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Abstract. We investigate intuitionistic modal logics with locally inter-
preted □ and ♢. The basic logic LIK is stronger than constructive modal
logic WK and incomparable with intuitionistic modal logic IK. We pro-
pose an axiomatization of LIK and some of its extensions. Additionally,
we present bi-nested calculi for LIK and these extensions, providing both
a decision procedure and a procedure of finite countermodel extraction.

Keywords: Intuitionistic Modal Logic · Axiomatization · Sequent Cal-
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1 Introduction

Intuitionistic modal logic (IML) has a long history, starting from the pioneering
work by Fitch [10] and Prawitz [16]. Along the time, two traditions have emerged.
The first tradition, called intuitionistic modal logics [7,8,9,15,17], aims to define
modalities justified by an intuitionistic meta-theory. In this tradition, the fun-
damental logic is IK, considered as the intuitionistic counterpart of the minimal
normal modal logic K. The second tradition, known as constructive modal logics,
is mainly motivated by computer science applications like Curry-Howard corre-
spondence, verification and contextual reasoning, etc. In this tradition, the basic
logics are CCDL [19] and CK [3].

However, there are other intuitionistic modal logics with natural interpreta-
tions of modalities that have received little interest and deserve to be studied.
One approach can be to study intuitionistic modal logic on a common semantic
ground in terms of a bi-relational model (W,≤, R, V ) combining an intuitionis-
tic pre-order ≤ on states/worlds and an accessibility relation R for modalities.
The present work aims to study several intuitionistic modal logics where, in a
bi-relational model, the modal operators are classically interpreted:

(1) x ⊩ □A iff for all y such that Rxy it holds y ⊩ A;
(2) x ⊩ ♢A iff there exists y such that Rxy and y ⊩ A.

We call these forcing conditions “local” as they do not involve worlds ≤-greater
or ≤-smaller than x. Meanwhile, we require that all the intuitionistic axioms
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remain valid in the full logic. This is conveyed by the hereditary property (HP),
which says for any formula A, if A is forced by a world x, it will also be forced
by any upper world of x. In order to ensure (HP), we need to postulate two
frame conditions which relate ≤ and R in a bi-relational model: the conditions
of downward confluence (DC) and forward confluence (FC) [1,4,9,17]. We call
the basic K-style logic LIK by local IK.

In the literature, Božić and Došen [4] studied separately the □-fragment and
the ♢-fragment of LIK and also considered a logic combining □ and ♢. However,
the logic they obtained is stronger than LIK, since they considered a restricted
class of frames. Moreover, in their setting, ♢ becomes definable in terms of □,
which is inappropriate from an intuitionistic point of view. In other respect,
Božić and Došen did not tackle the decidability issue. Besides, a logic related
to LIK has been considered in [5] in the context of substructural logics. More
recently, the S4-extension of LIK has been shown to be decidable [1].

In this paper, we consider LIK and some of its extensions with axioms char-
acterizing seriality, reflexivity and transitivity of the accessibility relation R in a
bi-relational model. We provide complete axiomatizations for them with respect
to appropriate classes of models. The basic logic LIK is stronger than Wije-
sekera’s CCDL as well as another intuitionistic modal logic FIK which only
assumes forward confluence on models [2]. But LIK is incomparable with IK. It
is noteworthy that LIK fails to satisfy the disjunction property. However, unex-
pectedly, its extension with axioms characterizing either seriality or reflexivity
of the accessibility relation possesses this property.

Turning to proof theory, we propose bi-nested sequent calculi for LIK and its
extensions. A bi-nested calculus uses two kinds of nestings in the syntax: the first
one is used for ≥-upper worlds proposed by Fitting in [11]. Recently a nested
sequent calculus using Fitting’s nesting to capture an extension of CCDL has
been presented in [6]. The second one is for R-successors, which is used in several
nested sequent calculi for other IMLs [12,18,14]. A calculus for IK intended to
combine the two nestings was also preliminarily considered in [13]. A bi-nested
sequent calculus with the same bi-nested structure is proposed for the logic FIK
in [2] where the frame condition of forward confluence is captured by a suitable
“interaction” rule. A calculus for LIK can be obtained from the calculus for
FIK by adopting a “local” □, or by adding another “interaction” rule capturing
the downward confluence frame condition. Calculi for the extensions of LIK are
defined by adding suitable modal rules.

We prove that these calculi provide a decision procedure for the logic LIK
and some of its extensions. Moreover, we show the semantic completeness of these
calculi: from a single failed derivation under a suitable strategy, it is possible to
extract a finite countermodel for the given sequent at the root. In addition, for
the extensions of LIK with (D) or (T), a syntactic proof of the disjunction
property via the calculi is provided. These results demonstrate that bi-nested
sequent calculus is a powerful and flexible tool which constitutes an alternative to
other formalisms like labelled sequent calculus and is capable to treat uniformly
various IMLs.
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2 Local intuitionistic modal logic

Let At be a set (with members called atoms and denoted p, q, etc.).

Definition 1 (Formulas). Let L be the set (with members called formulas and
denoted A, B, etc.) of finite words over At∪{⊃,⊤,⊥,∨,∧,□,♢, (, )} defined by

A ::= p | (A ⊃ A) | ⊤ | ⊥ | (A ∨A) | (A ∧A) | □A | ♢A

where p ranges over At. We follow the standard rules for omission of the paren-
theses. For all A ∈ L, we write ¬A as A ⊃ ⊥.

For all sets Γ of formulas, let □Γ = {A ∈ L : □A ∈ Γ} and ♢Γ = {♢A ∈ L :
A ∈ Γ}.

Definition 2 (Frames). A frame is a relational structure (W,≤, R) where W
is a nonempty set of worlds, ≤ is a preorder on W and R is a binary relation on
W . A frame (W,≤, R) is forward (resp. downward) confluent if ≥ ◦R ⊆ R◦ ≥
(resp. ≤ ◦R ⊆ R◦ ≤). For all X ⊆ {D,T,4}, an X-frame is a frame (W,≤, R)
such that R is serial if D ∈ X, R is reflexive if T ∈ X and R is transitive if
4 ∈ X. Let CX

fdc be the class of forward and downward confluent X-frames. We
write “Cfdc” instead of “C∅

fdc”.

We can see that Cref
fdc ⊆ Cser

fdc ⊆ Cfdc.

