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We discuss the magnetic ground state and properties of a frustrated two-dimensional classical
Heisenberg model of interacting hexagonal clusters of spins. The energy of the ground states is
found exactly for arbitrary values of J1 (intra-cluster couplings) and J2 (inter-cluster couplings).
Our main results concern a frustrated region of the phase diagram, where we show that the set of
ground states has a degeneracy larger than that due to global rotation symmetry. Furthermore, the
ground state manifold does not have a fixed total magnetization : there is a range of allowed values.
At finite temperature, our Monte-Carlo simulations show that the entropy selects the most probable
value of the total magnetization, while the histogram of the Monte-Carlo time series is non-trivial.
This model is a first step towards modelling properties of a class of frustrated magnetic structures
composed of coupled spin clusters.

PACS numbers: 5.10.Jm, 75.50.Xx, 75.40.Mg

I. INTRODUCTION

Frustration occurs in many different magnetic systems, and can lead to rich phase diagrams, with or without long
range magnetic order, depending on the lattice and interactions. In this paper, we introduce a 2D model of clusters
of spins which are placed on vertices of a periodic lattice. The competition between intra-cluster and inter-cluster
couplings can result in frustration and, as we will show, some novel phenomena at zero and at finite temperature.
The model itself takes its motivation from a class of experimental three-dimensional magnets containing magnetic
rare earths in a metallic matrix. The rare earth spins primarily sit on icosahedral clusters, which are coupled by
RKKY interactions. The properties of such frustrated magnets have been explored by experiments [1, 2] for a variety
of periodic and quasiperiodic structures, and numerical simulations have been carried out [3, 4], however there have
been no systematic theoretical studies. Thus, one of the future goals of our study, although not the focus of the
present paper, is to elucidate the phase diagram of such frustrated systems. As a starting point towards this goal,
we consider spin cluster models based on periodic approximants of square-triangle tilings. The family of square
triangle tilings is very diverse, and enters for example in the description of Frank-Kasper phases and of dodecagonal
quasicrystals [5, 6]. We recall that frustrated classical spin systems have been extensively studied. Two examples of
these are the triangular and Kagome antiferromagnets, with nearest-neighbor Heisenberg couplings between spins.
The former has a unique ground state (up to global rotations), whereas in the latter, there is a macroscopic number of
degenerate ground states [8]. It was shown that the degeneracy can be lifted at finite temperature by entropic effects,
and this phenomenon is called “order-by-disorder” [9–18]. In the Kagome lattice the degeneracy of the ensemble of
ground states can be continuous, due to out-of-plane fluctuations around a planar state, for example, or discretely
countable.

Among the frustrated lattice we have studied stands out a very special model that we consider in this paper. It
is defined by placing hexagonal clusters on vertices of the so-called sigma lattice, according to a rule developed by
Schlottman for dodecagonal quasicrystals that is described in ref.(7). We have termed the resulting structure the Hex-
on-sigma (H-σ) lattice [39]. Fig.1 shows the unit cell (outlined in green) of this structure, which has 24 spins. There
are four hexagons per unit cell, having two different orientations. We study the isotropic classicalHeisenberg model
on this lattice with intra-cluster Heisenberg exchange couplings J1 (red) and inter-cluster couplings J2 (blue). It can
be seen that there are triangles in this structure, these give rise to frustration when bonds are antiferromagnetic. This
paper describes the phase diagram in the J1-J2 plane for this system, with special focus on the non-trivial frustrated
region which is 0 < J2 < J1

In this range of couplings the ground state has an extensive degeneracy beyond the global rotation of spins. The
ground state manifold does not have a fixed magnetization. Indeed we find that there is a finite range of values for
the total magnetization which does not shrink when the system becomes large. At finite temperatures Monte-carlo
studies shows that there is selection of a preferred value of the magnetization with a non-trivial distribution which
does not beacomes Gaussian for large system sizes. It is the entropy that select the most probable spin configuration.

The organization of the paper is as follows. In section II we discuss several approximants for the description of
quasicrystals and introduce the σ lattice as well as its derivative of interest : the H-σ lattice. Section III introduces



2

FIG. 1. The H-σ lattice : the unit cell (outlined in green) consists of four hexagons with J1 bonds (in red) inside hexagons and
J2 bonds relating hexagons (in blue).

the Heisenberg model on the H-σ lattice and discuss the family of ground states. Finite temperature properties are
obtained from classical metropolis Monte-Carlo simulations described in section IV. The effect of an applied magnetic
field is discussed in section V. An additional exchange coupling is introduced and studied in section VI. Our conclusions
are given in section VII.

