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Abstract: Pectin aerogels, with very low density (around 0.1 g cm−3) and high specific surface area
(up to 600 m2 g−1), are excellent thermal insulation materials since their thermal conductivity is below
that of air at ambient conditions (0.025 W m−1 K−1). However, due to their intrinsic hydrophilicity,
pectin aerogels collapse when in contact with water vapor, losing superinsulating properties. In
this work, first, pectin aerogels were made, and the influence of the different process parameters
on the materials’ structure and properties were studied. All neat pectin aerogels had a low density
(0.04–0.11 g cm−1), high specific surface area (308–567 m2 g−1), and very low thermal conductiv-
ity (0.015–0.023 W m−1 K−1). Then, pectin aerogels were hydrophobized via the chemical vapor
deposition of methyltrimethoxysilane using different reaction durations (2 to 24 h). The influence
of hydrophobization on material properties, especially on thermal conductivity, was recorded by
conditioning in a climate chamber (25 ◦C, 80% relative humidity). Hydrophobization resulted in
the increase in thermal conductivity compared to that of neat pectin aerogels. MTMS deposition for
16 h was efficient for hydrophobizing pectin aerogels in moist environment (contact angle 115◦) and
stabilizing material properties with no fluctuation in thermal conductivity (0.030 W m−1 K−1) and
density for the testing period of 8 months.

Keywords: porous materials; aerogels; pectin; chemical vapor deposition; methyltrimethoxysilane;
composite; hydrophobicity; thermo-hydric aging; thermal conductivity

1. Introduction

Aerogels are solid open-pore nanostructured materials that possess low bulk density,
very high specific surface area and a lot of fascinating physical properties. Classical
aerogels are made from a gel in which the liquid phase in the pores is replaced by air,
using processes that minimize the capillary forces during liquid evacuation. As a result,
the network morphology is preserved. Drying with supercritical carbon dioxide (scCO2) is
the typical technique used for this purpose [1]. The first family of aerogels broadly studied
were inorganic aerogels and, more specifically, silica aerogels. They hold typical densities
in range of 0.05–0.30 g cm−3 and specific surface areas higher than 800 m2 g−1 [2]. It was
then realized that these unique properties, along with the mesoporous structure of silica
aerogels, make them exceptional thermal insulators with thermal conductivity far below
that of air (0.025 W m−1 K−1) and as low as 0.013 W m−1 K−1 in ambient conditions [3,4].
This property range is named thermal superinsulation. Silica composite or hybrid aerogels,
and also some synthetic polymer-based aerogels, were later studied with regard to their
thermal insulating properties, the latter possessing thermal conductivity values equal or
higher than the ones of neat silica [5–10].

The need of a greener approach for the design of advanced materials made essential
the development of bio-based aerogels as more sustainable alternatives to conventional,
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non-renewable counterparts. Bio-based aerogels were developed at the lab scale in the past
two decades. It was shown that in some cases, they can exhibit the characteristics of conven-
tional aerogels such as low density and high specific surface area, as well as mesoporosity,
and also possess the characteristics specific to bio-based polymers such as biodegrad-
ability and often biocompatibility. A wide range of bio-aerogels were obtained based on
polysaccharides such as cellulose [11–13], chitosan [14], starch [15,16], alginate [17,18],
pectin [19–21], proteins [22,23], or other polymers extracted from biomass [24]. Bio-aerogels
are very attractive materials for a very wide variety of applications. These include ther-
mal insulators [25], acoustic insulators [26], batteries’ electrodes [27], supercapacitors [28],
piezoelectric transducers [29], CO2 captures [30], absorbents [31], drug carriers [32], cat-
alyst supports [33], and food packaging [22]. Several bio-aerogels were studied for their
thermal insulation properties, and materials based on nanocellulose, starch, and pectin
were shown to fall in the superinsulating area [16,21,34,35]. Among them, pectin aerogels
possess density around 0.1 g cm−3, specific surface area up to 600 m2 g−1 and thermal
conductivity in ambient conditions as low as 0.015 W m−1 K−1, which is very close to the
thermal conductivity of the best silica aerogels [21].

Pectin is a polyelectrolyte with a complex structure mainly consisting of D-galacturonic
acid (GalA) units that are connected by a-(1–4) glycosidic linkages. These acids have
carboxyl groups, some of which are methyl esterified. Commercially available pectin
is derived from citrus peel or apple pomace from the waste of the juice manufacturing
industry [36,37]. Pectin is used predominantly for food applications due to its gelation
and thickening properties. The gelation of pectin depends on various parameters such
as the degree of esterification (DE), the temperature, polymer concentration and pH of
the solution, the presence of salts and/or sugars, molecular weight, etc. The processing
parameters define the gelation kinetics and the gel morphology. Two common ways to
achieve pectin gelation are known: acidic gelation or crosslinking with polyvalent metal
ions [38,39]. Another method to obtain pectin networks is by non-solvent-induced phase
separation [20,21]. The formation of the pectin network plays a crucial role in the final
morphology of the dry material and hence the material properties [20,21].