Definition 3 (Valuations, models and truth conditions). For all frames
(W,≤, R), a subset U of W is ≤-closed if for all s, t ∈ W , if s ∈ U and s ≤ t
then t ∈ U . A valuation on (W,≤, R) is a function V : At −→ ℘(W ) such that
for all p ∈ At, V (p) is ≤-closed. A model based on (W,≤, R) is a model of the
form (W,≤, R, V ). In a model M = (W,≤, R, V ), for all x ∈ W and for all
A ∈ L, the satisfiability of A at x in M (in symbols M, x ⊩ A) is defined as
usual when A’s main connective is either ⊤, ⊥, ∨ or ∧ and as follows otherwise:

– M, x ⊩ p if and only if x ∈ V (p),
– M, x ⊩ A ⊃ B if and only if for all x′ ∈ W with x ≤ x′, if M, x′ ⊩ A then

M, x′ ⊩ B,
– M, x ⊩ □A if and only if for all y ∈ W such that Rxy, M, y ⊩ A,
– M, x ⊩ ♢A if and only if there exists y ∈ W such that Rxy and M, y ⊩ A.

When M is clear from the context, we simply write x ⊩ A. The notions of truth
and validity are defined as usual.

Lemma 1 (Hereditary Property). Let (W,≤, R, V ) be a forward and down-
ward confluent model. For all A ∈ L and x, x′ ∈ W , if x ⊩ A and x ≤ x′ then
x′ ⊩ A.

Note that our definition of ⊩ differs from the definitions proposed by Fischer
Servi [9] and Wijesekera [19]. In both settings,

x ⊩ □A iff for all x′ ∈ W with x ≤ x′ and for all y ∈ W with Rx′y, it
holds y ⊩ A;
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whereas in [19],

x ⊩ ♢A iff for all x′ ∈ W with x ≤ x′, there exists y ∈ W such that Rx′y
and y ⊩ A.

However, these satisfiability relations collapse on forward and downward conflu-
ent frames.

Proposition 1. In Cfdc, our definition of ⊩ determines the same satisfiability
relation as the relations determined by definitions in [9] and [19].

From now on in this section, when we write frame (resp. model), we mean for-
ward and downward confluent frame (resp. model).

Obviously, validity in Cfdc is closed under the following inference rules:

A ⊃ B A (MP)
B

A (NEC)
□A

Moreover, the following axiom schemes are valid in Cfdc:

(K□) □(A ⊃ B) ⊃ (□A ⊃ □B) (K♢) □(A ⊃ B) ⊃ (♢A ⊃ ♢B)
(DP) ♢(A ∨B) ⊃ ♢A ∨ ♢B (RV) □(A ∨B) ⊃ ♢A ∨□B
(N) ¬♢⊥

In CD
fdc (resp. CT

fdc, C4
fdc), modal axiom D (resp. T, 4) is valid:

(D) ♢⊤ (T) (□A ⊃ A) ∧ (A ⊃ ♢A) (4) (□A ⊃ □□A) ∧ (♢♢A ⊃ ♢A)

Axiom (RV) is also considered in [1] where it is called (CD) for constant domain,
since it is related with the first-order formula ∀x.(P (x) ∨ Q(x)) ⊃ ∃x.P (x) ∨
∀x.Q(x) which is intuitionistically valid when models with constant domains are
considered.

Definition 4 (Axiom system). For all X ⊆ {D,T,4}, let LIKX be the ax-
iomatic system consisting of all standard axioms of IPL, the inference rules
(MP) and (NEC), the axioms K□, K♢, N, DP and RV and containing in
addition the axioms from X. We write LIK for LIK∅. Derivations are defined
as usual. We write ⊢LIKX A when A is LIKX-derivable. The set of all LIKX-
derivable formulas is also denoted as LIKX.

From now on in this section, let X ⊆ {D,T,4}.

Lemma 2. If D ∈ X or T ∈ X then □p ⊃ ♢p and ¬□⊥ are in LIKX.

Theorem 1 (Soundness). LIKX-derivable formulas are CX
fdc-validities.

Next we prove completeness, which is the converse of soundness, saying that
every formula valid in CX

fdc is LIKX-derivable. At the heart of our completeness
proof lies the concept of theory. Let L = LIKX.
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Definition 5 (Theories). A theory is a set of formulas containing L and closed
with respect to MP. A theory Γ is proper if ⊥ ̸∈ Γ . A proper theory Γ is prime
if for all formulas A,B, if A ∨B ∈ Γ then either A ∈ Γ , or B ∈ Γ .

Lemma 3. If D ∈ X or T ∈ X then for all theories Γ , we have ♢□Γ ⊆ Γ .

Definition 6 (Canonical model). The canonical model (WL,≤L, RL, VL) is
a tuple where

– WL is the nonempty set of all prime theories,
– ≤L is the partial order on WL defined by: Γ ≤L ∆ iff Γ ⊆ ∆,
– RL is the binary relation on WL defined by: RLΓ∆ iff □Γ ⊆ ∆ and ♢∆ ⊆ Γ ,
– VL is the valuation on WL defined by: VL(p) = {Γ ∈ WL : p ∈ Γ}.

Lemma 4. 1. (WL,≤L, RL, VL) is forward confluent,
2. (WL,≤L, RL, VL) is downward confluent,
3. if D ∈ X (resp. T ∈ X, 4 ∈ X) then (WL,≤L, RL, VL) is serial (resp.

reflexive, transitive).

The proof of the completeness is based on the following lemmas.

Lemma 5 (Existence Lemma). Let Γ be a prime theory.

1. If B ⊃ C ̸∈ Γ then there exists a prime theory ∆ such that Γ ⊆ ∆, B ∈ ∆
and C ̸∈ ∆,

2. if □B ̸∈ Γ then there exists a prime theory ∆ such that RLΓ∆ and B ̸∈ ∆,
3. if ♢B ∈ Γ then there exists a prime theory ∆ such that RLΓ∆ and B ∈ ∆.

Lemma 6 (Truth Lemma). For all formulas A and all Γ ∈ WL, we have
A ∈ Γ if and only if (WL,≤L, RL, VL), Γ ⊩ A.

From Lemma 6, we conclude

Theorem 2 (Completeness). All CX
fdc-validities are LIKX-derivable.

In [17, Chapter 3], Simpson discusses the formal features that might be expected
for an intuitionistic modal logic L:

– L is conservative over Intuitionistic Propositional Logic,
– L contains all substitution instances of axioms of Intuitionistic Propositional

Logic and is closed under modus ponens,
– L has the disjunction property: for each formula A∨B, if A∨B is in L then

either A is in L, or B is in L,
– by adding the law of excluded middle to L it yields modal logic K,
– □ and ♢ are independent in L.

Now, we show that LIKX possesses the formal features that might be expected
of an intuitionistic modal logic.

