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Francesco Alesiani®', Makoto Takamoto', Mathias Niepert ® '* & Johannes Kistner ®2

Efficiently creating a concise but comprehensive data set for training machine-learned interatomic
potentials (MLIPs) is an under-explored problem. Active learning, which uses biased or unbiased
molecular dynamics (MD) to generate candidate pools, aims to address this objective. Existing biased
and unbiased MD-simulation methods, however, are prone to miss either rare events or extrapolative
regions —areas of the configurational space where unreliable predictions are made. This work
demonstrates that MD, when biased by the MLIP’s energy uncertainty, simultaneously captures
extrapolative regions and rare events, which is crucial for developing uniformly accurate MLIPs.
Furthermore, exploiting automatic differentiation, we enhance bias-forces-driven MD with the
concept of bias stress. We employ calibrated gradient-based uncertainties to yield MLIPs with similar
or, sometimes, better accuracy than ensemble-based methods at a lower computational cost. Finally,
we apply uncertainty-biased MD to alanine dipeptide and MIL-53(Al), generating MLIPs that represent
both configurational spaces more accurately than models trained with conventional MD.

Computational techniques are invaluable for exploring complex config-
urational and compositional spaces of molecular and material systems. The
accuracy and efficiency, however, depend on the chosen computational
methods. Ab initio molecular dynamics (MD) simulations using density-
functional theory (DFT) provide accurate results but are computationally
demanding. Atomistic simulations with classical force fields offer a faster
alternative but often lack accuracy. Thus, developing accurate and com-
putationally efficient interatomic potentials is a key challenge successfully
addressed by machine-learned interatomic potentials (MLIPs)'. An
essential component of any MLIP is the accurate encoding of the atomic
system by a local representation, which depends on configurational (atomic
positions) and compositional (atomic types) degrees of freedom®. Recently,
a wide range of MLIPs have been introduced, comprising linear and kernel-
based models”"’, Gaussian approximation'*", and neural network (NN)
interatomic potentials™", including graph NNs'**, all demonstrating
remarkable success in atomistic simulations.

The effectiveness of MLIPs, however, crucially relies on training data
sufficiently covering configurational and compositional spaces™”’. Without
such training data, MLIPs cannot faithfully reproduce the underlying

physics. An open challenge, therefore, is the generation of comprehensive
training data sets for MLIPs, covering relevant configurational and com-
positional spaces and ensuring that resulting MLIPs are uniformly accurate
across these spaces. This objective must be realized while reducing the
number of expensive DFT evaluations, which provide reference energies,
atomic forces, and stresses. This challenge is further complicated by the
limited knowledge of physical conditions, such as temperature and pressure,
at which configurational changes occur. Setting temperatures and pressures
excessively high can result in atomic system degradation before exploring
the relevant phase space.

To address this challenge, iterative active learning (AL) algorithms are
used to improve the accuracy of MLIPs by providing an augmented data
set”’ % see Fig. 1(a). They select the data most informative to the model, i.e.,
atomic configurations with high energy and force uncertainties, as estimated
by the model. This data is drawn from configurational and compositional
spaces explored during, e.g., MD simulations. Reference DFT energies,
atomic forces, and stresses are evaluated for the selected configurations.
Furthermore, energy and force uncertainties indicate the onset of extra-
polative regions—regions where unreliable predictions are made—
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Fig. 1 | A schematic overview of an AL algorithm for MLIP training. Training
structures are selected from data gathered during biased or unbiased MD simula-
tions. a An AL experiment begins with training an MLIP in the first iteration using a
small set of randomly perturbed initial configurations. The current MLIP is
employed in each iteration to run parallel MD simulations. Each simulation con-
tinues until it reaches a predefined uncertainty threshold. Then, a batch of config-
urations is selected from all trajectories. Reference energies and forces of these
samples are evaluated using a DFT solver, updating the training data set. The
updated data set is employed for training the MLIP in the next iteration. b Adaptive
biasing strategies like metadynamics enhance the exploration of the configurational
space. In metadynamics, exploration along manually defined CVs is facilitated by
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adding Gaussian functions to a history-dependent bias (areas filled by blue, orange,
and red colors). However, even for well-defined CVs, exploring the configurational
space of interest may require long simulation times due to the diffusive motion along
these CVs. ¢ Uncertainty-biased MD aims to minimize uncertainty u (grey shaded
area) related to the actual error, thereby facilitating the exploration of the config-
urational space. In uncertainty-biased MD, we subtract the MLIP’s energy uncer-
tainty from the predicted energy (continuous black line) and run MD simulations
using the altered energy surface (dashed black line). Curved lines denote distinct MD
trajectories. Unlike metadynamics, uncertainty-biased MD operates without
defining CVs and drives MD simulations toward high uncertainty regions in each
iteration.

prompting the termination of MD simulations and the evaluation of
reference DFT values. In this AL setting, covering the configurational space
and exploring extrapolative configurations might require running longer
MD simulations and defining physical conditions for observing slow con-
figurational changes (rare events).

Alternatively, enhanced sampling methods can significantly speed up
the exploration of the configurational space by using adaptive biasing
strategies such as metadynamics™™; see Fig. 1(b). However, metadynamics
requires manually selecting a few collective variables (CVs) that are assumed
to describe the system. The limited number of CVs restricts exploration, as
they might miss relevant transitions and parts of the configurational space.
In contrast, MD simulations biased toward regions of high uncertainty can

enhance the discovery of extrapolative configurations*. A related work
utilizes uncertainty gradients for adversarial training of MLIPs***. To
obtain MLIPs that are uniformly accurate across the relevant configura-
tional space, however, simultaneous exploration of rare events and extra-
polative configurations is necessary. The extent to which uncertainty-biased
MD can achieve this objective remains an unexplored research area.

This work demonstrates the capability of uncertainty-biased MD to
explore the configurational space, including fast exploration of rare events
and extrapolative regions; see Fig. 1(c). We achieve this by exploring the CV's
of alanine dipeptide—a widely used model for protein backbone structure.
To assess the coverage of the CV space, we introduce a measure using a tree-
based weighted recursive space partitioning. Furthermore, we extend
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existing uncertainty-biased MD simulations by automatic differentiation
(AD) and propose a biasing technique that utilizes bias stresses obtained by
differentiating the model’s uncertainty with respect to infinitesimal strain
deformations. We assess the efficiency of the proposed technique by run-
ning MD simulations in isothermal-isobaric (NpT) statistical ensemble and
exploring cell parameters of MIL-53(Al)—a flexible metal-organic frame-
work (MOF) featuring closed- and large-pore stable states. Both benchmark
systems are often used in studies assessing enhanced sampling and data
generation methods™***"*,

A key ingredient of AL algorithms with dynamically generated can-
didate pools is a sensitive metric for detecting the onset of extrapolative
regions. These regions are typically associated with large errors in MLIP
predictions. However, MLIP uncertainties often underestimate actual
errors'®”, resulting in the exploration of unphysical regions, negatively
affecting MLIP training. Thus, calibrated uncertainties are crucial for gen-
erating high-quality MLIPs with AL, which involves configurations
explored during MLIP-based MD"~*’, but might be unnecessary in AL tasks
that rely on relative uncertainties” . In our setting, we demonstrate that
conformal prediction (CP) helps align the largest force error with its cor-
responding uncertainty value. This approach effectively makes MLIPs not
underestimate force errors, which is important for preventing MD from
exploring unphysical configurations. Thus, CP-based uncertainty calibra-
tion helps set reasonable uncertainty thresholds without limiting the
exploration of the configurational space. In contrast, conventional
approaches drive MD away from high-uncertainty regions, which can
hinder exploration™.

Contrary to existing work***’, which relies on ensembles of MLIPs for
uncertainty quantification, we propose using ensemble-free uncertainties of
NN-based MLIPs derived from gradient features™ . These features can be
interpreted as the sensitivity of a model’s output to parameter changes.
Recent studies demonstrate that gradient-based uncertainties perform
comparably to ensemble-based counterparts in AL’*****, Furthermore, they
yield the exact posterior in the case of linear models™'"’. We demonstrate that
gradient features can define uncertainties of total and atom-based proper-
ties, such as energy and atomic forces. To make gradient-based uncertainties
computationally efficient, we employ the sketching technique™ and reduce
the dimensionality of gradient features. For many NN-based MLIPs,
gradient-based approaches can significantly reduce the computational cost
of uncertainty quantification and accelerate the time-consuming MD
simulations compared to ensemble-based methods. However, the latter can
be made computationally efficient, e.g., through parallelization or employ-
ing specific settings with non-trainable descriptors and gradient-free force
uncertainties®.

We further enhance configurational space exploration and improve the
computational efficiency of AL by employing batch selection algorithms™**.
These algorithms simultaneously select multiple atomic configurations
from trajectories generated during parallel MD simulations. Batch selection
algorithms enforce the informativeness and diversity of the selected atomic
structures. Thus, they ensure the construction of maximally diverse training
data sets.

