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Abstract

While most individuals suffer progressive disease following HIV infection, a small fraction

spontaneously controls the infection. Although CD8 T-cells have been implicated in this nat-

ural control, their mechanistic roles are yet to be established. Here, we combined mathemat-

ical modeling and analysis of previously published data from 16 SIV-infected macaques, of

which 12 were natural controllers, to elucidate the role of CD8 T-cells in natural control. For

each macaque, we considered, in addition to the canonical in vivo plasma viral load and SIV

DNA data, longitudinal ex vivo measurements of the virus suppressive capacity of CD8 T-

cells. Available mathematical models do not allow analysis of such combined in vivo-ex vivo

datasets. We explicitly modeled the ex vivo assay, derived analytical approximations that

link the ex vivo measurements with the in vivo effector function of CD8-T cells, and inte-

grated them with an in vivo model of virus dynamics, thus developing a new learning frame-

work that enabled the analysis. Our model fit the data well and estimated the recruitment

rate and/or maximal killing rate of CD8 T-cells to be up to 2-fold higher in controllers than

non-controllers (p = 0.013). Importantly, the cumulative suppressive capacity of CD8 T-cells

over the first 4–6 weeks of infection was associated with virus control (Spearman’s ρ =

-0.51; p = 0.05). Thus, our analysis identified the early cumulative suppressive capacity of

CD8 T-cells as a predictor of natural control. Furthermore, simulating a large virtual popula-

tion, our model quantified the minimum capacity of this early CD8 T-cell response necessary

for long-term control. Our study presents new, quantitative insights into the role of CD8 T-

cells in the natural control of HIV infection and has implications for remission strategies.
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Author summary

HIV infection results in progressive disease culminating in AIDS in most individuals if

left untreated. A rare set of individuals, called natural controllers, however, can control

the virus without treatment. Understanding what underlies such control may help devise

strategies to elicit it in non-controllers. A challenge has been the limited understanding of

the mechanistic role of CD8 T-cells. Here, using new mathematical modeling which

enabled simultaneous analysis of in vivo and ex vivo longitudinal data from macaques

infected with SIV, we identified the cumulative infection suppressive capacity of CD8 T-

cells early in infection (4–6 weeks) as a measurable correlate of control in the chronic

phase of the infection. This cumulative suppressive capacity was significantly higher in

controllers than non-controllers, attributed by our model to superior CD8 T-cell recruit-

ment rate and/or maximal killing rate in the controllers. Our study quantifies the role of

CD8 T-cells in the natural control of SIV and has implications for interventions targeting

long-term HIV remission.

Introduction

Antiretroviral therapy (ART) suppresses viremia in individuals with HIV and arrests progres-

sion to AIDS but does not eradicate the virus [1]. Stopping treatment even after years of HIV

control under ART typically results in viral recrudescence and disease progression. ART must

therefore be administered lifelong. Enormous efforts are underway to devise interventions that

could elicit long-term virus control following short-term drug exposure [2–5]. These efforts

are inspired by the rare individuals, termed ‘natural controllers,’ who control viremia without

any intervention [6].

Efforts to identify the determinants of natural control, in humans and non-human pri-

mates, point to the crucial role of CD8 T-cells in establishing such control. Natural controllers

have an over-representation of the protective major histocompatibility complex (MHC) class-I

haplotypes, like B*57 and B*27, which appear to facilitate strong, cross-reactive CD8 T-cell

responses to HIV [7–9]. Natural controllers tend to have a higher frequency of polyfunctional

[9,10] and Gag-specific [11, 12] CD8 T-cells and exhibit lower levels of CD8 T-cell exhaustion

[13] than non-controllers. Furthermore, memory-like CD8 T-cells were reported to develop

early after infection in controllers [14], which may confer protective immunity. Conversely,

suboptimal CD8 T-cell responses were correlated with impaired virus control [13,15,16].

Despite this substantial evidence, the processes determining CD8 T-cell response kinetics

that underlie natural control are yet to be clearly elucidated. This is possibly because most

studies offer either a static snapshot or a qualitative measure of the CD8 T-cell response,

whereas the CD8 T-cell response is dynamic and influences disease outcome by its quality as

well as magnitude [17]. Indeed, the frequency of the CD8 T-cells alone was found not to be a

reliable indicator of natural control [10,14,18].

