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Towards Dynamic Distributed Knowledge

Philippe Balbiani and Hans van Ditmarsch

Institut de Recherche en Informatique de Toulouse
CNRS – INPT – UT3, France

Abstract

We propose a novel notion of distributed knowledge called dynamic distributed knowl-
edge that corresponds to what a group of agents know after they share their knowl-
edge. Its interpretation in Kripke models therefore combines static (modal accessi-
bility) with dynamic (update) aspects. In prior work the static and dynamic aspects
were also investigated, but separately, where the latter was called resolution. Unlike
the usual distributed knowledge, in this work called static distributed knowledge, if a
group of agents has dynamic distributed knowledge of a proposition, then it has dy-
namic distributed knowledge that the proposition is common knowledge. We report
on its expressivity, axiomatization, and bisimulation characterization.

Keywords: modal logic, distributed knowledge, axiomatization, dynamics

1 Introduction and survey of related work

Distributed knowledge. Distributed knowledge is a well-known group no-
tion of knowledge [21,22,27,19,29,20,14,31,34]. If agent a knows that p implies
q and agent b knows that p, then agents a and b have distributed knowledge of
q. Neither agent knows q individually. They have to share their knowledge.

Distributed knowledge of a proposition for a group of agents is true in a world
of a given Kripke model, if in that model it is true in all worlds accessible by
the relation that is the intersection of the equivalence relations for all agents
in the group.

Observe that the proposition is then interpreted in the given model. What if
we define distributed knowledge dynamically?

Distributed knowledge of a proposition for a group of agents is true in a
world of a given Kripke model, if in the model wherein the relation for each
agent in the group is replaced by the intersection of the equivalence relations
for all agents in the group, it is true in all worlds accessible by that relation.

So we now interpret the proposition in the updated model. Let us call this
novel notion dynamic distributed knowledge, whereas the standard notion is
henceforth called static distributed knowledge. Dynamic distributed knowledge
for a singleton group of agents is, as for static distributed knowledge, the same
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as individual knowledge for that agent. But we will see that for two or more
agents it is different from static distributed knowledge.

With the novel notion we avoid some standard issues when sharing static
distributed knowledge. For example, when a and b have static distributed
knowledge that b does not know that a knows p, after sharing their information
b knows that a knows p. The act of sharing (the update) may change the truth
value of propositions, such as is here the case. With the novel notion we can
say that in this case a and b have dynamic distributed knowledge that b knows
that a knows p. This is then even common knowledge between them.

We lose some of the properties of static distributed knowledge. Static dis-
tributed knowledge of a proposition implies that it is true. But dynamic dis-
tributed knowledge does not imply that it is true. The above is an example, a
and b have dynamic distributed knowledge that b knows that a knows p, but
where (‘right now’) b does not know that a knows p. Other properties are as
for static distributed knowledge, such as positive and negative introspection.

Our results. Consider a logical language where apart from the boolean
connnectives the only modalities are those for dynamic distributed knowledge.
For this logic of dynamic distributed knowledge we provide a modal logical se-
mantics, determine various validities of interest and translations relating it to
static distributed knowledge, we show its decidability, and propose a notion of
shared bisimulation for which we show the Hennessy-Milner property. We give
a complete axiomatization for an extension of the language. The complete ax-
iomatization of the logic of dynamic distributed knowledge and the expressivity
with respect to static distributed knowledge are left for further research.

Related work. Roots of the notion of distributed knowledge are found in
sociology, economics, and philosophy [21,22,29]. In the epistemic logical litera-
ture an early source for static distributed knowledge is [19], wherein the notion
was called implicit knowledge. A formal semantics or proof theory was not
given. The later journal version [20] gives a standard Kripke model semantics
but not an axiomatization, and now calls the notion distributed knowledge. In-
triguingly, the slightly earlier publication [27] gives an axiomatization however
without any claim of completeness. Complete axiomatizations are then given
in [14,31], where the latter continue to call the notion implicit knowledge. The
axiomatization proposed in [27] is the one proved to be complete in [14,31]. For
a review, see also [34].

Different dynamic epistemic logics have been proposed for sharing dis-
tributed knowledge [1,8,11]. These works have in common that static dynamic
knowledge operators are distinguished from dynamic modalities for sharing dis-
tributed knowledge. The dynamic distributed knowledge IDBφ that we propose
in this work is definable in (all of) [1,8,11], for example, as RBDBφ in [1], where
resolution RB means sharing distributed knowledge and where DB is (static)
distributed knowledge of [14] and related. (Resolution as resolving distributed
knowledge is unrelated to resolution in logic programming.)

Instead of distributed knowledge IDB interpreted by the relation ∼B that
is the intersection of the relations ∼a for a ∈ B, one can also consider a notion
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of distributed knowedge where ∼B may be contained in that intersection; in
general, where ∼B ⊆ ∼C for any C ⊆ B ⊆ A. In completeness proofs [14,1]
this features for technical convenience. However, it is by now also an intuitive
notion of group epistemics, where the group knows more than the sum of its
individual parts, for example in [7], as correlated knowledge, and in [17].

Notions of distributed knowledge for weaker frame classes than S5 are pro-
posed in [13,2]. Dynamic distributed knowledge that we propose is based on
ideas in [13], where another considered base logic is K4, as in [2]. In [17]
distributed knowledge is investigated for KB4.

The proof theory of distributed knowledge has been investigated in [18].
Recent publications involving distributed knowledge and its dynamics are

[15,9,37,25].

Overview Section 2 presents the logical language and semantics and Section 3
focusses on its validities. Section 4 proposes shared bisimulation and compares
it to other notions of bisimulation. Section 5 gives two different embeddings of
dynamic distributed knowledge in static distributed knowledge. Section 6 and
Section 7 prepare the ground for a complete axiomatization of the language with
dynamic distributed knowledge and resolution, and then show its completeness.
Elementary proofs are omitted.

2 The logic of dynamic distributed knowledge

Let a finite nonempty set A of agents and a countable set P of propositional
variables (atoms) be given.

Language. The language LIDDR is defined by the BNF

φ ::= p | ⊤ | (φ ∧ φ) | ¬φ | IDBφ | DBφ | RBφ

where p ∈ P and B ⊆ A. We follow the standard rules for omission of the
parentheses. The sublanguage LID with only modalities IDBφ is the language
of dynamic distributed knowledge. The sublanguage LD with only modalities
DBφ is the language of static distributed knowledge. Notice that ID∅, D∅ and
R∅ are modalities of LIDDR. For all B ⊆ A, let |B| be the cardinality of B.

Other propositional and modal connectives are defined by abbreviation. In
particular, the dual ID̂Bφ is defined as ¬IDB¬φ, and the dual D̂Bφ is defined as
¬DB¬φ. For ID{a1,...,an} we often write IDa1...an

, and similarly forD. Modality
IDB is dynamic distributed knowledge for B, and formula IDBφ is read as ‘the
agents in group B have dynamic distributed knowledge of φ’. This notion is
novel. The typography of ID is chosen to evoke two (here superimposed) letters
D, as in Dynamic D istributed, which may help the reader to distinguish it from
the notation for static distributed knowledge. Modality DB is static distributed
knowledge for B. This is the notion of distributed knowledge known from the
literature. Modality RB is known as resolution, explained later. For IDaφ (i.e.,

ID{a}φ) or Daφ we write Kaφ, and for ID̂aφ and D̂aφ we write K̂aφ. The
fragment of LID with only modalities ID∅ (of which the semantics are that of
the universal modality) and Ka for a ∈ A is called LKU , and without ID∅
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we get LK , the language of individual knowledge. If
#»

B = B1 . . . Bn then for
IDB1

. . . IDBn
φ we may write ID #»

Bφ; where IDϵφ := φ.