Results

Overview

In the following, we first demonstrate the necessity of uncertainty cali-
bration on an example of MIL-53(Al) to constrain MD to physically
reasonable regions of the configurational space. Then, we present two
complementary analyses demonstrating the improved data efficiency of
MLIPs obtained by our AL approach, developing MLIPs for alanine
dipeptide and MIL-53(Al). Furthermore, we investigate how
uncertainty-biased MD enhances the exploration of the configurational
space, utilizing bias forces and stress. To benchmark our results, we draw
a comparison with MD run at elevated temperatures and pressures as
well as metadynamics simulations. The details on the ensemble-free
uncertainties (distance- and posterior-based ones) and uncertainty-
biased MD can be found in Methods.

Calibrating uncertainties with conformal prediction
Total and atom-based uncertainties are typically poorly calibrated”,
meaning that they often underestimate actual errors. The underestimation
of atomic force errors is particularly dangerous when dynamically gen-
erating candidate pools, as it may result in exploring unphysical config-
urations with extremely large errors in predicted forces. These unphysical
configurations often cause convergence issues in reference DFT calcula-
tions. Additionally, poor calibration complicates defining an appropriate
uncertainty threshold for prompting the termination of MD simulations
and the evaluation of reference DFT energies, atomic forces, and stresses. To
address this issue, we utilize inductive CP, which computes a re-scaling
factor based on predicted uncertainties and prediction errors on a calibra-
tion set. The confidencelevel 1 — « in CP is defined such that the probability
of underestimating the error is at most « on data drawn from the same
distribution as the calibration set. For more details, see Methods.

Figure 2 demonstrates the correlation of maximal atom-based uncer-

tainties, ~ maxwu; with maximal atomic force = RMSEs,
1

max /1 377_| (AF,;)?, for the MIL-53(Al) test data set from ref. 41 based
on numerous first principles MD trajectories at 600 K. We chose maximal
atomic force RMSE as our target metric to identify extrapolative regions due
to its high sensitivity to unphysical local atomic environments. In MLIP-
based atomistic simulations, we model it using maximal atom-based
uncertainty. Employing quantiles or averages of atomic force RMSE could
extend simulation time by reducing sensitivity to extreme values; however,
exploring these alternatives is left for future work.

In Fig. 2, transparent hexbins represent uncertainties calibrated with a
lower confidence (a = 0.5; see Methods), while opaque ones depict those
calibrated with a higher confidence (« = 0.05). The presented uncertainties
are derived from gradient features or an ensemble of three MLIPs and
calibrated using CP with atomic force RMSEs". For posterior- and distance-
based uncertainties, which are unitless, the re-scaling with CP ensures that
the resulting uncertainties are provided in correct units, ie, eV A~
Ensemble-based uncertainty quantification already provides correct units,
which CP preserves. Equivalent results for alanine dipeptide, including the
correlation between average uncertainties and average force RMSEs, can be
found in the Supplementary Information.

Figure 2 (top) demonstrates results for MLIPs trained on 45 MIL-
53(Al) configurations, while five samples were used for early stopping and
uncertainty calibration. Figure 2 (bottom) shows the results for MLIPs
trained and validated on 450 and 50 MIL-53(Al) configurations, respec-
tively. In both experiments, the training and validation samples were
selected from the data sets provided by ref. 41. The first 50 samples corre-
spond to randomly perturbed structures, while the remaining 450 are
generated using metadynamics combined with incremental learning'. The
latter is an iterative algorithm that improves MLIPs by training on config-
urations generated sequentially over time, using the last frame of atomistic
simulations.

We observe that uncertainties calibrated with a lower confidence level
often underestimate actual errors. In this case, MD can explore unphysical
regions before reaching the uncertainty threshold, especially in cases with a
weak correlation between uncertainties and actual errors. By employing CP
with higher confidence, we help align the largest prediction error with the
corresponding uncertainty, thereby improving its ability to identify the
onset of extrapolative regions. This alignment becomes apparent in Fig. 2,
where CP shifts the hexbin points to be on or below the diagonal.

In Fig. 2 (top), we find that even training and calibrating models with a
few randomly perturbed atomic configurations is sufficient for robust
identification of unreliable predictions. This result is crucial as we rely on
such data sets to initialize our AL experiments, eliminating the need for
predefined data sets™*’. Furthermore, we observe that, for MIL-53(Al),
calibrated uncertainties from model ensembles tend to overestimate the
actual error to a greater extent than gradient-based approaches. While this
may not be critical when exploring unphysical configurations, it can pre-
maturely terminate MD simulations. This trend is consistent across all
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Fig. 2 | Correlation of maximal atom-based uncertainties with maximal atomic
force RMSEs for MIL-53(Al). The results are presented for the test data set from
ref. 41. All uncertainty quantification methods are calibrated using CP and atomic
force RMSEs. The top row shows the results of MLIPs trained using 45 atomic
configurations, while five are used for early stopping and uncertainty calibration.
The bottom row shows the results obtained with 450 and 50 MIL-53(Al) config-
urations, respectively. The training and validation data are taken from ref. 41.

Transparent hexbin points represent uncertainties calibrated with a = 0.5 (low
confidence; see Methods), while opaque ones denote uncertainties calibrated with
a=0.05 (high confidence). Calibrating uncertainties with a high confidence level
helps align the largest actual error with the corresponding uncertainty, shifting the
hexbin points to or below the red diagonal line. This alignment is crucial for iden-
tifying unreliable predictions and prompting the termination of MD simulations.

training and calibration data sizes. Lastly, the results provided here and in the
Supplementary Information demonstrate that all uncertainty methods per-
form comparably regarding Pearson and Spearman correlation coefficients.

Performance of bias-forces-driven active learning

Exploring the configurational space of complex molecular systems, parti-
cularly those with multiple stable states, is essential for developing accurate
and robust MLIPs. We apply bias-forces-driven MD combined with AL to
develop MLIPs for alanine dipeptide in vacuum. This dipeptide exhibits two
stable conformers characterized by the backbone dihedral angles ¢ and y
(see Fig. 3): the Cyq state with ¢ =~ — 1.5 rad and ¥ = 1.19 rad and the C
state with ¢ = 0.9 rad and y = — 0.9 rad’’. We use unbiased MD as the
baseline for generating candidate pools in two scenarios: AL with candidates
selected from unbiased MD trajectories based on their uncertainty (and
diversity) and candidates sampled from them at random. The performance
of MLIPs is assessed employing the test data obtained from a long MD
trajectory at 1200 K; see Methods. We employ the AMBER ff19SB force field
for reference energy and force calculations”, as implemented in the
TorchMD package using PyTorch™”.

Figure 3 demonstrates the performance of MLIPs obtained for alanine
dipeptide depending on the number of acquired configurations. Table 1
presents error metrics evaluated for MLIPs at the end of each experiment.
Here, we provide results for the posterior-based uncertainty and
uncertainty-biased MD at 300 K. The Supplementary Information presents
equivalent results for other uncertainty methods and temperatures. Figure
3a presents the coverage of the CV space defined by ¢ and v, calculated using
all MD trajectories up to the current AL step. We measure the coverage of
the respective space by a tree-based weighted recursive space partitioning;

see Methods. AL experiments combined with unbiased MD at 1200 K serve
as the upper-performance limit for MLIPs in the case of alanine dipeptide,
achieving the highest coverage of 0.97 after acquiring 512 configurations.
Increasing temperature even further while using interatomic potentials,
which allow for bond breaking and formation, may lead to the degradation
of the molecule. Uncertainty-biased MD simulations at 300 K result in
slightly lower coverage values, surpassing the coverages achieved by
unbiased MD at 300 K and 600 K.

Furthermore, biased MD at 300 K outperforms unbiased dynamics at
1200 K, efficiently covering the CV space before acquiring ~ 200 config-
urations. This observation is attributed to the gradual increase in driving
forces induced by the uncertainty bias, resulting in a more gradual distortion
of the atomic structure. In contrast, high-temperature unbiased simulations
perturb the system more strongly and rapidly enter extrapolative regions
without exploring relevant configurational changes. Thus, high-
temperature simulations may also cause the degradation of the investi-
gated atomic systems, unlike uncertainty-biased dynamics applied at mild
physical conditions.

Figure 3b, ¢ present energy and force RMSEs evaluated on the alanine
dipeptide test data set; see Methods. Consistent with the findings in Fig. 3a,
AL approaches combined with biased MD at 300 K outperform their
unbiased counterparts at 300 K and 600 K once they acquire ~ 100 con-
figurations. Biased AL experiments achieve energy RMSE of 1.97 meV
atom !, close to those observed in high-temperature MD simulations,
surpassing others by a factor of more than 13. A similar trend is observed for
force RMSE. Biased AL experiments achieve an RMSE of 0.071 eV A
outperforming their counterparts at 300 K and 600 K by factors of 2.1 and
1.6, respectively.
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Fig. 3 | Comparison of AL approaches employing biased and unbiased MD
simulations to generate the candidate pool of atomic configurations for alanine
dipeptide. Results are provided for the posterior-based uncertainty quantification
derived from sketched gradient features. Unlike unbiased MD simulations, which
rely on atom-based uncertainties to terminate MD simulations, biased MD simu-
lations use total and atom-based uncertainties to bias MD simulations and prompt
their termination, respectively. We use three metrics to assess the performance of our
AL approaches: (a) Coverage of the CV space; (b) Energy RMSE; and (c) Force
RMSE. All RMSEs are evaluated on the alanine dipeptide test data set; see Methods.

