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Formal stabilization of a coupled ODE-PDE switched system

Adrien Le Coënt1, Jonathan Vacher2 and Kenan Kergrene3

Abstract— Partial Differential Equations (PDEs) are a ubiq-
uitous model that describes a wide range of dynamical systems.
While stabilization of systems involving PDEs is an important
problem, little work has been done on formal verification and
synthesis for such systems. In this paper, we explain how a
coupled ODE-PDE control problem can be formally stabilized
using a tiling based control synthesis algorithm associated to set
based reachability, which is usually used on finite dimensional
problems. To formally prove the stabilization of the PDE, the
original infinite dimensional problem is transformed into a
finite dimensional one using, among other tools, model order
reduction. The strength of our approach relies on the fact that
we never explicitly discretize the PDE state using e.g. a finite
element approximation, and consequently, we provide stability
guarantees directly on the infinite dimensional state.

I. INTRODUCTION

Stabilization of infinite-dimensional control systems, i.e.
governed by partial differential equations (PDEs), is a widely
researched topic [21], with numerous mathematical results
ensuring e.g. exponential convergence of the infinite dimen-
sional state towards zero. Extensions of such methods to the
case of switched controls exist, but are scarcer [15], [20],
[14]. When it comes to providing formal guarantees for such
systems, results are extremely rare. A first reason lies in
the computational and theoretical difficulties of the task. A
second reason lies in the amount of multi-disciplinary work
it requires, spanning multiple domains such as computer
science, mathematics and computational mechanics.

It is well known that switched ordinary differential equa-
tions can be controlled with correct–by–construction meth-
ods, symbolic and abstraction methods being the most com-
mon. They can rely on state abstraction [19], [4], [22],
hybridization [2], or tiling [10]. Spatiotemporal discretization
methods for infinite dimensional systems such as finite
difference or Finite Element Methods (FEM) are widely
used for simulation of PDEs. These methods allow to trans-
form PDEs into finite (high) dimensional systems, that can
sometimes be reduced into low dimensional systems with
dimension reduction techniques, also called model order
reduction (MOR) methods [5]. These methods are usually
provided with error estimates, and sometimes error bounds
for the state discretized (high dimensional) system [13].
While the FEM is associated with known error estimates [3],
and theoretical error bounds (with unknown constants) have
long been available [8], proper computable error bounds are
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still hard to obtain [1]. Given these difficulties, formal reach-
ability analysis for a parabolic system has been attempted in
[23] using a Galerkin FEM, but the method was not fully
conservative since the authors could not formally bound the
approximation error. Another formal verification approach
relying on the FEM has been proposed in [18] using Signal
Temporal Logic, but the approximation error is hypothesized
as bounded.

Contributions: In this paper, we propose an approach
giving formal stability guarantees for a coupled ODE-PDE
switched system directly on the infinite dimensional state.
Since we do not use a space discretization scheme like the
FEM, the formal guarantee is given directly on the infinite
dimensional state. The system is, in a few words, a switched
ordinary differential equation, whose state corresponds to the
boundary conditions of the heat equation. The problem is
instantiated on a switched two dimensional ODE coupled
with the heat equation. Our approach relies on a tiling–based
control synthesis method. In order to apply this method to the
coupled ODE-PDE system, we leverage several mathematical
transformations (principle of superposition, model reduction,
etc.) to approximate the system by a numerically achievable
finite dimensional system. The main idea is to decompose
the infinite dimensional state into the sum of multiple
terms exhibiting different behaviors, some reducible to finite
dimension and formally controllable while others exhibit
limiting factors (or control guidelines). Here, we focus on
the methods used to formally handle this control problem,
the mathematical proofs are left in the appendices. The model
reduction technique used here is ad-hoc, although, advances
in computational mechanics provide more and more error
estimates and guaranteed bounds that are usable in formal
methods. Thus, our work provides a correct–by–construction
method for handling a given type of ODE-PDE system that
can be extended to many others upon using an adapted model
reduction method.

The paper is organised as follows. In Section II, we
formally define the coupled ODE-PDE control problem. In
Section III, we introduce the control synthesis algorithm
that is used for ODE control problems. In Section IV, we
explain how the control synthesis algorithm can be used
for guaranteeing the stabilization of the coupled ODE-PDE
problem. For the sake of readability, the proofs of the main
mathematical results are left in the appendices.

Notations: Let Ω ⊂R. Let L2 = L2 (Ω) be the space of
measurable functions f : Ω → R whose square is Lebesgue
integrable. Let H1 = H1 (Ω) be the subspace of L2 of func-
tions whose weak derivatives are also in L2. Let H1

0 =H1
0 (Ω)

be the closure in H1 of the space of infinitely differentiable



compactly supported functions. Let L∞ = L∞(Ω) be the space
of measurable functions that are bounded almost everywhere
(essentially bounded). Finally, let L1

loc([0,∞[;H1) be the
Bochner space of functions f (x, t) such that f (·, t) ∈ H1

for any t ≥ 0 and t 7→ ∥ f (·, t)∥H1 is in L1
loc([0,∞[), where

L1
loc([0,∞[) denotes the space of locally integrable functions,

that is, the functions which are Lebesgue integrable on every
compact subsets of [0,∞[. For a vector zzz ∈ Rn and r > 0,
we denote by B(zzz,r) the ball of center zzz and radius r with
Euclidian norm, and by B∞(zzz,r) the ball of center zzz and
radius r with ℓ∞ norm. For a function f ∈ L2 and r > 0, we
denote by BL2( f ,r) the ball of center f and radius r with L2

norm.