In an effort to characterize the CD8 T-cell response more comprehensively, an ex vivo assay

was developed some years ago [19] and has since been employed in multiple studies on HIV

and SIV infections [9,11,14,20–24]. The assay measures the capacity of the CD8 T-cells drawn

from an individual to suppress the viral load in a culture of autologous target CD4 T-cells

exposed to the virus. This ‘suppressive capacity’ is thus a composite measure of the quality and

the quantity of the CD8 T-cells. Furthermore, longitudinal measurements of the suppressive

capacity provide a dynamic measure of the CD8 T-cell response during infection and hold
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promise of elucidating its mechanistic underpinnings in natural control. Because of the com-

plex, nonlinear interactions between CD8 T-cells and antigen, however, identifying character-

istics of the CD8 T-cell response associated with virus control would require analysis of the

suppressive capacity measurements simultaneously with measurements of plasma viral load

and other markers of disease state, such as the frequency of infected cells. Available mathemat-

ical models of virus dynamics have yielded profound insights into long-term HIV/SIV control

[8,25–28] but are incapable of this analysis. The challenge arises from the multiscale and com-

bined in vivo-ex vivo nature of the dataset, which current models cannot handle. Here, we

developed a new mathematical model that enables this analysis. We made conceptual advances

based on which our model not only described the suppressive capacity measurements but also

explicitly incorporated the influence of the suppressive capacity on in vivo virus dynamics,

enabling learning in vivo effector responses. We applied the model to analyze published data

from an SIV-cynomolgus macaque model [14], which showed robust maturation of virus-spe-

cific CD8 T-cell responses in natural controllers. We found that the cumulative CD8 T-cell

suppressive capacity early in the infection was a correlate of natural control at later stages.

Results

Model integrating ex vivo CD8 T-cell suppressive capacity with in vivo
virus dynamics

We developed our model in three stages (Methods): First, we modeled virus dynamics in the

ex vivo cultures, quantifying the CD8 T-cell suppressive capacity (S1 Fig). Second, we derived

analytical expressions from the ex vivo model that linked the suppressive capacity with the kill-

ing rate of infected cells by CD8 T-cells. Third, we integrated the analytical expressions into a

model of in vivo virus dynamics, thereby constructing a unified framework capable of simulta-

neously predicting and hence fitting the measured in vivo and ex vivo quantities. We tested

variants of the in vivo model using a formal model building strategy (S1 Text and S2 –S10 Figs

and S1–S10 Tables) to identify the best model (Methods). The following equations describe

the resulting model (Fig 1)

ðTarget cellsÞ
dT
dt
¼ l � bTV � dTT ð1Þ

Productively

infected cells

 !
dI
dt
¼ ð1 � fDÞbTV � kEI � dII ð2Þ

Non-productively

infected cells

 !
dD
dt
¼ fDbTV � dDD ð3Þ

ðViremiaÞ
dV
dt
¼ pI � dVV ð4Þ

Effector

CD8 T-cells

 !
dE
dt
¼ lE þ aEE

I
yE þ I

� dEE ð5Þ

ðKilling rateÞ
dk
dt
¼ o kf � k

� �
ð6Þ
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Fig 1. Schematic of the mathematical model. (A) Model of the ex vivo assay. The events in the ex vivo cultures (left) leading to the

dynamics (right) and the reported suppressive capacity (S) as the difference in the antigen load in the cultures with and without CD8 T-

cells. The model enables prediction of S and hence analysis of its longitudinal measurements along with in vivo measurements such as

viremia (bottom), when integrated in a model of in vivo dynamics. (B) Model of in vivo dynamics. The events driving in vivo infection

contained in our model, including the CD8 T-cell suppressive capacity reflected in the effector response (yellow arrow), linking the ex
vivo and in vivo datasets (Methods).

https://doi.org/10.1371/journal.pcbi.1012434.g001
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Suppressive

capacity

 !

SðsÞ ¼ log
10

V̂ 0; tmaxð Þ
� �

� log
10

V̂ s; tmaxð Þ
� �

ð7Þ

Ex vivo

antigen load

 !

V̂ ðs; tÞ ¼
V̂ 0e�

tðsþdþrÞ

2

2a
sþ d � rþ að Þe� ta2 þ r � s � dþ að Þeta2

� �
ð8Þ

Time to peak

antigen load

 !

tmax ¼
2

an � r
ln

an

V̂ 0b̂

rþ an

r � an
ln

rd

ð1 � f Þb̂�T̂ 0

 !" #

ð9Þ

Ex vivo

effector response

 !

s ¼ kĈ0

E
C0

� �

ð10Þ

where a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþ d � rÞ
2
þ 4ð1 � f Þb̂T̂ 0�

q

and an ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 4ð1 � f Þb̂T̂ 0�

q

.