Proposition 2. 1. LIKX is conservative over IPL,
2. LIKX contains all substitution instances of IPL and is closed with respect

to modus ponens,
3. LIKX has the disjunction property if and only if D∈X or T∈X,
4. the addition of the law of excluded middle to LIKX yields modal logic K,
5. □ and ♢ are independent in LIKX.
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3 Bi-nested sequent calculi

In this section we present bi-nested calculi for LIK and its extensions LIKD and
LIKT. These calculi are called bi-nested in the sense that they make use of two
kinds of nesting representing ≤-upper worlds and R-successors in the semantics,
similar to the calculus for FIK presented in [2]. In a basic system for LIK, two
rules encoding forward and downward confluence are contained. We will show
that the latter rule called (inter↓) is admissible in a smaller system without it,
thus by dropping out this rule we still have a complete calculus for LIK. However,
as we will see, the (inter↓) rule is required to prove the semantic completeness of
the calculus and further allows us to obtain counter-model extraction. We also
prove the disjunction property for LIKD and LIKT using the calculi.

In order to define the calculi we first give some preliminary notions.

Definition 7 (Bi-nested sequent). A bi-nested sequent S is defined as:

– The empty sequent ⇒ is a bi-nested sequent;
– Γ ⇒ ∆, ⟨T1⟩, . . . , ⟨Tn⟩, [S1], . . . , [Sm] is a bi-nested sequent if both Γ and ∆

are multisets of formulas, all the S1, . . . , Sm, T1, . . . , Tn are bi-nested sequents
where m,n ≥ 0.

We use S and T to denote a bi-nested sequent and simply call it “sequent" in the
rest of this paper. The antecedent and consequent of a sequent S are denoted
by Ant(S) and Con(S). Syntactic objects of the shape ⟨S⟩ and [T ] are called
implication and modal blocks respectively.

The notion of modal degree can be extended from a formula to a sequent.

Definition 8 (Modal degree). Modal degree md(F ) for a formula F is defined
as usual. Let Γ be a finite (multi)set of formulas, define md(Γ ) = md(

∧
Γ ).

For a sequent S = Γ ⇒ ∆, ⟨T1⟩, . . . , ⟨Tn⟩, [S1], . . . , [Sm], we define md(S) =
max{md(Γ ),md(∆),md(T1), . . . ,md(Tn),md(S1) + 1, . . . ,md(Sm) + 1}.

Context is defined as usual in standard nested calculi which can be regarded
as a placeholder to be filled by a sequent.

Definition 9 (Context). A context G{ } is inductively defined as follows:

– The empty context { } is a context.
– if Γ ⇒ ∆ is a sequent and G′{ } is a context, then both Γ ⇒ ∆, ⟨G′{ }⟩ and

Γ ⇒ ∆, [G′{ }] are contexts.

Example 1. Given a context G{ } = p ∧ q,□r ⇒ ♢p, ⟨□p ⇒ [⇒ q]⟩, [{ }] and a
sequent S = p ⇒ q ∨ r, [r ⇒ s], we have G{S} = p ∧ q,□r ⇒ ♢p, ⟨□p ⇒ [⇒
q]⟩, [p ⇒ q ∨ r, [r ⇒ s]].

Definition 10 (∈⟨·⟩,∈[·],∈+-relation). Let Γ1 ⇒ ∆1, Γ2 ⇒ ∆2 be two se-
quents. We denote Γ1 ⇒ ∆1 ∈⟨·⟩

0 Γ2 ⇒ ∆2 if ⟨Γ1 ⇒ ∆1⟩ ∈ ∆2 and let ∈⟨·⟩ be the
transitive closure of ∈⟨·⟩

0 . Relations ∈[·]
0 and ∈[·] for modal blocks are defined sim-

ilarly. Besides, let ∈+
0 = ∈⟨·⟩

0 ∪ ∈[·]
0 and finally let ∈+ be the reflexive-transitive

closure of ∈+
0 .
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When we say S′ ∈+ S, it is equivalent to say that S = G{S′} for some context
G.

As we will see, some rules in the calculi propagate formulas in the antecedent
(“positive part”) or the consequent (“negative part”) of sequents into a modal
block. The two operators in the following definition single out these formulas of
a sequent.

Definition 11 (♭-operator and ♯-operator). Let Λ ⇒ Θ be a sequent and
Fm(Θ) the multiset of formulas directly belonging to Θ.

Let Θ♭ = ∅ if Θ is [·]-free; Θ♭ = [Φ1 ⇒ Ψ ♭
1 ], . . . , [Φk ⇒ Ψ ♭

k], if Θ = Θ0, [Φ1 ⇒
Ψ1], . . . , [Φk ⇒ Ψk] and Θ0 is [·]-free.

Dually let ⇒ Θ♯ = ⇒ Fm(Θ) if Θ is [·]-free; ⇒ Θ♯ = ⇒ Fm(Θ0), [⇒
Ψ ♯
1 ], . . . , [⇒ Ψ ♯

k] if Θ = Θ0, [Φ1 ⇒ Ψ1], . . . , [Φk ⇒ Ψk] and Θ0 is [·]-free.

Example 2. Consider the sequent G{S} = p ∧ q,□r ⇒ ♢p, ⟨□p ⇒ [⇒ q]⟩, [p ⇒
q ∨ r, [r ⇒ s]] of Example 1, denote Ant(G{S}) and Suc(G{S}) by Λ and Θ
respectively, we can see by definition, Λ ⇒ Θ♭ = p ∧ q,□r ⇒ [p ⇒ [r ⇒]] while
⇒ Θ♯ = ⇒ ♢p, [⇒ q ∨ r, [⇒ s]].

Definition 12. Rules for the basic logic LIK and its modal extensions are given
in Figure 1, which consists of the basic calculus CLIK and modal rules corre-
sponding to axioms (D), (T♢) and (T□). We define CLIKD = CLIK + (D) and
CLIKT = CLIK + (T□) + (T♢).

The notions of derivation and proof in a calculus are defined as usual. We
say a formula A is provable if the sequent ⇒ A has a proof in the calculus.

Here are some remarks on the rules. First, the rule (id) which only concerns
atoms can be easily generalized to arbitrary formulas. Reading the rule upwards,
the rule (⊃R) introduces an implication block ⟨·⟩ while the rules (♢L) and (□R)
introduce a modal block [·]. Observe that the (□R) rule corresponds to the
“local” interpretation of □. The rule (inter→) is intended to capture Forward
Confluence, whereas the rule (inter↓) Downward Confluence. Finally the (trans)
rule captures the Hereditary Property. All the rules of CLIK, except (□R) and
(inter↓) belong to the calculus CFIK for the logic FIK [2], we will discuss the
relation between the two calculi later in the section.