Frames and models. The structures are multi-agent epistemic frames (W,∼)
and models (W,∼, V ) where W is a domain of worlds, ∼ is a function from the
set of agents to equivalence relations (indistinguishability relations, knowledge
relations) onW (where we write ∼a for the knowledge relation for agent a ∈ A)
and V is function from the set of atoms to the powerset ofW , namely mapping
each atom to the subset of worlds where it is true. We write ∼B for ∩b∈B ∼b

(thus, ∼∅=W ×W ).
If M = (W,∼, V ) and B ⊆ A then MB = (W,∼B , V ) where for a ∈ B,

∼B
a :=

⋂
b∈B ∼b and for a /∈ B, ∼B

a := ∼a. In updated model MB the relations

for the agents a ∈ B have been updated from ∼a to ∼B . For M{a1,...,an}

we write Ma1...an , whereas for (MB)C we write MBC . In MB we have that
∼B

B = ∼B
b for all b ∈ B, unlike inM . Note thatMa =M for all a ∈ A and that

M∅ = M . Given
#»

B = B1 . . . Bn ∈ P(A)∗ and M = (W,∼, V ), for MB1...Bn

we write M
#»
B (where M ϵ = M) and we write ∼

#»
B for its knowledge function

(where ∼ϵ = ∼). Given
#»

B,
#»

C ∈ P(A)∗,
#»

B is a prefix of
#»

C , notation
#»

B ⊑ #»

C , if

there is a
#»

E ∈ P(A)∗ such that
#»

C =
#»

B
#»

E.
Consider an operation see : P(A) → P(A)∗ → P(A) that associates to each

C ⊆ A and to each sequence
#»

B of subsets of A the set (seeC(
#»

B) denoted)

seeC(
#»

B) such that ∼seeC(
#»
B) is the knowledge relation for all agents in C after

the
#»

B update.

seeC(ϵ) := C

seeC(
#»

BE) := seeC(
#»

B) if C ∩ E = ∅
seeC(

#»

BE) := seeC∪E(
#»

B) if C ∩ E ̸= ∅

Intuitively, seeC(
#»

B) determines what each agent c in group C can ‘see’ after

the
#»

B update, that is, how its knowledge relation has been restricted after the
successive sharings of knowledge with the different groups of agents in

#»

B. For
example, if C = {a} and

#»

B = {a, b}{a, c}, then after the first {a, b} update
agent a already sees what a and b see (know), her relation is now (∼{a,b}
denoted) ∼ab, and after the second update she sees what all three agents a, b, c
can see (know), her relation is now ∼abc. Etcetera.

Lemma 2.1 Let M = (W,∼, V ) be a model. For all B,C ⊆ A: (i) ∼∅
B = ∼B,

(ii) ∼B
B = ∼B, (iii) if C ⊆ B then ∼BC = ∼B, (iv) if B∩C = ∅ then ∼B

C = ∼C ,
and (v) if B ∩ C ̸= ∅ then ∼B

C = ∼B∪C .

Lemma 2.2 For all C ⊆ A and
#»

B ∈ P(A)∗, C ⊆ seeC(
#»

B).

Lemma 2.3 For all (W,∼) and
#»

B ∈ P(A)∗ and C ⊆ A, ∼
#»
B
C = ∼seeC(

#»
B).

Proof. Induction on the length of
#»

B. Clearly, ∼ϵ
C = ∼C = ∼seeC(ϵ). Then, for

E ⊆ A, if C ∩ E = ∅: ∼
#»
BE
C = ∼

#»
B
C = (ind.) ∼seeC(

#»
B) = ∼seeC(

#»
BE). Otherwise,

if C ∩ E ̸= ∅: ∼
#»
BE
C = ∼

#»
B
E ∩ ∼

#»
B
C = ∼

#»
B
C∪E = (ind.) ∼seeC∪E(

#»
B) = ∼seeC(

#»
BE). 2
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Lemma 2.4 For all (W,∼) and
#»

B,
#»

C ∈ P(A)∗, if ∼
#»
B
a = ∼

#»
C
a for all a ∈ A,

then ∼
#»
B = ∼

#»
C .

Update lattice. The function see plays a role in the axiomatization and in the
canonical frame (Section 7). With the function see we can compare sequences
#»

B ∈ P(A)∗, and therefore, updates. We define
#»

B ⪯ #»

C if for all a ∈ A,

seea(
#»

B) ⊆ seea(
#»

C), and
#»

B ≈ #»

C if
#»

B ⪯ #»

C and
#»

C ⪯ #»

B as well as
#»

B ≺ #»

C if
#»

B ⪯ #»

C but not
#»

C ⪯ #»

B.

Lemma 2.5 For all B,C ⊆ A, if C ⊆ B then BC ≈ B.

The quotient of P(A)∗ with respect to the equivalence relation ≈ defines
an update lattice. The maximum element of this lattice is denoted ω. It is the

equivalence class of
#»

B such that see
#»
B
a = A for all a ∈ A. The minimum element

is the equivalence class of ϵ. Note that, if
#»

B ≈ #»

C , then for all epistemic models

M = (W,∼, V ), M
#»
B =M

#»
C (as ∼

#»
B = ∼

#»
C , cf. Lemma 2.3).

Gossip. There is a strong relation between a sequence
#»

B = B1 . . . Bn of two-
element sets, representing a sequence of resolution updates [1], and a sequence
of calls between two agents in gossip protocols [26,23,4,3]. In that case the tuple

(seea1
(

#»

B), . . . , seea|A|(
#»

B)) is known as the secret distribution resulting from the

call sequence
#»

B, given an initial distribution where agents only know their own
secrets, and the depth of the update lattice is the maximum number

(|A|
2

)
of

informative calls [5].

Semantics. We define the satisfaction relation |= by induction on φ ∈ LIDDR

(where p ∈ P and B ⊆ A).

M,w |= p iff w ∈ V (p)
M,w |= ⊤ iff always
M,w |= ¬φ iff M,w ̸|= φ
M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ
M,w |= IDBφ iff MB , v |= φ for all v ∈W such that w ∼B v
M,w |= DBφ iff M,v |= φ for all v ∈W such that w ∼B v
M,w |= RBφ iff MB , w |= φ

A formula φ ∈ LIDDR is valid on a frame (W,∼) if for all modelsM = (W,∼, V )
and for all w ∈ W , M,w |= φ. A formula φ ∈ LIDDR is valid if it is valid on
all epistemic frames. The set LID of validities of LID is the logic of dynamic
distributed knowledge. The set LD of the validities of LD is the logic of static
distributed knowledge.

The interpretation ofKaφ as IDaφ andDaφ is standard, as
⋂

b∈{a} ∼b = ∼a,

so that Ma =M , and that of resolution RB is as in [1]. It is elementary that:

Lemma 2.6 For all B ⊆ A and φ ∈ LIDDR, IDBφ ↔ DBRBφ and IDBφ ↔
RBDBφ are valid.

Therefore, the modality IDB is definable from DB and RB in the language
LIDDR. We recall that our research interest is the language LID without DB

and RB operators, and how it relates to LD.
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3 Validities

We first list a number of invalidities for LID, to defeat the expectation of the
reader versed in static distributed knowledge. We then list LID validities de-
scribing the properties of a single modality IDB , and show that it has the prop-
erties of KD45. We finally list LID validities describing interaction between
different modalities IDB and IDC .

Invalidities Invalid (that is, not valid for all B,C and for all φ) for these se-
mantics are the following formula schemata. We contrast them with well-known
validities for static distributed knowledge and resolving distributed knowledge.

̸|= IDBφ→ φ |= DBφ→ φ
̸|= IDBφ→ IDCφ when B ⊆ C |= DBφ→ DCφ when B ⊆ C
̸|= IDB¬φ↔ ¬IDBφ |= RB¬φ↔ ¬RBφ

Example 3.1 Simple counterexamples suffice to show that the above are in-
valid. The model on the left is for two agents a and b and a single atom p such
that a knows but b is uncertain about p. The model on the right results after
a and b share their knowledge.

M : w(p) v(¬p)b
Mab : w(p) v(¬p)

We can observe that

M,w |= IDabKbp whereas M,w ̸|= Kbp so ̸|= IDabφ→ φ
M,w |= Kb¬Kbp whereas M,w ̸|= IDab¬Kbp so ̸|= IDbφ→ IDabφ
M,w |= ¬Kbp whereas M,w ̸|= Kb¬p so ̸|= ¬IDbφ→ IDb¬φ

Although RB¬φ↔ ¬RBφ is valid [36], as the update is a total function, our
IDBφ corresponds to RBDBφ, and just as IDB¬φ is not equivalent to ¬IDBφ,
also RBDB¬φ is not equivalent to ¬RBDBφ in [36]. Although IDBφ → φ is
invalid, that is, not valid for all B and φ, it is easy to see that IDBp → p
is valid, as atoms do not change their value after update, and as the actual
world is indistinguishable for B. As a consequence, uniform substitution is not
validity preserving for these semantics (|= φ does not imply |= φ[p/ψ]); so the
logic of dynamic distributed knowledge is not a normal modal logic.

Mono-modal validities We continue with validities involving a single IDB .

Proposition 3.2 Valid / validity preserving for these semantics are:

|= IDB(φ→ ψ) → (IDBφ→ IDBψ) |= ID̂Bφ→ IDBID̂Bφ
|= IDBφ→ IDBIDBφ |= φ implies |= IDBφ

|= IDBφ→ ID̂Bφ

Proof. We use that MBB =MB and that ∼B
B = ∼B . More details omitted.2

It follows that the modalities IDB have the properties of KD45 (we also
have Modus Ponens), and thus represent consistent group belief. Still, the IDB

also have other properties, such as the mentioned |= IDBp → p, which makes
it clear that the logic of dynamic distributed knowledge is not (multi-)KD45.
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Multi-modal validities Finally, validities relating IDB and IDC for C ̸= B.

