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Abstract
Background: The Data-Driven Identification method is a model-free
approach to the identification of the mechanical stress in parts sub-
ject to statically indeterminate stress states. Although the method
has been applied in many studies, no theoretical analysis of its conver-
gence has been proposed so far.
Purpose: The aim of this manuscript is to propose a first study of
the DDI properties in order to increase the confidence in the results
and guide the selection of optimal parameters.
Methods: A new formulation w.r.t. the original one is proposed in
order to expose an explicit minimization problem that is more prone
to analysis. The algebraic characteristics of the new formulation are
studied to derive properties of interest.
Results: A simple criterion for the uniqueness of the DDI estimate
is derived. In the case of elastic material behavior, an estimate of the
error on the identified stress field is proposed. These results are illus-
trated on a synthetic data set.
Conclusion: This work proposes a first analysis of the DDI and
demonstrates the ability of the method to compute a model-free esti-
mation of the stress field. The developed criteria and estimator open
the door to further developments for the improvement of the method,
the design of sample geometries loading path and extension to other
classes of material behavior.

∗License: CC-BY @Adrien Leygue
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1 Introduction
The identification of the mechanical response of materials from full field
kinematic measurements on geometrically complex samples is a rich field
where numerous numerical approaches have been proposed. This ill-posed
problem is usually regularized using a constitutive model for the material
under study. Methods such as the virtual field methods, the Finite Element
Model Updating (FEMU) method, the modified Constitutive relation error
(mcre) propose efficient settings for the identification of the model parameters
[1, 2]. The constitutive model at the core of these approaches is however also
one of the weak links. As the model must be postulated a priori, testing a
different model usually incurs high computational costs while evaluating the
relevance of a specific model can be difficult.

Alternative approaches have been proposed to circumvent these issues.
Flaschel et al. [3] have suggested the use of sparse regression techniques to
select relevant building blocks in a library of models while adjusting the pa-
rameters. Other methods, based on Machine Learning technology propose
to replace the constitutive model by a phenomenological surrogate model
that can adapt itself to the data [4, 5, 2]. Depending on the specific choice
of surrogate model, it is possible to enforce constraints on its thermody-
namic properties. This line of research is very active as the tools of artificial
intelligence mature and gradually diffuse to the computational mechanics
community.

Inspired by the Data-Driven Computational Mechanics (DDCM) method
introduced by Kirchdoerfer and Ortiz [6], the Data-Driven Identification
(DDI) [7] method is a model free method for estimating the mechanical re-
sponse of materials and the heterogeneous Cauchy stress fields on test sam-
ples. Both DDCM and DDI differ from traditional computational mechanics
as they do not account for the material behavior through a set of equations
(closed form, implicit, neural network,. . . ) but through a discrete database
of points that sample the material response in a well chosen space.

Although DDI has successfully been applied to synthetic and real data in
various settings: elasticity [7], hyperelasticity[8], elastoplasticity[9], no anal-
ysis of the method has been proposed to demonstrate that it correctly esti-
mates and converges to the mechanical stress. As a consequence its param-
eters have usually been chosen empirically possibly leading to sub-optimal
estimation or some form of over-fitting.

In this manuscript, we propose a reformulate the DDI method in a way
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that is that is more prone to its mathematical analysis. The complex opti-
mization problem lying at the core of DDI and usually solved through alter-
nated minimization is discussed. We propose a criterion for characterizing
the well posedness of the problem of upon convergence. In the case of (non-
linear) elastic behavior, we show that it is possible to derive an error bound
for the identified stress field. These results are illustrated on synthetic data.

2 DDI Formulation
In this section, we recall the original DDI as introduced in [7] using different
notations in order to ease its understanding and the subsequent analysis
proposed in this manuscript.

2.1 Formulation

The stress field σ identified with DDI is constrained to satisfy mechanical
equilibrium. In the quasi-static case, the discretized equations are linear with
respect to the stress and read:

m∑
e′=1

Dke′ · σe′ − fk = 0 ∀k ∈ 1..n . (1)

If the Finite Element method is used to discretize the problem e′ is an index
over the m quadrature points, while k is an index over the n nodes. The vec-
tors fk denote nodal forces arising from body forces or boundary conditions.
Guidelines for the robust construction of Dke and fk taking into account ex-
perimental limitations can be found in [10].
In most cases Eq.(1) is statically indeterminate, meaning it has several solu-
tions since there are more unknowns than equations. DDI uses the infinites-
imal strain field ϵ, to regularize the problem and select a particular stress
field. The strain field is assumed to be available at each quadrature point
and is usually obtained from full field kinematic measurements methods as
Digital Image Correlation (DIC).