Here, uninfected CD4 T-cells, T, are recruited at the rate λ and die at the rate dTT. They get

infected by free virions in plasma, V, at the rate βTV. Because infected cell numbers are typically

proportional to the viral load (see below), the latter infection rate subsumes cell-cell transmis-

sion [29, 30]. A fraction fD of these infections results in non-productively infected cells, D,

which do not produce virions. Over 95% of these cells are estimated to be abortively infected

and quickly die due to pyroptosis [31, 32].The remaining are long-lived latently infected cells

with defective or intact but silent proviruses. In an untreated infection, the contribution to vire-

mia from the reactivation of the latent reservoir is small. For simplicity, we therefore did not

consider the latent reservoir separately and neglected the potential reinfection of non-produc-

tively infected cells. The remaining fraction, 1−fD, results in productively infected cells, I, which

produce virions at the rate pI. The productively infected cells die due to virus-induced cyto-

pathicity at the rate dII or due to killing by virus-specific CD8 T-cells, E, at the rate kEI. Free

virions are cleared at the rate dVV. The cells E are produced at the rate λE and die at the rate

dEE. They proliferate with the rate constant αE and display a saturating dependence on the anti-

gen level for activation, with θE the half-maximal saturation constant. The killing rate constant,

k, depends on the quality of the effector response. For a given effector population E, a more

focused effector response would imply a higher k. k can thus vary with time due to clonal expan-

sion, memory recall, exhaustion, and/or viral evolution [14, 33–35]. Immune escape and

exhaustion may cause k to decline. With time, the rate of escape slows down as the breadth of

the immune response increases [36–41]. On the other hand, the ability to recognize new viral

epitopes in chronic infection not recognized in primary infection [36, 37, 42–44] can increase k
with time. Here, we developed an empirical equation to capture these expected patterns of the

evolution of k. Accordingly, k evolves exponentially from an initial value, ki, and saturates at kf,

with the changes occurring over the timescale 1⁄ω. We tested the various patterns (see below)

and found that an increasing k starting from ki = 0 yielded the best fits. CD8 T-cells can also

have non-cytolytic effects on infected cells [45, 46]. We considered those effects too (see below),

but found that the model above explained the data best (S1 Table).

S is the suppressive capacity measured using the ex vivo assay. In the experiments, it is esti-

mated as the difference between the antigen load in the CD4 T-cell cultures exposed to the

virus in the absence, V̂ ð0; tÞ, and presence, V̂ ðs; tÞ, of CD8 T-cells, measured at the time τmax

when the antigen load peaks in the former culture [19]. At any time t during the in vivo
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infection, S is estimated based on the CD4 and CD8 T-cells drawn from the infected macaque

at the time t for the ex vivo assays. S is determined to be a function of σ, the elimination rate of

infected cells in culture due to CD8 T-cells. σ is thus the product of the killing rate constant k
and the population of CD8 T-cells employed in the assay that are virus-specific. Ĉ0 is the total

population of CD8 T-cells in the assay, of which the fraction E/C0 is virus-specific, where C0 is

the total CD8 T-cell concentration in the host. σ thus links the ex vivo observations with the in
vivo dynamics. We assumed k to be the same ex vivo and in vivo. Where it has differed in the

two settings, factors like prolonged TCR stimulation using viral peptides, isolation of CD8 T-

cell clones, and unphysiological effector-to-target cell ratios have been implicated [47–49]. The

suppressive capacity assay uses unstimulated CD8 T-cells, does not choose specific clones, and

measures their responses to autologous CD4 T-cells instead of viral peptides, rendering it a

close mimic of the scenario in vivo [19] and justifying our assumption. The other parameters

in the expressions for V̂ ðs; tÞ and τmax are associated with the ex vivo assay (S7 Table) and are

described in the Methods along with a detailed derivation of the expressions for S,

V̂ ðs; tÞ(Methods) and τmax (S2 Text).

The above model offered the unified framework necessary for the simultaneous analysis of

longitudinal in vivo measures of viral dynamics and ex vivo CD8 T-cell suppressive capacity.

We applied the model to the analysis of data from SIV-infected macaques.

Model recapitulated dynamics of all the markers

We considered longitudinal data of plasma viremia, SIV DNA levels and CD8 T-cell suppres-

sive capacity from 16 cynomolgus macaques infected with SIV (Methods). We fit our model to

the data using a nonlinear mixed effects approach (Methods). Our model provided excellent

fits to the data (Figs 2 and S10). The estimated population parameters for the best-fit model

are in Table 1, and the individual macaque parameters are in S10 Table. The parameter esti-

mates were consistent with previous reports, where available (see Discussion). All the measure-

ments, in vivo and ex vivo, were thus recapitulated by our model.

Controllers in the experiment were identified as macaques that brought the viral load below

400 copies mL-1 after the primary infection phase (~3 months post-exposure) and maintained

it below this limit throughout [14] (Methods). By this definition, the dataset had 12 controllers

and 4 progressors (or non-controllers). Our model fits yielded set-point viral loads above 400

copies mL-1 in the four progressors and below 400 copies mL-1 in all controllers, consistent

with the experimental observations. Sensitivity analysis showed that these predictions were

robust to parameter variations (S11 Fig). We also fit models with three variants of the equation

for k: constant (dk/dt = 0) (S6 Fig and S6 Table), decreasing with time (k(0) = ki> kf in Eq (6))

(S7 Fig and S7 Table), and initially rising and then falling to a plateau

(k ¼ k1 1 � e� o1tð Þ � k2 1 � e� o2tð Þ)(S8 Fig and S8 Table). We found that the increasing form

explained the data best (S1 Table). We also considered non-cytolytic effects of CD8 T-cells and

found that the present data best supported a model that did not explicitly incorporate them

(S1 Text and S9 Fig and S9 Table). Using our best-fit model and parameter estimates, we

assessed next the differences between controllers and progressors, focusing on CD8 T-cell

responses.