II. PROBLEM DEFINITION

Let L > 0 and set Ω=]0,L[ the spatial domain of the PDE.
Let κ ∈ L∞(Ω), and suppose there exist two constants κm and
κM , 0 < κm ≤ κM such that

κm ≤ κ(x)≤ κM for x in Ω. (1)

Let U = {1, . . . ,M} be the set of switched modes, A1, . . . , AM
∈ R2×2, bbb1, . . . , bbbM ∈ R2, the space of admissible switched
control sequences is

Σ
τ =

{
σ : [0,+∞[→U,σ |[qτ,(q+1)τ[(t) ∈U, ∀q ∈ N

}
. (2)

We consider the one-dimensional boundary switched control
heat problem with arbitrary source term f ∈H1 that is to find
a piecewise constant sequence σ ∈ Στ , such that the vector–
valued state ξξξ ∈ C0([0,∞[)2 (continuous functions) and the
functions u∈ L1

loc([0,∞[;H1) that are solutions to the problem

for all (x, t) ∈ Ω× [0,+∞[,

ξ̇ξξ (t) = Aσ ξξξ (t)+bbbσ (t) with ξξξ (0) = ξξξ
0
,

∂u
∂ t

(x, t)−∇ · (κ∇u)(x, t) = f (x, t),

with u(0, t) = ξ1(t), u(L, t) = ξ2(t) and u(x,0) = u0(x)

(3)
verify, for any initial conditions ξξξ

0 ∈ R2 and u0 ∈ H1 and
objective u∞ ∈ H1, the stability constraints{

ξξξ (t) ∈ Sξ for all t > 0,

∥u(., t)−u∞∥L2 ≤ ρ for all t > 0.
(4)

Thus the expected stability set for the global state
(ξξξ (t),u(., t)) is the product set Sξ ×BL2(u∞,ρ) ⊂ R2 ×L2.
The sequence σ will depend on the state of the system itself
in order to enforce stability in the product recurrence set.
The control problem is formalized as follows:

Problem 1 (ODE-PDE stability control problem): Let us
consider the system (3). Given a set Sξ , a tolerance ρ and
an objective state u∞, find a control sequence σ(ξξξ ,u) ∈ Στ

such that, for all t > 0 and for all (ξξξ 0
,u0)∈ Sξ ×BL2(u∞,ρ),

we have (ξξξ (t),u(., t)) ∈ Sξ ×BL2(u∞,ρ).

III. CORRECT-BY-CONSTRUCTION CONTROL SYNTHESIS
USING TILING AND SET-BASED REACHABILITY

In this section, we consider a finite dimensional control
problem on a switched ODE with a generic state vector
denoted by zzz and we detail how to control it. The state vector
zzz will be explicitly given in section IV when we apply this
method to the main problem 1.

A. Tiling-based control synthesis

Let us consider in this section a finite dimensional
switched system such that

żzz(t) = fσ(t)(zzz(t)) (5)

is defined for all t ≥ 0, where zzz(t) ∈ Rn is the state of the
system, σ ∈ Στ is the switching rule. The finite set U =
{1, . . . ,M} is the set of switching modes of the system.

We call “pattern” a finite sequence of modes π =
(σ1,σ2, . . . ,σk) ∈ Uk. With such a control pattern, we will
denote by zzz(t; t0,zzz0,π) the solution at time t ≥ t0 of the
system

żzz(t) = fσ(t)(zzz(t)),

zzz(t0) = zzz0,

∀ j ∈ {1, . . . ,k}, σ(t) = σ j ∈U for t ∈ [t0 +( j−1)τ, t0 + jτ[.
(6)

Before introducing the main controller synthesis algo-
rithm, let us introduce some preliminary definitions.

Definition 1: Let X ⊂ Rn be a bounded set of the state
space. Let π = (σ1,σ2, . . . ,σk) ∈Uk. The successor set of X
via π , denoted by Postπ(X , t), is the image of X induced by
application of the pattern π , i.e.:

Postπ(X , t) =
⋃

zzz0∈X

zzz(t; t0,zzz0,π).

Definition 2: Let X ⊂ Rn be a bounded set of the state
space. Let π =(σ1,σ2, . . . ,σk)∈Uk. We denote by Tubeπ(X)
the set covering all the trajectories of system (6) for any
initial conditions in X during application of pattern π , i.e.:

Tubeπ(X) =
⋃

t∈[t0,t0+kτ]

Postπ(X , t).

In a few words, Postπ(X , t) is the set that encloses the state
at time t reached after application of pattern π for any initial
condition in zzz0 ∈ X , while Tubeπ(X) is the set that encloses
all possible trajectories starting in X when applying pattern
π . Note that if t < t0+kτ the pattern π has only been partially
applied. When t > t0 +kτ a new pattern π ′ must be applied.
In practice, Postπ(X , t) and Tubeπ(X) are hard to compute
(especially for nonlinear systems), they are thus computed as
“over-approximations” in order to guarantee rigorous results.
Their computation is detailed in Section III-B.