Acquired data set size
—— unbiased MD (1200 K)

Acquired data set size
biased MD (300 K, T=0.25, w/o. H)

Shaded areas denote the standard deviation across five independent runs. The ala-
nine dipeptide molecule, including its CVs, is shown as an inset in (a). The color code
of the inset molecule is C grey, O red, N blue, and H white. d Ramachandran plots
demonstrating the CV spaces explored by the four AL experiments. Biased MD
simulations achieve exceptional performance, close to those of MD conducted at
1200 K, without knowledge of temperatures that accelerate transitions between
stable states. The CV space covered by uncertainty-biased MD simulations at 300 K
matches that of unbiased simulations at 1200 K, significantly outperforming the
coverage achieved by unbiased MD at 300 K and 600 K.

These results demonstrate the efficiency of uncertainty-biased
dynamics in exploring the configurational space and developing accurate
and robust MLIPs. Moreover, generating training data that sufficiently
covers the configurational space by combining AL with biased MD does not
significantly increase the computational demand compared to conventional
AL with unbiased MD; see the Supplementary Information. Lastly, MLIPs
trained with candidates selected based on their uncertainty (and diversity)
from biased and unbiased MD trajectories systematically outperform
MLIPs trained with candidates selected at random; see Table 1.

Biased AL experiments achieve exceptional performance without
knowledge of temperatures that accelerate transitions between stable states;
see Fig. 3d. Identifying these temperatures requires running MD simulations
at different conditions to explore the configurational space without
degrading the atomic system. In contrast, given the mild physical conditions
such as temperatures of 300 K and 600 K, biased MD simulations outper-
form their unbiased counterparts at 300 K and 600 K and achieve com-
parable performance to experiments at 1200 K for 7 $0.5and 0.2 S 7504,
respectively. The available range of biasing strength values may be more
restricted at more extreme conditions. Adding uncertainty bias to MD at
1200 K results in an even stronger system perturbation than during
unbiased MD without yielding any improvement. For additional details, see
the Supplementary Information.

Our results offer evidence of rare event exploration (the exploration of
both stable states of alanine dipeptide) through uncertainty-biased
dynamics. The following section will present a detailed analysis of the

exploration rates. Additionally, we have identified how to further improve
our biased MD simulations by making biasing strengths species dependent;
see the Supplementary Information. The results presented in this section,
achieved with a biasing strength of zero for hydrogen atoms, outperform
settings where all atoms are biased equally, with improvements by a factor of
1.08 in coverage and 1.15 in force RMSE; see Table 1. Thus, a more
sophisticated data-driven redistribution of biasing strengths can further
enhance the performance of bias-forces-driven MD simulations. However,
learning species-dependent biasing strengths necessitates defining a suitable
loss function that promotes the fast exploration of phase space®, which falls
beyond the scope of this work.

Exploration rates for collective variables of alanine dipeptide
We have observed that uncertainty-biased MD simulations effectively
explore the configurational space of alanine dipeptide, defined by its CVs.
Figure 4 evaluates the extent to which the introduced bias forces in MD
simulations accelerate their exploration. In Fig. 4a, we present the coverage
of the CV space as a function of simulation time, i.e., of the effective number
of MD steps. The figure demonstrates that uncertainty-biased AL experi-
ments at 300 K outperform unbiased experiments at 300 K and 600 K. They
achieve the same coverage in considerably shorter simulation times, thereby
enhancing exploration rates by a factor of larger than two. At the same time,
biased MD simulations yield results comparable to those obtained from
unbiased MD simulations at 1200 K. Thus, uncertainty-biased MD explores
configurational space at a similar rate to unbiased MD at 1200 K.
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Table 1| CV space coverage, atomic energy (E-) and atomic force (F-) RMSEs, as well as position (Pos.) and uncertainty (Unc.)
auto-correlation times (ACTs) for alanine dipeptide experiments conducted with posterior-based uncertainties

Experiment CV space cov. E-RMSE F-RMSE Pos. ACT? Unc. ACT?
random sel. (300 K) 0.58 +0.03 34.09 +6.29 0.191 +0.019 - -

random sel. (600 K) 0.76 £0.04 31.44+4.77 0.143+0.015 - -

random sel. (1200 K) 0.95+0.01 19.83 +4.62 0.116 £0.017 - -

unbiased MD (300 K) 0.58 +0.03 30.29 +5.47 0.149+0.019 2.07+0.11 327.11£8.69
unbiased MD (600 K) 0.89+0.00 26.03 £2.23 0.116 +0.012 1.23+£0.02 257.88 +22.01
unbiased MD (1200 K) 0.97 +0.01 1.47 £ 0.09 0.055 + 0.002 0.74+0.02 21.41+4.91
biased MD (300 K, = = 0.25, w. H) 0.87 +0.02 5.09 +5.40 0.082 +0.016 2.08+0.13 19.38 +7.42
biased MD (300 K, T =0.25, w/o. H)  0.94 +0.01 1.97+0.88 0.071 £0.003 0.69 +0.04 52.79 +19.40

fACTs computed for experiments with the random selection (random sel.) strategy are excluded from the analysis because different approaches may introduce systematic biases, making the comparison

unreliable.

E- and F-RMSEs are reported for MLIPs obtained at the end of each experiment, while CV space coverage and ACTs are computed using the entire trajectory obtained throughout the experiment. E-RMSE is
givenin meV atom™', while F-RMSE isin eV A~". All E-RMSE and F-RMSE values are computed for the test data set obtained from a long MD trajectory at 1200 K; see Methods. ACTs are provided in ps. For
biased MD, we compare two cases: one with (w.) biasing hydrogen atoms and one without (w/0.). We also compare biased and unbiased MD with experiments that involve the random selection (random sel.)
strategy for acquiring training data. The best performance is highlighted in bold, and the second-best performance is underlined.

The exploration rates estimated from Fig. 4a provide an approximate
measure of how uncertainty-biased dynamics accelerate the exploration of
configurational space. To offer a more thorough assessment, we examine
auto-correlation functions (ACFs) computed for both position and uncer-
tainty spaces in Fig. 4b, c. Here, a faster decay corresponds to a faster
exploration of the respective space. We compute ACFs using MD trajec-
tories from all AL iterations. Additionally, we calculate the auto-correlation
time (ACT) for each experiment. For the definition of ACF and ACT, see
Methods. Table 1 presents ACTs for all AL experiments. Smaller ACT's
correspond to a faster decay of ACFs, indicating a faster exploration of the
respective spaces.

ACTs demonstrate that uncertainty-biased MD at 300 K explores
position and uncertainty spaces two to six times faster than unbiased MD at
300 K and 600 K. Compared to unbiased MD at 1200 K, it achieves com-
parable exploration rates in the position space and rates lower by a factor of
two for the uncertainty space. Biasing hydrogen atoms reduces the uncer-
tainty ACT compared to experiments with zero hydrogen biasing strength
but increases the position ACT by a factor of three. Thus, stronger atomic
bond distortions, resulting in fast exploration of extrapolative regions, can
explain a shorter uncertainty ACT of unbiased MD at 1200 K. While this
effect can be unfavorable for promoting the exploration of rare events in
biased MD, incorporating small, non-zero biasing strengths for hydrogen
atoms may be necessary to ensure the robustness of MD simulations at
elevated temperatures. Interestingly, we observe that uncertainty-biased
MD explores both stable states in alanine dipeptide, even though 27 degrees
of freedom (C, N, and O atoms) were effectively biased, demonstrating its
remarkable efficiency.

To gain insight into the exploration of the CV space during AL, we refer
to Fig. 4d, e, which illustrate the time evolution of the maximal atom-based
uncertainty and the CV space coverage for selected AL iterations. Biased
MD systematically explores configurations with higher uncertainty values
than unbiased MD at 300 K and 600 K. Furthermore, bias forces drive the
exploration of both stable states of alanine dipeptide and promote transi-
tions between them, similar to higher temperatures in unbiased MD. Later
AL iterations in Fig. 4d, e demonstrate that MD driven by bias forces reduces
the uncertainty level uniformly across the configurational space. Thus, given
the correlation between uncertainties and actual errors, uncertainty-biased
MD generates MLIPs uniformly accurate across the configurational space.