Proposition 3.3 |= IDBIDCφ↔ IDBφ, where ∅ ≠ C ⊆ B ⊆ A.

Proof. Let (M,w) be given. Then: M,w |= IDBIDCφ, iff MB , v |= IDCφ
for all v ∼ϵ

B w, iff MBC , u |= φ for all u ∼B
C v and for all v ∼ϵ

B w, iff (∗)
MBC , u |= φ for all u ∼ϵ

B v and for all v ∼ϵ
B w, iff (Lemma 2.1) MB , u |= φ for

all u ∼ϵ
B v and for all v ∼ϵ

B w, iff MB , u |= φ for all u ∼ϵ
B w, iff M,u |= IDBφ.

(∗): As C ⊆ B for all c ∈ C, ∼B
c =

⋂
b∈B ∼b. Furthermore, for all b ∈ B,

∼B
b =

⋂
b∈B ∼b. Therefore, u ∼B

C v iff u ∼B
B v. 2

The instantiation of Prop. 3.3 for B = C is that IDBIDBφ↔ IDBφ is valid,
from which we also get IDBφ→ IDBIDBφ.

We continue with multi-modal validities that resemble the validitiesDBφ→
φ and DBφ → DCφ for static distributed knowledge, however, subject to re-
strictions. Let us define LID↑C as the fragment of LID with only IDB modalities
for C ⊆ B ⊆ A.

Lemma 3.4 Let B,C ⊆ A with B ⊆ C, and let φ ∈ LID↑C. Then for all
models M = (W,∼, V ) and w ∈W , MB , w |= φ iff MC , w |= φ.

Proof. The proof is by induction on φ. 2

Proposition 3.5 |= IDBφ→ φ whenever φ ∈ LID↑B.

Proof. The proof is by induction on φ ∈ LID in negation normal form. Let
M = (W,∼, V ) be given and w ∈ W . The cases of p and ¬p, conjunction and
disjunction (using Lemma 3.4) have been omitted.

Case IDCφ. M,w |= IDBIDCφ, iff (semantics) MB , v |= IDCφ for all
v ∼B w, iff MBC , u |= φ for all v ∼B w and for all u ∼B

C v, iff (B ⊆ C implies
that MBC =MC and ∼B

C=∼C) M
C , u |= φ for all v ∼B w and for all u ∼C v,

which implies (as w ∼B w) MC , u |= φ for all u ∼C w, iff M,w |= IDCφ.

Case ID̂Cφ. The proof is similar to the case IDCφ. 2

Proposition 3.6 |= IDBφ→ IDCφ whenever B ⊆ C and φ ∈ LID↑C.

Proof. Suppose B ⊆ C. Let φ ∈ LID↑C. Suppose M,w |= IDBφ. Hence,
MB , v |= φ for all v ∼B w. Thus, by Lemma 3.4, MC , v |= φ for all v ∼B w.
Since B ⊆ C, therefore ∼C ⊆ ∼B . Since MC , v |= φ for all v ∼B w, therefore
MC , v |= φ for all v ∼C w. Consequently, M,w |= IDCφ. 2

All above seems not enough for a complete axiomatization, see Section 7.

4 Bisimulation

We propose a novel notion of shared bisimulation and we compare it to the no-
tions of individual bisimulation and collective bisimulation from the literature.
For binary relations Z we write (x, y) ∈ Z as well as Zxy.

Individual and collective bisimulation. Let M = (W,∼, V ) and M ′ =
(W ′,∼′, V ′) be given. A non-empty relation Z ⊆W ×W ′ is a collective bisim-
ulation [28] if for all (w,w′) ∈ Z, p ∈ P , and B ⊆ A:
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• atoms: w ∈ V (p) iff w′ ∈ V ′(p)

• forth: if w ∼B v there is v′ ∈W ′ such that w′ ∼′
B v′ and (v, v′) ∈ Z

• back: if w′ ∼′
B v′ there is v ∈W such that w ∼B v and (v, v′) ∈ Z

Pointed models (M,w) and (M ′, w′) are collective bisimilar, notation
(M,w)↔c(M ′, w′), if there exists a collective bisimulation Z between M and
M ′ with (w,w′) ∈ Z. Relation Z is an individual bisimulation [10] if forth
and back are satisfied for all singleton sets {a} where a ∈ A; (M,w) and
(M ′, w′) are individually bisimilar, notation (M,w)↔i(M ′, w′), if there exists
an individual bisimulation Z between M and M ′ with (w,w′) ∈ Z.

Shared bisimulation. The novel notion of shared bisimulation is given by
defining a set of

#»

B-shared bisimulations, for all
#»

B ∈ P(A)∗.

Definition 4.1 Let M = (W,∼, V ) and M ′ = (W ′,∼′, V ′) be given. A shared

bisimulation Z is a collection {Z
#»
B | #»

B ∈ P(A)∗} of non-empty relations Z
#»
B ⊆

W ×W ′ such that for all (w,w′) ∈ Z
#»
B , p ∈ P , and B ⊆ A:

• atoms: w ∈ V (p) iff w′ ∈ V ′(p)

• forth: if w ∼
#»
B
B v there is v′ ∈W ′ such that w′∼′

#»
B
B v

′ and (v, v′) ∈ Z
#»
BB

• back: if w′∼′
#»
B
B v

′ there is v ∈W such that w ∼
#»
B
B v and (v, v′) ∈ Z

#»
BB

When {Z
#»
B | #»

B ∈ P(A)∗} is a shared bisimulation between M and M ′, each

Z
#»
B is called a

#»

B-shared bisimulation. Pointed models (M,w) and (M ′, w′) are
shared bisimilar, notation (M,w)↔s(M ′, w′), if there exists a shared bisimula-
tion Z between M and M ′ with (w,w′) ∈ Zϵ.

We recall the update lattice from Section 2. We can similarly view the
#»

B-

shared bisimulations Z
#»
B for all

#»

B ∈ P(A)∗ of a shared bisimulation Z as such
a lattice, with top Zω and bottom Zϵ. There are therefore only finitely many
#»

B-shared bisimulations to consider, modulo ≈-equivalence. Note that, given
equivalence classes [w]A in W and [w′]A in W ′ containing the same valuations,
relating (for all w,w′) states in [w]A to states in [w′]A with the same valuation,
is an ω-shared bisimulation.

Proposition 4.2 ([28]) Collective bisimilar is (implies) individual bisimilar.

Proposition 4.3 Collective bisimilar is shared bisimilar.

Proof. Let Z ⊆W ×W ′ be a collective bisimulation. Then Z2 := {Z
#»
B
2 | #»

B ∈
P(A)∗} where Z

#»
B
2 = Z for all

#»

B is a shared bisimulation. Details omitted. 2

Proposition 4.4 Shared bisimilar is individual bisimilar.

Proof. Let Z = {Z
#»
B | #»

B ∈ P(A)∗} be a shared bisimulation between M =
(W,∼, V ) and M ′ = (W ′,∼′, V ′). We show that ZA∗ :=

⋃
{Z #»a | #»a ∈ A∗} is

an individual bisimulation between M and M ′. (Each Za1...an is considered
Z{a1}...{an} with {a1} . . . {an} ∈ P(A)∗.) Atoms is obvious. Consider forth.
Let be given ZA∗ww′ and w ∼b v. As ZA∗ww′, there is #»a ∈ A∗ with Z

#»aww′.
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As M
#»a = M , w ∼b v iff w ∼ #»a

b v. As Z
#»a is a #»a -shared bisimulation, there

is a v′ ∼ #»a
b w′ with Z

#»a bvv′. As Z
#»a b ⊆ ZA∗, therefore ZA∗vv′. Furthermore,

v′ ∼ #»a
b w′ iff v′ ∼ #»a

b w′ because M ′ #»a
=M ′. Back is similar. 2

Example 4.5 It is well-known that individual bisimilar may not be collective
bisimilar. A typical counterexample involves the models M and M ′ below.

M : w(p) v(¬p)ab
M ′ : w′(p) v′(¬p)

v′′(¬p) w′′(p)

a

a

b b

An individual bisimulation between M and M ′ consists of linking the p worlds
and linking the ¬p worlds. For example, pair (w,w′) in this bisimulation.
However, it is not a collective bisimulation: although w ∼ab v in M and where
we note that v ∈ V (p), there is no world s in M ′ such that w′ ∼′

ab s and that
has the same value of p as v inM . Only s = w′ fulfills that role and w′ /∈ V (p).
So, we cannot satisfy atoms. Indeed, M,w ̸|= Dabp, whereas M

′, w′ |= Dabp.
This also demonstrates that individual bisimilar may not be shared bisim-

ilar, as atoms has also to be satisfied for a shared bisimulation, and indeed,
similarly, M,w ̸|= IDabp, whereas M

′, w′ |= IDabp.