CD8 T-cell responses had greater antiviral capacity in controllers than

progressors

Comparing best-fit parameter estimates, we found that controllers had a significantly higher

recruitment rate and/or maximal killing rate of CD8 T-cells, contained in the composite
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Fig 2. Model fits longitudinal in vivo virological and ex vivo suppressive capacity data. Model predictions (lines) from simultaneous fitting of the best-fit model

(Methods) to all the three datasets (symbols), namely, viremia (left panels), SIV DNA (middle panels) and suppressive capacity (right panels). Macaques

highlighted in red were progressors while those in black were controllers. The dashed line in the left panels indicates 400 copies mL-1. Open symbols are below the

limit of detection. The predictions for the remaining 12 macaques are presented in S10 Fig. The resulting population parameter estimates are in Table 1 and

individual parameter estimates are in S10 Table.

https://doi.org/10.1371/journal.pcbi.1012434.g002
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parameter l
∗
E ¼ lEkf , than progressors (Fig 3A). (We estimated the composite parameter l

∗
E ¼

lEkf because kf was not independently identifiable; see Methods for details.) Specifically, the

median value of l
∗
E was 1.65 d-2 in controllers and 0.86 d-2 in progressors, implying a nearly

2-fold enhancement in controllers (p = 0.013). Controllers also had a higher antigen-induced

proliferation rate of CD8 T-cells (αE), although the latter difference was not significant (Fig

3B). Thus, the CD8 T-cell response seemed more robust in controllers. The controllers, also,

interestingly, had a lower value of the ratio of viral production and clearance rates, γ(S12 Fig),

possibly due to innate immune responses or other cytokine-mediated effects which curtail

viral production [14]. The other parameters were not significantly different between the

groups (S12 Fig). Here, our aim was to assess whether CD8 T-cell responses would yield a cor-

relate of natural control, notwithstanding other factors. We therefore focused on the

Table 1. Population parameter estimates for the best-fit model. Estimates of the parameters from fitting the best-fit

model (model #1, S1 Table) to the macaque data (Fig 2). Percent standard errors are in parentheses. dI, θE, and dE were

fixed based on previous studies (Methods). Random effects for log10 β’ and log10 T(0) were removed as they were esti-

mated to be below 0.1 (Methods).

Parameter (Units) Fixed effect Random effect

λ(cells mL-1 d-1) 352.70 (35.7) 1.32 (20.1)

log10 β’ (log mL cells-1 d-1) -2.84 (0.52) -

fD 0.93 (0.61) 0.17 (19.7)

log
10
l
∗
E(log d-2) 0.15 (53) 0.25 (45.5)

dI (d-1) 0.10 -

dD (d-1) 6.9×10−2 (27) 0.69 (26.6)

γ (cells-1) 427.65 (25.7) 0.66 (32.1)

αE (d-1) 0.63 (14.9) 0.20 (71.5)

θE (cells mL-1) 0.10 -

dE (d-1) 1.00 -

log10 ω(log d-1) -2.50 (6.38) 0.47 (24.2)

log10T(0) (log cells mL-1) 4.21 (0.39) -

https://doi.org/10.1371/journal.pcbi.1012434.t001

Fig 3. Natural controllers elicit stronger CD8 T-cell responses than progressors. Best-fit model predictions (Fig 2) showed a higher (A) recruitment/killing rate

and (B) antigen-induced proliferation rate of CD8 T-cells in controllers (gray) compared to non-controllers (red). Each symbol represents a macaque and the bar is

the median. (C) Predictions using the best-fit parameters showed higher suppressive capacity in controllers than non-controllers. * indicates p = 0.04 at the last time

point using a Mann-Whitney U test.

https://doi.org/10.1371/journal.pcbi.1012434.g003
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differences in l
∗
E and αE, which would manifest as a difference in the suppressive capacity of

the CD8 T-cells. Using the best-fit parameter estimates, we predicted the early time-course of

the suppressive capacity, S for all the macaques and found that the predicted S was significantly

higher at day 28 in the controllers than progressors (Fig 3C). This suggested that the early sup-

pressive capacity of the CD8 T-cells could be a predictor of natural control. We evaluated this

possibility next.