Given a “recurrence set” R ⊂Rn and a “safety set” S ⊂Rn

which contains R (R ⊆ S), the main synthesis algorithm is
used to solve the following control problem: starting from
any initial point zzz0 ∈ R, the controlled trajectory returns to
R infinitely often while never leaving S. We suppose that



sets R and S are compact. Furthermore, we suppose that S
is convex. This problem is formalized as follows.

Problem 2: Given a switched system of the form (6), a
recurrence set R ⊂Rn and a safety set S ⊂Rn, find a control
rule σ(zzz)∈ Στ such that, for any initial condition zzz0 ∈ R, the
following holds:

• Recurrence in R: there exists a monotonically strictly
increasing sequence of (positive) integers {ml}l∈N such
that for all l ∈ N, zzz(mlτ; t0,zzz0,σ) ∈ R;

• Stability in S: for all t ∈ R+,zzz(t; t0,zzz0,σ) ∈ S.
We now describe the principle of the algorithm solving

Problem 2. Given the input sets R and S, the algorithm
provides, when it succeeds, a finite set of indices I, a family
of sets {Wi}i∈I associated to patterns {πi}i∈I of length ki
such that

• R ⊆
⋃

i∈I Wi ⊆ S
• for all i ∈ I, Postπi(Wi,kiτ)⊆ R
• for all i ∈ I, Tubeπi(Wi)⊆ S
The sets Wi are obtained by repeated bisection or tiling. A

first covering of R is generated (potentially a single set), and
for each set of the covering, all possible control sequences
of increasing lengths are tested up to a given maximum
length. If a control sequence is found verifying the above
properties for each set of the covering, then the algorithm
has succeeded, otherwise, the covering sets that have not
been associated to a control sequence are divided into sub-
sets, and the procedure is repeated for the sub-sets, until all
sets and sub-sets of the covering are associated to a control
sequence verifying the above properties. The algorithm fails
when a chosen maximum division depth is reached. The
division heuristics is not a requirement, taking a uniform and
sufficiently fine initial covering of R would be enough for
computing a controller, the division heuristics simply ensures
a more time-efficient computation.

Note that the sets can be of various shapes (boxes,
zonotopes, ellipsoids). In this paper, the covering sets (Wi)i∈I
are balls of Rn while the covered sets R and S are either boxes
or balls of Rn.

B. Computation of the Post and Tube operators using the
Euler method on balls of Rn

The computation of the Post and Tube operators can be
performed with any reachability analysis tool. Since balls
of Rn are required in the following, we use a ball-based
approach introduced in [6] that relies on the Euler method. It
is reliable and very fast, making the control synthesis com-
putation feasible on the coupled ODE-PDE system, which
would not be the case with more refined tools. It also requires
very limited hypotheses on the dynamics [9], [7], contrary
to approaches relying on e.g. incremental stability [12] or
monotonicity [17].

The hypotheses are the following: for all j ∈U functions
f j are Lipschitz, which ensures the existence of solutions to
system (6); and for all j ∈ U , functions f j are one-sided
Lipschitz (OSL). Given these hypotheses, three constants
can be defined for each f j: the Lipschitz constant, the OSL

constant (which roughly speaking measures the contractivity
of the system, it can be positive or negative), and a third
constant measuring the maximum the norm of f j on S.
With these three constants, a guaranteed reachable ball and
reachability tube are computed as follows.

Given an initial point z̃zz0 ∈ S and a mode j ∈U , we define
the following “Euler approximate solution” φ̃ j(t; z̃zz0) for t ∈
[0,τ] by

φ̃ j(t; z̃zz0) = z̃zz0 + t f j(z̃zz0). (7)

Any trajectory zzz(t;0,zzz0, j) of system (6) for mode j ∈U and
time t ∈ [0,τ] that starts at zzz0 ∈ B(z̃zz0,ρ) at t = 0 remains
in a circular tube around φ̃ j(t; z̃zz0) whose radius is given
by analytical formulas that depend on ρ , t, and the three
constants mentioned above. In other words, we can compute
a set-based reachability tube for an entire starting ball using
a simple Euler scheme and some analytical formulas. The
result given in [6] is even stronger than that since the
inclusion of Tubeπi(Wi) in S for the tiling based control
synthesis method can be verified using tests at discrete
instants, making the algorithm extremely time-efficient. The
reachability tube computation is formalized in the following
theorem.

Theorem 1: Given a sampled switched system satisfying
the Lipschitz and OSL hypotheses, consider a point z̃zz0 and a
positive real ρ . We have, for all zzz0 ∈ B(z̃zz0,δ ), t ∈ [0,τ] and
j ∈U :

zzz(t;0,zzz0, j) ∈ B(φ̃ j(t; z̃zz0),δ j(ρ, t)),

where function δ j(ρ, t) is given in Appendix A.
The proof is given in [6].