It remains a, rather annoyingly, open question whether collective bisimilar
and shared bisimilar are the same or are different, but we conjecture that collec-
tive bisimilarity is a more refined notion to distinguish structures than shared
bisimilarity. An answer to this question might help to compare the expressivity
of dynamic distributed knowledge and static distributed knowledge.

Hennessy-Milner characterization We continue by characterizing shared
bisimilarity. For that we need some additional terminology.

Given M = (W,∼, V ), M ′ = (W ′,∼′, V ′), w ∈ W , and w′ ∈ W ′,
pointed models (M,w) and (M ′, w′) are modally equivalent, notation (M,w) ≡
(M ′, w′), if for all φ ∈ LID, M,w |= φ iff M ′, w′ |= φ.

A model M = (W,∼, V ) is image-finite if for all agents a ∈ A and worlds
v ∈W the equivalence class [v]a = {u ∈W | v ∼a u} is finite.

Proposition 4.6 Shared bisimilar implies modally equivalent.

Proof. We need to show that for arbitrary pointed models (M,w) and
(M ′, w′), (M,w)↔s(M ′, w′) implies (M,w) ≡ (M ′, w′). In order to prove
that, we will prove the following statement.

Let be given φ ∈ LID, models M = (W,∼, V ) and M ′ = (W ′,∼′, V ′), and a
shared bisimulation Z between M and M ′. Then for all w ∈ W , w′ ∈ W ′,

and
#»

B ∈ P(A)∗: Z
#»
Bww′ implies (M

#»
B , w) ≡ (M ′

#»
B
, w′). (∗)

The proof is by induction on φ. Elementary cases are omitted.

Case IDBφ: Assume M ′
#»
B
, w′ |= IDBφ. To prove M

#»
B , w |= IDBφ, assume

v ∈ W with v ∼
#»
B
B w. From initial assumption Z

#»
Bww′, v ∼

#»
B
B w, and forth
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it follows that there is v′ ∈ W ′ such that v′ ∼
#»
B
B w′ and Z

#»
BBvv′. Also, from

assumptionM ′
#»
B
, w′ |= IDBφ and v′ ∼

#»
B
B w′ it follows thatM ′

#»
BB

, v′ |= φ. From

M ′
#»
BB

, v′ |= φ, Z
#»
BBvv′, and induction it now follows that M

#»
BB , v |= φ. As v

was arbitrary, from the semantics of IDB it now follows that M
#»
B , w |= IDBφ.

The other direction is proved similarly.
The case

#»

B = ϵ of (∗) gets us that Zϵww′ implies (M,w) ≡ (M ′, w′). 2

Proposition 4.7 Modally equivalent implies shared bisimilar on the class of
image-finite models.

Proof. We need to show that for arbitrary image-finite pointed models (M,w)
and (M ′, w′), (M,w) ≡ (M ′, w′) implies (M,w)↔s(M ′, w′). In order to prove
that, we will prove the following statement.

Let be given M = (W,∼, V ) and M ′ = (W ′,∼′, V ′) with w ∈ W and w′ ∈
W ′, and such that (M,w) ≡ (M ′, w′). Consider the set of relations Z =

{Z
#»
B | #»

B ∈ P(A)∗} such that for all v ∈ W , v′ ∈ W ′, Z
#»
Bvv′ iff (M

#»
B , v) ≡

(M ′
#»
B
, v′). Then Z is a shared bisimulation between M and M ′. (∗∗)

Suppose towards a contradiction that Z is not a shared bisimulation. Then

there is
#»

B ∈ P(A)∗ such that Z
#»
B is not a

#»

B-shared bisimulation. Then there

are w, v ∈ W and w′ ∈ W ′ with Z
#»
Bww′ and w ∼

#»
B
B v but for all v′ ∈ W ′ with

w′∼′
#»
B
B v

′, not Z
#»
BBvv′. As M ′ is imagine-finite, we can enumerate such v′ as

v′1, . . . , v
′
n. By the definition of Z, this means that (M

#»
BB , v) ̸≡ (M ′

#»
BB

, v′1),

. . . , and (M
#»
BB , v) ̸≡ (M ′

#»
BB

, v′n). Let ψ1, . . . , ψn be distinguishing formulas

such that M
#»
BB , v |= ψ1 but M ′

#»
BB

, v′1 ̸|= ψ1, . . . , and M
#»
BB , v |= ψn but

M ′
#»
BB

, v′n ̸|= ψn. Note that M
#»
BB , v |=

∧n
i=1 ψi. By the semantics of dynamic

distributed knowledge we therefore have that M
#»
B , w |= ID̂B

∧n
i=1 ψi. On the

other hand, M ′
#»
B
, w′ ̸|= ID̂B

∧n
i=1 ψi, as in any of the seeB(

#»

B)-accessible v′i =
v′1, . . . , v

′
n the conjunction

∧n
i=1 ψi is false: ψ1 is false in v′1, and therefore∧n

i=1 ψi is false in v′1.

This contradicts the assumption that Z
#»
B is not a

#»

B-shared bisimulation,
and therefore the initial assumption that Z is not a shared bisimulation.

As Z is a shared bisimulation, Zϵ is an ϵ-shared bisimulation. The original
assumption (M,w) ≡ (M ′, w′) means that Zϵww′, by the definition of Zϵ. By
the definition of shared bisimilarity Zϵww′ means that (M,w)↔s(M ′, w′). 2

Example 4.8 Not all Z
#»
B are collective bisimulations. Consider the model

below for agents a, b, c and variables p and q (valuations label worlds, p = ¬p).

M : pq pq pq pq pq

v w x y z

c ab ab c

Mab : pq pq pq pq pq

v w x y z

ab ab
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A maximal shared (auto)bisimulation on this model consists of:
— Zϵ = Za = Zb = {(v, v), (w,w), (x, x), (y, y), (z, z)}
— Zab = Zω = {(v, v), (w,w), (x, x), (y, y), (z, z)} ∪ {(w, y), (y, w)}

In this case we have that Zϵ ⊂ Zω and that Zω is not a collective bisimulation,
or even an individual bisimulation, as worlds w and y are not (even individual)
bisimilar: M,w |= Kcq whereas M,y |= Kcq. However, in the Mab update
they are. So, Zabst does not imply Zϵst for arbitrary worlds s and t. However,
given s = w, there always is some t such that Zabst and Zϵst, namely t = w.

5 Translations

We present two translations. We show that every formula in LID is equivalent
to one in LD, using a translation τ , and we show that on the class of frames
with local agreement (for any two agents one always knows more than the other)
every formula in LID is equivalent to one in LKU , using a translation δ.

5.1 Dynamic into static distributed knowledge

Lemma 2.6 showed that IDBφ is definable as either DBRBφ or as RBDBφ.
In [1] it is shown that every formula in LDR is equivalent to a formula in LD.
Combining the two proves that every φ ∈ LID is equivalent to a ψ ∈ LD.
Instead of this indirect proof, we define a translation τ , indexed by groups of
agents B ⊆ A, such that any φ ∈ LID is equivalent to τ∅(φ) ∈ LD.

Definition 5.1 Let translation (τB)B⊆A be the family of functions from LIDDR

to LD inductively defined below. For τB1
(. . . τBm

(φ) . . . ) we write τ #»
B (φ).

τB(p) = p τB(IDCφ) = DCτB(τC(φ)) if B ∩ C = ∅
τB(⊤) = ⊤ τB(IDCφ) = DB∪CτB(τC(φ)) if B ∩ C ̸= ∅
τB(¬φ) = ¬τB(φ) τB(DCφ) = DCτB(φ) if B ∩ C = ∅
τB(φ ∧ ψ) = τB(φ) ∧ τB(ψ) τB(DCφ) = DB∪CτB(φ) if B ∩ C ̸= ∅

τB(RCφ) = τB(τC(φ))

Lemma 5.2 Let φ ∈ LIDDR. For all B,C ⊆ A, τB(IDCφ) = τB(DCRCφ).

Lemma 5.3 Let
#»

B ∈ P(A)∗. For all C ⊆ A, there exists C ′ ⊆ A such that
C ⊆ C ′ and for all φ ∈ LIDDR, τ #»

B (IDCφ) = DC′τ #»
B (φ).

Proof. By induction on
#»

B. 2

Lemma 5.4 Let φ ∈ LIDDR. For all models M = (W,∼, V ), for all u ∈ W
and for all B ⊆ A, MB , u |= φ if and only if M,u |= τB(φ).

Proof. The proof is done by induction on φ. Let M = (W,∼, V ) be a model,
u ∈W and B ⊆ A. We only show the case IDCψ.