II. STRUCTURE OF THE H-σ LATTICE

The structure we consider has not, to our knowledge, been previously discussed in the literature. We therefore
provide some background and additional details about it in this section. As its name implies, the H-σ lattice is
obtained by decorating the σ (or snub-square) lattice with regular hexagons. The parent σ lattice is illustrated in
Fig.2a). It is a member of the family of square-triangle tilings (see ref.([6]) for a classification scheme). It is one of the
11 celebrated Archimedean tilings [19] in which all edges are equal, and all vertices are identical modulo reflections.

There is an infinite variety of square triangle tilings, which include periodic, aperiodic and random tilings. There
has been much interest in this family in particular, because it includes 12-fold (dodecagonal) quasicrystals, which
are experimentally observed in both soft- and hard- condensed matter systems. Fig.(2b) shows a piece of such a
dodecagonal quasicrystal made from squares and triangles. If one looks more closely at the quasicrystal, one sees that
it contains different types of hexagon, as shown in fig.(3a) where all of the hexagons have been highlighted in blue.
The orientation of these hexagons (some have two vertical edges, while others have two horizontal edges) obeys a rule
discovered by Schlottman. In brief, the orientation of each hexagon depends on the symmetry of its local environment
(see ref.([7]) for details).

It turns out that, interestingly, Schlottman’s rule which was originally used to generate 12-fold symmetric qua-
sicrystals can also be adapted to other lattices. This is readily done for the σ lattice. Using Schlottman’s rule one
obtains the structure shown in Fig.(3b). The two different orientations of hexagons appear with equal frequency on
the structure. Our model considers spins placed on the vertices of these hexagons and interacting via short range
exchange couplings. At the level of nearest neighbor interactions, the system is not frustrated, but becomes so when
further neighbor interactions are included, as described in the next section.

To conclude this introductory section, we note that the σ lattice is a considerable simplification of the dodecagonal
quasicrystal, since it is a periodic lattice, and has a smaller set of local environments. The cluster spin H-σ model we
introduce in the next section can thus be thought of as a first step towards understanding more complex cluster-spin
models for quasicrystalline magnets.

III. HEISENBERG MODEL ON THE H-σ LATTICE

A simple model for describing the magnetism of localized spins is the isotropic Heisenberg model. We define it by
the following Hamiltonian :

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
[k,l]

Sk · Sl, (1)
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FIG. 2. (Left) The σ lattice. (Right) A portion of the dodecagonal square triangle quasicrystal.

FIG. 3. (Left) Portion of the quasicrystal showing hexagons highlighted in blue. (Right) The decoration by hexagons of the σ
lattice using the Schlottman rule.

where 〈i, j〉 denotes nearest-neighbor pairs inside hexagons in red in fig.(1) and [k, l] is the sum over bonds belonging
to triangles in blue in fig.(1). We study the classical limit of this Hamiltonian, becoming simply a classical energy.
The spins Si are now three-component unit vectors.

This classical spin model can be relevant either to magnetic materials with large spin values or temperatures high
enough so that quantum fluctuations can be neglected. As the H-σ lattice is a two-dimensional system with full spin
rotation symmetry, there is no finite-temperature phase transition. The spin correlation length should increase with
decreasing temperature, diverging only at T → 0. This does not preclude transitions breaking discrete symmetries
however. For a finite-size sample we expect that for low enough temperature all spins will adopt some ground state
configuration when the correlation length for magnetic order is larger than the sample size.

A. Ground state energy

When J1 < 0 (ferromagnetic nearest neighbor couplings) in Eq.(1), the model is unfrustrated. The ground state
is either a simple ferromagnet (for J2 < 0) or an antiferromagnet formed of clusters of parallel spins. When J1 > 0,
there is frustration whatever the sign of J2. Indeed, if we assign sites on each type of hexagon to a different sublattice,
changing the sign of J2 simply corresponds to changing the sign of spins on one of the sublattices. We therefore
confine our attention to the case J1, J2 > 0 in the following discussion. It is straightforward to obtain an exact lower
bound to the classical energy for the model in Eq.(1). Rewriting the energy Eq.(1) as a sum of squares plus non
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frustrated bonds, the energy of a single triangle can be written as :

EM = J2 S0· (S1 + S2) + J1 S1·S2 (2)

=
1

2
J1(S1 + S2 +

J2
J1

S0)
2 −

(
J1 +

J2
2

2J1

)
, (3)

where S0 is the apex spin common to the two J2 bonds and the two other spins are noted S1,2. The complete formula
for the energy is now given by :

E =
∑
Mα

E
(α)
M + J1

∑
i,j

Si·Sj , (4)

where the first sum runs over all the triangles of the lattice and the second sum involves all the hexagonal bonds not
belonging to triangles.