Performance of bias-stress-driven active learning

Generating training data for bulk material systems with large unit cells and
multiple stable states poses a significant challenge in developing MLIPs.
Therefore, we assess the performance of the bias-stress-driven AL applied to
MIL-53(Al), a flexible MOF that undergoes reversible, large-amplitude

volume changes under external stimuli, such as temperature and pressure
(see Fig. 5). MIL-53(Al) features two stable phases: the closed-pore state with
a unit cell volume of V ~ 830 A” and the large-pore state with V ~ 1419 A>.
For reference energy, force, and stress calculations, we use the CP2K
simulation package (version 2023.1)°' and DFT at the PBE-D3(B]) level™.
Our baseline for generating candidate pools for AL involves unbiased MD
and training data selected based on their uncertainty (and diversity) or at
random. We also employ metadynamics*, which uses an adaptive biasing
strategy for cell parameters of MIL-53(Al), as a baseline. We assess the
performance of MLIPs for MIL-53(Al) using the test data set presented
by ref. 41.

Figure 5a-c demonstrate the performance of MLIPs developed for
MIL-53(Al) depending on the number of acquired configurations. Table 2
presents error metrics evaluated for MLIPs at the end of each experiment.
Here, we present results for the posterior-based uncertainty. The Supple-
mentary Information presents equivalent results for other uncertainty
methods and pressures. We observe that MLIPs trained with configurations
generated using metadynamics outperform the others for data set sizes
below ~ 200 samples. This difference in performance can be attributed to
how perturbed configurations are generated and the differing experimental
settings between incremental learning and AL applied here. Bias-stress-
driven AL outperforms metadynamics-based experiments after acquir-
ing ~ 200 configurations regarding force and stress RMSEs.

Metadynamics-based experiments achieve performance on par with
unbiased AL experiments conducted at 0 MPa after they reach a data set size
of ~200 configurations. For uncertainty-biased MD, the force RMSE
improves by a factor of 1.14, and the stress RMSE improves by a factor of two
compared to zero-pressure unbiased MD. Furthermore, AL experiments
with biased MD simulations outperform unbiased MD simulations at
250 MPa regarding stress RMSE. Thus, bias-stress-driven MD generates a
data set that better represents the relevant configurational space of flexible
MOFs compared to MLIPs trained with conventional MD and metady-
namics simulations. This improvement is achieved without significantly
increasing the computational cost of data generation; see the Supplementary
Information. Lastly, similar to the results obtained for alanine dipeptide, AL
with a more advanced selection strategy outperforms experiments where
training data is picked at random; see Table 2.

Figure 5d, e show the main advantage of biased MD simulations over
unbiased and metadynamics-based approaches. While exploring the large-
pore state less frequently than metadynamics-based counterparts, bias-
stress-driven MD spans a broader range of volumes and uniformly reduces
energy, force, and stress RMSEs across the entire volume space. Compared
to zero-pressure unbiased MD simulations, it promotes the exploration of
the large-pore state. However, this state can be modeled using atomic
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Fig. 4 | Evaluation of CV space exploration rates for biased and unbiased MD
simulations of alanine dipeptide. Here, MD simulations generate candidate pools
of atomic configurations for AL algorithms. Results are provided for the posterior-
based uncertainty quantification derived from sketched gradient features. Unlike
unbiased MD simulations, which rely on atom-based uncertainties to terminate MD
simulations, biased MD simulations use total and atom-based uncertainties to bias
MD simulations and prompt their termination, respectively. We use three metrics to
asses the exploration rates: (a) Coverage of the CV space; (b) Auto-correlation
functions of atomic positions; and (c¢) Auto-correlation functions of atom-based
uncertainties. Shaded areas denote the standard deviation across five independent
runs. d Time evolution of the maximal atom-based uncertainty within an AL
iteration and the entire experiment. Time evolution is shown for one of the eight MD

unbiased MD (1200K) biased MD (300 K, T=0.25, w/o. H)

simulations. The dashed gray line represents the uncertainty threshold of 1.5 eV A",
The insets show configurations that reached the uncertainty threshold for
uncertainty-biased MD. e Ramachandran plots illustrate the exploration of the CV
space over AL iterations and the entire experiment. Ramachandran plots are pre-
sented for unbiased MD simulations at 300 K and 1200 K and biased MD simula-
tions at 300 K. Simulation time refers to the effective number of MD steps ( x 0.5 fs)
required to reach the final coverage, while lag time denotes the time interval between
two successive MD frames. Biased MD simulations at 300 K exhibit at least two times
higher exploration rates than their unbiased counterparts at 300 K and 600 K. Their
exploration rates are comparable to those of unbiased MD simulations at 1200 K,
with the advantage of gradually distorting the molecule, reducing the risk of its
degradation.

environments from the closed-pore one. Thus bias stress does not
excessively favor exploration of the former. Instead, it drives the dynamics
more toward smaller volumes, for which all other approaches tend to
predict energy, force, and stress values with larger errors. Note that, in
Fig. 5e, we reduce the temperature to 300 K and initiate AL experiments
with 256 configurations, each having a unit cell volume below 1200 A’
(drawn from the training data in ref. 41). Using a lower temperature and
learning the configurational space around the closed-pore state is required

to decrease the probability of MD simulations exploring the large-pore
stable state of MIL-53(Al). In contrast, we found that using randomly
perturbed atomic configurations can lead to underestimated energy bar-
riers by MLIPs, thus facilitating the transition between both stable phases
in initial AL iterations.

These results show that uncertainty-biased MD simulations aim to
uniformly reduce errors across the relevant configurational space and
promote the simultaneous exploration of extrapolative regions and
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Fig. 5 | Comparison of AL approaches employing biased and unbiased MD
simulations to generate the candidate pool of atomic configurations for MIL-
53(Al). Results are provided for the posterior-based uncertainty quantification
derived from sketched gradient features. Unlike unbiased MD simulations, which
rely on atom-based uncertainties to terminate MD simulations, biased MD simu-
lations use total and atom-based uncertainties to bias MD simulations and prompt
their termination, respectively. We use three metrics to assess the performance of our
AL approaches: (a) Energy RMSE; (b) Force RMSE; and (c¢) Stress RMSE. All RMSEs
are evaluated on the MIL-53(Al) test data set*". Shaded areas denote the standard
deviation across three independent runs, except for metadynamics. For it, shaded
areas denote standard deviation across three randomly initialized MLIPs. d Volume

distribution for atomic configurations acquired during MD at 600 K, along with
volume-dependent energy, force, and stress RMSEs. e Volume distribution for
configurations acquired during MD at 300 K, along with volume-dependent energy,
force, and stress RMSEs. We employ a temperature of 300 K to reduce the probability
of exploring the large-pore state of MIL-53(Al). Bias-stress-driven MD simulations
outperform metadynamics-based simulations with adaptive biasing of the cell
parameters. Metadynamics aims to cover the volume space uniformly. In contrast,
uncertainty-biased MD generates training data sets that uniformly reduce energy,
force, and stress RMSEs. Additionally, biased MD simulations enhance the
exploration of closed- and large-pore states of MIL-53(Al) shown in the inset of (d).

transitions between stable states. Also, under selected physical conditions
(T=600 K and p = 0 MPa), the performance of our uncertainty-biased MD
exhibits low sensitivity to stress biasing strength values for 7> 0.5; see the
Supplementary Information. Metadynamics, in contrast, may require
longer simulation times to generate equivalent candidate pools as it focuses
on generating configurations uniformly distributed in the CV space, which
is unnecessary for developing MLIPs.

Exploration rates for cell parameters of MIL-53(Al)

Figure 6 assesses the extent to which uncertainty-biased (bias stress)
MD simulations enhance the exploration of the extensive volume space
of MIL-53(Al). In Fig. 6a, we observe a higher frequency of transitions
between stable phases for biased MD simulations than for zero-
pressure counterparts. Additionally, uncertainty-biased simulations
favor the exploration of smaller MIL-53(Al) volumes, in line with the
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Table 2 | Atomic energy (E-), atomic force (F-), and stress (S-) RMSEs, as well as position (Pos.) and uncertainty (Unc.) auto-
correlation times (ACTs) for MIL-53(Al) experiments conducted with posterior-based uncertainties

Experiment E-RMSE F-RMSE S-RMSE Pos. ACT? Unc. ACT?
T=600K

random sel. (0 MPa) 1.62 +0.52 0.062 +0.002 145.3 +35.49 - -

random sel. (250 MPa) 0.84 +0.09 0.057 +0.001 63.8 +15.82 - -

unbiased MD (0 MPa) 1.17£0.36 0.058 +0.002 90.81 +32.82 10.60 +9.54 88.05 +2.53
unbiased MD (250 MPa) 0.57 +0.05 0.052 +0.001 42.72£1.37 2.08 +0.58 66.32+2.02
Metadynamics (0 MPa) 0.58+0.10 0.058 +0.002 74.83+11.89 - -

biased MD (0 MPa, t =0.5) 0.57 +0.08 0.051 +0.001 36.60 + 1.46 2.75+0.46 44.87 + 14.08
T=300K

random sel. (0 MPa) 1.04+£0.26 0.058 +0.001 70.49 +6.61 - -

random sel. (250 MPa) 0.58 +0.08 0.055 +0.002 52.19+2.22 - -

unbiased MD (0 MPa) 0.88+0.20 0.056 +0.001 58.57 +5.94 3.45+4.06 99.25 +10.34
unbiased MD (250 MPa) 0.48 +0.01 0.054 +0.000 39.88+1.76 1.86+0.14 54.56 +4.82
biased MD (0 MPa, t =0.5) 0.49+0.09 0.052 + 0.001 33.89 +3.06 42.92+14.18 26.89 +8.94

?ACTs computed for experiments with the random selection (random sel.) strategy are excluded from the analysis because different approaches may introduce systematic biases, making the comparison

unreliable.