Cumulative antiviral capacity of the early CD8 T-cell response was

correlated with viral control

By sampling parameter values from the distributions obtained in our fits above (Methods), we

generated a virtual population of 105 macaques and simulated the progression of SIV infection

in each using our model (Fig 4A and 4B). We found that the range of set-point viral loads real-

ized (100–106 copies mL-1) was consistent with the range observed in individuals with HIV

[50]. For each virtual macaque, we computed the time-averaged area-under-the-curve of S
over the first 28 days of infection, which we denoted S28. We found, interestingly, that S28 was

inversely correlated with the set-point viral load (Fig 4C). Thus, early CD8 T-cell responses

with greater antiviral capacity were associated with lower set-point viral loads. Using data of

the set-point viral loads from the 16 macaques above and the corresponding best-fit

Fig 4. Early cumulative suppressive capacity is a marker of natural control. Dynamics of (A) viremia and (B) suppressive capacity predicted for virtual

patients using our best-fit model. Trajectories for fifty controllers and fifty progressors are shown. Black dashed line indicates 400 copies mL-1. Correlation

between set-point viral load and cumulative suppressive capacity S28 (see text) for (C) 100000 simulated individuals and (D) the 16 macaques studied. The

black curve in (C) is a LOESS regression curve to visualize the inverse correlation. (E) The fraction of virtual individuals achieving control (gray bars) or

experiencing progressive disease (red bars) as a function of S28. Each bar has of width 0.1 units of S28. The black curve is a fit of the estimated fractions to a

first-order Hill function (Methods). The blue line represents the minimum S28 for>95% controllers, with control defined as set-point viral load<400

copies mL-1. Spearman’s ρ was calculated for assessing the correlations.

https://doi.org/10.1371/journal.pcbi.1012434.g004
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predictions of S, we found that the above correlation held also in the macaques we studied (Fig

4D). Thus, the cumulative antiviral capacity of the early CD8 T-cell response was a correlate of

viremic control.

A model that did not incorporate the suppressive capacity measurements (S1 and S13

Tables) could fit viral load data well (S13 and S14 Figs), as is the case with available models [26,

27, 51], but could not distinguish between the CD8 T-cell responses in controllers and progres-

sors (S15A Fig) and, therefore, could not identify the above correlate (S15B Fig). Since the

model was not constrained by any information about the CD8 T-cell function, the per-capita

antigen-dependent proliferation rate of CD8 T-cells was estimated to be higher in progressors

in response to their higher viral loads (S14 Fig). Moreover, not incorporating the suppressive

capacity data to fit the best model resulted in large random effects on parameter estimates (S16

Fig and S13 and S14 Tables). Constraining the model by all the three datasets thus seems to

explain a larger proportion of variability in parameter estimates between individuals than

when only viral load and SIV DNA data are used. This highlights the importance of our

modeling framework, which allows simultaneous fitting of the ex vivo suppressive capacity

measurements and the in vivo viral load and SIV DNA measurements.

The correlate was robust to the duration (28 d) for evaluating the early CD8 T-cell response.

For instance, the correlate held when 42 d was used instead of 28 d; the correlation between

S42 and set-point viral load was as strong as the correlation with S28 (S17A Fig). The correlation

was expectedly lost when the time period was too short or long. When the period was too

short (14 d, S14), a significant CD8 T-cell response was yet to be mounted, whereas when it

was too long (90 d, S90), the early dynamics were masked by the dynamics in the chronic phase

(S17A Fig).

We asked next whether a threshold S28 existed that was associated with the set-point viral

load of 400 copies mL-1 and could thus facilitate distinguishing controllers from progressors as

defined in the experiments [14]. We found from the above virtual population that as S28

increased, the fraction of macaques that exhibited control increased (Fig 4E). The fraction was

~40% when S28 was<0.1 and rose to ~95% when S28 was ~0.6. Thus, we defined 0.6 as the crit-

ical S28, above which the chance of achieving viremic control was >95% in our predictions.

We recognize that the threshold S28 would depend on the level of viremia used to define con-

trol; a more stringent definition (set-point viremia lower than 400 copies mL-1) would lead to

a higher threshold (S17B Fig). Nonetheless, once the set-point viremia for control is defined,

the corresponding threshold S28 identified by our model offers a novel, measurable, early pre-

dictor of natural control.

Discussion

Identifying correlates of natural control of HIV infection has been a long-standing goal. Here,

combining mathematical modeling and analysis of longitudinal in vivo and ex vivo data from

SIV-infected cynomolgus macaques, we identified the cumulative response of CD8 T-cells

during the first 4–6 weeks of infection as an early, measurable marker of natural control. The

more efficient was the early CD8 T-cell response, measured in terms of its cumulative virus

suppressive capacity, the lower was the set-point viral load. The marker was robust to the dura-

tion (~4–6 weeks) over which the early CD8 T-cell response was measured. To our knowledge,

this is the first study to identify a quantitative marker predictive of long-term natural control

without antiretroviral treatment.