We can verify that each axiom of LIK in Section 2 is provable in CLIK. An
example of axiom (RV) is given below.

Example 3. We show □(p ∨ q) ⇒ ♢p ∨□q is provable.

(id)
□(p ∨ q) ⇒ ♢p, [p ⇒ q, p]

(id)
□(p ∨ q) ⇒ ♢p, [q ⇒ q, p]

(∨L)
□(p ∨ q) ⇒ ♢p, [p ∨ q ⇒ q, p]

(□L)
□(p ∨ q) ⇒ ♢p, [⇒ q, p]

(♢R)
□(p ∨ q) ⇒ ♢p, [⇒ q]

(□R)
□(p ∨ q) ⇒ ♢p,□q

(∨R)
□(p ∨ q) ⇒ ♢p ∨□q
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(⊥L)
G{Γ,⊥ ⇒ ∆}

(⊤R)
G{Γ ⇒ ⊤,∆}

(id)
G{Γ, p ⇒ ∆, p}

G{A,B, Γ ⇒ ∆}
(∧L)

G{A ∧B,Γ ⇒ ∆}
G{Γ ⇒ ∆,A} G{Γ ⇒ ∆,B}

(∧R)
G{Γ ⇒ ∆,A ∧B}

G{Γ,A ⇒ ∆} G{Γ,B ⇒ ∆}
(∨L)

G{Γ,A ∨B ⇒ ∆}
G{Γ ⇒ ∆,A,B}

(∨R)
G{Γ ⇒ ∆,A ∨B}

G{Γ,A ⊃ B ⇒ A,∆} G{Γ,B ⇒ ∆}
(⊃L)

G{Γ,A ⊃ B ⇒ ∆}
G{Γ ⇒ ∆, ⟨A ⇒ B⟩}

(⊃R)
G{Γ ⇒ ∆,A ⊃ B}

G{Γ,□A ⇒ ∆, [Σ,A ⇒ Π]}
(□L)

G{Γ,□A ⇒ ∆, [Σ ⇒ Π]}
G{Γ ⇒ ∆, [⇒ A]}

(□R)
G{Γ ⇒ ∆,□A}

G{Γ ⇒ ∆, [A ⇒]}
(♢L)

G{Γ,♢A ⇒ ∆}
G{Γ ⇒ ∆,♢A, [Σ ⇒ Π,A]}

(♢R)
G{Γ ⇒ ∆,♢A, [Σ ⇒ Π]}

G{Γ, Γ ′ ⇒ ∆, ⟨Γ ′, Σ ⇒ Π⟩}
(trans)

G{Γ, Γ ′ ⇒ ∆, ⟨Σ ⇒ Π⟩}

G{Γ ⇒ ∆, ⟨Σ ⇒ Π, [Λ ⇒ Θ♭]⟩, [Λ ⇒ Θ]}
(inter→)

G{Γ ⇒ ∆, ⟨Σ ⇒ Π⟩, [Λ ⇒ Θ]}

G{Γ ⇒ ∆, ⟨Σ ⇒ Π, [Λ ⇒ Θ]⟩, [⇒ Θ♯]}
(inter↓)

G{Γ ⇒ ∆, ⟨Σ ⇒ Π, [Λ ⇒ Θ]⟩}

G{Γ ⇒ ∆, [⇒]}
(D)

G{Γ ⇒ ∆}
G{Γ,□A,A ⇒ ∆}

(T□)
G{Γ,□A ⇒ ∆}

G{Γ ⇒ ∆,♢A,A}
(T♢)

G{Γ ⇒ ∆,♢A}
Fig. 1. Bi-nested rules for local intuitionistic modal logics

We now show that CLIK is sound with respect to the semantics. The first
step is to extend the forcing relation ⊩ to sequents and blocks therein.

Definition 13. Let M = (W,≤, R, V ) be a bi-relational model and x ∈ W . The
satisfiability relation ⊩ is extended to sequents as follows:

– M, x ̸⊩ ∅
– M, x ⊩ [T ] if for every y with Rxy, M, y ⊩ T
– M, x ⊩ ⟨T ⟩ if for every x′ with x ≤ x′, M, x′ ⊩ T
– M, x ⊩ Γ ⇒ ∆ if either M, x ̸⊩ A for some A ∈ Γ or M, x ⊩ O for some

O ∈ ∆, where O is a formula or a block.

We say S is valid in M iff ∀w ∈ W , we have M, w ⊩ S. We say S is valid iff
it is valid in every model.

Definition 14. For a rule (r) of the form G{S1} G{S2}
G{S} or G{S1}

G{S} , we say (r)
is valid if the following holds: if for each i, x ⊩ G{Si}, then it follows x ⊩ G{S}.

We can easily verify the validity of each rule and then obtain the soundness
of CLIK by a standard induction on a derivation. The soundness of CLIKD and
CLIKT can be proven similarly.
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Theorem 3 (Soundness of CLIK). If a formula A is provable in CLIK, then
it is valid in LIK.

Next, we show that the rule (inter↓) is admissible in the calculus CLIK−=
CLIK\{(inter↓)}. The proof can be easily extended to the modal extensions as
well. In order to prove this, we need some preliminary facts. First, weakening and
contraction rules (wL)(wR)(cL)(cL) defined as usual are height-preserving (hp)
admissible in CLIK− , not only applied to formulas but also blocks. Moreover,
extended weakening rules S

G{S} , G{Γ⇒∆♭}
G{Γ⇒∆} , G{Γ⇒∆♯}

G{Γ⇒∆} are hp-admissible as well.

Proposition 3. The (inter↓) rule is admissible in CLIK− . Consequently, a se-
quent S is provable in CLIK if and only if S is provable in CLIK− .

As mentioned above, all the rules in CLIK, except (□R) and (inter↓), belong
to the calculus CFIK for the logic FIK [2]. As a difference with LIK, the logic
FIK adopts the “global” forcing condition for □ as in [9,17,19] and only forward
confluence on the frame. The (□R) rule in CFIK is G{Γ⇒∆,⟨⇒[⇒A]⟩}

G{Γ⇒∆,□A} . It can be
proved that this rule is admissible in CLIK− and on the opposite direction, the
“local” (□R) rule in CLIK is admissible in CFIK+ (inter↓). Thus CFIK+ (inter↓)
can be regarded as another equivalent variant of CLIK, which is obtained in a
modular way from the one for FIK.