The input data of the DDI method therefore consists of the the following:

1. the equilibrium operator Dke and associated force vector fk,

2. the strain at all quadrature points, ϵe.
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Following the Data Driven Computational Mechanics framework intro-
duced by Kirchdoerfer and Ortiz [6], the material behavior is represented by
a discrete set of ND strain(E) -stress(S) pairs called material states that sam-
ple the mechanical response of the material and are gathered into a material
database D:

D = {(Ei,Si)}i=1..ND . (2)

At each quadrature point e in the domain, the mechanical state is defined
as the strain-stress pair (ϵe,σe). It is associated to a single material state
through a m×ND binary pairing matrix Pei:

Pei ∈ {0, 1} for 1 ≤ e ≤ m and 1 ≤ i ≤ ND , (3)
ND∑
i′=1

Pei′ = 1 ∀e . (4)

The position of the single non-zero entry of line e identifies the index of
the material state associated to the mechanical state e. Inversely, the non-
zero entries of a column correspond to all the mechanical states associated
to a specific material state. The columns of matrix Pei induce a natural
partitioning of the mechanical states into ND clusters:

Ωi = {e |Pei = 1} ∀i . (5)

Since each mechanical state corresponds to a quadrature point, each Ωi can
also be viewed as a subdomain of the whole computational domain. We
assume that all Ωi are non-empty. The number of elements Ni in each cluster
is given by:

Ni = |Ωi|=
m∑

e′=1

Pe′i =
m∑

e′=1

Pe′iPe′i ∀i . (6)

The material database and the pairing matrix are used to build the ma-
terial strain field:

ϵ∗e =

ND∑
i′=1

Pei′E i′ ∀e , (7)

and the material stress field:

σ∗
e =

ND∑
i′=1

Pei′Si′ ∀e . (8)
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By construction, all material fields are constant over each Ωi.
In DDI, the mechanical stress field σe, the material database D and

the material-mechanical pairing Pei are determined from the intuition that
similar strain values should yield similar stress values. Since the material
database provides a coarse sampling of the material response the following
loss function is used for minimizing the quadratic distance between the me-
chanical and the material fields (strain and stress):

F(σe,E i,Si, Pei) =
1

2

m∑
e′=1

we′ (ϵe′ − ϵ∗e′) : C : (ϵe′ − ϵ∗e′)

+
1

2

m∑
e′=1

we′ (σe′ − σ∗
e′) : C−1 : (σe′ − σ∗

e′) , (9)

which is identical to the penalty function of DDCM [6]. The loss function F is
parametrized through we and C. The weights we were originally [6, 7] defined
as the quadrature weights but this can actually be relaxed to reflect, for
example the level of confidence in the input data. The fourth order positive
definite tensor C is a pseudo-stiffness tensor that should not be interpreted
as describing a tangent material behavior. It serves several purposes:

1. it gives the same units to all terms of Eq. (9),

2. its magnitude provides the weighting between the terms of Eq. (9)
involving the strain and the terms involving the stress,

3. it provides a weighting between the different components of the strain
and stress tensors to go beyond the 2-norm.

In several studies [10, 11] C was simply taken as the identity tensor.
Finally, DDI can be written as the following equilibrium-constrained min-
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imization problem:

{σe,E i,Si, Pei} = argminF(σ′
e,E ′

i,S ′
i, P

′
ei)

with,

ϵ∗e =

ND∑
i′=1

Pei′E i′ ∀e ,

σ∗
e =

ND∑
i′=1

Pei′Si′ ∀e ,

m∑
e′=1

Dke′ · σe′ − fk = 0 ∀k .

The parameters of the method are: the scalar ND, the fourth order tensor C
and the scalar weights we.

2.2 Solution

The above problem contains both real valued unknowns ({σe,E i,Si}) and
discrete valued unknowns (Pei). As shown by Kanno [12], the minimization
of DDCM problems, for which the material database D is known falls into the
Mixed Integer Quadratic Programming (MIQP) problem class. In the case of
DDI this is no longer the case since both Pei and Si are unknown. The loss
function therefore involves the square of the product of unknowns. As the
pairing matrix is binary the combinatorial nature of the problem remains.
The main consequence is that for almost all large enough problems, the
global minimum cannot be efficiently computed and heuristics are doomed
to converge to local minima. In DDI as in DDCM the minimization is carried
out by alternatively performing the minimization with respect to the discrete
valued variables and real valued variables, until a fixed point is reached. Each
step is detailed below.