Let us first discuss two simple limiting cases. (i) When J2 = 0 one has only decoupled hexagons and the hexagons
are thus Néel ordered independently resulting in an extensive ground state degeneracy for elementary reasons. The
ground state energy is E0/N = −J1 with N the number of spins. (ii) One can construct a ferrimagnetic ground state
by arranging spins antiferromagnetically along J2 bonds and ferromagnetically along J1 bonds : S1 = S2 = −S0

by using the numbering inside each triangle of formula Eq.(3). Such a spin configuration can be extended through
the entire lattice and leads to a ferrimagnetic configuration of energy E0/N = −J1/3 − 2J2/3. This collinear spin
configuration has only conventional magnetic properties.

There is another nontrivial spin configuration that can be constructed from the energy expression for single triangle.
Let us first search the minimum energy of a single triangle. First set the square in Eq.(3) to zero :

S1 + S2 +
J2
J1

S0 = 0. (5)

one sees that this condition requires that the angle θ between S0 and S1,2 is given by

cos θ = −J2/2J1, (6)

and the angle between S1 and S2 is 2π−2θ. This is feasible as soon as J2 ≤ 2J1. The triangle energy is then given by
−
(
J1 +

J2
2

2J1

)
. This solution when it exists gives the absolute minimum of the first term in Eq.(3). If we are able to

match all triangles with this configuration and having antiferromagnetic bonds satisfied in the second term of Eq.(3)
then we have an absolute minimum of the energy E0/N = −J1 − 1

6J
2
2/J1. When it exists this spin configuration is

lower in energy than the ferrimagnetic configuration.
We thus find two regimes : (1) when J2 ≥ 2J1 we have a ferrimagnetic collinear state. (2) when J2 < 2J1 the

spin configuration becomes noncollinear with the angle θ defined in Eq.(6) evolves smoothly between π/2 for J2 → 0
and π for J2 = 2J1. It takes the notable value 2π/3 when J2 = J1. In this regime we note that our analysis says
how to order locally the spins to obtain the absolute minimum energy but it is not immediately clear how to match
individual triangles to cover the whole lattice.

We have numerically searched for the ground state configuration by using the simple algorithm of alignment with
the local field. In this scheme one starts with some random initial spin configuration, one picks a spin at random,
compute the local exchange field and then align the local spin antiparallel to the local field. This procedure is then
repeated many times until convergence is reached. If we start from a fully random configuration this algorithm is very
often stuck in a metastable state so we start from many random configurations and evolve each of these independently,
typically 512 starting configurations are used and convergence is reached when the energy does no longer change to
machine precision. We have also used the Metropolis algorithm for zero temperature. In this case a random move of
the spin also chosen randomly is generated and the move is accepted only if it leads to a decrease of the energy. The
alignment with the local field in our case is found to be slightly more efficient and so is our preferred method.

In the range 0 < J2 < 2J1 the ground state is seen to be non-trivial. For this interval, our simulations show firstly
that the energy always converges to the value given by E0. However, the spin configurations found after reaching
convergence are non-collinear and non-coplanar and have no simple pattern if we look at them in real space. We find
that all angles found numerically are always given by Eq.(6). Such configurations are thus legitimately called ground
states since they reach the absolute lower bound, E0 found above. However most importantly we observe that there
is definitely a ground state degeneracy beyond the simple global rotation of all spins that we describe in the next
section.
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FIG. 4. A ground state spin configuration for a 216 spin sample of the H-σ lattice. Colored dots : red (A), blue (B), green (C)
represent three spin directions such that A + B + C = 0. Crosses indicates a change of sign. This spin configuration can be
periodically continued in the 2D plane, and corresponds to a non-zero total magnetization M = (

√
3/12)Msat. The red polygon

is the smallest closed path having spins of only one direction (here A,A) on the boundary. The spins inside can be arbitrarily
rotated with respect to the A-axis without changing the energy. Such a “weathervane” move changes the magnetization.

FIG. 5. Another ground state spin configuration for a 288 spin sample and J2 = J1 as in Fig.(4). Now the total magnetization
is zero for an infinite sample. The configuration can be periodically continued in the 2D plane.