We made significant advances in mathematical modeling that enabled the identification of

the marker. The model had to contend with data that was a combination of in vivo virological

and ex vivo immunological measurements. Furthermore, the measurements involved nested
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time courses. Specifically, each CD8 T-cell suppressive capacity measurement was obtained

from time course data of antigen load from ex vivo cultures. Longitudinal measurements of

suppressive capacity during the in vivo infection thus had ex vivo assay time course datasets

nested within each measurement. Mathematical models thus far have not analyzed such com-

bined in vivo-ex vivo datasets. Besides, standard fitting algorithms cannot routinely handle

nested time course datasets. By analyzing the ex vivo assays, we developed an analytical expres-

sion that yielded the suppressive capacity as a function of the killing rate of infected cells by

CD8 T-cells. This eliminated the need to consider the ex vivo time courses. Recall that the sup-

pressive capacity is obtained as the difference in the antigen level in the ex vivo assays in the

CD4 T-cell culture and CD4-CD8 T-cell coculture at the time instant when the antigen level

peaks in the CD4 culture. Our analytical expression directly predicted this difference, without

the need to analyze the entire ex vivo time-courses, as a function of the CD8 T-cell killing rate.

Consequently, like the plasma viral load, the CD8 T-cell suppressive capacity became a quan-

tity that could be predicted by our model; it was a function of the parameters, specifically the

CD8 T-cell killing rate, and other quantities in the model such as the size of the effector pool.

Conversely, the suppressive capacity measurements could be used simultaneously with the in
vivo measurements to fit the model and constrain parameters. Compared to available models

[8,26,27,51], which typically rely on viral load and SIV DNA measurements alone, an extra

dimension of information by way of the CD8 T-cell suppressive capacity measurements thus

became accessible for constraining our model. This mechanism-based learning allowed more

accurate inferences of the in vivo dynamics and, in particular, enabled identification of the

above marker of natural control, which available models missed.

The quality of the fits (Fig 2) as well as the consistency of the best-fit parameter values with

independent estimates, where available, gave us further confidence in our inferences. For

instance, the best-fit value of the fraction of infection events resulting in non-productively

infected cells (fD) was 0.93, close to independent estimates of 95% infection events turning

abortive [31,32,51]. The best-fit initial target cell concentration was ~16 cells μL-1, which corre-

sponds to ~3% of the baseline CD4 T-cell count in blood (median 654 cells μL-1; ref [14]),

again consistent with ~5% of the CD4 T-cells in blood expressing CCR5 [52], required for

SIVmac251 infection. The best-fit ratio of viral production and clearance rates, γ, was ~400, con-

sistent with previous reports [26,53,54]. The best-fit timescale of the evolution of the quality of

the CD8 T-cell response (ln 2/ω) was ~220 days. While the processes driving this timescale are

yet to be established, it was comparable to the timescale of evolution of viral diversity (months

to years) [33,34].

Our study offers new insights into the potential role of CD8 T-cells in establishing natural

control of HIV infection. While several studies have measured CD8 T-cell responses during

infection, including in its early stages, the measurements have proven inadequate to distin-

guish between controllers and progressors [14,18]. Thus, despite the recognition of the impor-

tance of CD8 T-cells, a major gap existed in our understanding of their specific role in natural

control. Our study makes an important advance by accounting more comprehensively for the

antiviral activity of CD8 T-cells than has been done thus far in describing virus dynamics. Our

formalism considered not only the quality and the quantity of the CD8 T-cell response but

also its time course during the infection. The cumulative antiviral capacity of the CD8 T-cell

response early (~4–6 weeks) in infection thus emerged as a correlate of long-term virus

control.

In the experiments, although the suppressive capacity was observed to increase in the con-

trollers with time, the rise was significant only at late time points, precluding the identification

of the correlate [14]. Specifically, the suppressive capacity was similar between controllers and

progressors until 169 days post infection, although most of the controllers suppressed viremia
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within 90 days. The signatures of the differences in the early time points between the control-

lers and progressors were elucidated by the model fits. Future studies that may make more fre-

quent measurements in the early phase of the infection may offer a more rigorous

experimental test of our correlate.

In our analysis, the higher antiviral capacities in controllers were attributable to greater

recruitment rates and/or maximal killing rates of CD8 T-cells compared to progressors. Future

studies may also assess further the specific implications of this early cumulative response, such

as the restriction of the latent reservoir [55,56], the prevention or reversal of CD8 T cell

exhaustion [25,26,55], and/or the formation of an adequate memory pool [14], that may

underlie the long-term control realized.