Case B∩C = ∅. Then: (i) MB , u |= IDCψ, iff (ii) for all v ∈W , if u∼B
Cv

then MBC , v |= ψ, iff (iii) for all v ∈W , if u∼Cv then MBC , v |= ψ, iff (iv) for
all v ∈ W , if u∼Cv then MB , v |= τC(ψ), iff (v) for all v ∈ W , if u∼Cv then
M,v |= τB(τC(ψ)), iff (vi) M,u |= DCτB(τC(ψ)).

The equivalence between (ii) and (iii) is a consequence of B ∩ C = ∅, and
that between (iii), (iv) and (v) is a consequence of the induction hypothesis.
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Case B∩C ̸= ∅. Then: (i) MB , u |= IDCψ, iff (ii) for all v ∈W , if u∼B
Cv

then MBC , v |= ψ, iff (iii) for all v ∈ W , if u∼B∪Cv then MBC , v |= ψ, iff (iv)
for all v ∈W , if u∼B∪Cv thenMB , v |= τC(ψ), iff (v) for all v ∈W , if u∼B∪Cv
then M, v |= τB(τC(ψ)), iff (iv) M,u |= DB∪CτB(τC(ψ)).

The equivalence between (ii) and (iii) is a consequence of B ∩ C ̸= ∅, and
that between (iii), (iv) and (v) is a consequence of the induction hypothesis.2

Corollary 5.5 Any φ ∈ LID is equivalent to τ∅(φ) ∈ LD.

As a further consequence, satisfiability in the logic LID is decidable, because
the logic LD is decidable [14,34].

5.2 Agents with local agreement

A frame (model) with local agreement, first considered in [16], is a multi-agent
epistemic frame (W,∼) (resp. model (W,∼, V )) such that for all a, b ∈ A and
for all s ∈W , either [s]a ⊆ [s]b, or [s]b ⊆ [s]a. Validity of formulas φ on frames
with local agreement is denoted |=agree φ. We show that on the class of frames
with local agreement every formula in LID is equivalent to a formula in LK .
Intuitively, local agreement formalizes that given any two agents, one always
knows more than the other. A consequence easily shown is that in any state of
a model there is a hierarchy between the agents (a total order) from one who
knows most to one who knows least:

Lemma 5.6 Let (W,∼) be a frame with local agreement. For all B ⊆ A, if
B ̸= ∅ then for all s ∈W there exists a ∈ B such that for all b ∈ B, [s]a ⊆ [s]b.

Lemma 5.7 Preservation after update: Let (W,∼) be a frame with local agree-
ment. For all B ⊆ A, the frame (W,∼B) is a frame with local agreement.

Definition 5.8 Let translation (δB)B⊆A be the family of functions from LID

to LID inductively defined below. For δB1
(. . . δBm

(φ) . . . ) we write δ #»
B (φ)).

δB(φ) = φ if |B| ≤ 1 δB(¬φ) = ¬δB(φ) if |B| ≥ 2
δB(p) = p if |B| ≥ 2 δB(φ ∧ ψ) = δB(φ) ∧ τB(ψ) if |B| ≥ 2
δB(⊤) = ⊤ if |B| ≥ 2 δB(ID∅φ) = ID∅δB(φ) if |B| ≥ 2

δB(IDCφ) =
∨
{KcδB(δC(φ)) | c ∈ C} if |B| ≥ 2, C ̸= ∅ and B ∩ C = ∅

δB(IDCφ) =
∨
{KcδB(δC(φ)) | c ∈ B ∪ C} if |B| ≥ 2, C ̸= ∅ and B ∩ C ̸= ∅

Define δ : LID → LID replacing every subformula of shape IDBφ by δB(IDBφ).
1

Lemma 5.9 For all B ⊆ A with |B| ≥ 2 and for all φ ∈ LID, δB(φ) ∈ LKU .

Proof. By induction on φ. 2

Lemma 5.10 For all models M = (W,∼, V ) with local agreement, formulas
φ ∈ LID, s ∈W and B ⊆ A: MB , s |= φ iff M, s |= δB(φ).

1 δ(p) = p, δ(⊤) = ⊤, δ(φ ∧ ψ) = δ(φ) ∧ δ(ψ), δ(¬φ) = ¬δ(φ), and δ(IDBφ) = δB(IDBφ)
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Proof. By induction on φ. We only show the case φ = IDCψ where C ̸= ∅.
We assume |B| ≥ 2, for otherwise the result trivially holds.

From left to right, suppose MB , s |= IDCψ and M, s ̸|= δB(IDCψ). Now,
there are two cases: either B ∩ C = ∅, or B ∩ C ̸= ∅. In the former case,
M, s ̸|=

∨
{KcδB(δC(ψ)) | c ∈ C}. Hence, for all c ∈ C, M, s ̸|= KcδB(δC(ψ)).

By Lemma 5.6, let c ∈ C be such that for all d ∈ C, [s]c ⊆ [s]d. Thus,
M, s ̸|= KcδB(δC(ψ)). Consequently, there exists t ∈ W such that s ∼c t
and M, t ̸|= δB(δC(ψ)). Since for all d ∈ C, [s]c ⊆ [s]d, therefore s ∼C t.
Moreover, by induction hypothesis, MBC , t ̸|= ψ. Since B ∩C = ∅ and s ∼C t,
therefore s ∼B

C t. SinceMB , s |= IDCψ, thereforeM
BC , t |= ψ: a contradiction.

In the latter case, M, s ̸|=
∨
{KcδB(δC(ψ)) | c ∈ B ∪ C}. Hence, for all

c ∈ B ∪ C, M, s ̸|= KcδB(δC(ψ)). By Lemma 5.6, let c ∈ B ∪ C be such that
for all d ∈ B ∪ C, [s]c ⊆ [s]d. Thus, M, s ̸|= KcδB(δC(ψ)). Consequently,
there exists t ∈ W such that s ∼c t and M, t ̸|= δB(δC(ψ)). Since for all
d ∈ B ∪C, [s]c ⊆ [s]d, therefore s ∼B∪C t. Moreover, by induction hypothesis,
MBC , t ̸|= ψ. Since B ∩ C ̸= ∅ and s ∼B∪C t, therefore s ∼B

C t. Since
MB , s |= IDCψ, therefore M

BC , t |= ψ: a contradiction.
From right to left, suppose MB , s ̸|= IDCψ and M, s |= δB(IDCψ). Now,

there are two cases: either B ∩ C = ∅, or B ∩ C ̸= ∅. In the former case,
M, s |=

∨
{KcδB(δC(ψ)) | c ∈ C}. Hence, there exists c ∈ C such that M, s |=

KcδB(δC(ψ)). Since MB , s ̸|= IDCψ, therefore there exists t ∈ W such that
s ∼B

C t and MBC , t ̸|= ψ. Thus, by induction hypothesis, M, t ̸|= δB(δC(ψ)).
Since B ∩ C = ∅ and s ∼B

C t, therefore s ∼C t. Since c ∈ C, therefore s ∼c t.
Since M, s |= KcδB(δC(ψ)), therefore M, t |= δB(δC(ψ)): a contradiction. In
the latter case, M, s |=

∨
{KcδB(δC(ψ)) | c ∈ B ∪ C}. Hence, there exists

c ∈ B ∪ C such that M, s |= KcδB(δC(ψ)). Since MB , s ̸|= IDCψ, therefore
there exists t ∈ W such that s ∼B

C t and MBC , t ̸|= ψ. Thus, by induction
hypothesis,M, t ̸|= δB(δC(ψ)). Since B∩C ̸= ∅ and s ∼B

C t, therefore s ∼B∪C t.
Since c ∈ B ∪ C, therefore s ∼c t. Since M, s |= KcδB(δC(ψ)), therefore
M, t |= δB(δC(ψ)): a contradiction. 2

Lemma 5.11 For all φ ∈ LID, |B| ≥ 2: |=agree IDBφ↔
∨
{KbδB(φ) | b ∈ B}.

Proof. Let φ ∈ LID. For the sake of the contradiction, suppose |B| ≥ 2 and
̸|=agree IDBφ ↔

∨
{KbδB(φ) | b ∈ B}. Hence, there exists a (M, s) with local

agreement such that either M, s |= IDBφ and M, s ̸|=
∨
{KbδB(φ) | b ∈ B},

or M, s ̸|= IDBφ and M, s |=
∨
{KbδB(φ) | b ∈ B}, where M = (W,∼, V ).