B. Ground state degeneracy

To characterize this degeneracy we first make simple observations in the case J1 = J2 where all angles are equal
to 2π/3 and look for coplanar configurations. We note A,B,C three spins with zero sum that gives a ground state
configuration for a triangle. Since there are bonds that do not belong to triangles we note that one has to introduce the
opposites of A,B,C, represented by A,B,C. With these six spin directions, it is possible to generate configurations
satisfying exactly the lower bound of the energy. If we try to pave the whole plane it is easy to see that there is
indeed no unique way to do it. We demonstrate this property by exhibiting explicit examples. In Fig.(4) we display
one ground state configuration and in Fig.(5) another distinct ground state configuration. They do not have the
same magnetization. Indeed while the configuration in Fig.(4) has M = (

√
3/12)Msat (where Msat = N is the fully

ferromagnetic magnetization value) the configuration in Fig.(5) has zero net magnetization. The finite samples shown
in Figs(4,5) can be propagated to infinite lattice sizes. The two configurations we have displayed suggests that there
is a distribution of possible values of the total magnetization, as we will now discuss.

C. Weathervane modes

While the order in the H-σ lattice has some characteristics in common with the Kagome Heisenberg antiferromagnet
we now show that the situation is quite different. Indeed while the Kagome system has an extensive degeneracy for
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the coplanar configurations obtained by permuting A,B,C labels locally, this is not the case for the H-σ lattice. The
Kagome lattice Heisenberg model in addition has non-planar ground states. For the H-σ lattice too, one can generate
nonplanar ground states – so-called ”weathervane” modes [16] which allow out of plane rotations of the spins at zero
energy cost. In the configuration shown in Fig.(4) we observe that one can draw a path on the lattice made only of
say A,A spins without traversing any bonds relating to B,B,C,C spins. The path drawn in Fig.(4) is the smallest
possible one. It relates only spins of type A,A colored in red while inside the path one has only B,B,C,C spins
colored in blue and green. The path does not intersect any exchange bonds. One can then rotate all the spins only
inside the closed path by an arbitrary angle around the axis defined by spin of type A,A. This generates nonplanar
configurations with the same energy, here, the ground state energy. These modes lead to configurations that do not
have the same magnetization. This is due to the fact that there are spins on each hexagon which do not belong to any
triangle, unlike the Kagome lattice. We conclude that the ground degeneracy in this lattice also involves a continuous
distribution of the magnetization, in contrast to the Kagomé ground states which have all zero magnetization. The
minimum value of the magnetization per site is zero as exemplified by the example in Fig.(5). The maximum value
we find in Monte Carlo studies is M =

√
3Msat/12 of configuration in Fig.(4). We do not however have an explicit

proof that this is indeed the maximum value.

IV. FINITE TEMPERATURE PROPERTIES

At finite temperature, it is the entropy that selects the most probable configuration and determines the macroscopic
magnetization in this model. In the context of frustrated spin systems this phenomenon is commonly called “order by
disorder”. We use Monte-Carlo simulations to reproduce the effect of finite temperature [20–38]. Spin configurations
are updated by standard Metropolis steps followed by overrelaxation moves that do not change the energy but
enable better sampling of the configuration space. We perform between two and five overrelaxation moves for each
Metropolis step. Such a move consists of a π rotation of the spin around the local exchange field, a deterministic
process that requires not much extra computer time. The amplitude of the random move of the spins is adjusted to
have an acceptance rate close to 0.5. Along the Monte Carlo time history we measure the energy as well as the total
magnetization defined as :

M =
1

N
〈|

N∑
i=1

Si|〉 (7)

We have studied in detail the magnetization distribution as a function of the temperature in order to understand
the consequences of the many ground states with non fixed magnetization. System sizes we studied are 24 × L2

with L = 4, 6, 9 hence N = 384, 864, 1944 spins. To each thermodynamic equilibrium we lower the temperature by
cooling the system to T = 1, 0.1, 0.01, 0.005, 0.001(J1) and checking equilibrium at each intermediate temperature.
All runs are repeated 512 times. A complete cooling run involves ≈ 108 MC steps. At the lowest temperature the
autocorrelation time of the energy is measured ≈ 104 MC steps and we perform measurements separated by 10 times
this scale.