The minimization over Pei for given {σe,E i,Si} is carried out indepen-
dently for each e:

Pei = δii∗ ∀e , (10)
with, (11)

i∗ = argmin
i′

(ϵe − E i′) : C : (ϵe − E i′) + (σe − Si′) : C−1 : (σe − Si′) .
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This amounts to pairing each mechanical state with the closest database
point according to the metric defined by C.

The minimization over {σe,E i,Si} for a given pairing Pei is carried out
in two steps. First over the material database {E i,Si}, and the result is then
substituted for the minimization over the mechanical stress σe. Stationarity
conditions with respect to the material database write:

E i =
1

Wi

∑
e′

Pe′iwe′ϵe′ ∀i , (12)

and,

Si =
1

Wi

∑
e′

Pe′iwe′σe′ ∀i , (13)

with
Wi =

∑
e′

Pe′iwe′ ∀i . (14)

These simply define the material database strain (resp. stress) as the we-
weighted average of the mechanical strain (resp. stress) over each cluster,
independently of the tensor C. Equation (13) can be substituted into (8) to
eliminate Si in the definition of the material stress field:

σ∗
e =

∑
i′

Pei′Si′ =
∑
a′

Mea′σa′ ∀e , (15)

with the matrix Mea defined as:

Mea =
∑
i

1

Wi

PeiPaiwa ∀e, a . (16)

The material stress field is thus directly expressed as constant over each
cluster and equal to the we-weighted cluster average of the mechanical stress
field.

Defining the matrix Hea as:

Hea =
∑
e′

(Iee′ −Mee′)we′(Ie′a −Me′a) ∀e, a , (17)

the material database {(Ei,Si)}i=1..ND can be eliminated from loss function
expression (9):

F(σe, Pei) =
1

2

∑
e′,a′

He′a′ϵe′ : C : ϵa′ +
1

2

∑
e′,a′

He′a′σe′ : C−1 : σa′ . (18)
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In the above expression, the matrix He,a implicitly depends on the pairing
Pei. For a given pairing defined through Pei, the mechanical stress field σe is
the solution of the following problem:

σe = argmin
∑
e′a′

He′a′σe′ : C−1 : σa′ , (19)

with∑
e′

Dke′ · σe′ = fk ∀k ∈ 1..n . (20)

A possible strategy for computing the DDI solution through alternated
minimization is:

1. Estimate the mechanical stress σe in any reasonable way.

2. Initialize Pei through a we-weighted k-means clustering in the C-norm
applied to the mechanical states (ϵe,σe).

3. Update the mechanical stress σe through Eqs. (19,20).

4. Update the material database through Eqs. (12,13).

5. Update the pairing Pei through Eq. (10).

6. Iterate 3-5 until convergence.

The use of k-means at the initialisation stage is not fortuitous since steps 4-5
actually corresponds to a weighted k-means iteration applied to the current
estimate of mechanical states (ϵe,σe). For elastic behaviors, as σe is a func-
tion of ϵe, it is reasonable to assume that the pairing Pei can be determined
a priori from the strain data only. The solution strategy becomes:

1. Initialize Pei through a we-weighted k-means clustering in the C-norm
applied to the mechanical strain ϵe.

2. Compute the mechanical stress σe through Eqs. (19,20).

3. Compute the material database through Eqs. (12,13).

In case the experimental data consists of different loading scenarios ap-
plied to one or several samples, all the above analysis remain valid provided
that the indices corresponding to quadrature points (e.g. e) and nodes (e.g.
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k in Eq. (1) ) are extended. They should no longer be limited to a sin-
gle computational mesh but become an indices over all meshes at all times.
The number of unknowns might however become very large and dedicated
iterative methods should be used to solve Eqs. (19,20).