E-, F-, and S-RMSEs are reported for MLIPs obtained at the end of each experiment, while ACTs are computed using the entire trajectory sampled throughout the experiment. E-RMSE is given in
meV atom ', F-RMSE in eV A", and S-RMSE in MPa. All E-RMSE, F-RMSE, and S-RMSE values are computed for the test data set obtained based on first principles MD trajectories at 600 K; see ref. 41.
ACTs are provided in ps. We also compare biased and unbiased MD with experiments thatinvolve the random selection (random sel.) strategy for acquiring training data. The best performance is highlighted

in bold, and the second-best performance is underlined.

results shown in Fig. 5. Figure 6b, ¢ present ACFs for position and
uncertainty spaces, with estimated ACT's provided in Table 2. Here, a
faster decay of ACFs corresponds to shorter ACTs and indicates a faster
exploration of the respective space. These results indicate that bias-
stress-driven MD is at least as efficient as high-pressure MD simula-
tions in exploring both spaces. Figure 6d demonstrates the time evo-
lution of energy, force, and stress RMSEs. It reveals that local atomic
environments in the large-pore state are well represented by those in the
closed-pore state, explaining the stronger preference for smaller
volumes by biased MD; see Figs. 6a and 5d, e. This effect is evident from
the low force and stress RMSE:s in the early AL iterations for the large-
pore state, even though this state has not been explored yet. Further-
more, uncertainty-biased MD simulations surpass the performance of
their counterparts already in the early stages by aiming to reduce errors
across the test volume space uniformly.

From these results and the findings in Fig. 5d, we conclude that bias-
stress-driven MD significantly enhances the exploration of the relevant
configurational space, including rare events (i.e., transitions between stable
phases). However, in Table 2, we obtained longer ACT' for biased MD at
300 K compared to its unbiased counterparts, which contradicts our pre-
vious arguments. When examining the ACF shown in Fig. 7, it becomes
evident that a stronger correlation in the position space results from the
volume fluctuations induced in MIL-53(Al) by the bias stress. These fluc-
tuations can be represented by a sine wave with additive random noise and a
period twice the simulation’s length; see Methods. This observation implies
that bias stress induces correlated motions in the MIL-53(Al) system,
causing it to expand and contract alternately for half of the simulation time.
This phenomenon results in periodic exploration of small and large volumes
within the configurational space.

In contrast to the conventional approaches, including the bias-forces-
driven MD simulations, which aim for uncorrelated random-walk-like
behavior of predetermined CVs to capture configurational changes, our
method introduces correlated motion that explores the entire configura-
tional space. Increasing the amplitude of random noise in the sine wave
reduces the amplitude of these fluctuations in the ACF, similar to raising the
temperature in an atomic system. This decrease in the amplitude explains
why this effect is not observed in Fig. 6b.

Discussion

This work investigates an uncertainty-driven AL approach for data set
generation, facilitating the development of high-quality MLIPs for chemi-
cally complex atomic systems. We employ uncertainty-biased MD simu-
lations to generate candidate pools for AL algorithms. Our results show that
applying uncertainty bias facilitates simultaneous exploration of extra-
polative regions and rare events. Efficient exploration of both is crucial in
constructing comprehensive training data sets, enabling the development of
uniformly accurate MLIPs. In contrast, classical enhanced sampling tech-
niques (e.g., metadynamics) or unbiased MD simulations at elevated tem-
peratures and pressures often cannot simultaneously explore extrapolative
regions and rare events. Enhanced sampling techniques were designed to
ensure the reconstruction of the underlying Boltzmann distribution.
However, this property is unnecessary for data set generation and may limit
their effectiveness in this context.

The performance of enhanced sampling techniques depends on the
manual definition of hyper-parameters, e.g., CV's for metadynamics. Setting
them requires expert knowledge because the wrong choice can limit the
range of explored configurations. Uncertainty-biased MD only needs to
define an uncertainty threshold and biasing strength. Both parameters
influence the exploration rate of configurational space without constraining
the space that can be explored. Under milder conditions, uncertainty-biased
MD simulations outperform their unbiased counterparts for a broad range
of biasing strength values, making the latter’s choice more accessible. Yet,
the dependence of the performance on the biasing strength value becomes
more noticeable under extreme conditions, sometimes with no improve-
ment by adding uncertainty bias to MD. A similar behavior can also be
expected for metadynamics simulations™. Additionally, employing species-
dependent biasing strength can restrict biasing in sensitive configurational
regions, e.g., biasing hydrogen atoms.

Identifying extreme conditions like high temperatures and pres-
sures can also accelerate phase space exploration in unbiased MD.
However, a wrong choice of temperature and pressure may result in
unphysical force predictions and degradation of the atomic system. In
contrast, uncertainty-biased MD, conducted under milder conditions,
explores relevant phase space at rates comparable to those obtained
under extreme conditions and reduces the risk of degrading the atomic
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Fig. 6 | Evaluation of configurational space exploration rates for biased and
unbiased MD simulations of MIL-53(Al). Here, MD simulations generate candi-
date pools of atomic configurations for AL algorithms. Results are provided for the
posterior-based uncertainty quantification derived from sketched gradient features.
Unlike unbiased MD simulations, which rely on atom-based uncertainties to ter-
minate MD simulations, biased MD simulations use total and atom-based uncer-
tainties to bias MD simulations and prompt their termination, respectively. We use
three metrics to asses the exploration rates: (a) Volume distribution of configura-
tions sampled throughout the experiment; (b) Auto-correlation functions for

positions; and (c) Auto-correlation functions for atom-based uncertainties. Shaded
areas denote the standard deviation across three independent runs. d Time evolution
of the volume distribution of configurations acquired during training and of energy,
force, and stress RMSEs evaluated on the test data set” depending on the unit cell
volume. Bias-stress-driven MD simulations achieve exploration rates comparable to
those of high-pressure unbiased MD simulations. They aim to reduce RMSEs uni-
formly across the entire volume space, even in the early stages of AL, surpassing the
performance of unbiased simulations.

system. As mentioned, uncertainty-biased MD simulations outperform
their unbiased counterparts for a broad range of biasing strength values
in our setting. Furthermore, while evaluating uncertainty gradients
increases the inference times by a factor of 1.4 to 1.7 compared to
unbiased MD, applying uncertainty bias leads to, on average, shorter
MD simulations. Thus, the difference in the computational cost between
biased and unbiased MD is typically insignificant.

We compare uncertainty quantification methods, including the var-
iance of an ensemble of MLIPs, and ensemble-free methods derived from
sketched gradient features, focusing on configurational space exploration
rates and generating uniformly accurate potentials; see the Supplementary
Information. Overall, gradient-based approaches yield MLIPs with similar
performance to those created using ensemble-based uncertainty while sig-
nificantly reducing the computational cost of uncertainty quantification.
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For MIL-53(Al), we find that ensemble-based uncertainties overestimate the
force error more strongly than gradient-based approaches, resulting in
earlier termination of MD simulations and potentially worse configura-
tional space exploration. For alanine dipeptide, using an ensemble of MLIPs
improves their robustness during MD simulations, facilitating CV space
exploration. Therefore, improving the robustness of a single MLIP during
an MD simulation is a promising research direction®, combined with the
proposed ensemble-free techniques.

While this study thoroughly investigates AL with uncertainty-
biased MD for generating candidate pools, further research is still
necessary. For example, one should analyze how well uncertainty-
biased MD explores a configurational space with multiple stable states
and how it identifies the respective slow modes using solely uncertainty
bias. Also, assessing the uniform accuracy of resulting MLIPs and the
enhanced exploration in higher-dimensional CV spaces remains
challenging. Furthermore, the applicability of the proposed data gen-
eration approach to more complex molecular and material systems,
such as biological polymers* and multicomponent alloys’, is yet to be
explored. Unlike MD, Monte Carlo simulations generally allow sig-
nificant configurational changes, eliminating the need to explore
intermediate transition paths. Combined with uncertainty bias, they
might avoid exploring intermediate, low-uncertainty transition
regions, improving the efficiency of uncertainty-driven data genera-
tion. Lastly, the extent to which MLIPs based on graph NNs can
enhance the efficiency of the proposed data generation approach
remains to be seen.