If willing to use bio-aerogels for the engineering (thermal or acoustic insulation) appli-
cations, their aging properties in different environments should be investigated. Here, the
disadvantage of bio-aerogels (including pectin aerogels) is the high intrinsic hydrophilicity
of the polymer and, thus, of the final porous material. The researchers working with bio-
aerogels know well that water vapors from the atmosphere trigger the collapse of the fine
porous network of a bio-aerogel and irreversibly alter their properties. However, there have
been very few reports on the aging of bio-aerogels, and, in particular, on the evolution of
their thermal conductivity in humid conditions. For example, an almost two-fold increase
in the thermal conductivity (from around 0.04 to around 0.08 W m−1 K−1) was recorded
for nanocellulose foams when the relative humidity (RH) increased from 20 to 80 RH%
at room temperature [40]. An even higher conductivity increase (from around 0.027 to
0.120–170 W m−1 K−1 at 0 to 60 RH%, respectively) was reported for porous cellulose made
by dissolution in aqueous NaOH solvent, coagulation and freeze drying [41]. In the latter
case, plasma treatment of the porous dry material allowed cellulose hydrophobization and
stabilization of thermal conductivity around 0.030–0.033 W m−1 K−1 for 24 h at 60 RH%.

In general, several physical or chemical modifications are proposed in the literature for
the hydrophobization of polysaccharides or polysaccharide-based materials [42–46]. Phys-
ical modifications include plasma technologies [47,48] or the adsorption of hydrophobic
molecules/macromolecules [49]. Chemical modifications are silylation [50–52], esterifica-
tion [53,54], etherification [55], etc. Modifications can be applied to the starting polymer as
a homogeneous approach or to the material surface (or pores’ surface) as a heterogeneous
approach. For example, various modifications have been applied to make freeze-dried
cellulose for absorption/adsorption and separation applications (see, for example [48,56]).
Silylation was applied to nanocellulose aerogels to make the material hydrophobic [57];
however, no evolution of thermal conductivity in time was reported. No hydrophobic
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pectin aerogels have been reported, and nothing is known about the evolution of pectin
aerogel thermal conductivity in time in different RH conditions.

The main objective of this work was to study the evolution of pectin aerogel properties
as a function of time in high relative humidity conditions and suggest a chemical modifica-
tion which should keep thermal conductivity stable in time and below 0.030 W m−1 K−1

in room conditions. The novelty of this work consists of (i) using the chemical vapor
deposition (CVD) of methyltrimethoxysilane (MTMS) for pectin aerogel modification and
(ii) in finding conditions for the efficient stabilization of thermal insulation properties. This
type of modification was chosen as a more environmentally friendly procedure since it
does not use any organic solvents. First, reference neat pectin aerogels were synthesized,
and the influence of the main processing parameters was correlated with the material
properties. Then, CVD was applied to selected pectin aerogels for 24 h, and the evolution
of thermal conductivity of neat and silylated pectin aerogels as a function of time at high
RH (80%) was monitored. Finally, material optimization was performed by adjusting CVD
duration. It was demonstrated that the introduction of methyl silyl groups is very effi-
cient for pectin aerogels’ hydrophobization. ensuring a long-term stability of the thermal
insulation performance.

2. Materials and Methods
2.1. Materials

Apple pectin with degree of esterification (DE) 50–75% (as defined by the provider)
was purchased from Sigma Aldrich (Darmstadt, Germany). The actual DE (%) and molec-
ular weight were determined using titration and viscometry measurements, respectively
(see Section 2.2.1). Hydrochloric acid (HCl) (37%, laboratory reagent grade), potassium hy-
droxide pellets (KOH) (laboratory reagent grade), absolute ethanol (purity > 99%), acetone
(purity > 99%, laboratory reagent grade) and ammonium hydroxide (28–30% solution in wa-
ter, ACS reagent) were obtained from Fisher Scientific (Illkirch-Graffenstaden, France) and
sodium hydroxide flakes (NaOH) (98% purity) were purchased from Alfa Aesar (Illkirch-
Graffenstaden, Germany). Methyltrimethoxysilane (MTMS) (purity > 99%, reagent grade)
was from Sigma-Aldrich (Darmstadt, Germany).

Solvents and reagents were used without further purification. Water was deionized (DI).

2.2. Methods
2.2.1. Characterization of Pectin

The degree of esterification (DE) and pKa of the pectin were determined by potentio-
metric titration [58]. The DE corresponds to the molar proportion (%) of methoxy groups
in the pectin and is given by Equation (1):

DE = Ke
/

Kt × 100 = (Kt − K f )
/

Kt × 100 =
(

1 − K f
/

Kt

)
× 100 (1)

where Ke is the number of esterified carboxyl groups, Kf is the number of free carboxyl
groups, and Kt is the total number of carboxyl groups, i.e., Kt = Kf + Ke.