3 Analysis

3.1 Some properties of P, M, H

In this section we discuss some properties of the matrices defined in the pre-
vious section and establish some results used in latter sections. We introduce
the following vectors:

v(i)e = 1 if e ∈ Ωi , i ∈ 1..ND (21)
= 0 otherwise, (22)

and

u(i)
a =

wa

Wi

if a ∈ Ωi , i ∈ 1..ND (23)

= 0 otherwise. (24)

For each cluster Ωi, v
(i)
e is constant over the cluster and corresponds to the

ith column of Pei. It is also a right eigenvector of Mea. The vector u
(i)
a

corresponds to the normalized weights of the cluster. As the intersection of
the different clusters is empty the vectors v

(i)
e (resp. u

(i)
a ) are orthogonal to

each other. The matrix Iea −Mea introduced in section 2 can be rewritten
as:

Iea −Mea = Iea −
ND∑
i′

v(i
′)

e u(i′)
a ∀e, a , (25)

and appears therefore as a deflation of the Identity. Its has ND zero right-
eigenvalues and v

(i)
e are the eigenvectors associated to the zero eigenvalues;

the other right-eigenvalues are 1. The matrix Hea also introduced in section
2 has therefore ND zero eigenvalues and is not strictly positive definite. The
vectors v(i)e (or equivalently the columns of Pei ) provide an orthogonal basis
for its nullspace. We can further define the two semi-norms:

||(ϵe′)e′ ||2HC =
∑

e′,a′ He′a′ϵe′ : C : ϵa′ , (26)

||(σe′)e′||2HC−1 =
∑

e′,a′ He′a′σe′ : C−1 : σa′ , (27)
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from which we get a compact expression of the DDI loss function as:

F(σe, P ) =
1

2
||(ϵe′)e′||2HC+

1

2
||(σe′)e′ ||2HC−1 . (28)

3.2 On the true stresses

In this section we derive, for a given clustering, two intuitively obvious results
concerning the stress field in the case of purely elastic material behaviors.
If the local stress is a function σ̂(ϵ) of the local strain only, the following
first order approximation of the stress at the cluster average strain can be
assumed:

σ̂(ϵe) = σ̂e = σ̂(ϵ∗e) +
∂σ̂

∂ϵ

∣∣∣∣
ϵ=ϵ∗e

: (ϵe − ϵ∗e) ∀e (29)

We furthermore assume that the largest eigenvalue of ∂σ̂
∂ϵ

∣∣
ϵ=Ei

can be bounded
by a constant K

By taking the cluster average of the above and since all starred quantities
are constant per cluster and equal to the we-weighted cluster average of the
corresponding un-starred quantities we have:

σ̂(E i) =
1

Wi

∑
e′∈Ωi

we′σ̂e′ ∀i . (30)

It is therefore consistent to define the true material stress database entry
Ŝi either as the constitutive equation applied to the corresponding material
strain database entry E i or as the cluster average of the true stress field σ̂e.

Ŝi = σ̂(E i) =
1

Wi

∑
e′∈Ωi

we′σ̂e′ ∀i . (31)

The true material stress field σ̂∗
e is then defined as:

σ̂∗
e =

∑
i′

Pei′Ŝi′ ∀e , (32)

which yields the following bound:

||(σ̂e′)e′||2HC−1≤
K2

λ2
C
||(ϵe′)e′ ||2HC , (33)

where λC is the smallest eigenvalue of C.
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3.3 Existence and uniqueness of the solution

In view of the combinatorial nature of the problem addressed by DDI, many
solutions corresponding to local minima exist. In the context of the alter-
nated minimization scheme introduced in section 2.2 we discuss in this section
and uniqueness of solutions to Eqs. (19,20) upon stagnation of the alternated
minimization, when Pei is fixed.

Since the mechanical equilibrium problem described through Eq. (1)
is statically indeterminate, several statically admissible stress fields exists,
which are potential DDI solutions. The difference between any two of those
potential solutions lies in the nullspace of Dje. Should there exist multi-
ple solutions, all must satisfy mechanical equilibrium and achieve the same
value for the loss function. Since Hea is positive semi-definite, uniqueness is
achieved when the intersection of the nullspace of Dje and the nullspace of
HeaC−1 reduces to the origin. This result can also be easily derived from the
stationarity conditions of Eqs. (19,20).

Since the nullspace of Hea is of dimension ND, the nullspace of HeaC−1

grows proportionally to ND. There is therefore a limit to the size of the
database beyond which the solution ceases to be unique. The actual maximal
value of ND is however difficult to compute since it strongly depends on the
clustering details. In the limit case of ND = m clusters, each associated to a
single quadrature point, the matrix Hea actually becomes all zeros and the
nullspace of HeaC−1 is the entire stress space.