We end this section by considering the disjunction property. For simplicity,
we only work in CLIK− and its extensions. Let CLIKD− = CLIK− + (D) and
CLIKT− = CLIK− + (T□) + (T♢). Consider the formula □⊥ ∨ ♢⊤ which is
provable in CLIK− , but it is easy to see neither □⊥ nor ♢⊤ are provable.3
However, this counterexample does not hold in LIKD or LIKT since ♢⊤ is
provable in both calculi. We show that the disjunction property indeed holds for
both CLIKD− and CLIKT− . The key fact is expressed by the following lemma:

Lemma 7. Suppose S = ⇒ A1, . . . , Am, ⟨G1⟩, . . . , ⟨Gn⟩, [H1], . . . , [Hl] is prov-
able in CLIKD− (resp. CLIKT−), where Ai’s are formulas, Gj and Hk’s are
sequents. Further assume that each Hk is of the form ⇒ Θk and for each se-
quent T ∈[·] Hk, T has an empty antecedent. Then either ⇒ Ai or ⇒ ⟨Gj⟩ or
⇒ [Hk] is provable in CLIKD− (resp. CLIKT−) for some i ≤ m, j ≤ n, k ≤ l .

We obtain the disjunction property by an obvious application of the lemma.

Proposition 4 (Disjunction property for CLIKD−and CLIKT−). For any
formulas A,B, if ⇒ A ∨B is provable in CLIKD− (resp. CLIKT−), then either
⇒ A or ⇒ B is provable CLIKD− (resp. CLIKT−).

4 Termination

In this section we define decision procedure for LIK as well as its extensions
LIKD and LIKT based on the calculi in Section 3. We treat first LIK, then at
3 We thank Tiziano Dalmonte for suggesting this counterexample.
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the end of the section we will briefly describe how to adopt the the procedure
to the extensions. The terminating proof-search procedure is essential for the
semantic completeness of the calculi, as well as for countermodel construction,
as we will demonstrate in the following section.

We have introduced two calculi for LIK, namely CLIK and CLIK− . For
CLIK− , we can obtain a terminating proof-search procedure by adapting the
one in [2] for the calculus of FIK. Actually, the decision procedure for CLIK− is
remarkably simpler than that for FIK, as “blocking” is not needed to prevent
loops. For CLIK, however, some extra work needs to be done. Despite the equiv-
alence of CLIK and CLIK− in terms of provability, constructing a countermodel
from a failed proof in CLIK− poses a challenge due to the absence of a rule
capturing downward confluence. Therefore, we need to explore a terminating
proof-search procedure for CLIK to further advance our goal of proving seman-
tic completeness.

Recall our ultimate aim is to build a countermodel from a failed derivation, in
which the main ingredient is the pre-order relation ≤ in the model construction.
This relation is specified by the following notion of structural inclusion between
sequents, which is also used in defining the saturation conditions required for
termination.

Definition 15 (Structural inclusion ⊆S). Let S1 = Γ1 ⇒ ∆1, S2 = Γ2 ⇒
∆2 be two sequents. We say that S1 is structurally included in S2, denoted by
S1 ⊆S S2, when all the following holds:

– Γ1 ⊆ Γ2;
– for each [Λ1 ⇒ Θ1] ∈ ∆1, there exists [Λ2 ⇒ Θ2] ∈ ∆2 such that Λ1 ⇒

Θ1 ⊆S Λ2 ⇒ Θ2;
– for each [Λ2 ⇒ Θ2] ∈ ∆2, there exists [Λ1 ⇒ Θ1] ∈ ∆1 such that Λ1 ⇒

Θ1 ⊆S Λ2 ⇒ Θ2.

It is easy to see ⊆S is both reflexive and transitive.
We now define an equivalent variant CCLIK of CLIK which adopts a cu-

mulative version of the rules along with some bookkeeping. Moreover the (⊃R)
rule is modified in order to prevent loops. This calculus will be used as a base
for the following decision procedure and then semantic completeness. At first we
reformulate the ♯-operator as below, annotating the generated ♯-sequents by the
full sequent where it comes from.

Definition 16. Let Fm(Θ) be the multiset of formulas directly belonging to Θ.
We define the ♯-operator with annotation as follows:

– ⇒Λ⇒Θ Θ♯ = ⇒ Fm(Θ) if Θ is [·]-free;
– ⇒Λ⇒Θ Θ♯ = ⇒ Fm(Θ0), [⇒Φ1⇒Ψ1 Ψ ♯

1 ], . . . , [⇒Φk⇒Ψk
Ψ ♯
k] if Θ = Θ0, [Φ1 ⇒

Ψ1], . . . , [Φk ⇒ Ψk] and Θ0 is [·]-free.

The ♯-sequents are generated only by applications of (inter↓), and we use
the annotation (the subscript of ⇒) to “track” the implication block from which
a ♯-sequent is generated. The annotation can be omitted and we simply write
⇒ Θ♯ whenever we do not need to track an (inter↓) application.
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Definition 17 (The ♯-annotated cumulative calculus CCLIK). The cu-
mulative calculus CCLIK operates on set-based sequents, where a set-based se-
quent S = Γ ⇒ ∆ is defined as in definition 7, with the distinction that Γ is a
set of formulas and ∆ is a set of formulas and/or blocks (containing set-based
sequents). The rules are as follows:

– (⊥L), (⊤R), (id), (□L), (♢R), (trans) and (inter→) as in CLIK.
– (⊃R) is replaced by two rules for A ∈ Γ or A /∈ Γ :

G{Γ ⇒ ∆,A ⊃ B,B}
(A ∈ Γ )

G{Γ ⇒ ∆,A ⊃ B}
G{Γ ⇒ ∆,A ⊃ B, ⟨A ⇒ B⟩}

(A /∈ Γ )
G{Γ ⇒ ∆,A ⊃ B}

– (inter↓) is replaced by the following annotated rule:

G{Γ ⇒ ∆, ⟨Σ ⇒ Π, [Λ ⇒ Θ]⟩, [⇒Λ⇒Θ Θ♯]}
(inter↓)

G{Γ ⇒ ∆, ⟨Σ ⇒ Π, [Λ ⇒ Θ]⟩}

– The other rules in CLIK are modified by keeping the principal formula in the
premises. For example, the cumulative versions of (∧L), (□R) are:

G{A,B,A ∧B,Γ ⇒ ∆}
(∧L)

G{A ∧B,Γ ⇒ ∆}
G{Γ ⇒ ∆,□A, [⇒ A]}

(□R)
G{Γ ⇒ ∆,□A}

Given the admissibility of weakening and contraction in CLIK, the following
proposition is a direct consequence.

Proposition 5. A sequent S is provable in CLIK iff S is provable in CCLIK.