To determine the amount of free carboxyl groups (Kf), pectin (0.2 g) was dissolved in
DI water (20 mL) and was titrated with a 0.1 M KOH solution. The titration was repeated
for three independent samples, and the mean value was considered.

The total amount of carboxyl groups, Kt, was determined as follows. A 0.1 M KOH
solution was used to neutralize the pectin sample after determination of the free carboxyl
groups. Ten milliliters of 0.1 M KOH were further added, and the solution was stirred at
40 ◦C for 4 h to saponify the esterified carboxy groups of the polymer. Afterwards, 10 mL
of 0.1 M HCl was added to protonate the carboxylate moieties into carboxyl acid moieties.
The excess of HCl was then titrated with 0.1 M KOH.

The obtained Kf and Kt values allow the calculation of the DE of pectin that was
58 ± 2%. The pKa of the pectin was 3.0.
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Viscometry and the Huggins approach were used to determine pectin intrinsic viscos-
ity [η] using iVisc from LAUDA (Lauda-Königshofen, Germany) and a capillary Ubbelhode
Dilution Viscometer Type I with a capillary diameter 0.63 mm. The solvent was 0.01 mol L−1

NaCl, and the measurements were performed at 26.6 ◦C [59]. The molecular weight Mη

was calculated using the Mark–Houwink equation:

[η] = K Mα
η (2)

where K = 0.0234 and α = 0.8221 [59]. The intrinsic viscosity of pectin in these conditions
was 342 mL g−1, and the molecular weight was found to be equal to 1.16 × 105 g mol−1.

2.2.2. Preparation of Pectin Aerogels

Pectin aerogels were prepared via the dissolution of pectin in water followed by
the non-solvent-induced phase separation approach [20,21]. Pectin concentrations in the
starting solution were 2 and 3 wt%, and pH values were adjusted to 2 and 3 by the addition
of a small quantity of HCl or KOH, respectively. The following formulations 2 wt%/pH 2;
2 wt%/pH 3; 3 wt%/pH 2 and 3 wt%/pH 3 were prepared and will be noted (X, Y) with
X corresponding to pectin concentration and Y corresponding to solution pH. The pectin
solution was then poured into molds of 27.5 mm diameter, and the solvent-to-non-solvent
exchange was performed. Two pectin non-solvents were used: ethanol (E) and acetone
(A) [20]. Solvent/non-solvent exchange was performed progressively with the water/non-
solvent ratio (v/v) decreasing to 50/50, 25/75, and 0/100, which was followed by a final
extensive washing with pure non-solvent. This procedure led to a fully coagulated pectin
network forming a monolithic and self-standing organogel (Figure 1).
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Figure 1. Preparation process of pectin aerogels.

The obtained eight formulations of organogels were dried with supercritical CO2
drying to result in pectin aerogels named (X, Y, E) or (X, Y, A). Supercritical CO2 (scCO2)
drying was performed by placing pectin organogels into a 1 L autoclave. The system was
closed and pressurized at approximately 40 bar and 37 ◦C with gaseous CO2. Then, the
pressure was increased to 80 bar. A dynamic washing step (at 50 g min−1) at 80 bars and
37 ◦C was carried out for 4 h. Afterwards, the system was slowly depressurized overnight
at 4 bar/h and 37 ◦C and cooled down to room temperature by inertia. The autoclave was
then opened, and the samples were collected.

Due to the intrinsic hygroscopicity of pectin, all pectin aerogels were immediately
placed into desiccators to protect them against moisture adsorption.

The aging of pectin aerogels was performed in a Binder KBF 115 climatic chamber
conditioned at 25 ◦C and RH of 80%.

2.2.3. MTMS Chemical Vapor Deposition on Pectin Aerogels

Pectin aerogels were placed in a 5 L chamber (Figure 2). Five grams of MTMS and five
grams of NH4OH were placed in the chamber in separate containers, avoiding physical
contact with the aerogels (Figure 2). The chamber was tightly closed and left at room
temperature for 2, 5, 16, or 24 h [60]. Finally, the chamber was opened, and the samples
placed into desiccators.
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2.2.4. Characterization of Pectin Aerogels

Volumetric shrinkage of samples at each processing step was determined by measure-
ment of the materials’ dimensions with a digital caliper (±0.01 mm) before and after the
step (Equation (3)).

Volumetric shrinkage, % =
Vi− Vf

Vi
× 100 (3)

where Vi is the volume of the material before the specific step and Vf is the volume after.
The maximal error was 8%.

The bulk density, ρb, was determined as the ratio of sample mass to volume, the former
measured with a digital analytical balance with a precision of 0.01 mg and the latter using
a high-precision caliper. The maximal error in density was 0.01 g cm−3.

The porosity of the neat pectin aerogels was estimated from bulk and skeletal densities
as follows (Equation (4)).