We anticipate implications of our findings for the ongoing efforts to elicit long-term HIV

remission [4]. First, using the distribution of parameter values based on fits of our model to

the macaque data, our study identified a threshold strength of the marker (S28) for achieving a

set-point viremia representative of long-term control. Future studies may translate this thresh-

old to humans, thereby predicting quantitative targets for interventions aimed at eliciting

potent early CD8 T-cell responses for achieving lasting control of HIV-1 infection. Such inter-

ventions include vaccination strategies [17] as well as immunotherapies with immune check-

point inhibitors [57] and broadly-neutralizing antibodies [58] aimed at eliciting better CD8 T-

cell responses. Second, early interventions with ART have been shown to increase the chances

of achieving post-treatment control [35,59]. While CD8 T-cell responses have been implicated

in the establishment of such control [25,26,35,59], how ART may trigger such responses is

unclear. Our study suggests that supplementing measurements of viral load with those of ex
vivo CD8 T-cell suppressive capacity may help elucidate the underlying mechanisms. Such

data could be analyzed using the modeling framework developed in our study. The analysis

may help understand whether natural control and post-treatment control are the same state

realized via two different routes or are two fundamentally distinct states. If the correlation

between CD8 T-cell responses early after treatment cessation and the ensuing set-point viral

load were similar to that observed in the present study, then post-treatment control would

likely be the same state as natural control. Then the notion of the threshold CD8 T-cell

response we identified here may be translated also to the post-treatment control scenario. This

would further inform the many strategies being explored today that combine ART with other

interventions, the latter often designed to improve CD8 T-cell responses, to achieve long-term

control [4,17,60].

Our study has limitations. First, although our model is complex, it considered the most par-

simonious description of in vivo dynamics based on the data available. It thus did not include

processes like CD8 T-cell exhaustion or memory. While the model successfully recapitulated

the datasets from the untreated macaques that we examined, extending it to treated macaques

may require explicitly considering the latter processes. Such advances may also alter the

dynamical features of the model—for instance, by introducing bistability [25,26,61]–the impli-

cations of which remain to be ascertained. Second, we employed an empirical framework to

describe the evolution of the quality of the CD8 T-cell response with time. Again, while such a

framework may be adequate for recapitulating natural control, a mechanistic framework,

involving phenomena such as CD8 T-cell clonal expansion, differentiation to memory pheno-

types and recall [14,62], may be required in other scenarios. Third, the data used in this study

was from a non-human primate cohort that had an unrealistically large percentage of natural

controllers compared to what is observed in humans [7,63]. In our virtual populations, we

ascertained that the range of set-point viral loads predicted by our model was consistent with

humans. Yet, to translate the threshold value of the cumulative suppressive capacity to

humans, parameters recapitulating not only the range but also the distribution of set-point
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viremia in humans would have to be employed. Fourth, the present data did not support a

model that explicitly considered non-cytolytic effects of CD8 T-cells. This was consistent with

observations of the loss of suppressive capacity when contact between CD8 T-cells and infected

cells was eliminated in the ex vivo assays [9,14]. Yet, the role of non-cytolytic effects of CD8 T-

cells, which have been observed in vivo [45,46,64,65], cannot be ruled out. Given that non-

cytolytic effects appear to be predominant with infected cells that are yet to become produc-

tive, deduced through modeling in vivo datasets [46], future studies that enable segregation of

the infected cells into their pre-productive and productive subsets, both in vivo and ex vivo,

may help refine our model and delineate more accurately the relative contributions of the cyto-

lytic and non-cytolytic effects of CD8 T-cells. Fifth, the ex vivo suppressive capacity measure-

ments were made with stock SIVmac251 virus [14]. Virus evolution is thus not accounted for in

these measurements. Future studies may employ autologous viruses for measuring suppressive

capacity. Our model could still be applied to such data, with best-fit estimates of the CD8 T-

cell killing rate accounting for the effects of such evolution.

In summary, our study identified a new, robust early marker of natural control of HIV

infection, which not only advances our understanding of the mechanisms driving such control

but also informs ongoing efforts to devise strategies for eliciting lasting HIV remission.

Methods

Model development

Model of ex vivo virus dynamics. We first considered the ex vivo assay of the CD8 T-cell

suppressive capacity measurements. Here, a fixed number of target CD4 T-cells drawn from

an individual is exposed to free virions in culture either in the absence or the presence of a

fixed number of autologous CD8 T-cells drawn simultaneously and the time course of the anti-

gen load in the supernatant is measured. We developed a model to predict the latter time

course. The suppressive capacity is estimated as the extent to which the antigen load is reduced

in the presence of CD8 T-cells compared to its peak level in their absence.