Next, we introduce saturation conditions for each rule in CCLIK. They are
needed for both termination and counter-model extraction.

Definition 18 (Saturation conditions). Let S = Γ ⇒ ∆ be a sequent.
We say S satisfies the saturation condition on the top level with respect to
(⊃R) : If A ⊃ B ∈ ∆, then either A ∈ Γ and B ∈ ∆, or there is ⟨Σ ⇒ Π⟩ ∈ ∆

with A ∈ Σ and B ∈ Π.
(♢R) : If ♢A ∈ ∆ and [Σ ⇒ Π] ∈ ∆, then A ∈ Π.
(♢L) : If ♢A ∈ Γ , then there is [Σ ⇒ Π] ∈ ∆ with A ∈ Σ.
(□R) : If □A ∈ ∆, then there is [Λ ⇒ Θ] ∈ ∆ with A ∈ Θ.
(□L) : If □A ∈ Γ and [Σ ⇒ Π] ∈ ∆, then A ∈ Σ.
(inter↓) : If ⟨Σ ⇒ Π, [Λ ⇒ Θ]⟩ ∈ ∆, then there is [Φ ⇒ Ψ ] ∈ ∆ s.t. Φ ⇒ Ψ ⊆S Λ ⇒ Θ.
(inter→) : If ⟨Σ ⇒ Π⟩, [Λ ⇒ Θ] ∈ ∆, then there is [Φ ⇒ Ψ ] ∈ Π s.t. Λ ⇒ Θ ⊆S Φ ⇒ Ψ .
(trans) : If ⟨Σ ⇒ Π⟩ ∈ ∆, then Γ ⊆ Σ.
Saturation conditions for the other propositional rules are defined as usual.

We say a sequent is saturated with a rule (r) if it satisfies the saturation
condition associated with (r). We say a backward application of a rule (r) to a
sequent S is redundant if S already satisfies the corresponding saturation condi-
tion associated with (r).

Proposition 6. Let S = Γ ⇒ ∆ be a sequent. If S is saturated with (trans),
(inter→) and (inter↓), then for ⟨Σ ⇒ Π⟩ ∈ ∆, we have Γ ⇒ ∆ ⊆S Σ ⇒ Π.
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In order to define a terminating proof-search strategy based on CCLIK, we
first impose the following constraints:

(i) No rule is applied to an axiom and (ii) No rule is applied redundantly.
However there is a problem: backward proof search only respecting these basic

constraints does not necessarily ensure that any leaf of a derivation, to which
no rule can be applied non-redundantly, satisfies all the saturation conditions of
rules in CCLIK. This is a significant difference from the calculus of FIK in [2].
The problematic case is the saturation condition for the (inter↓) rule.

Example 4. Let us consider the sequent □(p ∨ q) ⇒ □r ⊃ □s. After some pre-
liminary steps, we obtain two sequents:

(i). □(p ∨ q) ⇒ □r ⊃ □s, ⟨□(p ∨ q),□r ⇒ □s, [p ∨ q, p, r ⇒ s]⟩
(ii). □(p ∨ q) ⇒ □r ⊃ □s, ⟨□(p ∨ q),□r ⇒ □s, [p ∨ q, q, r ⇒ s]⟩

Suppose we select (i) and then apply (inter↓) obtaining (i’): □(p ∨ q) ⇒ □r ⊃
□s, ⟨□(p ∨ q),□r ⇒ □s, [p ∨ q, p, r ⇒ s]⟩, [⇒ s]. After applying (□L), (∨L) and
(inter→), we further obtain:

(iii). □(p ∨ q) ⇒ □r ⊃ □s, ⟨□(p ∨ q),□r ⇒ □s, [p ∨ q, p, r ⇒ s]⟩, [p ∨ q, p ⇒ s]
(iv). □(p ∨ q) ⇒ □r ⊃ □s, ⟨□(p ∨ q),□r ⇒ □s, [p ∨ q, p, r ⇒ s], [p ∨ q, q ⇒]⟩,

[p ∨ q, q ⇒ s]

We can see that (iii) satisfies the saturation condition for (inter↓), as p ∨ q, p ⇒
s ⊆S p ∨ q, p, r ⇒ s but (iv) does not, since there is no [Φ ⇒ Ψ ] s.t. Φ ⇒ Ψ ⊆S

p∨ q, p, r ⇒ s. Sequent (iv) would not give in itself a model satisfying (DC) and
it is not obvious how to extend it in order to satisfy (DC).4 This example also
shows the inadequacy of CLIK− for semantic completeness, as sequent expansion
in CLIK− terminates with (i) and (ii), from which we do not know how to define
a model satisfying (DC).

This implies in a derivation, certain branches may lead to unprovable sequents
from which we do not know how to build a “correct” counter-model directly.
Hence, to obtain a “correct” counter-model, we require a mechanism that chooses
the suitable branch which ensures the saturation condition for (inter↓). This is
provided by the tracking mechanism and realization procedure defined below.

Definition 19 (Tracking record based on ∈[·]). Let S be a set-based sequent
which is saturated with respect to all the left rules in CCLIK. Take an arbitrary
set of formulas, denoted as Γ . Let Ω = {T | T = S or T ∈[·] S}. For each
T ∈ Ω, we define GS(T, Γ ), the ∈[·]-based tracking record of Γ in S, which is a
subset of Ant(T ) as follows:

– GS(S, Γ ) = Γ ∩Ant(S);
– If T ∈[·]

0 T ′ for some T ′ ∈ Ω, let GS(T, Γ ) be the minimal set such that
• if □A ∈ GS(T

′, Γ ), then A ∈ GS(T, Γ );
4 Observe that a disallowed redundant application of (inter↓) to the block [p∨ q, q ⇒]

would not help, as it would reproduce the branching.
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• if ♢A ∈ GS(T
′, Γ ) and A ∈ Ant(T ), then A ∈ GS(T, Γ );

• if A ∧B ∈ GS(T, Γ ), then A,B ∈ GS(T, Γ );
• if A ∨B ∈ GS(T, Γ ) and A ∈ Ant(T ), then A ∈ GS(T, Γ );
• if A ⊃ B ∈ GS(T, Γ ) and B ∈ Ant(T ), then B ∈ GS(T, Γ ).

Tracking record is used to control rule applications to and within a block
created by (inter↓), preserving the saturation condition associated to it.