Π % = (ρs – ρb)/ρs × 100 (4)

with ρs being the skeletal density of 1.57 g cm−3 [19].
ATR-FTIR spectra were obtained with a Bruker Tensor 27 equipped with a PIKE MIRacle™

singe reflection accessory, using OPUS 7.8 software. The measurements were performed in the
range of 4000–600 cm−1 with a resolution of 4 cm−1 and 16 scans per analysis.

The specific surface area was determined by nitrogen adsorption either using ASAP
2020 (Micromeritics, Mérignac, France) or Belsorp mini X (Microtrac, Toulouse, France)
and a Brunauer–Emmett–Teller (BET) model. Prior to analysis, samples were degassed in a
high vacuum at 70 ◦C for 10 h. The average error was around 15 m2/g and the maximal
one was 35 m2/g.

Scanning electron microscopy (SEM) observations and energy-dispersive X-ray (EDX)
analysis of aerogel inner morphology and composition, respectively, were performed using
Tescan (Fuveau, France) MAIA3 XMU. Prior to observations, a fine layer of 7 nm of platinum
was sputtered onto the sample surface with Q150T Quarum (Lewes, UK) rotating metallizer.

Water contact angle measurements were performed with a Krüss (Hamburg, Germany)
DropAnalyzer DSA 100 goniometer and calculated using Drop Shape Analysis v1.9-02
software. The maximal error was 1◦.

The thermal conductivity (λ) of pectin aerogels was measured at ambient pressure
using a heat flow meter LaserComp Fox 150 equipped with a custom “micro-flow meter
cell” developed for small samples [19,21,61], typically cylinders of 20 mm in diameter, at
20 ◦C. Spaceloft® aerogel from Aspen (thickness of 3.70 mm) with thermal conductivity of
0.0133 W m−1 K−1 at 20 ◦C according to the European Norm EN 12667 [62] was used as a
standard for calibration. The maximal error was 0.0005 W m−1 K−1.

Moisture uptake by pectin aerogels was calculated by measuring the samples’ mass
at the specific time interval with a digital analytical balance and a sample volume with a
digital caliper. The maximal error was 2%.

3. Results

First, an overview of neat (non-hydrophobized) pectin aerogels is presented, as they
will be used as reference materials. For more details on the influence of processing condi-
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tions on the pectin aerogels’ structure, properties and thermal conductivity, the reader is
advised to look in refs [20,21]. Next, the properties of composite aerogels obtained after
24 h deposition of MTMS are reported. Finally, the influence of the duration of MTMS
deposition on the composite aerogel properties, focusing on aging in the climatic chamber,
is presented and discussed.

3.1. Properties of Neat Pectin Aerogels

As pectin is a polyelectrolyte, solution pH is very important to understand polymer
interactions. At very low pH values, pectin chains are stabilized by both intra- and inter-
chains’ hydrogen bonding between the protonated carboxylic acid groups and the alcoholic
groups of the polysaccharide chains and by hydrophobic interactions of the methyl ester-
ified groups. The concentration of the polymer in the solution affects the ability to form
sufficient interactions that will lead to gelation [38,39]. For the studied pectin concentra-
tions (either 2 wt% or 3 wt%) and solution pH (either 2 or 3), pectin was fully dissolved
in water, and acidic gelation did not occur. This observation is in accordance with the
literature [20]. When a pectin non-solvent was added in the system, pectin coagulated,
forming a 3D network. The non-solvent nature along with the polymer concentration and
pH of the starting pectin solution had an impact on the network structure and resulted in
materials with different morphologies and properties. They are summarized in Table 1 and
Table S1 and presented graphically in Figure S1.

Table 1. Nomenclature and properties of neat pectin aerogels.

Cpectin
(wt%) pH Non-Solvent Nomenclature

Bulk
Density, ρb

(g cm−3)

Porosity, ∏
(%)

BET Specific
Surface Area

(m2 g−1)

Thermal
Conductivity, λ

(W m−1 K−1)

2 2 ethanol (2, 2, E) 0.050 ± 0.001 97 ± 1 322 ± 10 0.0216

2 2 acetone (2, 2, A) 0.038 ± 0.002 98 ± 1 308 ± 16 0.0228

2 3 ethanol (2, 3, E) 0.073 ± 0.001 91 ± 1 462 ± 28 0.0169

2 3 acetone (2, 3, A) 0.080 ± 0.001 94 ± 1 433 ± 25 0.0148

3 2 ethanol (3, 2, E) 0.065 ± 0.003 96 ± 1 567 ± 11 0.0212

3 2 acetone (3, 2, A) 0.059 ± 0.001 93 ± 1 556 + 20 0.0202

3 3 ethanol (3, 3, E) 0.11 ± 0.01 93 ± 1 475 ± 32 0.0234

3 3 acetone (3, 3, A) 0.083 ± 0.001 96 ± 1 439 ± 8 0.0152

During solvent exchange and drying, all neat pectin aerogels exhibited a high total
volumetric shrinkage (64–82%, Table S1). During the solvent exchange step, the volumetric
shrinkage was higher for the samples prepared with acetone as a non-solvent. For all the
samples, the highest volumetric shrinkage occurred during the drying procedure (57–82%).
Here, organogels prepared from solutions at pH 3 and with ethanol as non-solvent exhibited
the greatest shrinkage values. Overall, the total shrinkage was slightly lower for solutions
made at pH 2. This behavior was expected, as a larger number of hydrogen bonds were
formed at lower solution pH, helping pectin to “resist” from strong collapse. In all cases, the
final materials had low bulk densities (0.04–0.11 g mL−1), which is slightly higher for the
samples prepared at pH 3 (Table 1), as a result of higher shrinkage during the fabrication
process. The BET surface areas were in the range of 308–556 m2 g−1 (Table 1). The highest
value, 556 m2 g−1, was obtained for the pectin aerogels prepared from the formulation
(3, 2, A).