It is convenient to investigate the nullspace of Dje, through the columns of
Pei as they provide a basis of the nullspace of Hea. We consider the following
operator:

Ski =
∑
e′

Dke′Pe′i ∀k, i . (34)

For a given pairing, Eqs. (19,20) have a unique solution if and only if the
nullspace of Ski is of dimension zero, or equivalently if its 3n (2n in 2D)
leading singular values are non-zero. In this form we see that the uniqueness
does not explicitly depend on C but only indirectly through the clustering
it generates. The operator Ski defined above can be interpreted as the equi-
librium matrix condensed over the clusters, i.e. where all the stress values
belonging to the same cluster are constrained to the same value. The DDI
solution is therefore unique if and only if there is no stress field that is at
the same time self-balanced (i.e. in the nullspace of Dje) and constant per
cluster (i.e. in the nullspace of HeaC−1).
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3.4 Stress identification error

In this section, we discuss the capacity of the DDI to correctly approximate
the true (unknown) stress field and in the case of elastic behavior we provide
a bound for the error on the mechanical stress field defined as:

E2
σ =

∑
e′

||(σe′ − σ̂e′)||22 = ||(σe′ − σ̂e′)e′ ||22 . (35)

Since both σe and σ̂e are statically admissible stress fields, their difference
belongs to the nullspace of Dke. As Eq. (27) defines a semi-norm, it satisfies
the triangular identity which yields:

||(σe′)e′ ||HC−1+||(σ̂e′)e′||HC−1≥ ||(σe′ − σ̂e′)e′ ||HC−1≥ λ||(σe′ − σ̂e′)e′||2 ,

where λ2 is the smallest eigenvalue of HeaC−1 over the nullspace of Dke.
Under the uniqueness assumptions discussed in the previous section, the
nullspaces of HeaC−1 and Dke only intersect at the origin, making λ strictly
positive. The bound on Eσ reads:

Eσ = ||(σe′ − σ̂e′)e′||2≤
1

λ
(||(σe′)e′ ||HC−1+||(σ̂e′)e′||HC−1) . (36)

This can be further particularized in the case of elastic material behavior as:

Eσ = ||(σe′ − σ̂e′)e′ ||2≤
1

λ

(
||(σe′)e′ ||HC−1+

K

λC
||(ϵe′)e′||HC

)
. (37)

In the above equations (36,37) the 1/λ factor shows that when the problem
degenerates and λ goes to zero, the proposed error bounds actually diverge.
For a finite value of λ:

• In the case of anelastic material behavior, Eq.(36) suggests that the
stress estimate is good as long as the stress σ̂e does not deviate too
much from its mean value within each cluster. This should for example
be the case for elastoplastic material behaviors subject to monotonous
loadings. An enhanced constitutive space that accounts for strain,
stress and their increment over a small time interval has been used
in the work of Vinel et al. [9] to promote this idea.

• In the case of an elastic material behavior, Eq.(37) shows that the error
on the estimated stress field should decrease with the DDI loss function.
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3.5 Numerical test

In this section, we illustrate quantitatively and discuss the previous results
synthetic data. The data is generated by computing the finite element re-
sponse of a sample depicted in Fig. 1 subject to a 10% strain in the vertical
direction assuming infinitesimal strain and plane stress. The FE mesh com-
prises 4866 nodes and 9204 elements. The material is assumed incompress-
ible, with the following strain stress relation:

σ̂(ϵ) = −pI+ 2G(1 + αdev(ϵ) : dev(ϵ))dev(ϵ) , (38)

where dev(ϵ) is the deviatoric part of ϵ. The parameter α controls the
non-linear response and is arbitrarily selected as α = 3.

Figure 1: Computational mesh used for generating the synthetic data and
performing the DDI. The bold lines represent the contour of the deformed
configuration

For the DDI, we selected the parameter C is selected as:

C =
∂σ̂

∂ϵ

∣∣∣∣
ϵ=0

,

and we are set to the mesh quadrature weights. The DDI is carried out
for different values of ND ranging from 10 to 1000. For each value of ND,
the pairing matrix Pei is computed a priori from a we-weighted k-means
clustering performed on the strain only.
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The largest ND value for which the uniqueness criterion is satisfied is
ND = 370, yielding an average cluster size of 24.9. This criterion can be
evaluated from the clustering only. The actual DDI solution can then be
computed using any appropriate minimization technique.

