θ.

Additionally, Lemma A.1 and Proposition 4.3 state that there are real con-
stants KΘ

i > 0, κΘi , and ζi > 0, such that for any θ ∈ Θ

∥∥wkpθ(w | Yi)
∥∥ ≤ ∥w∥k

ζi
exp

{
KΘ
i ∥w∥ − 1

2
∥w∥2 + κΘi − q

2
log(2π)

}
.

The upper bound is Lebesgue integrable on Rq and independent of θ ∈ Θ.
Consequently, the dominated convergence theorem yields the continuity on any
non-empty bounded and open set.
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