IV. GUARANTEED CONTROL FOR THE ODE-PDE
SYSTEM

In order to use a formal control synthesis method on
system (3), we need to transform it into a finite dimensional
one, and ensure that the dimension reduction error is handled.
In Section IV-A, we explain in details the decomposition
of the transient PDE state. In Section IV-B, we detail the
dimension reduction of the PDE state. In Section IV-C, the
control synthesis procedure is applied on the decomposed
and reduced system. In Section IV-D, we detail the ad-hoc
certified reduced basis that ensures that the reduction error
does not grow within time. We finally apply the approach on
an illustrative case study in Section IV-E. The main idea in
our approach is the following:

• Observe that the finite dimensional state ξξξ can be
formally controlled, but u cannot in its current form.

• Observe that, using the principle of superposition, the
infinite dimensional state u can be decomposed as the
sum of three terms

u = u∞ +uq +ψ (8)

where
– u∞ ∈ H1 is the objective state,
– uq ∈ L1

loc([0,∞[;H1) is the steady state (i.e. the long
term behaviour of the infinite dimensional state),



– ψ ∈ L1
loc([0,∞[;H1) is the transient state (i.e. the

short term behaviour of the infinite dimensional
state).

• Rewrite the stability constraints (4) for u according to
these terms so they can be handled separately.

• Use a reduced order approximation ψ̃ of ψ , and com-
pute it using a finite dimensional ODE on a vector
β̃ββ ∈ RK .

• Observe that the terms u∞ and uq(·, t) introduce a tighter
stability objective that can be attained with a reasonable
objective u∞ (i.e. when it is consistent with the source
term f ).

• Perform the tiling based control synthesis on the re-
duced state zzz = (ξξξ , β̃ββ ), while simultaneously ensuring
that u∞, uq, and the additional error terms are taken into
account in the stability constraints (by the control law
or using an efficient reduction technique).

Remark 1: The stability properties that can be ensured
with standard control synthesis methods for infinite dimen-
sional systems are multiple. One could seek to ensure the
exponential stabilization of the (infinite dimensional) system
state in L∞ norm, H∞ norm, and so on. . . In our case, we
consider the L2 norm which allows us to use dimension
reduction methods that transform the infinite dimensional
system into a finite dimensional one that can be controlled
using balls of Rn. Approaches based on the L2 norm are
standard techniques in the field of structural mechanics. The
Euclidian norm of the (finite dimensional) reduced state is
directly related to the L2 distance of the infinite dimensional
state. Therefore, the sets (balls) defined on the reduced space
directly correspond to sets in the unreduced space of the PDE
state.

A. Decomposition of the infinite state
Using the principle of superposition, the solution u of

problem 1 can be written as the sum of three functions

u = u∞ +uq +ψ (9)

where u∞ ∈ H1 is the objective, uq ∈ L1
loc([0,∞[;H1) is the

quasi-steady state and ψ ∈ L1
loc([0,∞[;H1) is the transient

state. The steady state uq is the solution of the following
quasi-static problem defined for all (x, t) ∈ Ω× [0,+∞[ by

−∇ · (κ∇uq)(x, t) = f (x, t)+∇ · (κ∇u∞)(x),

uq(0, t) = ξ1(t)−ξ
∞
1 ,

uq(L, t) = ξ2(t)−ξ
∞
2 ,

where ξ ∞
1 and ξ ∞

2 are the boundary conditions of u∞. The
transient state ψ is the solution of the heat problem with
homogeneous Dirichlet boundary conditions defined for all
(x, t) ∈ Ω× [0,+∞[ by

∂ψ

∂ t
(x, t)−∇ · (κ∇ψ)(x, t) = g(x,ξξξ (t))

ψ(0, t) = ψ(L, t) = 0, t > 0,

ψ(x,0) = ψ
0(x),

(10)

with

g(x,ξξξ (t)) =−
∂uq

∂ t
(x, t), ψ

0(x) = u0(x)−u∞(x)−uq(x,0).

The transient state ψ(., t) is thus in H1
0 for any t ≥ 0. The

space weak formulation of the problem (10) is to find ψ ∈
L1

loc([0,∞[;H1
0 ), ψ(.,0) = ψ0, solution of

∀v ∈ H1
0 , ⟨∂ψ

∂ t
,v⟩L2 + ⟨κ∇ψ,∇v⟩L2 = ⟨g(·,ξξξ (·)),v⟩L2

(11)

Proposition 1 allows us to rewrite the infinite dimension
state into a finite one with additional error terms.

Proposition 1: Consider Problem 1 and decomposi-
tion (9). For all t > 0, if

1
κm

∥ f +∇ · (κ∇u∞)∥L2 +L∥ξξξ (t)−ξξξ
∞∥∞

+∥ψ(·, t)∥L2 ≤ ρ, (12)

then
∥u(·, t)−u∞∥L2 ≤ ρ for all t > 0. (13)

The proof is given in Appendix B.

B. Reduction of the transient state ψ

In order to apply the control method detailed in section III,
the transient state ψ must be approximated by a function ψ̃

that belongs to a finite dimensional vector space. To achieve
this, we use a reduced-order model of ψ defined for all
(x, t) ∈ Ω× [0,+∞[ by

ψ̃(x, t) = ⟨β̃ββ (t),ϕϕϕ(x)⟩2 (14)

where β̃ββ (t) = (β̃1(t), . . . , β̃K(t))T , ϕϕϕ(x) =
(ϕ1(x), . . . ,ϕK(x))T with {ϕ1, . . . ,ϕK} being an L2–
orthogonal reduced basis spanning W K , a linear vector
space of dimension K. With the reduced approximation (14)
we have for all t > 0,

∥ψ̃(., t)∥L2 = ∥β̃ββ (t)∥2.

