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Abstract

This work proposes a fully automated method
for recovering the location of a source and me-
dium parameters in shallow water. The sce-
nario involves an unknown source emitting low-
frequency sound waves in a shallow water en-
vironment and a single hydrophone recording
the signal. Using the spectrogram of each mo-
dal component obtained by a warping method,
we investigate how to recover the modal travel
times and we provide stability estimates. A
penalized minimization algorithm is then pre-
sented to estimate the source location and me-
dium parameters. The proposed method is tes-
ted on different experimental data, demonstrat-
ing its effectiveness in real-world scenarios.
Keywords: Source location, Spectrogram anal-
ysis, Shallow water, Inverse problems

1 Introduction

In this study, we work with time signals emitted
by a broadband source and recorded by a single
hydrophone in a shallow water environment. We
aim to recover the distance between the source
and the receiver and relevant medium parame-
ters. While several manual methods have been
proposed previously (see a review in [1]), they
suffer from high dependency on user expertise
and lack rigorous mathematical justification.
Here, we develop an automated approach, elimi-
nating manual intervention and accelerating the
process. Moreover, we provide rigorous mathe-
matical proofs for the convergence of our algo-
rithm to ensure the robustness and reliability of
the estimation outcomes.

2 Wave propagation in shallow water

We model the shallow water environment by a
Pekeris waveguide R × (−∞, 0) with a water
layer of depthD, celerity cw and density ρw, and
an infinite sediment layer with celerity cb and
density ρb (see more details in [2]). A broad-
band source at (0, zs) emits a signal u(t), and a
single hydrophone records this signal at (r, zr).

For a frequency ω ∈ R+, the analysis conducted
in [1] demonstrates that if r � cw/ω then

û(ω) =

N∑
n=1

ûn(ω), ûn(ω) =
An(ω)e

irkn(ω)√
rkn(ω)

, (1)

where û is the Fourier transform of u, N is
the number of propagative modes and kn is the
wavenumber defined in [2]. Through the warp-
ing method detailed in [2], we can precisely re-
trieve each modal component ûn.

3 Spectrograms

Given the unknown nature of zs and thus An,
the retrieval of the different parameters requires
the use of the phases of individual modal compo-
nents. However, traditional phase recovery en-
counters challenges in noisy environments. We
adopt an alternative approach to overcome this
limitation by employing a time-frequency repre-
sentation known as the spectrogram. For each
n, the spectrogram is defined as follows:

Sn(t, ω) =

∣∣∣∣∫
R
ûn(ω + ξ)e−

ξ2

2σ2 eiξtdξ
∣∣∣∣ . (2)

The aspect of the spectrogram depends on the
choice of the parameter σ, as illustrated in Fig-
ure 1. Using an approximation of the stationary
phase, we can prove that

Sn(t, ω) ≈ |An(ω)|2
σ2

2π
e−σ

2(t−tn(ω))2 . (3)

Here, tn(ω) = rk′n(ω) represents the modal tra-
vel time, and the energy of the spectrogram con-
centrates along the curves ω 7→ tn(ω), as de-
picted in Figure 1.

4 Reconstruction of modal travel times

For a fixed n, we aim at approaching the curve
tn given the spectrogram Sn(t, ω), and we con-
sider a signal of the form un(t)+B(t) where B(t)
is a Gaussian additive noise satisfying E(B(t))
= 0 and

Cov
(
B(t), B(t′)

)
= δ2e

− (t−t′)2)
2T2
δ . (4)
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Figure 1: S1(t, ω) for two values σ on syntheti-
cal data, the recovered curve ω 7→ tapp

1 (ω) (red)
and the theoretical curve ω 7→ t1(ω) (black).

This noise model proves to be a reliable approx-
imation for both measurement and environmen-
tal noise. Using the received signal, the standart
deviation δ and the characteristic time-scale Tδ
can be estimated. To recover tn from the spec-
trogram using the approximation (3), various
methods detailed in [3] can be employed. Here,
we choose the maximum method for its simplic-
ity and robustness, and we introduce

∀ω ∈ R+ tapp
n (ω) = argmaxt∈RSn(t, ω). (5)

Using the cut-off frequency of the mode n de-
noted by ωc,n [1], we quantify the error between
tn and tapp

n in noisy settings:

Theorem 1 Defining σlim(ω) = ωc,n/3 − ω/4
(which do not depend on δ, Tδ, σ), we have

E(|tappn (ω)− tn(ω)|) ≤

C1 + C21σ>σlim + C3σ + C4δT
1/2
δ σ−3/2. (6)

This quantity is minimal when σ = σopt, where

σopt(ω) ∈
{
σlim(ω), C5δ

2/5T
1/5
δ

}
. (7)

Here, all quantities Ci are explicit and can be
computed using the recorded signal u.

We see here that one needs to test the two
values in (7) to determine which one provides
the minimal error. However, the most common
situation seems to be the one where σopt = σlim
and we now choose this setting, illustrated in
Figure 2 for experimental data.

5 Parameter reconstruction

We now aim to recover the different parameters
of interest. The usual approach, as described
in [1], involves minimizing the non-convex func-
tional
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Figure 2: S(t, ω) and recovered curves ω 7→
tapp
n (ω) (red) with the choice σ = σopt for exper-
imental data of right whale gunshot and bow-
head whale upsweep [1].

J(r, cw, cb, ρw, ρb, D, dt) =

‖tn(r, cw, cb, ρw, ρb, D)− dt− tapp
n ‖2`2 . (8)

However, optimizing J can be computationally
expensive, and the minimum may be found at
non-physical values. To address these challen-
ges, we propose a Bayesian approach incorpo-
rating prior knowledge of specific parameters de-
noted as ρ0w, ρ0b, c

0
w, and D0. Accounting for the

trust in these parameters, we minimize the new
functional
J̃ = J + α

(∣∣(D0 −D)/D0
∣∣2 + ∣∣(ρ0b − ρb)/ρ

0
b
∣∣2

+ 10
∣∣(ρ0w − ρw)/ρ

0
w
∣∣2+ 10

∣∣(c0w − cw)/c0w∣∣2), (9)
where α is chosen so that the penalization part is
of the same order as J . The modified functional
J̃ is now convex and computationally efficient
to minimize. We have successfully tested this
Bayesian approach on both synthetic and ex-
perimental data. The results, presented in Ta-
ble 1, demonstrate a significant enhancement in
performance, particularly for parameters lack-
ing prior knowledge, such as r and cb.

Relative error r cb r [1] cb [1]
Synthetical data <1 % <1 % 3% 8%
Right whale [1] <1% 3% 6% 14%

Bowhead whale [1] 4% 9% 10% 21%

Table 1: Relative reconstruction errors: mini-
mization of (9) with σ = σopt compared with
the method [1].
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