In the former case, since (W,∼) is a frame with local agreement and B ̸=
∅, therefore there exists a ∈ B such that for all b ∈ B, [s]a ⊆ [s]b. Since
M, s ̸|=

∨
{KbδB(φ) | b ∈ B}, therefore M, s ̸|= KaδB(φ). Thus, there exists

t ∈ W such that s ∼a t and M, t ̸|= δB(φ). Consequently, by Lemma 5.10,
MB , t ̸|= φ. Since s ∼a t and for all b ∈ B, [s]a ⊆ [s]b, therefore s ∼B t.
Since MB , t ̸|= φ, therefore M, s ̸|= IDBφ: a contradiction. In the latter case,
there exists t ∈ W such that s ∼B t and MB , t ̸|= φ. Hence, by Lemma 5.10,
M, t ̸|= δB(φ). Moreover, there exists a ∈ B such that M, s |= KaδB(φ). Since
s ∼B t, therefore s ∼a t. Since M, s |= KaδB(φ), therefore M, t |= δB(φ): a
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contradiction. 2

Proposition 5.12 Let φ in LID. Then |=agree φ↔ δ(ψ).

Proof. By Lemmas 5.9 and 5.11. 2

If φ ∈ LID, then δ(φ) ∈ LKU , and if φ ∈ LID without modality ID∅ (the
universal modality), then δ(φ) ∈ LK . Consequently, every φ in the language
of dynamic distributed knowledge without the universal modality is equivalent
to a formula in the multi-agent language of individual knowledge.

We initially considered frames with local agreement in order to obtain a
complete axiomatization of dynamic distributed knowledge ‘for an interest-
ing fragment’. We ended up proving that this fragment can be translated
into multi-agent individual knowledge. This seems to make it less interesting.
However, local agreement might have worthwhile applications in modelling hi-
erarchical knowledge relations between groups of agents.

6 On standard frames and semi-standard frames

Preparing the ground for Section 7 on the axiomatization, we generalize the
epistemic frames introduced in Section 2, that we name standard frames, to the
semi-standard frames wherein an equivalence relation ∼B is associated with
each B ⊆ A and that satisfy the requirement that ∼C ⊆ ∼B whenever B ⊆ C.
It may then be that ∼B is a proper subset of ∩b∈B ∼b (the group knows
more than the sum of its individuals). The completeness proofs involving dis-
tributed knowledge often involve ‘unravelling’ a canonical model based on a
semi-standard frame into one that is based on a standard frame with the same
information content [14,1]. We prove this result explicitly, as our proof applies
to other frame classes (than those with equivalence relations), which may be
of interest.

Definition 6.1 A frame (W,∼) is semi-standard if for all B,C ⊆ A, if B ⊆ C
then ∼C ⊆ ∼B . It is standard if, also, for all B,C ⊆ A, ∼B ∩ ∼C ⊆ ∼B∪C .

We note that the results of Section 5.1 translating LID into LD without
loss of generality also hold for semi-standard frames: all clauses in the proof of
crucial Lemma 5.4 showing that MB , u |= φ iff M,u |= τB(φ) equally apply to
models based on semi-standard frames.

Definition 6.2 A bounded morphism from a frame (W ′,∼′) to a frame (W,∼)
is a function π : W ′ −→W such that

(FC) for all B ⊆ A and for all s′, t′ ∈W ′, if s′∼′
Bt

′ then π(s′)∼Bπ(t
′),

(BC) for all B ⊆ A, for all s′ ∈ W ′ and for all t ∈ W , if π(s′)∼Bt then there
exists t′ ∈W ′ such that s′∼′

Bt
′ and π(t′) = t.

A frame (W,∼) is a bounded morphic image of a frame (W ′,∼′) if there exists
a bounded morphism from (W ′,∼′) to (W,∼).

Since, in any frame, the accessibility relation associated to the empty set
of agents is the universal relation on the frame, therefore in our setting every
bounded morphism is a surjective function.



15

Lemma 6.3 If the frame (W,∼) is a bounded morphic image of the frame
(W ′,∼′) then for all φ ∈ LIDDR, if (W

′,∼′) |= φ then (W,∼) |= φ.

Proof. Suppose the frame (W,∼) is a bounded morphic image of the frame
(W ′,∼′). Let φ ∈ LIDDR. Suppose (W

′,∼′) |= φ. Suppose (W,∼) ̸|= φ. Hence,
by Cor. 5.5, (W,∼) ̸|= τ∅(φ). Since the frame (W,∼) is a bounded morphic
image of the frame (W ′,∼′), therefore (W ′,∼′) ̸|= τ∅(φ). See [10, Theorem 3.14]
and [12, Cor. 3.16]. Thus, by Cor. 5.5, (W ′,∼′) ̸|= φ: a contradiction. 2

Lemma 6.4 Let (W,∼) be a frame. Then (W,∼) is semi-standard, iff for all
B,C ⊆ A, ∼B∪C ⊆ ∼B ∩ ∼C .

Lemma 6.5 Every semi-standard frame is the bounded morphic image of a
standard frame.

Proof. Let (W,∼) be a semi-standard frame. For all B ⊆ A and for all u ∈W ,
let [u]B be the equivalence class of u modulo ∼B . For all X,Y ∈ P(W ), let
X + Y = (X \ Y ) ∪ (Y \X). Notice that (P(W ), ∅,W,+,∩) is a Boolean ring.
Let F be the set (with typical elements denoted α, β, etc) of all functions of
type P(A)×A −→ P(W ). Let W ′ =W ×F . Let ∼′ : P(A) −→ P(W ′ ×W ′)
be the function such that for all B ⊆ A, ∼′

B is the binary relation on W ′ such
that for all (s, α), (t, β) ∈W ′, (s, α)∼′

B(t, β) if and only if

(C1) for all E ⊆ A, [s]E +Σa∈Eα(E, a) = [t]E +Σa∈Eβ(E, a),

(C2) for all E ⊆ A and a ∈ A, if a ∈ B and a ∈ E then α(E, a) = β(E, a).

The proof of the lemma is now established in Facts 6.6, 6.7, 6.8, and 6.9. 2

Fact 6.6 The couple (W ′,∼′) is a frame.

Fact 6.7 The frame (W ′,∼′) is semi-standard.

Proof. Let B,B′ ⊆ A. Suppose B ⊆ B′. Suppose ∼′
B′ ̸⊆ ∼′

B . Hence, there
exist (s, α), (t, β) ∈ W ′ such that (s, α)∼′

B′(t, β) and (s, α)̸∼′
B(t, β). Thus,

either there exists E ⊆ A such that [s]E +Σa∈Eα(E, a) ̸= [t]E +Σa∈Eβ(E, a),
or there exists E ⊆ A and there exists a ∈ A such that a ∈ B, a ∈ E and
α(E, a) ̸= β(E, a). In the former case, since (s, α)∼′

B′(t, β), therefore [s]E +
Σa∈Eα(E, a) = [t]E + Σa∈Eβ(E, a): a contradiction. In the latter case, since
B ⊆ B′, therefore a ∈ B′. Since (s, α)∼′

B′(t, β) and a ∈ E, therefore α(E, a) =
β(E, a): a contradiction. 2

Fact 6.8 The semi-standard frame (W ′,∼′) is standard.

Proof. Let B,B′ ⊆ A. Suppose ∼′
B∪B′ ̸⊇ ∼′

B ∩ ∼′
B′ . Hence, there

exist (s, α), (t, β) ∈ W ′ such that (s, α) ̸∼′
B∪B′(t, β), (s, α)∼′

B(t, β) and
(s, α)∼′

B′(t, β). Thus, for all F ⊆ A, [s]F + Σb∈Fα(F, b) = [t]F + Σb∈Fβ(F, b).
Moreover, for all F ⊆ A and for all b ∈ A, if b ∈ B and b ∈ F then
α(F, b) = β(F, b) and for all F ⊆ A and for all b ∈ A, if b ∈ B′ and b ∈ F
then α(F, b) = β(F, b). Since (s, α)̸∼′

B∪B′(t, β), therefore there exists E ⊆ A
and there exists a ∈ A such that a ∈ B ∪ B′, a ∈ E and α(E, a) ̸= β(E, a).
Consequently, either a ∈ B, or a ∈ B′. In the former case, since for all F ⊆ A
and for all b ∈ A, if b ∈ B and b ∈ F then α(F, b) = β(F, b), therefore
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α(E, a) = β(E, a): a contradiction. In the latter case, since for all F ⊆ A
and for all b ∈ A, if b ∈ B′ and b ∈ F then α(F, b) = β(F, b), therefore
α(E, a) = β(E, a): a contradiction. 2

Let π : W ′ −→W be the function such that for all (s, α) ∈W ′, π(s, α) = s.

Fact 6.9 π is a bounded morphism from (W ′,∼′) to (W,∼).