In addition, β̃ββ is the solution of an ordinary differential
equation (see section IV-C) that can be controlled formally
using the method given in section III. We thus have a
reduced-order version of Proposition 1:

Proposition 2: Consider Problem 1, decomposition (9)
and approximation (14). Suppose that there exists µ > 0 such
that for all t ∈ [0,τ],

∥ψ(·, t)− ψ̃(·, t)∥L2 ≤ µ ∥ψ
0 − ψ̃

0∥L2 . (15)

If for all t > 0,

1
κm

∥ f +∇ · (κ∇u∞)∥L2 +L∥ξξξ (t)−ξξξ
∞∥∞ +∥β̃ββ (t)∥2

+µ ∥ψ
0 − ψ̃

0∥L2 ≤ ρ, (16)

then stability condition (13) holds.
The proof is given in Appendix C. Hypothesis (15) only
supposes that the reduced basis approximation error does
not explode within a time step. An efficient reduced basis



approximation can furthermore ensure that for all t ∈ [0,τ],
∥ψ(·, t)−ψ̃(·, t)∥L2 ≤∥ψ0−ψ̃0∥L2 (i.e. µ = 1), which means
that the approximation error does not grow within time. Such
a reduced basis is constructed in Section IV-D. Inequal-
ity (16) means that all the terms in the left-hand side have to
be “small enough”. In particular, this means that u∞ should
be compatible with the source term in the sense that

−∇ · (κ∇u∞)≈ f in Ω.

Moreover, the vector state ξξξ (t) should stay close to ξξξ
∞,

and the norm of vector β̃ββ (t) has to stay rather small. The
terms L∥ξξξ (t)−ξξξ

∞∥∞ and ∥β̃ββ (t)∥2 are actually the ones we
control with our symbolic approach. Note that L∥ξξξ (t)−
ξξξ

∞∥∞ justifies that we stabilize ξξξ in a box. Finally, we
should also have µ ∥ψ0− ψ̃0∥L2 small enough for any initial
condition, meaning that the reduced basis approximation is
able to correctly reproduce any initial condition. In a nutshell,
we have to synthesize a controller such that the reduced
state zzz = (ξξξ , β̃ββ ) always stays in S = B∞(ξ

∞,δξ )×BL2(0,ρβ )
using symbolic methods (δξ and ρβ are chosen in the next
subsection), and the other terms are fulfilled as long as
the objective state is compatible with the source term, the
reduced basis represents accurately the initial conditions, and
the reduction error does not grow uncontrollably.

C. Strategy for control stability

At a switch time (considered equal to zero for the sake of
simplicity), consider the approximate heat solution

ũ0 = u∞ +uq(·;ξξξ
0
)+ ψ̃

0

and the exact solution written as

u0 = u∞ +uq(·;ξξξ
0
)+ψ

0.

Considering Problem 1, we assume the following initial
properties. Let δξ ,ρβ ,δ > 0 be some constants such that

L∥ξξξ
0 −ξξξ

∞∥∞ ≤ δξ , (17)

∥β̃ββ
0∥2 ≤ ρβ , (18)

µ∥ψ
0 − ψ̃

0∥L2 ≤ δ . (19)

Suppose that
c1 +δξ +ρβ +δ ≤ ρ (20)

where c1 =
1

κm
∥ f +∇ · (κ(.)∇u∞)∥L2 . We look for controls

that preserve equations (17) and (18) (and solve Problem 1).
In other words, we look for control modes such that, for all
time t ∈ [0,τ] (before the next switch), we have

∥ξξξ (t)−ξξξ
∞∥∞ ≤

δξ

L
(21)

and ∥β̃ββ (t)∥2 ≤ ρβ . (22)

Then by construction we will automatically fulfill the stabil-
ity requirement (13) on the heat solution for a given control
mode i ∈U , i.e. for all t ∈ [0,τ],

∥u(·, t)−u∞∥L2 ≤ ρ. (23)

Equations (17) and (18) can also be ensured for control
sequences π = (σ1,σ2, . . . ,σk), i.e. for all t ∈ [0,kτ].

Both the state ξξξ and the reduced state β̃ββ are solutions
of ODEs (respectively of dimension 2 and K). Indeed, the
reduced state ψ̃ is built as a solution of (11) with test
functions spanning W k, which reformulates as: for all w ∈
W K ,⟨∂ψ̃

∂ t
,w⟩L2 + ⟨κ∇ψ̃,∇w⟩L2 = ⟨g(·;ξξξ (t)),w⟩L2

ψ̃(·,0) = ψ̃
0.

(24)

The basis functions
{

ϕ1, ...,ϕK
}

being orthonormal in L2,
equation (24) is in fact the following system of ODEs

dβ̃i

dt
+ β̃i⟨κ∇ϕi,∇ϕ j⟩L2 = ⟨g(.;ξξξ (t)),ϕ j⟩L2 ,

1 ≤ j ≤ K.