Methods

Machine-learned interatomic potentials

We define an atomic configuration, S = {r;, Z}1*, where r, € R* are
Cartesian coordinates and Z; € IN is the atomic number of atom i, with a
total of N atoms. Our focus lies on interatomic NN potentials, which map
an atomic configuration to a scalar energy E. The mapping is denoted as
fo : S E € R, where 0 denotes the trainable parameters. By assuming the
locality of interatomic interactions, we decompose the total energy of the
system into individual atomic contributions"’

Nat
ES,0)= > E(S,0), ¢9)
i=1

where §; is the local environment of atom i, defined by the cutoff radius ...
The trainable parameters 0 are learned from atomic data sets containing
atomic configurations and their energies, atomic forces, and stress tensors.

Gradient-based uncertainties
We quantify the uncertainty of a trained MLIP by expanding its energy per
atom E,; = E/N,; around the locally optimal parameters 6"

- k _ t3 T
E(S,0)=E (5,0 )+ (0—0) V4ES,0) g’ @
=4(S)

where S denotes an atomic configuration as defined in the previous
section. Gradient features ¢(S) € R™«t can be interpreted as the sen-
sitivity of the energy to small parameter perturbations. Here, N, is the
number of trainable parameters of the MLIP. We employ the energy
per atom E,, in Eq. (2), as it accounts for the extensive nature of the
energy, whose value depends on the system size. This choice ensures
that uncertainties defined using gradient features do not favor the
selection of larger structures. Gradient features can also be expressed as
the mean of their atomic contributions: ¢ = S~ ¢./N,,. For atomic
gradient features ¢;, using the energy per atom in Eq. (2) is unneces-
sary. Here, we use ¢ = ¢(S) and ¢, = ¢,(S;), with S; denoting the local
environment of an atom i, to simplify the notation. Thus, gradient

features can be used to quantify uncertainties in total and atom-based
properties of an atomic system, such as energy and atomic forces,
respectively.

Particularly, we define the atom-based model’s uncertainty (atomic
forces) by employing squared distances between atomic gradient features

2 . 2
u; = ¢mq§n ||¢, - ¢j”z- (3)

€ Pirain

Alternatively, we consider Bayesian linear regression in Eq. (2) and compute
the posterior uncertainty as
u12 = /\2¢;r ((D;rrainq)train + A21)71¢i7 (4)

where 4 is the regularization strength. Here, we define @, = ¢ (Z ain) €
RN Newin) *Newsyyith 27 wain denoting the local atomic environments of
configurations in the training set of size Nyy;,. In this work, we refer to our
uncertainties as distance- and posterior-based uncertainties. Equivalent
results can be obtained for total uncertainties (energy), employing gradient
features ¢ = 25\21 ¢;/ Ny with @, = ¢(X train) € R ™Mo,

Calculating uncertainties using gradient features is computationally
challenging, especially for the posterior-based approach, for which a single
uncertainty evaluation scales as (/(N%,). Therefore, we employ the
sketching technique™ to reduce the dimensionality of gradient features, i.e.,
¢F = Ug, € R with N,, and U € R"»*New denoting the number of
random projections and a random matrix, respectively’"”. In previous
work’", we have observed that uncertainties derived from sketched gradient
features demonstrate a better correlation with RMSEs of related properties
than those based on last-layer features®>**. More details on sketched gra-
dient features can be found in the following sections. Atom-based uncer-
tainties, defined by the distances between gradient features, scale linearly
with both the system size and the number of training structures, i.e., as
O(N Nyin ) - Consequently, they require an additional approximation to
ensure computational efficiency. To address this, we employed the batch
selection algorithm that maximizes distances within the training set,
allowing us to identify the most representative subset of atomic gradient
features; see the following sections.

Uncertainty-biased molecular dynamics
Following previous work*>*, we define the biased energy as

Ebiased(s7 0) — E(S7 0) — TM(S7 0)7 (5)

where 7 denotes the biasing strength. The negative sign ensures that negative
uncertainty gradients with respect to atomic positions (bias forces) drive the
system toward high uncertainty regions; see Fig. 1c. In this work, we use AD
to compute bias forces acting on atom , denoted as — V., u(S, 8) with atomic
positions r;. The total biased force on atom i reads ,

F?iased(s, 0) = F(S,0) + fV[iu(S, 0). (6)

These biased forces can be used for MD simulations in, e.g., canonical (NVT)
statistical ensemble to bias the exploration of the configurational space.

In the case of bulk atomic systems, the configurational space often
includes variations in cell parameters, which define the shape and size of the
unit cell, necessitating enhanced exploration of them. For this purpose, we
propose the concept of bias stress, defined by

1
V veu(s7 0)|€=07

with V denoting the volume of the periodic cell. This expression is motivated
by the definition of the stress tensor®. Here, u(S, 8) denotes the uncertainty
after a strain deformation of the bulk atomic system with the symmetric
tensor € € R**3, i.e, ¥ = (1 4 €) - r. The calculation of the bias stress is
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Fig. 7 | Position ACF obtained by running biased and unbiased MD simulations
at 300 K for MIL-53(Al). Shaded areas denote the standard deviation across three
independent runs. We employ a temperature of 300 K to reduce the probability of
exploring the large-pore state of MIL-53(Al). The ACF exhibits strongly correlated
motions attributed to volume fluctuations induced by the bias stress. These fluc-
tuations can be modeled by a sine wave with a period twice the length of the
simulation. The red line denotes a sine wave with a larger noise amplitude than the
one denoted by the blue line.

straightforward with AD. The total biased stress reads

1
T V Veu(s7 0)|€:0' (7)

O_biased(s7 6) — O'(S, 0) _
The bias stress tensor in Eq. (7) effectively reduces the internal pressure in
the bulk atomic system. We propose combining the bias stress tensor with
MD simulations conducted in isothermal-isobaric (NpT) statistical
ensemble to enhance the data-driven exploration of cell parameters and
pressure-induced transitions in bulk materials.

Uncertainty gradients exhibit different magnitudes compared to
energy gradients. Thus, re-scaling uncertainty gradients is necessary to
ensure consistent driving toward uncertain regions. Building upon the
approach introduced in ref. 43, we implement a re-scaling technique that
monitors the magnitudes of both actual and bias forces (alternatively, actual
and bias stresses) over N steps and then computes the ratio between them.
To re-scale bias forces, we use the following expression

S s
Soso

An equivalent expression is applied for bias stresses.

The re-scaling of uncertainty gradients is reminiscent of the AdaGrad
algorithm”, which dynamically adjusts the learning rate (analogous to the
biasing strength) based on historical gradients from previous iterations.
While incorporating momentum through exponential moving averages can
improve the AdaGrad approach, treating all past gradients with equal
weight is essential within the context of this study. Our attempts to damp
learning along directions with high curvature (high-frequency oscillations),
similar to the Adam optimizer”’, did not yield improved performance. We
further find that employing species-dependent biasing strengths for bias
forces, 7 — 7, , witha particular emphasis on damping biasing of hydrogen
atoms, improves the efficiency of biased MD simulations.

We employ biased MD simulation to generate a candidate pool for AL,
as depicted in Fig. 1a. We employ multiple parallel MD simulations to

enhance the exploration of the configurational space further and improve
the computational efficiency of AL. We expect biased MD simulations to
have relatively short auto-correlation times (ACTs) obtained from position
and uncertainty auto-correlation functions (ACFs). Short ACTs imply that
the generated candidates will be less correlated than those generated with
unbiased MD simulations. However, we cannot guarantee the generation of
uncorrelated samples with biased MD simulations throughout AL, parti-
cularly in later AL iterations when the uncertainty level is reduced. There-
fore, we propose to use batch selection algorithms (see later sections) that
select Nparen > 1 samples at once. These algorithms enforce the informa-
tiveness and diversity of the selected atomic configurations and the resulting
training data set.

Gaussian moment neural network

This work uses the Gaussian moment neural network (GM-NN) approach for
modeling interatomic interactions'®”’”. GM-NN employs an artificial NN to
map a local atomic environment ; to the atomic energy E; (S;, 8); see Eq. (1).
It uses a fully-connected feed-forward NN with two hidden layers'*"”

y; = 0.1-b% +ﬁw<3)¢(0.1 NS
2

ﬁw(%(o.l b+ ﬁW(I’Gi)) ,

with WHD ¢ R %4 and b € R representing the weights and
biases of layer [+ 1. In this work, we employ a NN with d, =910 input
neurons (corresponding to the dimension of the input feature vector
G; = G,(S;)), d, = d, =512 hidden neurons, and a single output neuron,
ds = 1. The network’s weights W™ are initialized by selecting entries from a
normal distribution with zero mean and unit variance. The trainable bias
vectors b*™ are initialized to zero. To improve the accuracy and con-
vergence of the GM-NN model, we implement a neural tangent
parameterization (factors of 0.1 and 1/ \/d‘,)n. For the activation function
¢, we use the Swish/SiLU function””*,
To aid the training process, we scale and shift the output of the NN

©)

E(S,0) =c: (pzyi +tz);

where the trainable shift parameters 4, are initialized by solving a linear
regression problem, and the trainable scale parameters P, are initialized to
one. The per-atom RMSE of the regression solution determines the
constant ¢"’.