Proof. Let B ⊆ A and (s, α), (t, β) ∈ W ′ be such that (s, α)∼′
B(t, β). Hence,

for all E ⊆ A, [s]E + Σa∈Eα(E, a) = [t]E + Σa∈Eβ(E, a). Moreover, for all
E ⊆ A and for all a ∈ A, if a ∈ B and a ∈ E then α(E, a) = β(E, a). Thus,
[s]B + Σa∈Bα(B, a) = [t]B + Σa∈Bβ(B, a). Moreover, for all a ∈ A, if a ∈ B
then α(B, a) = β(B, a). Consequently, [s]B = [t]B . Hence, s∼Bt.

Let B ⊆ A, (s, α) ∈ W ′ and t ∈ W be such that π(s, α)∼Bt. Thus, s∼Bt.
Consequently, for all E ⊆ A, if E ⊆ B then s∼Et. Hence, for all E ⊆ A, if
E ⊆ B then [s]E = [t]E . For all E ⊆ A, if E ̸⊆B then let ζ(E) ∈ A be such that
ζ(E) ∈ E and ζ(E) /∈ B. Let β be the function of type P(A) × A −→ P(W )
such that for all E ⊆ A and for all a ∈ A,

• if a ∈ E and a ∈ B then β(E, a) = α(E, a),

• elsif a ∈ E, a /∈ B and a = ζ(E) then β(E, a) = Σb∈E\Bα(E, b),

• else β(E, a) = ∅.
The reader may easily verify that (s, α)∼′

B(t, β). 2

Proposition 6.10 For all φ ∈ LIDR, if φ is valid on standard frames then φ
is valid on semi-standard frames.

Proof. By Lemmas 6.3 and 6.5. 2

The same proof technique can be used for frames with other than equiv-
alence relations ∼a, and thus used for extensions with distributed knowledge
of other logics than S5, such as KD45 (consistent belief) and KB4 (partial
equivalence relations).

7 Axiomatization

7.1 Introduction

There are multiple roads towards determining whether a formula in ψ ∈ LID is
semantically equivalent to a formula ψ′ in some other language, and that is a
theorem in an axiomatization for the logic of that language. All these inspire
the quest to find an axiomatization of LID. (i) Replace in ψ all IDB by RBDB

and determine whether the resulting ψ′′ is a theorem in the axiomatization of
the logic of [1], which proceeds by rewriting ψ′′ ∈ LDR into a ψ′ ∈ LD, and
then determine whether ψ′ is a theorem of the logic of distributed knowledge
[14]. We considered axiomatizing the fragment of [1] with packed modalities
RBDBφ [36]. (ii) Use the translation τ∅ : LID → LD of Section 5 (Def. 5.1)
and determine whether ψ′ = τ∅(ψ) is a theorem in LD [14]. We considered
axiomatizing the clauses τB of that translation. (iii) Axiomatize the logic for
special frame classes: use the translations δB of Section 5 and Prop. 5.12 for
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frames with local agreement. Thus we obtain a ψ′ ∈ LKU , or even in LK if
ψ did not contain ID∅ (the universal modality), which can be determined a
theorem in the logic (multi-)S5. This frame restriction trivializes LID.

None of these roads, despite looking hard, provided us with an axioma-
tization of LID. The ‘hybrid’ nature of IDB that is simultaneously statically
and dynamically interpreted is a complication. A similar case seems the logic
of knowability [35] with quantifiers over announcements but no announcement
modalities, for which no axiomatization is known, unlike for APAL [6].

Instead of a complete axiomatization for the logic LID of dynamic dis-
tributed knowledge we therefore present a complete axiomatization for the
logic LIDR of dynamic distributed knowledge and resolution. Our results may
compare to the axiomatizations in [1] for the logic LDR, and to a variant of
that in [8].

7.2 The logic of dynamic distributed knowledge and resolution

Definition 7.1 Let LIDR be the least set of LIDR-formulas produced by the
below, where in (IR2): seeE1(

#»

B1) ⊆ seeC(
#»

B), . . ., seeEk
(

#»

Bk) ⊆ seeC(
#»

B).

(F0) all propositional tautologies (F5) RBp↔ p
(F1) RB(φ→ ψ) → (RBφ→ RBψ) (F6) ¬RB⊥
(F2) IDBφ→ RBφ (F7) RB¬φ↔ ¬RBφ
(F3) IDBφ→ RBIDBφ (IR0) from φ→ ψ and φ infer ψ
(F4) ¬IDBφ→ IDB¬IDBφ (IR1) from φ infer RBφ

(IR2) from R #»
B1
RE1

φ1 ∧ . . . ∧R #»
Bk
REk

φk → R #»
BRCψ infer

R #»
B1
IDE1

φ1 ∧ . . . ∧R #»
Bk
IDEk

φk → R #»
BIDCψ

Note that rather few axioms and rules of LIDR involve dynamic distributed
knowledge IDB , namely (F2), (F3), (F4), and (IR2), and that rule (IR2) is
very involved: there is an instantiation of (IR2) for every k ∈ N. This suggests
a complete axiomatization for LID might also need a complex derivation rule.

Lemma 7.2 Derivable in LIDR are IDB(φ→ ψ) → (IDBφ→ IDBψ), RB(φ ∨
ψ) ↔ (RBφ∨RBψ), RB(φ∧ψ) ↔ (RBφ∧RBψ), ¬IDB⊥, and ‘φ impl. IDBφ’.

Proof. This is shown by using (F1), (F6), (F7), (IR1) and (IR2). 2

Interestingly, we were not able to find a derivation of the validity IDBφ →
IDBIDBφ in this axiomatization LIDR. It is derivable as the axiomatization
will be shown complete.

Lemma 7.3 For all φ ∈ LIDR, if φ ∈ LIDR then φ is valid on standard frames.

Proof. It suffices to demonstrate that the LIDR-formulas (F1)–(F7) are valid
on standard frames and the inference rules (IR1) and (IR2) preserve validity
on standard frames. We only show the case of the inference rule (IR2).

Suppose the inference rule (IR2) does not preserve validity on standard

frames. Hence, there exists k ∈ N, there exist
#»

B1, . . . ,
#»

Bk ∈ P(A)∗, there exist

E1, . . . , Ek ⊆ A, there exists
#»

B ∈ P(A)∗ and there exists C ⊆ A such that
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seeE1(
#»

B1) ⊆ seeC(
#»

B), . . ., seeEk
(

#»

Bk) ⊆ seeC(
#»

B) and there exists φ1, . . . , φk ∈
LIDR and there exists ψ ∈ LIDR such that R #»

B1
RE1

φ1 ∧ . . . ∧ R #»
Bk
REk

φk →
R #»

BRCψ is valid on standard frames and R #»
B1
IDE1

φ1 ∧ . . . ∧ R #»
Bk
IDEk

φk →
R #»

BIDCψ is not valid on standard frames. Thus, there exists a standard model
M = (W,∼, V ) and u ∈ W such that M,u |= R #»

B1
IDE1

φ1, . . ., M,u |=
R #»

Bk
IDEk

φk and M,u ̸|= R #»
BIDCψ. Consequently, there exists v ∈ W such

that u ∼
#»
B
C v and M

#»
BC , v ̸|= ψ. Hence, by Lemma 2.3, u ∼see(

#»
B,C) v. More-

over, M,v ̸|= R #»
BRCψ. Since R #»

B1
RE1

φ1 ∧ . . .∧R #»
Bk
REk

φk → R #»
BRCψ is valid

on standard frames, therefore there exists i ∈ (k) such that M,v ̸|= R #»
Bi
REi

φi.

Thus,M
#»
BiEi , v ̸|= φi. Since seeEi

(
#»

Bi) ⊆ seeC(
#»

B), from u ∼seeC(
#»
B) v we obtain

u ∼seeEi
(

#»
Bi)

v. Consequently, by Lemma 2.3, u ∼
#»
Bi

Ei
v. Since M

#»
BiEi , v ̸|= φi,

therefore M,u ̸|= R #»
Bi
IDEiφi: a contradiction. 2

7.3 Completeness

We now proceed to show the completeness of the logic LIDR.
A set s of LIDR-formulas is LIDR-consistent if for all n ∈ N and for all

φ1, . . . , φn ∈ s, ¬(φ1 ∧ . . . ∧ φn) /∈ LIDR.

Lemma 7.4 LIDR is an LIDR-consistent set of LIDR-formulas.

Proof. By Lemma 7.3. 2

An LIDR-consistent set s of LIDR-formulas is maximal if for all LIDR-
consistent sets t of LIDR-formulas, if s ⊆ t then s = t.

Lemma 7.5 For all LIDR-consistent sets s of LIDR-formulas, there exists a
maximal LIDR-consistent set t of LIDR-formulas such that s ⊆ t.

Proof. See [10, Lemma 4.17] and [12, Lemma 5.1] for details. 2

For convenience of the exposition, from here on we write L instead of LIDR

in this section.
Let WL be the set of all maximal L-consistent sets of all LIDR-formulas.