Definition 20 (Realization). Let S = Γ ⇒ ∆, ⟨S1⟩, [S2], where S1 = Σ ⇒
Π, [Λ ⇒ Θ], S2 = ⇒Λ⇒Θ Θ♯ and Γ ⊆ Σ. Moreover, we assume that S1 is
saturated with respect to all the left rules in CCLIK. Using the ∈[·]-based tracking
record of Γ in S1, we define the realization of the block [S2] in S as follows:

(i). First for each T ∈+ S2, define the realization function fS1(T ).
By definition, T is of the form ⇒Φ⇒Ψ Ψ ♯ for some Φ ⇒ Ψ ∈+ Λ ⇒ Θ.
fS1

(T ) is defined inductively on the structure of Ψ ♯ as follows:
– if Ψ ♯ is block-free, then fS1(T ) = G(Φ ⇒ Ψ, Γ ) ⇒ Ψ ♯.
– otherwise Ψ ♯ = Ψ0, [T1], . . . , [Tk] where Ψ0 is a set of formulas, then

fS1(T ) = G(Φ ⇒ Ψ, Γ ) ⇒ Ψ0, [fS1(T1)], . . . , [fS1(Tk)].
(ii). With fS1

(S2), the realization of [S2] in S is Γ ⇒ ∆, ⟨S1⟩, [fS1
(S2)].

As the next proposition shows the expansion produced by a realization pro-
cedure is not an additional logical step; rather, it can be obtained by applying
the rules of the calculus while selecting the appropriate branch.

Proposition 7. Let S = Γ ⇒ ∆, ⟨S1⟩, [S2], where S1 = Σ ⇒ Π, [Λ ⇒ Θ] and
S2 = ⇒Λ⇒Θ Θ♯ and Γ ⊆ Σ. If S1 is saturated with respect to all the left rules
in CCLIK, then for the sequent S′ = Γ ⇒ ∆, ⟨S1⟩, [fS1(S2)] which is obtained
by the realization procedure in Definition 20, we have

(i). S′ is saturated with respect to all the left rules applied to or within [fS1
(S2)];

(ii). fS1
(S2) ⊆S Λ ⇒ Θ;

(iii). S′ can be obtained by applying left rules of CCLIK to [S2] in S.

Example 5. We go back to sequent (i’) in Example 4. Let

S = □(p ∨ q) ⇒ □r ⊃ □s, ⟨□(p ∨ q),□r ⇒ □s, [p ∨ q, p, r ⇒ s]⟩, [⇒ s]
S1 = □(p ∨ q),□r ⇒ □s, [p ∨ q, p, r ⇒ s]
S2 = ⇒ s, T = p ∨ q, p, r ⇒ s

Since [S2] is produced by (inter↓) from T , we have S2 = ⇒T s. We are
intended to realize the block [S2] in S by the tracking record of Ant(S) in S1.
By definition, we have

GS1
(S1, Ant(S)) = Ant(S) = {□(p ∨ q)}

GS1
(T,Ant(S)) = {p ∨ q, p}

According to realization, by applying fS1
(·) to S2, we get fS1

(⇒T s) = p∨q, p ⇒
s. Thus, the entire output sequent is

□(p ∨ q) ⇒ □r ⊃ □s, ⟨□(p ∨ q),□r ⇒ □s, [p ∨ q, p, r ⇒ s]⟩, [p ∨ q, p ⇒ s]

And this is just (iii) in Example 4, which is the right expansion of (i’).
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In order to define the proof-search procedure, we first divide all the rules of
CCLIK into four groups as

– (R1): all propositional and modal rules except (⊃R);
– (R2): (trans) and (inter→);
– (R3): (⊃R);
– (R4): (inter↓).

Let S = Γ ⇒ ∆, we denote by ∆̄ the sequent obtained by removing all the
(nested) occurrences of ⟨·⟩-blocks in ∆. 5

Definition 21 (Saturation). Let S = Γ ⇒ ∆ be a sequent and not an axiom.
S is called:

– R1-saturated if Γ ⇒ ∆̄ satisfies all the saturation conditions of R1 rules;
– R2-saturated if S is R1-saturated and S satisfies saturation conditions of R2

rules for blocks ⟨S1⟩, [S2] s.t. S1 ∈⟨·⟩
0 S and S2 ∈[·]

0 S;
– R3-saturated if S is R2-saturated and S satisfies saturation conditions of R3

rules for formulas A ⊃ B ∈ ∆;
– R4-saturated S is R3-saturated and S satisfies saturation conditions of R4

rule for each implication block ⟨Σ ⇒ Π, [S1]⟩ s.t. Σ ⇒ Π, [S1] ∈⟨·⟩
0 S.

Definition 22 (Global saturation). Let S be a sequent and not an axiom.
S is called global-Ri-saturated if for each T ∈+ S, T is Ri-saturated where
i ∈ {1, 2, 3}; global-saturated if for each T ∈+ S, T is R4-saturated.

In order to specify the proof-search procedure, we make use of the following
four macro-steps that extend a given derivation D by expanding a leaf S. Each
procedure applies rules non-redundantly to some T = Γ ⇒ ∆ ∈+ S.

– EXP1(D, S, T ) = D′ where D′ is the extension of D obtained by applying
R1-rules to every formula in Γ ⇒ ∆̄.

– EXP2(D, S, T ) = D′ where D′ is the extension of D obtained by applying
R2-rules to blocks ⟨Ti⟩, [Tj ] ∈ ∆.

– EXP3(D, S, T ) = D′ where D′ is the extension of D obtained by applying
R3-rules to formulas A ⊃ B ∈ ∆.

– EXP4(D, S) = D′ where D′ is the extension of D obtained by applying (i)
R4-rule to each implication block T ′ ∈+ S and (ii) realization procedures to
modal blocks produced in (i). This step extends D by a single branch whose
leaf is denoted by S′.

It can be proved that each of these four macro-steps terminates. The claim
is almost obvious except for EXP1 (see [2, Proposition 46]).

Proposition 8. Given a finite derivation D, a finite leaf S of D and T ∈+ S,
then for i ∈ {1, 2, 3, 4}, each EXPi(D, S, T ) terminates by producing a finite
expansion of D where all sequents are finite.
5 For example, let ∆ = B, ⟨Σ ⇒ Π⟩, [Λ ⇒ [D ⇒ E, ⟨P ⇒ Q⟩]], then ∆̄ = B, [Λ ⇒
[D ⇒ E]].
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Algorithm 1: PROC0(S0)

Input: S0

1 initialization D = ⇒ S0;
2 repeat
3 if all the leaves of D are axiomatic then
4 return “PROVABLE" and D
5 else if there is a non-axiomatic leaf of D which is global-R3-saturated

then
6 return D
7 else
8 select one non-axiomatic leaf S of D
9 if S is global-R2-saturated then

10 for all non-R3-saturated T ∈+ S, let D = EXP3(D, S, T )
11 else if S is global-R1-saturated then
12 for all non-R2-saturated T ∈+ S, let D = EXP2(D, S, T )
13 else
14 for all non-R1-saturated T ∈+ S, let D = EXP1(D, S, T )

15 until FALSE ;

Now we define the procedure. We first demonstrate the preliminary procedure
PROC0(S0) (see Algorithm 1)which builds a derivation with root S0 and only
uses the macro-steps EXP1(·) to EXP3(·), thus only the rules in CLIK−are
applied. It follows that PROC0(A) decides whether a formula A is valid in LIK.
Additionally, the procedure PROC0(·) is then used as a subroutine in the full
procedure PROC(⇒ A) to obtain either a proof of A or a global-saturated
sequent, see Algorithm 2.