GM-NN models employ the Gaussian moment (GM) representation
to encode the invariance of total energy with respect to translations, rota-
tions, and permutations of the same species'’. By computing pairwise dis-
tance vectors r;;=r; — r; and then splitting them into radial and angular
components, denoted as 7;; = ||r;||, and i‘ij =r; / Tip respectively, we obtain
GM:s as follows

(10)

s = ZRZ, Z],s(rxpl;)ry ) (11)
J#i

where #" = i ® -+ - ® Iy is the L-fold outer product. The nonlinear radial

functlons Ry 7 S(r,], P) are defined as a sum of Gaussian functions @y (r;)

(NGauss =9 for this work)"?

NGauss

RZ,,ZJAs(rzjvﬁ) \/I\]— Z /J)Z Z 8,8 (D (rl]) (12)
Gauss

The factor 1/ /N g, impacts the effective learning rate inspired by neural
tangent parameterization’’. The radial functions are centered at equidis-
tantly spaced grid points ranging from r,;, = 0.5 A to r,, set to 5.0 A and
6.0 A for alanine dipeptide and MIL-53(Al), respectively. The radial func-
tions are re-scaled by a cosine cutoff function”, to ensure a smooth
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dependence on the number of atoms within the cutoff sphere. Chemical
information is embedded in the GM representation through trainable
parameters f8, , ., with the index s iterating over the number of
independent radial basis functions (Npasis = 7 for this work).

Features invariant to rotations, G;, are obtained by computing full
tensor contractions of tensors defined in Eq. (11), e.g."*",

Gis s, = (¥ins )a(lIli,l,sz)b(lIIi,Z,s3 )a_’b7 (13)

where we use Einstein notation, i.e., the right-hand side is summed over
a,be{l1,2,3}. Specific full tensor contractions are defined by using
generating graphs’. In a practical implementation, we compute all GMs
at once and reduce the number of invariant features based on the
permutational syrnmetries of the respective graphs.

All parameters 0={W, b, 8, p, u} of the NN are optimized by mini-

mizing the combmed squared loss on training data PDirain =y, ( L cains (ymm) ,
with Xtra.ln {S(k)}k " and ytraln - {Ezef’ {F:ekf} =1 ref}k 1
L(0, Dyin) = m [ce |zt — B(s®, 0|}
k=
N , (
14)
+Cr 3o |[Fit — (s, 0)]|

i=1

+C[|Viort = Via(s9,0)5].

We have chosen C, = 1.0, Cr=4.0 A2, and C, = 0.01 to balance the relative
contributions of energies, forces, and stresses, respectively.

Using AD, we compute atomic forces as negative gradients of total
energy with respect to atomic coordinates

F,(s®,0) = -V, E(s¥, ). (15)
Furthermore, we use AD to compute stress tensor, defined by”
1
(k) — k)
a(sh,0) = VkVSE(S( ). (16)

where E(S®, 0) is total energy after a strain deformation with symmetric
tensore € R**3 ie, t = (1 + €) - r. As the stress tensor is symmetric, we
use only its upper triangular part in the loss function. Here, V} is the volume
of the periodic cell.

We employ the Adam optimizer’’ to minimize the loss function. The
respective parameters of the optimizer are 8, = 0.9, 3, = 0.999,and e = 10"
Usually, we work with a mini-batch of 32 molecules. However, smaller mini-
batches were used in the initial AL iterations because the training data sizes
were less than 32. The layer-wise learning rates are decayed linearly. The
initial values are set to 0.03 for the parameters of the fully connected layers,
0.02 for the trainable representation, as well as 0.05 and 0.001 for the scale
and shift parameters of atomic energies, respectively. The training is per-
formed for 1000 training epochs. To prevent overfitting during training, we
employ the early stopping technique’”®. All models are trained using
PyTorch™.

Sketched gradient features

We obtain atomic gradient features by computing gradients of Eq. (1) with
respect to the parameters of the fully connected layers in Eq. (9). Particularly,
we make use of the product structure of atomic gradient features. To obtain

the latter, we re-write the network in Eq. (9) as follows
(l+1)i$_l) c Rén ,
= R+ ><(d1+1)’

.
0 = (ﬁxf”,O.l) e R™,

where 2 and x” denote the pre- and post-activation vectors of layer L. Thus,
atomic gradient features read

4 — W

W(l+1) _ (W(l+1)7b(l+l))

(17)

22® PG
¢i(si) = (aw“’ [ aw‘”)
18
_ () 0 7Y (-1 (18)
= az(1)®xi 7"'7au.) X;

To make the calculation of gradient features computationally tractable, we
employ the random projections (sketching) technique™, as proposed in
refs. 51,52. For atomic gradient features ¢,;(S;) € R¥e and a random
matrix U € RNe "N _with Ng., and N;, denoting the number of atomic
features and random projections, respectively—we can define randomly
projected atomic gradient features as

¢ (S)

While a Gaussian sketch could be employed, where the elements of U are
drawn from standard normal distributions, we use a tensor sketching
approach that is more runtime and memory efficient™. Specifically,
denoting the element-wise or Hadamard product as ® , we compute

= Ug,(S;) € RN, (19)

L
#rs) = (Vo)) © (U5 "¢006)), o)

I=1

with ¢§fgut(s,.) = asz) / az§’> and gbg‘li)n(Si) = 41) . Al entries of U\ and U,
are sampled independently from a standard normal distribution.

For atom-based uncertainties, we can directly use the sketched atomic
gradient features. For (total) uncertainties per atom, we need to work with a
mean ¢(S) = Z ' $,(5;)/ N Thus, we use that the individual projections
(rows of Eq. (20)) are linear in the features and obtain for the (total) gradient

features™

Ny

1 L 1) (e
T2 (Ughus)) © (U590 6s)).

at =1 =1

¢P(S) = (1)

given that all of the individual random projections use the same random
matrices.

Ensemble-based uncertainty quantification

The variance of the predictions of individual models in an ensemble of
MLIPs can be used to quantify their uncertainty. Thus, we define the var-
iance of predicted energy as

(22)

1 i _
=—> |E—E[3,
M4

where M is the number of models in the ensemble. The variance of atomic
forces reads

(23)

1 M
2 __ _E12
4 =31 2 1B Bl
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Here, E and F; denote the arithmetic mean of the predictions from indivi-
dual models. Our experiments demonstrated that M =3 is sufficient to
obtain good performance. Using larger ensembles would make the
ensemble-based uncertainty quantification even more computationally
inefficient than gradient-based alternatives.

Batch selection methods

The simplest batch selection method is based on querying points only by
their uncertainty values. Specifically, given the already selected structures
Xy from an unlabeled pool X', we select the next point by

S= argmax u(S),
SEX pool \ Xbatch

(249
until Ny > 1 structures are selected. In this work, we use this selection
method combined with ensemble-based uncertainties.

For the posterior-based uncertainty, we can constrain the diversity of
the selected batch by using the posterior covariance between structures

-1
Cov($,8) = 19(S) " (Pygyp Puain + A7)~ 4(5), (25)

with @i, = ¢(Xypain)- The corresponding method greedily selects struc-
tures, ie., one structure per iteration, such that the determinant of the
covariance matrix is maximized*"*>””

S= argmax det[Cov(Xpuaq U{S} Xpuen U{SH]
SEX pool \ Xbatch

(26)
For the distance-based uncertainty, we ensure the diversity of the acquired
batch by greedily selecting structures with a maximum distance to all
previously selected and training data points. The respective selection
method reads’**”*
2
S = argmax min #(S) — ¢(S)|[;-
SEXpool\Xbatch S,E/thin U/Ybatch H HZ (27)
We also applied this batch selection method to define the most repre-
sentative subset of atomic gradient features when calculating atom-based
uncertainty using feature space distances.

Lastly, to compare the performance of uncertainty-based data gen-
eration approaches with conventional random sampling from an ab initio
MD, we employ a random selection strategy combined with posterior-based
uncertainty to terminate MD simulations. We define random selection as

S~ (IP1> : (28)

where U is the uniform distribution over X,
Conformal prediction
Conformal prediction methods offer distribution-free uncertainty quanti-
fication with guaranteed finite sample coverage*””*™, thus ensuring cali-
bration. Finite sample coverage can be defined as
P{ytest € C(xtest)} 21l —a. (29)

Here, (X,eqt: ¥yest) re the newly observed data, while C defines the prediction
set based on previous observations { (xk Y k) }kN:‘“’l“". The user determines the
hyper-parameter « and defines the desired confidence level. CP methods
guarantee that the prediction set contains the true label with a probability of
almost 1 — a.