All neat pectin aerogels were thermal superinsulating materials with thermal conduc-
tivity in the range of 0.0148–0.0234 W m−1 K−1, i.e., below that of air in ambient conditions
(0.025 W m−1 K−1) (Table 1). The lowest conductivity was recorded for aerogels with
density values around 0.08 g cm−3 corresponding to formulations (2, 3, A) and (3, 3, A)



Polymers 2024, 16, 1628 7 of 18

(Table 1). Similar low values of thermal conductivity at similar density were reported for
pectin of DE 35% [21].

All neat pectin aerogels exhibited excellent thermal conductivity values that make
them suitable for thermal insulation materials. However, pectin is a water-soluble polymer
and is aging with time due to the adsorption of water vapors, as will be shown below.
Hydrophobization by CVD of MTMS was thus performed to try to prevent material aging.

3.2. Properties of Composite Pectin Aerogels after 24 h of MTMS Vapor Deposition

The modification of pectin aerogels was performed using MTMS as a hydrophobic
agent and NH4OH as the reaction catalyst [60]. MTMS and ammonia were placed in a
closed container together with the pectin aerogels, as shown in Figure 2. All neat pectin
aerogels (i.e., made from solutions of concentration 2 wt% or 3 wt%, at pH 2 or 3, and
non-solvent ethanol or acetone) were kept in MTMS vapor phase for 24 h. As it will be
shown in the following, vapors of MTMS diffused into aerogel pores and, in the presence
of water and NH3, MTMS polymerization occurred (Figure 2b), resulting in a silica-based
phase that was deposited around the pectin fibrils of the bio-aerogel network. The chemical
composition and material properties of the final composite aerogels are presented below.

The chemical modification of pectin aerogels was confirmed using ATR-FTIR spec-
troscopy performed on the interior of the specimens once cut (compare spectra for neat
pectin and for composite aerogels after 24 h reaction in Figure 3). The spectrum of neat
pectin aerogels showed all characteristic peaks of pectin [63]. The broad band at 3400 cm−1

was assigned to the stretching vibrations of the –OH groups of the pectin chain and wa-
ter molecules that were inside the material’s network. The bands that appear around
2930 cm−1 were assigned to the C-H stretching of the –CH groups of the ring. Two bands
were observed corresponding to C=O stretching vibrations at 1739 cm−1 and 1641 cm−1.
These bands were assigned to the methyl esterified groups and the carboxylate groups,
respectively. A weaker band corresponding to the C=O stretching of the ionic carboxyl
groups appeared at 1440 cm−1. The multiple bands in the area of 930–1200 cm−1 were
attributed to the glycosidic bonds, and the sharp band at 1020 cm−1 was assigned to the
C-O stretching on the saccharide ring. After modification, most of the pectin’s characteristic
bands were not visible, as they were overlapping with the strong bands coming from the
silica-based polymer. The intensity of the band around 3400 cm−1 attributed to the –OH
groups of pectin or water molecules decreased. This was a result of the interactions between
the pectin –OH groups and the silica-based polymer and the decrease in the amount of
water molecules inside the material matrix due to the hydrophobic nature of the modifica-
tion. Additional bands around 2930 cm−1 were observed for the MTMS-modified pectin,
corresponding to the C-H stretching of the Si-CH3 groups. Around 1047–1137 cm−1 strong
bands appeared corresponding to the stretching and bending vibrations of the Si-O-Si
group. The bands at 777 cm−1 and 1273 cm−1 were assigned to the –Si-CH3 groups and
were correlated with the CH3 symmetric deformation and Si-C stretching, respectively.
All characteristic bands of the deposited silica polymer were observed as reported in the
literature [64,65].