The estimated DDI mechanical stress is depicted in Fig. 2. The density
of states is the plotted in the dev(ϵ) − dev(σ) space providing a simple vi-
sualization where the colorscale represents the logarithm of the mechanical
state density. The underlying constitutive model is represented by the con-
tinuous line. We observe a good agreement between the DDI predictions and
constitutive model used to generate the data. As can be expected, the agree-
ment is better where the density of states is higher. In Fig. 3 we compare

0 0.1 0.2 0.3 0.4

jjdev(0)jj2

0

0.2

0.4

0.6

0.8

1

1.2

jjd
ev
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)jj

2
=G

-3.5

-3

-2.5

-2

Figure 2: Comparison the estimated mechanical stress with the constitutive
model (plain line) in the dev(ϵ) − dev(σ) space. The colorscale represents
the logarithm of the density of mechanical states.

the identified material database with the material model. Database points
associated to clusters of less than 4 mechanical states are represented with +.
Less dispersion is observed for the material database as it averages the error
of each cluster. The analysis of this increased accuracy and the derivation
of an improved error estimator is however beyond the scope of the present
work.

In Fig. 4 the relative error of DDI estimation of the mechanical stress is
depicted as a function of ND when the uniqueness condition holds together
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Figure 3: Comparison the identified material database (symbols) with the
constitutive model (plain line) in the dev(ϵ) − dev(σ) space. The points
associated to clusters of less than 4 elements are depicted using + symbols.

with its estimation obtained from Eq. (37). When computing the error
estimator we selected K as twice the largest eigenvalue of C. The actual
error on the estimated stress scales like ∼ N−0.3

D , eventually reaching a value
of about 5%. On the other hand, the error estimator decreases much faster:
∼ N−0.5

D but its convergence is eventually limited as the uniqueness criterion
is no longer satisfied for large ND. The estimated relative error is nevertheless
more than one order of magnitude larger than the actual value. This is no
surprise in view of the rather conservative bounds provided by the triangular
inequality and the eigenvalue identities used in its derivation.

4 Conclusions and perspectives
In this paper we have presented a clear mathematical formulation of the
DDI method. In particular this reformulation exposes that, unlike DDCM,
the minimization problem at hand is not a mixed integer quadratic program-
ming problem since both the pairing matrix P and the material database
are unknown. The convergence of the alternated minimization heuristics is
therefore still an open issue.
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Figure 4: Comparison of the relative error on the estimated stress with its
estimate derived from Eq.(37) as a function of the material database size ND.

For a given pairing or upon convergence (i.e. stagnation of the minimiza-
tion heuristic) it is possible to assess the uniqueness of the solution through
an eigenvalue analysis for which we have provided a simple interpretation.
The DDI solution is unique only if it is impossible to build a self balanced
material stress field. This criterion is independent of the value of the metric
parameter C and provides a way of selecting the an appropriate database
size ND. Furthermore, when the uniqueness criterion holds, it is possible to
derive a simple error bound on the identified mechanical stress in the case of
elastic behaviors.

These results have been tested on synthetic data where the convergence
with respect to the size of the material database has been observed. This
convergence is stopped for large database for which the solution ceases to be
unique. The too fine clustering does not provide enough regularization to
the stress estimation problem.

The development of uniqueness and convergence criteria opens the door
to the optimization of several aspects of the method.

• Having a better characterization of the degeneracy of the DDI regular-
ization allows for the development of additional regularization terms
on the mechanical stress to allow, for a fixed data set the identification
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of larger material databases.

• In the current formulation, the clustering only aims at making com-
pact clusters. The proposed error bound the uniqueness criteria show
that there is actually a tight connection between the pairing matrix Pei

and the equilibrium operator Dke. This suggests that it might be pos-
sible to drive the clustering to postpone degeneracy and improve the
error bound, for example by maximizing λ2, the smallest eigenvalue of
HeaC−1 over the nullspace of Dke.

• The same idea can also be applied to design of loading path and sample
geometries through topology optimization.

• In the case of non elastic materials, the proposed error bound suggests
that it is possible to have good stress estimates as long as the real
(unknown) stress within each cluster do not deviate much from its
mean. This can be achieved by introducing a clustering based on the
strain history on or other a priori knowledge to extend the scope of the
present analysis.
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