We employ inductive CP, which comprises the following steps
(1) A subset of calibration data, sized N b, is selected, and the cor-
responding errors are computed on this subset. For atomic forces, we

employ RMSEs AF? =1||F, — B! z, while for total energies the

49,79,

respective energy absolute errors per atom, Ae = |E — E™|/N,, are used.
(2) The uncertainty u(S) is calculated for this subset of data. (3) The
ratio Ae/u(S) or AF;/u(S;) is computed. (4) Utilizing quantile regres-
sion, the (1 —a) (Nca\libr + 1) /N aine-th quantile, denoted as s, is
determined. (5) This s value is applied to new observations, resulting in
the re-scaled and calibrated uncertainty, & = s - u.

Coverage of collective variable space

To measure how well different methods explore the (bounded) space of
interest, we implement a tree-based weighted recursive partitioning of a d-
dimensional Euclidean space, which is reminiscent of quadtrees® and
matrix-based octrees* but allows to choose how many times 7 to split each
dimension. Thus, the variety of the tree is k = n. Each node of this complete
k-ary tree encodes a generalized hypercube of d dimensions, where each side
length depends on the boundaries of the original space. The root node
represents the full bounded space. A tree of height L has total number of
partitions equal to (k"' — 1)/(k — 1), and each level ¢ has k° nodes. The
hyper-parameters we choose in this paper are nn = 2, d = 2 (for the CVs ¢ and
yof alanine dipeptide),and L = 5, for a total of 1365 partitions of the space of
interest.

Our proposed surface coverage metric uses this data structure as a
proxy to capture how many space partitions a method can explore in the
least amount of iterations. At the same time, we need to penalize methods
that get stuck in a region of the space, exploring partitions of smaller
volumes, that is, those represented by nodes at deeper levels in the tree. For
this reason, each node at level £ is associated with a reward (or weight) of 1/
K¢, so each level of the tree has a cumulative reward of 1. The optimal strategy
would be to perform a breadth-first search of the nodes of this tree, which
translates into observing the largest partitions of unobserved space first. In
addition, partitions that are revisited by the methods give no additional
reward, so there is no gain in getting stuck in a certain partition. We visually
represent the idea of the algorithm in the Supplementary Information for
the simple case of d =2.

Auto-correlation analysis

We evaluate the performance of uncertainty-biased MD simulations by
investigating the auto-correlation between subsequent time frames of the
MD trajectory. The auto-correlation function (ACF) is defined as*

(0,010) — (0

A0 ="0 0y

(30)

where ( -+ ) denotes the thermodynamic expectation value, k is the lag time,
and O is an observable, e.g., atomic positions or atom-based uncertainties.
From ACF, we can calculate the auto-correlation time (ACT) for an MD
trajectory of length N

R k
ACT, =— Apk)|1——. 1
0 =3+ 2 Aol )( N) (31
ACT is related to effective sample size (ESS) by
ESSy = (32)

2-ACT,’

In this work, we calculate ESS as implemented in TensorFlow™ and use it to
estimate the ACT.

Test data set for alanine dipeptide

The test data set for alanine dipeptide comprises 2000 configurations ran-
domly selected from an MD trajectory at 1200 K. This trajectory was gen-
erated within the ASE simulation package” by running an MD simulation
in the canonical (NVT) statistical ensemble using the Langevin thermostat.
We have used a time step of 0.5 fs and a total simulation time of 1 ns. The
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AMBER ff19SB force field has provided forces”, as implemented in the
TorchMD package using PyTorch®”. The data set effectively covers the
relevant configurational space of alanine dipeptide, representing an upper
boundary in exploring its collective variables (CVs).

MLIP learning details for alanine dipeptide

Each AL experiment starts with training an MLIP with eight alanine
dipeptide configurations randomly perturbed from its initial config-
uration in the C;.q state. Trained MLIPs are then used to run eight
parallel MD simulations, initialized from the initial configuration or
configurations selected in later iterations. Each MD simulation runs until
reaching an empirically defined uncertainty threshold of 1.5eV A", A
lower threshold value may result in slower CV space exploration, while a
larger one would lead to the exploration of unphysical configurations.
The maximum data set size, comprising training and validation data, is
limited to 512 configurations. The Supplementary Information presents
the scaling of the presented AL experiments to larger data set sizes,
acquiring data sets of 1024 samples. Biased (bias-forces-driven) and
unbiased MD simulations are performed using the canonical (NVT)
statistical ensemble within the ASE simulation package®. Unbiased MD
simulations are run with the Langevin thermostat at temperatures of
300 K, 600 K, and 1200 K, whereas biased simulations are performed at a
constant temperature of 300 K. We have chosen an integration time step
of 0.5 fs and set a maximum of 20,000 steps for an MD simulation. A
biasing strength of 7 = 0.25 was also chosen for biased AL experiments. In
reference calculations, we employ a force threshold of 20 eV A™' to
exclude unphysical structures, potentially expected at high biasing
strengths (equivalently, a smaller integration time step could be used).
All AL experiments have been repeated five times.

Reference DFT calculations for MIL-53(Al)

DFT calculations for MIL-53(Al) were performed using the CP2K simu-
lation package (version 2023.1)°". To ensure consistency with incremental
learning experiments*', we employed the PBE functional® with Grimme D3
dispersion correction®. A hybrid basis set, combining TZVP Gaussian basis
functions and plane waves, was employed”. GTH pseudopotentials were
used to smoothen the electron density near the nuclei®. To ensure the
convergence of force and stress calculations, a plane wave cutoff energy of
1000 Ry was selected.

MLIP learning details for MIL-53(Al)

In each AL experiment, we start with 32 MIL-53(Al) configurations
randomly perturbed around its closed-pore state, with 90% reserved
for training. Trained MLIPs are then used to perform 32 parallel MD
simulations, each running until it reaches an uncertainty threshold of
1.0 eV A~'. The maximum data set size is limited to 512 configurations,
comprising training and validation data. The Supplementary Infor-
mation presents the scaling of the presented AL experiments to larger
data set sizes, acquiring data sets of 1024 samples. Both biased (bias-
stress-driven) and unbiased MD simulations use the isothermal-
isobaric form of the Nosé-Hoover dynamics™’'. Unbiased MD
simulations are carried out at 600 K and 0 MPa, as well as + 250 MPa
(half of the simulations each), while biased simulations are performed
at 600 K and 0 MPa. The characteristic time scales of the thermostat
and barostat are set to 0.1 ps and 1 ps, respectively. We have chosen an
integration time step of 0.5 fs and set a maximum of 20,000 MD steps
for an MD simulation. A stress-biasing strength of 7=0.5 is used in
biased AL experiments. In reference calculations, we employ a force
threshold of 20 eV A~ to exclude strongly distorted structures. We use
the data set from ref. 41 as a metadynamics-generated baseline and
select the first 500 sequentially generated configurations. All AL
experiments are repeated three times, except for metadynamics, which
was run once*'. For metadynamics, we train three MLIPs initialized
using different random seeds.

Random perturbation of atomic configurations
We obtain randomly perturbed atomic configurations by adding atomic
shifts, denoted as §;, to the original atomic positions r;
f=r+9, (33)
The components of §; are sampled independently from a uniform dis-
tribution: for alanine dipeptide, the range is between —0.02 A and 0.02 A,
and for MIL-53(Al), it is between —0.08 A and 0.08 A. Additionally, for
MIL-53(Al), we introduce random perturbations to its periodic cell B using
a strain deformation € = (A + AT) /2, where the components of A are
sampled independently from a uniform distribution between —0.02 and
0.02. This transformation can be expressed as

B = B( + 2¢)'/2. (34)
The shifted atomic positions are re-scaled according to
£, = (1+2¢)%,. (35)

Sine wave with additive random noise

We model large-amplitude volume fluctuations in MIL-53(Al) induced by
the bias stress using a sine wave with period T, and additive random noise
N(t)

2t
Asin (Tl> 1 BN(D),

0

where A and B denote the sine wave’s amplitude and random noise,
respectively. In this work, N(#) ~A(0, 1) represents random noise fol-
lowing a normal distribution with zero mean and unit variance. We chose
A =1.0and B = 0.5 for the blue line in Fig. 7. For the red line, we increase the
noise amplitude to B = 2.0. To represent the volume fluctuations induced in
MIL-53(Al) (see Fig. 7), a sine wave with the period twice the length of the
MD simulation, i.e., To = 3.2 ns is required.

Data availability

The data sets generated during this study are available in the Zenodo
repository: https://doi.org/10.5281/zenodo.10776838. The MIL-53(Al) test
data set is available at https://doi.org/10.5281/zenodo.6359970 (ref. 41).

Code availability
The source code for this study is available on GitHub and can be accessed via
this link: https://github.com/nec-research/alebrew.
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