Let ∼L: P(A) −→ P(WL×WL) be the function such that for all C ⊆ A, ∼L,C

is the binary relation on WL such that for all s, t ∈ WL, s∼L,Ct if and only if

for all
#»

B ∈ P(A)∗ and for all E ⊆ A, if seeE(
#»

B) ⊆ C then for all φ ∈ LIDR, if
R #»

BIDEφ ∈ s then R #»
BREφ ∈ t.

Lemma 7.6 The pair (WL,∼L) is a frame.

Proof. By Lemmas 7.4 and 7.5, WL is nonempty. Hence, it suffices to demon-
strate that for all C ⊆ A, ∼L,C is reflexive and Euclidean (and therefore an
equivalence relation). Let C ⊆ A.

Suppose ∼L,C is not reflexive. Thus, there exists s ∈WL such that s̸∼L,Cs.

Consequently, there are
#»

B ∈ P(A)∗ and E ⊆ A such that seeE(
#»

B) ⊆ C and
there is φ ∈ LIDR such that R #»

BIDEφ ∈ s and R #»
BREφ /∈ s. Hence, by using

(F1), (F2) and (IR1), R #»
BREφ ∈ s: a contradiction.

Suppose ∼L,C is not Euclidean. Thus, there exist s, t, u ∈ WL such that

s ∼L,C t, s ∼L,C u and t ̸∼L,C u. Consequently, there are
#»

B ∈ P(A)∗
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and E ⊆ A such that seeE(
#»

B) ⊆ C and there exists φ ∈ LIDR such that

R #»
BIDEφ ∈ t and R #»

BREφ /∈ u. Since s ∼L,C u and seeE(
#»

B) ⊆ C, therefore
R #»

BIDEφ /∈ s. Hence, by using (F1), (F7) and (IR1), R #»
B¬IDEφ ∈ s. Thus, by

using (F1), (F4) and (IR1), R #»
BIDE¬IDEφ ∈ s. Since s ∼L,C t and seeE(

#»

B) ⊆
C, therefore R #»

BRE¬IDEφ ∈ t. Consequently, by using (F1), (F7) and (IR1),
R #»

BREIDEφ /∈ t. Hence, by using (F1), (F3) and (IR1), R #»
BIDEφ /∈ t: a

contradiction. 2

Lemma 7.7 The frame (WL,∼L) is semi-standard.

Proof. Let C,C ′ ⊆ A. Suppose C ⊆ C ′. Suppose ∼L,C′ ̸⊆ ∼L,C . Hence, there

exists s, t ∈ WL such that s∼L,C′t and s̸∼L,Ct. Thus, there exists
#»

B ∈ P(A)∗

and there exists E ⊆ A such that seeE(
#»

B) ⊆ C and there exists φ ∈ LIDR such

that R #»
BIDEφ ∈ s and R #»

BREφ /∈ t. Since C ⊆ C ′, therefore seeE(
#»

B) ⊆ C ′.
Since s∼L,C′t and R #»

BIDEφ ∈ s, therefore R #»
BREφ ∈ t: a contradiction. 2

Definition 7.8 The semi-standard frame (WL,∼L) is called canonical frame
of L. The canonical valuation of L is the function VL associating to each atom
p the set VL(p) of all s ∈ WL such that p ∈ s. The triple ML = (WL,∼L, VL)
is called canonical model of L.

Lemma 7.9 Let φ ∈ LIDR. For all s ∈WL and for all
#»

B ∈ P(A)∗, M
#»
B
L , s |= φ

if and only if R #»
Bφ ∈ s.

Proof. By induction on φ. We only show the case IDCψ.

From right to left, suppose M
#»
B
L , s ̸|= IDCψ and R #»

BIDCψ ∈ s. Hence, there

exists t ∈ WL such that s∼
#»
B
L,Ct and M

#»
BC
L , t ̸|= ψ. Thus, by Lemma 2.3,

s∼L,seeC(
#»
B)t. Moreover, by induction hypothesis, R #»

BRCψ /∈ t. Since
R #»

BIDCψ ∈ s, therefore R #»
BRCψ ∈ t: a contradiction.

From left to right, suppose M
#»
B
L , s |= IDCψ and R #»

BIDCψ /∈ s. Let t0 =

{R # »

B′RE′χ |
# »

B′ ∈ P(A)∗ and E′ ⊆ A are such that seeE′(
# »

B′) ⊆ seeC(
#»

B) and
χ ∈ LIDR is such that R # »

B′IDE′χ ∈ s} ∪ {¬R #»
BRCψ}.

We first observe that t0 is an L-consistent set of LIDR-formulas. This
can be shown as follows. Suppose t0 is not an L-consistent set of LIDR-

formulas. Hence, there exist k ∈ N,
#  »

B′
1, . . . ,

#  »

B′
k ∈ P(A)∗ and E′

1, . . . , E
′
k ⊆ A

such that seeE′
1
(

#  »

B′
1) ⊆ seeE(

#»

B), . . ., seeE′
k
(

#  »

B′
k) ⊆ seeE(

#»

B), and there exist
χ1, . . . , χk ∈ LIDR such that R # »

B′
1
IDE′

1
χ1, . . . , R #  »

B′
k
IDE′

k
χk ∈ s and R # »

B′
1
RE′

1
χ1 ∧

. . . ∧ R #  »

B′
k
RE′

k
χk → R #»

BRCψ ∈ L. Thus, by using (IR2), R # »

B′
1
IDE′

1
χ1 ∧ . . . ∧

R #  »

B′
k
IDE′

k
χk → R #»

BIDCψ ∈ L. Since R # »

B′
1
IDE′

1
χ1, . . . , R #  »

B′
k
IDE′

k
χk ∈ s, therefore

R #»
BIDCψ ∈ s: a contradiction.
Now using that t0 is an L-consistent set of LIDR-formulas, by Lemma 7.5,

there exists t ∈WL such that t0 ⊆ t. Hence, for all
# »

B′ ∈ P(A)∗ and E′ ⊆ A, if

seeE′(
# »

B′) ⊆ seeC(
#»

B) then for all χ ∈ LIDR, if R # »

B′IDE′χ ∈ s then R # »

B′RE′χ ∈ t.
Moreover, ¬R #»

BRCψ ∈ t. Thus, s ∼seeC(
#»
B) t. Also, R #»

BRCψ /∈ t. Consequently,

by Lemma 2.3, s ∼
#»
B
C t. Since M

#»
B
L , s |= IDCψ, therefore M

#»
BC
L , t |= ψ. Hence,
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by induction hypothesis, R #»
BRCψ ∈ t: a contradiction. 2

Lemma 7.10 For all φ ∈ LIDR, φ is true in ML if and only if φ ∈ L.

Proof. By Lemma 7.9. 2

Lemma 7.11 For all φ ∈ LIDR, if φ is valid in the class of all semi-standard
frames then φ ∈ L.

Proof. By Lemmas 7.7 and 7.10. 2

Theorem 7.12 For all φ ∈ LIDR: (i) φ ∈ L, iff (ii) φ is valid on standard
frames, iff (iii) φ is valid on semi-standard frames.

Proof. By Lemmas 6.10, 7.3 and 7.11. 2

8 Conclusions and further research

Conclusions. We proposed a logic of dynamic distributed knowledge with
modalities combining static and dynamic features. We considered its validi-
ties, gave translations to static distributed knowledge, showed its decidability,
proposed and characterized a notion of shared bisimulation, and gave a com-
plete axiomatization for the extension with resolution.

Further research Interpreting dynamic distributed knowledge on Kripke
models with other frame properties than equivalence relations, extending S5,
is worth pursuing. Dynamic distributed knowledge based on K4 (transitive
models) is investigated in [13]. Static distributed knowledge based on KB4
(models with partial equivalence relations) is investigated in distributed com-
puting [17] to model crashed (or dead) agents, or faulty agents [32]. A crashed
or faulty agent satisfies Ka⊥. We also consider extending the language LID

with common knowledge. It is easy to see that IDBφ ↔ IDBCBφ is valid. We
conjecture this is the only interaction axiom needed in order to get a complete
axiomatization, extending a presumed one for ID and the standard one for C
[34]. Finally we consider incorporating relativized common knowledge [24,30],
(dynamic) common distributed knowledge [8,33], semi-standard Kripke models
(∼C ⊆ ∼B for B ⊆ C) [7,17], and applications in game theory and economics
[13].
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in Computer Science 12569, 2020, pp. 259–276.


	Introduction and survey of related work
	The logic of dynamic distributed knowledge
	Validities
	Bisimulation
	Translations
	Dynamic into static distributed knowledge
	Agents with local agreement

	On standard frames and semi-standard frames
	Axiomatization
	Introduction
	The logic of dynamic distributed knowledge and resolution
	Completeness

	Conclusions and further research
	References