The properties of composite aerogels obtained after 24 h reaction are summarized
in Figure 4, and the values are provided in Table S2. After 24 h reaction, a significant
amount of mass increase (around 150–200 wt%) occurred for all materials, and a volumetric
shrinkage was observed (Table S1). The volumetric shrinkage during the reaction was
higher for the aerogels prepared with ethanol as non-solvent (35–46%) compared to that
in acetone (18–28%). All composite aerogels showed higher density values in comparison
with the neat pectin aerogels (Figure 4a), which is in accordance with the mass increase
and volumetric shrinkage. The lowest density was obtained for the composite aerogels
prepared from solutions of pectin concentration 2 wt% and pH 2 and non-solvent acetone,
i.e., (2, 2, A) formulation. It is noted that this formulation possessed the lowest density
for the neat pectin aerogels as well. Densification of the network during modification
resulted in lower values of BET surface area for all modified aerogels (Figure 4b) with the
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lowest values for composite aerogels prepared with ethanol as non-solvent (87–129 m2 g−1)
and the highest values, very close to each other, for the composite aerogels prepared with
acetone as non-solvent (152–169 m2 g−1).
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composite aerogels obtained for reaction time of 24 h.

The internal morphology of the composite aerogels obtained after 24 h reaction was
analyzed with SEM (Figure 5). All neat pectin aerogels were materials with a fine nanos-
tructured network of fibrils, as has been observed for pectin aerogels before [19–21]. The
composite aerogel network maintained the fibrous nanostructure of their parent counter-
part. Then, 24 after the reaction, the fibrils became thicker, which was in accordance with
the deposition of silica polymer on the already formed and dried pectin fibrils. As revealed
from the SEM images, the silica-based polymer not only formed a “coating” around pectin
fibrils but also particles that were dispersed inside the fibrous network. These particles ap-
peared to be non-porous, as observed by SEM, which is in the agreement with the decrease
in surface area values of composite aerogels compared to that of neat pectin counterparts
(Figure 4b). Consequently, the network was denser for the composite aerogels, which was
in accordance with the bulk density values (Figure 4a).
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the reaction during 24 h. Pectin aerogels were from the formulation (2, 2, A).

The composition of the neat and composite pectin aerogels was analyzed using EDX
spectroscopy (Figure 6 and Table 2). This method provides elements’ mapping and con-
centration in a selected area. EDX analysis of neat pectin aerogels (Figure 6a, Table 2)
revealed, as expected for a carbohydrate, a high content of carbon and oxygen atoms, with
their proportion in agreement with data from the literature [66], and with a negligible
concentration of silicon. After the modification with MTMS for 24 h, the mass percentage of
silicon increased to 24% in the mapped area (Figure 6b, Table 2). For this formulation, (2, 2,
A), the mass increase during the reaction was 154%, as shown in Table S2. The distribution
of carbon, oxygen and silicon on the selected inner surface of the composite aerogel shows
a homogeneous distribution of all elements and, in particular, of the silica-based polymer
(Figure 5). EDX results confirmed that MTMS diffused inside the pectin network and was
deposited on the aerogel pore walls.

Table 2. Composition of neat pectin aerogel, formulation (2, 2, A), and of the internal area of the
corresponding composite aerogel (reaction duration 24 h) as defined from EDX analysis.

Element

Neat Pectin Aerogel Composite Pectin Aerogel

Mass (%) Normalized
Mass (%) Atom (%) Mass (%) Normalized

Mass (%) Atom (%)

C 47.67 47.67 55.34 11.74 30.44 42.52

O 50.08 50.08 43.65 11.64 32.41 32.41

Si 0.56 0.56 0.28 15.18 24.07 24.07

Na 0.54 0.54 0.33 0 0 0

K 0.62 0.62 0.22 0 0 0

Ca 0.53 0.53 0.18 0 0 0

Total 100 100 100 37.57 100 100
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All composite pectin aerogels modified during 24 h by MTMS vapors were evaluated
toward material hydrophobicity by measuring the contact angles with water. In accordance
with the hydrophobic nature of the silica-based polymer that covered the hydrophilic pectin
fibrils, all composite aerogels were hydrophobic with water contact angles in the range of
116–127◦ (Table S2). Water contact angles for neat pectin aerogels were not recorded, as
droplets were absorbed immediately (less than one second), making the analysis impossible.
To check if hydrophobization occurred within the whole body of composite aerogels, parts
of the sample were gradually removed, and the contact angle with water was measured.
Figure 7 shows the contact angles at various “depths” R in the sample:

R, % =
∆h
h0

× 100%

where ∆h is the thickness of the removed layer and h0 is the initial thickness of the sample.
Contact angles of 140–151◦ were obtained for the interior of the sample, which was down
almost to half of the initial thickness of the composite aerogel (R = 40%). Thus, the
hydrophobic modification was equally successful inside the aerogel and on its surface. The
increase in the water contact angle in the interior of the composite aerogels compared to its
surface could be attributed to the increase in roughness due to mechanical material removal.