(25)

To solve Problem 1, it is thus sufficient to synthesize a con-
troller such that zzz = (ξξξ , β̃ββ ) always stays in S = B∞(ξ

∞,
δξ

L )×
B2(0,ρβ ) using the algorithm of Section III (provided that
hypothesis (15) holds). This algorithm is particularly adapted
to this purpose since for all t > 0, ∥ψ̃(., t)∥L2 = ∥β̃ββ (t)∥2. The
consequence is that ensuring that β̃ββ remains in B2(0,ρβ ) also
ensures that ψ̃ remains in BL2(0,ρβ ). The recurrence set R
can be chosen as any smaller set R ⊆ S such that stability
in S is ensured. From (21), it is appropriate to choose the
safety set Sξ in Problem 1 as B∞(ξ

∞,
δξ

L ), i.e. a box centered
around ξξξ

∞.

D. Certified reduced basis for control

To complete our method, we construct of an efficient
reduced basis that allows to verify (16) (and more precisely,
ensure (15) with µ = 1). Our objective is the following.
Considering the space of all possible sequences of switched
controls of lengths less than M, we have to derive a reduced-
order model which guarantees a prescribed accuracy for any
switched control sequence. For that purpose, we build a
reduced-order model using a posteriori error estimates within
an iterative greedy approach. Therefore, we consider a low-
dimensional vector space W ⊂ H1

0 and use the Galerkin
method to build a reduced-order approximation ψ̃ of ψ that
is a solution of the finite dimensional weak problem, for all
w ∈W⟨∂ψ̃

∂ t
,w⟩L2 + ⟨κ∇ψ̃,∇w⟩L2 = ⟨g(·;ξξξ (t)),w⟩L2 ,

ψ̃(.,0) = ψ̃
0.

1) A posteriori error estimation: From (11), we can
directly derive a weak problem for the error function e =
ψ − ψ̃ , for all v ∈ H1

0 ,

⟨∂e
∂ t

,v⟩L2 + ⟨κ∇e,∇v⟩L2 =

⟨g(·;ξξξ (t)),v⟩L2 −⟨∂ψ̃

∂ t
,v⟩L2 −⟨κ∇ψ̃,∇v⟩L2 (26)

e(·,0) = e0 = ψ
0 − ψ̃

0. (27)



The right hand side defines a residual linear form rξ that
depends on ξξξ (t), for all v ∈ H1

0 ,

rξ (v) = ⟨g(·;ξξξ (t)),v⟩L2 −⟨∂ψ̃

∂ t
,v⟩L2 −⟨κ∇ψ̃,∇v⟩L2 .

By construction of the approximation ψ̃ (equation (24)) we
have for all w ∈W ,

rξ (w) = 0.

One can define a norm for rξ in the dual space H−1 of H1
0 :

∥rξ∥H−1 = sup
∥v∥H1

0
≤1

|rξ (v)|.

By defining the error e and the residual rξ we can derive the
following proposition.

Proposition 3: Consider equation (26) and (27). If

η̃ C2
Ω

κm
≤ ∥e0∥ (28)

where CΩ is a Poincaré constant and

η̃ = sup
ξξξ∈R2

sup
t≥0

∥rξ∥H−1(t),

then for all t > 0

∥e(t)∥L2 ≤ ∥e(0)∥L2 .
The proof is given in Appendix D.

Remark 2: Because the approximate problem is built from
a Galerkin projection method, it is expected that the constant
η̃ becomes small for a “good” finite discrete space W . So
for an accuracy level ∥e0∥L2 ≤ δ on the initial state, the goal
is to find a discrete reduced-order space W such that the
inequality η̃ ≤ κm δ

C2
Ω

holds. The constant η̃ defined in (41) is
a uniform upper bound of the residual quantity, meaning that
η̃ should be rather small for any switched control sequence
σ(.) for practical use. This remark leads us to the following
greedy algorithm for the construction of the reduced order
basis.

2) Greedy algorithm and reduced bases: The greedy
algorithm allows to compute a reduced basis that spans the
discrete space W̃ in an iterative and greedy manner.

• First iterate k = 1. Define δ > 0 and a residual threshold

rM =
κmδ

C2
Ω

.

Let us assume that ψ ∈ H1
0 and ψ0 ̸= 0. Let us consider

first

ϕ
1 =

ψ0

∥ψ0∥

and W (1) = Span(ϕ1). Define a random sequence of
control sequences σ ∈ Στ , i.e. control sequences of
length less than K. As soon as

∥rξ∥H−1(t)> rM,

solve the reduced-order model, for all w ∈W (1)

⟨∂ψ̃(1)

∂ t
,w⟩+ ⟨κ∇ψ̃

(1),∇w⟩= ⟨g(·;ξξξ (t)),w⟩, (29)

ψ̃
(1)(·,0) = ψ̃

0. (30)

• If there is a time t(1) > 0 such that ∥rξ∥H−1(t(1)) = rM ,
then compute

v(2) = arg max
∥v∥=1

|r
ξ (t(1))(v)|

and define

ϕ
2 =

v(2)

∥v(2)∥
, W (2) = Span(ϕ1,ϕ2).