To interpret the results obtained, let us first discuss what is expected in well-understood cases. A two-dimensional
Heisenberg ferromagnet has no long-range order at any nonzero temperature due to the Mermin-Wagner theorem. Its
spin correlation length grows exponentially as one decreases the temperature. If we consider a finite piece of lattice
at some low enough temperature the correlation length will exceed the lattice size and the system will appear to be
ordered, with a magnetization close to the ground state magnetization – a finite size effect. The MC measurements of
the magnetization define the probability distribution of the magnetization P (M) which is proportional to the histogram
of the magnetization values. If we observe the probability distribution P (M) of the modulus of total magnetization
as a function of temperature, then at low temperature we expect a single peak centered at the saturation value of
the finite system and as we increase the temperature this peak will shift to lower values ultimately reaching the
neighborhood of zero magnetization, when the finite spin system is fully decorrelated. This is indeed the behavior we
observe in the H-σ lattice system when J2 > 2J1. Here P (M) is peaked at the unique ground state value M = Msat/3
and the width of the peak is very small at low temperature.

If we now turn to the regime 0 < J2 < 2J1 we find a very different structure. The function P (M) is now smeared
over an extended range going down to zero magnetization with a peak at some non-trivial magnetization which is
different from the maximum possible value that we find by the explicit construction given above. In Fig.(7) an example
of this behavior is displayed for a 864-spin cluster at T = 10−3J1. The peak occurs for M = 0.118Msat below the
maximum value reached in the configuration of Fig.(4). The peak value is the magnetization selected by free energy
minimization. This scenario happens for all sizes we have studied and also for the whole range of exchange couplings
0 < J2 6 2J1. In Fig.(8) are displayed the histograms of the magnetization for a 384-cluster for values in this interval.
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FIG. 6. Monte Carlo measurements of energy in units of J1 (left panel) and total magnetization (right panel) from Eq.(7) as
a function of Monte Carlo time steps. The energy measurements are spaced by ten times the measured autocorrelation time.
They leads to a Gaussian histogram centered at a well-defined average energy. On the contrary the magnetization exhibit a
complex behavior spending long time in several distinct values. The system has 384 spins and J2 = J1 and the temperature is
T = 10−3J1

FIG. 7. The probability distribution of M/Msat obtained by Monte Carlo runs for a 864-site cluster and low temperature,
T = 10−3J1. The distribution extends all the way to zero and has a peak at M/Msat = 0.11. The fine structure seen beyond
the main peak is non-random, specific of the lattice. Multiple runs made with 512 independent replicas always give the same
equilibrium structure.

We note that there is collapse for limiting values : for J2 → 0, the limit of decoupled hexagons which are Néel
ordered so have zero net magnetization. Similarly the ferrimagnetic phase for J2 > 2J1 has only one sharp peak at
the analytically known value of Msat/3. Defining the magnetization as the average value, we obtain a magnetization
curve as a function of the ratio J2/J1 displayed in Fig.(9). Note that with the non-Gaussian special distribution of
the magnetization the average value is never equal to the most probable value throughout the phase 0 < J2 < 2J1.
This phenomenon persists for all lattice sizes we studied. The spin configuration realized by the minimum of the
free energy can be obtained by selecting the magnetization corresponding to the peak value in the MC process. The
observed state has a complex structure, neither coplanar nor commensurate. This is best seen in a common origin
plot, Fig.(10) showing the spin vectors (normalized to unity) of all of the sites for a 384 site sample. It can be seen
that they are distributed on the unit sphere, indicating that this configuration is non-planar or incommensurate with
the lattice or both.
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FIG. 8. Histograms of M/Msat obtained by Monte Carlo runs. Each color refers to a different value of the ratio J2/J1. From
left to right J2/J1 = 0.1 to 2 by steps of 0.1. The rightmost histogram for J2/J1 = 2 corresponds to the ferrimagnetic ground
state with no special degeneracy : this leads to a sharp peak whose width is solely due to finite temperature. For all data the
temperature is T = 10−3J1. We note that the distribution of magnetization has a complex shape and in some cases has two
maxima.
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FIG. 9. Plot of the average total magnetization M/Msat for a 384-spin sample of the H-σ lattice as a function of the coupling
ratio J2/J1. For J2 > 2J1 the ground state is a simple ferrimagnet with M/Msat =

1
3

(red horizontal line on top of the figure).