3.3. Influence of Reaction Time of MTMS Chemical Vapor Deposition on Composite
Aerogel Properties

In the previous section, the properties of hydrophobically modified pectin aerogels via
the vapor deposition of MTMS over 24 h were presented. To achieve materials with very low
thermal conductivity in ambient conditions and, especially, superinsulating materials, the first
basic requirement is that the material density should be around 0.1 g cm−3, as demonstrated by
numerous studies [25]. Modification with MTMS for 24 h resulted in materials with bulk densi-
ties in the range of 0.24–0.53 g cm−3 (Figure 4); in addition, non-porous silica-based micron-size
particles inside the pectin network were formed, deteriorating the composite aerogel properties
in terms of the morphology and specific surface area. These features made the composite
aerogels obtained via MTMS vapor deposition for 24 h not suitable for thermal insulation
applications. Thus, the hydrophobization reaction time was varied to achieve hydrophobic
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aerogels with significantly lower bulk density values and without non-porous particles inside.
Three different vapor deposition times were tested for this purpose, 2, 5, and 16 h, keeping
all the other reaction parameters (temperature, pressure, etc.) constant. Since the goal was to
reach the lowest possible density values (while maintaining the hydrophobic property), the
formulations that were selected were the ones that resulted in the lowest bulk density for both
neat and chemically modified pectin aerogels: these are pectin solutions that were coagulated in
acetone, and, in particular, (2, 2, A) formulation.
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The evidence of pectin hydrophobization, for all reaction times used, is confirmed
by ATR-FTIR spectroscopy (Figure S2). Two hours was sufficient time for the reaction to
occur. The intensity of the broad band at 3400 cm−1 (Figure S2), assigned to the stretching
vibrations of –OH groups of the pectin chain and water molecules (see also Figure 3),
decreased with the increase in CVD time due to the interactions of pectin with the silica-
based polymer and the reduction in water content inside the composite materials’ matrix
after hydrophobization. The evolution of the composite aerogel properties as a function
of reaction time is presented in Figure 8 for the formulation (2, 2, A) and summarized in
Table S2 for other formulations. MTMS deposition resulted in a progressive increase in
density, reaching a plateau value after 16 h of reaction (Figure 8). The reason for the density
increase is a significant increase in sample mass, up to 150–160% (Figure 8 and Table S2);
the volumetric shrinkage during reaction was not very high: within 30–40% (Table S2).
The reaction time should be as short as possibles to avoid a too high increase in the final
aerogels’ bulk density. The BET surface area of the composite aerogels was lower than
that of the neat pectin aerogels prepared in the same conditions and was in the range of
120–172 m2 g−1 (Table S1).

The morphology of composite aerogels after different reaction times is presented in
Figure 9. Comparing the nanostructure of neat pectin aerogels with the corresponding com-
posite aerogels, it seemed that as the reaction time increased, the final material possessed
a denser network, as expected from Figure 8. No silica-based particles were observed for
reaction times up to 16 h.

The effect of the reaction time on the hydrophobicity of the composite aerogels was studied
by water contact angle measurements (Table S2 and Figure 10 for the formulation (2, 2, A)). For
all reaction times, the modified aerogels had high “immediate” contact angles (around 120◦),
which was similar to the composite aerogels obtained after 24 h of MTMS deposition (Figure 7).
Exploration of the contact angle fluctuation in time (Figure 10) revealed that for short reaction
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times (i.e., 2 h), the contact angle decreased with water droplets being completely absorbed after
three minutes. For longer reaction times (5 h or 16 h), the contact angle remained nearly stable,
with minor variations, and after three minutes, no adsorption was observed. This investigation
concluded that in order to achieve the stable hydrophobization of pectin aerogels, the reaction
time needs to be greater than 5 h.
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A) for 2 h, 5 h, and 16 h reaction time.
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As far as other formulations, (2, 3, A), (3, 2, A) and (3, 3, A) possess rather high (for
aerogels) density values (0.31–0.57 g cm−3, Table S1); the formulation (2, 2, A) was selected
for a further analysis of the material’s thermal conductivity (Table S1). As anticipated, the
thermal conductivity of the composite aerogels increased in comparison with the corre-
sponding neat reference counterpart (conductivity 0.0216 W m−1 K−1) as a consequence of
the density increase, from 0.0246 W m−1 K−1 for 2 h reaction time to 0.0282 W m−1 K−1 for
5 h and to 0.0301 W m−1 K−1 for 16 h (Figure 11 and Table S1).
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3.4. Aging Studies of Neat Pectin and Composite Aerogels

The aging of neat pectin aerogels and composite aerogels was monitored in a climatic
chamber conditioned at constant 25 ◦C and relative humidity of 80%. These conditions were
selected, as 25 ◦C is the standard reference ambient temperature, and a relative humidity of
80% is considered an “extreme” case.

The volumetric shrinkage, mass increase, density and thermal conductivity evolution
as a function of aging time are presented for different durations of MTMS deposition,
focusing on (2, 2, A) formulation (Figure 12); some results for other formulations are also
shown in Tables S2–S5. Under these high relative humidity conditions, neat pectin aerogels
underwent significant changes during the first half-day (Tables S3–S6): the volumetric
shrinkage was around 70–80% and the moisture uptake was around 12–18 wt%. Even
though the content of water vapors adsorbed by the material was rather low, the huge
shrinkage led to a high increase in bulk density. For example, for the formulation (2, 2, A),
the initial density (0.087 g cm−3) increased to around 0.6 g cm−3 after 7 days (Figure 12c).
This change in density resulted in high thermal conductivity values that were more than
twice as large as the initial ones, from 0.022 to 0.050 W m−1 K−1 (Figure 12d). After one
week and up to 240 days in the climatic chamber, neat pectin aerogels exhibited minor
variations of shrinkage and moisture content, and so did the bulk density and thermal
conductivity (Figure 12).