• The reduced-order model at iterate (k) is

⟨∂ψ̃(k)

∂ t
,w⟩+ ⟨κ∇ψ̃

(k),∇w⟩= ⟨g(·;ξξξ (t)),w⟩, (31)

ψ̃
(k)(·,0) = ψ̃

0. (32)

• Repeat until ∥rξ∥H−1 < rM for all time t > 0.
Let us denote by K the final rank and W (K) =
Span(ϕ1,ϕ2, ...,ϕK) the associated discrete space.

For performance and complexity aspects, the rank K is
expected to be not too large. For that, the initial accuracy
radius δ should be chosen not to small.

E. Numerical experiment for the L2 guaranteed control
synthesis by stability of error balls

As a proof of concept, we apply the strategy described
here on system (3) with 4 switched modes

Aσ =

(
0 0
0 0

)
and bσ ∈

{(
1
1

)
,

(
1
−1

)
,

(
−1
1

)
,

(
−1
−1

)}
with a time step τ = 0.05, κ chosen constant equal to 1. The
reduced basis is built using the procedure of Section IV-D.
This reduced basis allows to fulfill Proposition 2 with µ = 1.
The reduced basis is truncated at K = 4 modes. Associated
to the ODE, we thus get a reduced system of dimension 6.
Using control sequences of length 8, and a decomposition
of the reduced state-space in 46 = 4096 balls, we manage to
synthesize a controller in approximately 20 minutes, with an
objective state (ξ ∞,u∞) = (0R2 ,0L2) and guaranteed L2 error
of ρ = 0.5. A simulation of the controller is given in Figure
1, where the initial condition is set as a random combination
of the first ten eigenmodes and a lifting, such that (17-19)
holds with δξ = 0.2, ρβ = 0.2 and δ = 0.1.

V. CONCLUSION

We have presented a formal method for stabilizing a
coupled ODE-PDE system. Mathematical transformations
allow to exhibit controllable terms, and a reduced order
approximation of the PDE state allows to exhibit finite
dimensional terms that can be formally controlled using a
known tiling based control synthesis algorithm. Contrary to
methods proposed in the past, we do not use an explicit
discretization of the PDE before tackling the problem, and
thus, we do not rely on FEM discretization error bounds. We
propose an ad-hoc reduced basis that allows to prevent the
model reduction error from growing in time, but any method
preventing the reduction error from growing uncontrollably
could work.



Fig. 1. Simulation of the controller.
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automatisés, 41(3/4):365, 2007.

[22] Miriam Garcı́a Soto and Pavithra Prabhakar. Abstraction based
verification of stability of polyhedral switched systems. Nonlinear
Analysis: Hybrid Systems, 36:100856, 2020.

[23] Hoang-Dung Tran, Weiming Xiang, Stanley Bak, and Taylor T
Johnson. Reachability analysis for one dimensional linear parabolic
equations. IFAC-PapersOnLine, 51(16):133–138, 2018.

APPENDIX

A. Formulas of the Euler based reachability tubes

Consider a sampled switched system verifying the Lips-
chitz and OSL hypotheses. The three constants to compute
(for each switched mode) are denoted by L j, C j, λ j ( j ∈U).
Their computation is realized with a constrained optimization
algorithm. They are performed using the “sqp” function of
Octave, applied on the following optimization problems:

• Constant L j:

L j = max
x,y∈S, x ̸=y

∥ f j(y)− f j(x)∥
∥y− x∥

• Constant C j:
C j = max

x∈S
L j∥ f j(x)∥

• Constant λ j:

λ j = max
x,y∈T, x ̸=y

⟨ f j(y)− f j(x),y− x⟩
∥y− x∥2

Let ρ be a positive constant. For all 0 ≤ t ≤ τ and all
j ∈U , function δ j(ρ, t) is defined as follows:

• if λ j < 0:

δ j(ρ, t) =

(
ρ

2eλ jt +
C2

j

λ 2
j

(
t2 +

2t
λ j

+
2

λ 2
j

(
1− eλ jt

))) 1
2

• if λ j = 0 :

δ j(ρ, t) =
(

ρ
2et +C2

j (−t2 −2t +2(et −1))
) 1

2

• if λ j > 0 :

δ j(ρ, t) =(
ρ

2e3λ jt +
C2

j

3λ 2
j

(
−t2 − 2t

3λ j
+

2
9λ 2

j

(
e3λ jt −1

))) 1
2

Note that δ j(ρ, t) = ρ for t = 0.
More details on this method are given in [6].