Proposition 9. Given a sequent S0, PROC0(S0) produces a finite derivation
with all the leaves axiomatic or at least one global-R3-saturated leaf.

Lastly, we show that PROC(A) terminates.

Theorem 4 (Termination for CCLIK). Proof-search for a formula A in
CCLIK terminates with a finite derivation in which either all the leaves are
axiomatic or there is at least one global-saturated leaf.

We can also obtain decision procedures for CLIKD and CLIKT in a similar
way. Consider a cumulative version CCLIKD and CCLIKT of the respective
calculi and define suitable saturation conditions associated the extra modal rules,
for a sequent S = Γ ⇒ ∆:
(D): if Γ□ ∪∆♢ is non-empty. then ∆ is not [·]-free.
(T□/T♢): if □A ∈ Γ (resp. ♢A ∈ ∆), then A ∈ Γ (resp. A ∈ ∆).

The saturation condition for (D) prevents a useless generation of infinitely
nested empty blocks of the form [⇒ [. . . ⇒ [⇒] . . .]], which can be created by
the backward application of the (D)-rule. The procedure PROC0(·) integrates
the rules for (D) or (T)’s accordingly: the rule (D) is applied immediately after
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Algorithm 2: PROC(A)

Input: A
1 initialization D = PROC0(⇒ A);
2 if all the leaves of D are axiomatic then
3 return “PROVABLE” and D
4 else
5 while (No global saturated leaf of D is found) do
6 select one global-R3-saturated leaf S of D
7 let D = EXP4(D, S)
8 let S′ be the leaf of the unique branch of D expanded by EXP4(D, S)

extend D by applying PROC0(S
′)

9 return “UNPROVABLE" and D

each round of EXP2(·) while the two (T) rules are integrated in EXP1(·). As
a result, we can obtain:

Theorem 5 (Termination for CCLIKD and CCLIKT). Proof-search for a
formula A in CCLIKD and CCLIKT terminates with a finite derivation in which
either all the leaves are axiomatic or there is at least one global-saturated leaf.

5 Completeness

Using the decision procedure from the previous section, we show how to build
a countermodel for an unprovable formula, which entails the completeness of
CCLIK. Subsequently, we adapt this construction to CCLIKD and CCLIKT as
well.

Given a global-saturated sequent S in CCLIK, we define a model MS for it
as below.

Definition 23. The model MS = (WS ,≤S , RS , VS) is a quadruple where
- WS = {xΦ⇒Ψ | Φ ⇒ Ψ ∈+ S};
- xS1

≤S xS2
if S1 ⊆S S2;

- RSxS1
xS2

if S2 ∈[·]
0 S1;

- for each p ∈ At, let VS(p) = {xΦ⇒Ψ | p ∈ Φ}.

Proposition 10. MS satisfies (FC) and (DC).

Lemma 8 (Truth Lemma for CCLIK). Let S be a global-saturated sequent
in CCLIK and MS = (WS ,≤S , RS , VS) defined as above. (a). If A ∈ Φ, then
MS , xΦ⇒Ψ ⊩ A; (b). If A ∈ Ψ , then MS , xΦ⇒Ψ ⊮ A.

By the truth lemma we obtain as usual the completeness of CCLIK.

Theorem 6 (Completeness of CCLIK). If A is valid in LIK, then A is
provable in CLIK.
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Example 6. We show how to build a countermodel for the formula (♢p ⊃ □q) ⊃
□(p ⊃ q) which is not provable in CCLIK. Ignoring the first step, we initialize
the derivation with ♢p ⊃ □q ⇒ □(p ⊃ q). By backward application of rules, one
branch of the derivation ends up with the following saturated sequent

S0 = ♢p ⊃ □q ⇒ □(p ⊃ q),♢p, [⇒ p ⊃ q, p, ⟨p ⇒ q⟩]

and we further let S1 = ⇒ p ⊃ q, p, ⟨p ⇒ q⟩ while S2 = p ⇒ q. We then get the
model MS0

= (W,≤, R, V ) where

– W = {xS0
, xS1

, xS2
};

– xS1
≤ xS2

, xS0
≤ xS0

, xS1
≤ xS1

, xS2
≤ xS2

;
– RxS0xS1 ;
– V (p) = {xS2

} and V (q) = ∅.

It is easy to see that xS0 ̸⊩ (♢p ⊃ □q) ⊃ □(p ⊃ q).

Next, we consider the completeness of CCLIKD and CCLIKT. We consider
the model MS = (WS ,≤S , RS , VS) for a global-saturated sequent S in either
calculi, where WS ,≤S and VS as in Definition 23, RS modified as follows:

– For CCLIKD: RSxS1
xS2

if S2 ∈[·]
0 S1 or Suc(S1) is [·]-free and xS1

= xS2
;

– For CCLIKT: RSxS1
xS2

if S2 ∈[·]
0 S1 or xS1

= xS2
.

Trivially the relation RS is serial or reflexive according to CLIKD or CLIKT,
moreover models for CCLIKD and CCLIKT still satisfy (FC) and (DC). Finally,

Theorem 7 (Completeness of CCLIKD and CCLIKT). If A is valid in
LIKD (resp. LIKT), then A is provable in CCLIKD (resp. CCLIKT).

6 Conclusion

We studied LIK, the basic intuitionistic modal logic with locally defined modali-
ties as well as some of its extensions. In further research, we intend to investigate
both axiomatizations and calculi of extensions to the whole modal cube. For in-
stance, we would like to provide a (terminating) calculus for the S4 extension of
LIK (the logic is studied in [1]). Since LIK is incomparable with IK, we may
also wonder what the “super” intuitionistic modal logic obtained by combining
both is. Our broader goal is to establish a framework of axiomatization and
uniform calculi for a wide range of IMLs, including other natural variants that
have been little studied or remain entirely unexplored so far.
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