The properties of composite aerogels strongly depend on the duration of MTMS
deposition (Figure 12). Moisture uptake was rather similar and below 9 wt% for the
composite aerogels with different hydrophobization times (Figure 12b). Nevertheless, the
volumetric shrinkage was higher for lower reaction times and was zero for the reaction time
of 16 h (Figure 12a). A similar result was recorded for other formulations (Tables S3–S6).
Bulk density doubled for the composite aerogel (formulation (2, 2, A)) made with 2 h of
MTMS deposition, but it remained constant for the samples of 5 and 16 h (Figure 12c). It
can be concluded that the network collapse and not the mass increase due to the adsorption
of water vapors induced the variation in the aerogels’ density.
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A longer duration of MTMS deposition resulted in the elevated amount of hydrophobic
silica-based polymer deposited on the pectin fibers, resulting in lower aerogel shrinkage
in moist environments, in particular, for 5 and 16 h of reaction. At least two reasons can
explain this result: (i) MTMS is hydrophobic and “protects” pectin from water adsorption,
and (ii) thicker pore walls reinforce the solid backbone and increase its capacity to withstand
the capillary stresses that were present during the condensation of water vapors. As a
result, the nanostructure of the composite aerogels remained intact even though there was
a certain proportion of moisture inside the material. Thermal conductivity measurements
with time revealed that there was an increase by 0.005–0.007 W m−1 K−1 from the initial
value for a shorter duration of MTMS deposition (2 h or 5 h). For a longer duration of
MTMS deposition (16 h), the thermal conductivity of the composite aerogels underwent no
change for 240 days.

4. Conclusions

Pectin aerogels were prepared, and the evolution of their properties as a function
of time at 25 ◦C and 80 RH% was investigated with the focus on thermal conductivity.
Various formulations were tested: pectin concentration 2 and 3 wt%, solution pH 2 and
3, and non-solvent ethanol and acetone. Neat pectin aerogels are thermal superinsulating
materials with the lowest conductivity around 0.015 W m−1 K−1. As the adsorption
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and condensation of water vapors neat pectin aerogels shrink, the density and thermal
conductivity significantly increase.

In the view of “protecting” pectin aerogels from aging, the hydrophobization of their
solid skeleton with MTMS was performed via CVD. The influence of reaction duration,
from 2 to 24 h, on the composite pectin aerogel’s properties was investigated. The longest
reaction duration resulted in a high increase in aerogel density and formation of non-
porous silica beads inside pectin aerogels. The 2 h reaction was not sufficient for pectin
aerogel hydrophobization, as the water contact angle decreased in time and the thermal
conductivity increased by 0.013 W m−1 K−1. The 16 h reaction was shown to be optimal,
as no aerogel volumetric shrinkage occurred at 80 RH%, the contact angle was around
115◦, and the density and thermal conductivity (around 0.030 W m−1 K−1) were stable for
the whole duration of the testing period (i.e., 8 months). MTMS CVD on pectin aerogel
was demonstrated to be an efficient way of pectin aerogels’ properties stabilization at high
relative humidity, 80%. Even if the thermal conductivity is increased compared to the
reference neat pectin aerogels, hydrophobized pectin aerogels still possess low thermal
conductivity and stability in high humidity environments, which make them excellent
candidates as sustainable materials for thermal insulation.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym16121628/s1, Figure S1: Properties of neat pectin aerogels,
Figure S2: ATR-FTIR spectra for neat pectin aerogel and MTMS–pectin composite aerogels for
different chemical treatment duration, Table S1: Volumetric shrinkage of neat pectin aerogels during
various fabrication steps, Table S2: Selected material properties of hydrophobically modified pectin
aerogels, Table S3: Properties of composite aerogels made from (2, 2, A) pectin aerogels after different
reaction times of MTMS deposition (0, 2, 5 and 16 h) after aging in a conditioned climatic chamber at
25 ◦C and 80 RH%, Table S4: Properties of composite aerogels made from (2, 3, A) pectin aerogels
after different reaction times of MTMS deposition (0, 2, 5 and 16 h) after aging in a climatic chamber
at 25 ◦C and 80 RH%, Table S5: Properties of composite aerogels made from (3, 2, A) pectin aerogels
after different reaction times of MTMS deposition (0, 2, 5 and 16 h) after aging in a climatic chamber
at 25 ◦C and 80 RH%, Table S6: Properties of composite aerogels made from (3, 3, A) pectin aerogels
after different reaction times of MTMS deposition (0, 2, 5 and 16 h) after aging in climatic chamber at
25 ◦C and 80 RH%.
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