B. Proof of Proposition 1

Because of (9), the stability requirement for all t > 0,
∥u(·, t)−u∞(.)∥L2 ≤ ρ in (4) can be equivalently expressed as
for all t > 0, ∥uq(·, t)+ψ(., t)∥L2 ≤ ρ. The solution uq itself
can be decomposed (using the principle of superpositon) as

uq(·, t) = ū+wq(·, t),

where ū is solution of the steady elliptic problem with
homogeneous Dirichlet boundary conditions

−∇ · (κ(.)∇ū) = f +∇ · (κ∇u∞) in Ω, (33)
ū(0) = ū(L) = 0, (34)

and wq is solution of the quasi-static problem at each time
t:

−∇ · (κ(.)∇wq) = 0 in Ω, (35)

wq(0, t) = ξ1(t)−ξ
∞
1 , for all t > 0, (36)

wq(L, t) = ξ2(t)−ξ
∞
2 , for all t > 0. (37)

The solution ū is continuous with respect to the source term
in (33) [11], i.e. there exists C > 0 such that:

∥ū∥H1
0
≤C∥ f +∇ · (κ∇u∞)∥L2 . (38)

This inequality is a result of the Lax-Milgram theorem, and
constant C is the inverse of the coercivity constant of the PDE
problem, in this case C = 1

κm
. For the solution wq of (35)-

(37), because of the maximum principle [16], we have

∥wq(., t)∥L∞(Ω) = max(|ξ1(t)−ξ
∞
1 |, |ξ2(t)−ξ

∞
2 |) (39)

= ∥ξξξ (t)−ξξξ
∞∥∞. (40)

Thus,

∥uq(·, t)+ψ(·, t)∥L2 ≤ ∥ū∥L2 +∥wq∥L2 +∥ψ(·, t)∥L2

≤ ∥ū∥L2 +L∥wq∥L∞ +∥ψ(·, t)∥L2 ,

and finally

∥uq(·, t)+ψ(·, t)∥L2 ≤
1

κm
∥ f +∇ · (κ∇u∞)∥L2

+L∥ξξξ (t)−ξξξ
∞∥∞ +∥ψ(·, t)∥L2

A sufficient condition to satisfy the stability constraint (13)
is then to fulfill (12).

C. Proof of Proposition 2

By the triangular inequality we can write

∥ψ(·, t)∥L2 ≤ ∥ψ(·, t)− ψ̃(·, t)∥L2 +∥ψ̃(·, t)∥L2

≤ ∥ψ(·, t)− ψ̃(·, t)∥L2 +∥β̃ββ (t)∥2.

Let us assume that we have the stability estimate for the
reduced-order approximation: there exists a constant µ > 0
such that

∥ψ(·, t)− ψ̃(·, t)∥L2 ≤ µ ∥ψ
0 − ψ̃

0∥L2 ∀t ∈ [0,τ]

for any constant control mode σ ∈ {1, ...,M} (uniform stabil-
ity with respect to the controls). This hypothesis can actually

be verified with a proper construction of the reduced basis.
Then, a more restrictive sufficient condition to fulfill the
stability constraint (13) is to verify

1
κm

∥ f +∇ · (κ∇u∞)∥L2 +L∥ξξξ (t)−ξξξ
∞∥∞

+∥β̃ββ (t)∥2 +µ ∥ψ
0 − ψ̃

0∥L2 ≤ ρ.

This equation is interesting since it enlightens the different
controllable and uncontrollable terms.

Let us denote by PK : H1
0 → W K the continuous linear

orthogonal projection operator over the low-order space W K .
Still by a triangular inequality, we have

∥ψ
0 − ψ̃

0∥L2 ≤ ∥ψ
0 −PKψ

0∥L2 +∥PKψ
0 − ψ̃

0∥L2 ,

The projection PKψ0 is given by

PKψ
0 =

K

∑
k=1

β
0
k ϕ

k,

with β 0
k = (ψ0,ϕk)L2 , k = 1, ...,K. By denoting βββ

0 =
(β 0

1 , ...,β
0
K), we then have

∥ψ
0 − ψ̃

0∥L2 ≤ ∥ψ
0 −PKψ

0∥L2 +∥βββ
0 − β̃ββ

0∥2,

D. Proof of Proposition 3
Considering the particular test function v = e in (26)-(27),

we have
1
2

d
dt
∥e∥2

L2 +∥κ∇e∥2
L2 = rξ (e).

From Poincaré’s inequality

∥v∥L2 ≤CΩ∥∇v∥L2 ∀v ∈ H1
0

and the lower bound κm of κ , we have also
1
2

d
dt
∥e∥2

L2 ≤−κm

C2
Ω

∥e∥2
L2 +∥rξ∥H−1(t)∥e∥L2 .

Let us denote the constant

η̃ = sup
ξξξ∈R2

sup
t≥0

∥rξ∥H−1(t) (41)

with σ ∈ Στ such that ξ (t) ∈ Sξ for all t ≥ 0 and ξ solution
to

ξ̇ξξ = Aσ ξ +Bwwwσ , ξξξ (0) = ξξξ
0
.

So we have the estimation
1
2

d
dt
∥e∥2

L2 ≤−κm

C2
Ω

∥e∥2
H1

0
+ η̃ ∥e∥L2 . (42)

By using the Young inequality

η̃ ∥e(t)∥L2 ≤
κm

2C2
Ω

∥e(t)∥2
L2 +

C2
Ω

2κm
η̃

2

and Gronwall’s lemma to the resulting estimate, we get the
error estimate in L2-norm

∥e(t)∥2
L2 ≤ exp(−κm

C2
Ω

t)∥e0∥2
L2 +

η̃2C4
Ω

κ2
m

(
1− exp(−κm

C2
Ω

t)
)
.

(43)
Hence, assuming

η̃ C2
Ω

κm
≤ ∥e0∥

leads to the result.
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