V. EXTERNAL MAGNETIC FIELD EFFECT

To study the stability of the degenerate phase we apply an external magnetic field H. The energy is given by :

E = J1
∑
〈i,j〉

Si · Sj + J2
∑
[k,l]

Sk · Sl −H ·
∑
i

Si, (8)

To study this situation we use again Monte-Carlo simulations. For small enough H the ground state degeneracy
is still present with a non-trivial magnetization distribution. We find that a finite value of H leads to lifting of the
ground state degeneracy. Indeed the histogram of the magnetization at finite temperature collapses to a single sharp
Gaussian peak only when H is large enough i.e. for H & 0.01J1. Several histograms are displayed as a function
of H in Fig.(11). In the presence of an external field the magnetization is no longer bounded by the special value
(
√
3/12)Msat of the extremal configuration in Fig.(4) : the upper bound grows continuously with H. This analysis

has been performed only for the special point J1 = J2 but we expect the result to be valid in the whole range of
magnetization degeneracy 0 < J2/J1 < 2. In Figure (11) the temperature of th simulation is fixed at T = 10−3J1.
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FIG. 10. The common-origin plot of the spin configuration with minimum free energy (most probable configuration as deduced
from the P (M) histogram) at a temperature T = 10−3J1 and J2 = J1, for a sample of 384 spins. All the spins (normalized
to 1) are plotted with their origin at the origin of the three-dimensional space. This configuration is not planar and is not
commensurate.
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FIG. 11. Histograms of the magnetization at T = 10−3J1 for a system with 384 spins and an external magnetic field H. We
have used the special ratio of couplings J2 = J1. The peculiar degeneracy specific to the H-σ lattice is destroyed when H is
larger than ≈ 0.01J1. The distribution of magnetization becomes that of a conventional magnet as observed in the ferrimagnetic
phase for J2 > 2J1.

VI. LONGER-RANGE COUPLINGS

If we consider the spins of the H-σ lattice they are all member of an hexagon and among those of a given hexagon
there are only two of them that are not engaged in a J2 exchange interaction. If there are real magnets described
by the H-σ phase then the distance between such dangling spins belonging to neighboring hexagons is not much
greater that between other pairs of spins. So the exchange between them may be sizable. Let us introduce J3 the
corresponding exchange coupling. It is easy to see that if J3 is ferromagnetic then it does not change the nature
of the manifold of ground states since the dangling spins are always ferromagnetically aligned in the ground state
configurations as seen in Figs.(4,5). So the entropic selection of magnetization still operates. This is not the case
if J3 is antiferromagnetic : this frustrates the degenerate configurations. Analytic study is not possible so we have
studied the change of magnetization distribution by running Monte-Carlo simulations by varying the ratio J3/J1 while
keeping J2 = J1 for simplicity. Our results are displayed in Fig.(12). Histograms of P (M) are computed at the point
J2 = J1 for temperature T = 10−3J1 and a sample of 384 spins. We have chosen a set of values J3 = 0.25, 0.5, 0.75J1.
There is again a range of stability for the degenerate phase which is destroyed when J3 & 0.75J1. This means that
the special degenerate phase with entropic selection is robust beyond the simplest exchange model Eq.(1). Beyond
this critical value the system has zero total magnetization. We have not attempted a detailed description of the new
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FIG. 12. One may destabilize the ground state degeneracy by adding an extra exchange coupling J3 between the dangling spins
between neighboring hexagons. When this coupling is antiferromagnetic it creates frustration that destroys the degeneracy
provided its strength is beyond ≈ 0.5J1. The system has 384 spins and the temperature is T = 10−3.

phase.

VII. CONCLUSIONS

We have studied a lattice classical Heisenberg model with two exchange couplings with a complex phase in a special
range of parameters 0 < J2 < 2J1. In this regime the H-σ lattice Heisenberg model has an extensive ground state
degeneracy with continuous distribution of the total magnetization. Thus minimizing the energy does not uniquely
determine the magnetization at zero temperature. At finite T, minimization of free energy leads to a selection
of a subset of configurations. In other words, the magnetization is entropically selected and the system shows an
order-by-disorder. This peculiar phenomenon is observed in our Monte-Carlo simulations at nonzero temperatures.
The magnetization at finite temperature has a nontrivial probability distribution whose width does not shrink when
increasing the lattice size. The average value of the magnetization does not coincide with the most probable value.
We have obtained the average magnetization of the system in the whole phase diagram. This very special property
deserves more detailed studies. It does not happen in the Kagomé spin model.

One can ask about the changes in these states when the original model is perturbed. In particular, one can ask
about the effects of additional short range couplings within and between hexagons the H-σ lattice. These couplings
lead to increased frustration, due to the appearance of more triangles and rings of five spins. We have checked that,
for small values of these added couplings the phases described in this paper are not changed qualitatively. However
a more complete analysis of the changes in the phase diagram are left for a future study.
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