The following equations describe the virus dynamics in a culture of target CD4 T-cells

exposed to free virions (Fig 1A):

dT̂
dt
¼ � b̂T̂ V̂

dÎ e

dt
¼ ð1 � f Þb̂T̂ V̂ � rÎ e

dÎ v

dt
¼ rÎ e � dÎ v

dV̂
dt
¼ p̂Î v � dV̂

ð11Þ

Here, target cells, T̂ , get infected by virus V̂ at the rate b̂T̂ V̂ . A fraction 1 − f of these infec-

tion events is productive, giving rise to infected cells in the eclipse phase, Î e, from which virus

production is yet to occur. The remaining fraction of the infection events results in non-pro-

ductively infected cells. These latter cells are assumed to be rendered non-susceptible because

they comprise abortively infected cells, which die due to pyroptosis, as well as cells that

undergo CD4 downregulation [66,67]. Infected cells in the eclipse phase transition to virus-

producing cells, Î v, at the rate rÎ e, and produce free virions at the rate p̂Î v. Free virions are

cleared at the rate cV̂ . The elimination rate of virus-producing cells is dÎ v. τ is the time from
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the start of the infection in culture. Further, we use the viral load, V̂ , as a proxy for the antigen

load, such as p24 (capsid protein) or p27 (non-structural regulatory protein) levels used as a

marker of viral production [19] in the assay.

Because virus production and clearance are fast compared to infection [29, 30], we assumed

a quasi-steady state for the dynamics of V̂ in Eq (11), so that � ¼ p̂r=c and V̂ ¼ p̂Î v=c. In the

experimental study, ex vivo time courses were measured only in a few cases in order to esti-

mate the time point at which the antigen level would peak in the CD4 T-cell culture [14]. We

fit the ex vivo model to data from these cases. The model fit the data well (S1A Fig), recapitulat-

ing the rise and fall of antigen with time, and yielded estimates of ρ (S11 Table). In all the other

cases, suppressive capacity was estimated by sampling the ex vivo cultures only at the fixed

time point at which the antigen level was expected to peak.

Next, to estimate the suppressive capacity, we applied the same model as above to data from

co-cultures with a 1:1 mixture of CD4 T-cells and CD8 T-cells exposed to the virus. We let the

elimination rate of virus-producing cells in Eq (11) be ðsþ dÞÎ v, where δ is the death rate con-

stant of infected cells due to virus-induced cytopathicity and σ is the increase in the death rate

constant due to CD8 T-cells. Because the population of CD8 T-cells or their killing efficiency

is not expected to change during the timeframe of the assays, σ can be assumed to be a con-

stant. Our model fit the few available instances of the time-evolution of the antigen load in the

co-culture assays as well (S1B Fig), yielding estimates of σ. From the fits, the difference in the

antigen load at the time when the antigen level peaks in the CD4 T-cell monoculture can be

calculated, linking σ to the reported suppressive capacity, S, of the CD8 T-cells.

The above procedure, however, estimates σ by analyzing the entire time-course of the

monoculture and co-culture assays at any in vivo measurement time point (Fig 1), which

would render data fitting challenging. We therefore developed approximations that would

yield an analytical expression linking σ and S. The approximations would also enable more

robust analysis of longitudinal datasets of S obtained by making single measurements in each

ex vivo assay at the assay time point associated with the peak antigen load (see above).

Linking ex vivo suppressive capacity to in vivo killing rate of CD8 T-cells. Our approach

was the following. First, we derived an analytical expression of the time-evolution of the anti-

gen load in the ex vivo assay. Second, we obtained an analytical expression of the time at which

the antigen load would attain its peak in the monoculture, i.e. with σ = 0, denoted τmax. With

these two expressions, we predicted the difference in the antigen load between the monocul-

ture and co-culture assays at the time when the load peaked in the monoculture, thus yielding

S as a function of σ. We present details below.

We recognized that the target cell population remained close to its initial value nearly all

the way until the peak in the infection in the monoculture (S1A Fig). We therefore assumed

that the target cell population was constant, i.e., T̂ðtÞ ¼ T̂ 0, the initial target cell concentration,

until the peak. This transformed our nonlinear model equations in (11) into the set of linear

equations below:

dÎ v

dt
¼ ð1 � f Þb̂T̂ 0V̂ � rÎ v

dV̂
dt
¼ �Î v � ðsþ dÞV̂

ð12Þ

Solving equations in (12) for the viral load yielded

V̂ ðs; tÞ ¼
V̂ 0e� tðsþdþrÞ=2

2a
ðsþ d � rþ aÞe� ta=2 þ ðr � s � dþ aÞeta=2
� �

ð13Þ
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where a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþ d � rÞ
2
þ 4ð1 � f Þb̂T̂ 0�

q

. Predictions with this approximation (Eq (13))

agreed well with the true solution (Eq (11)) of the antigen load until the peak (S1C Fig).

Next, we recognized, following epidemiological models [68,69], that the peak in the infec-

tion occurs when the effective reproductive ratio equals 1. Using next-generation matrix meth-

ods [68, 69], we derived an analytical expression for the effective reproductive ratio (S2 Text).

This yielded τmax as the time when the reduction in the target cell population due to the infec-

tion would drive the effective reproductive ratio to 1 (S2 Text):

tmax ¼
2

an � r
ln

an

V̂ 0b̂

rþ an

r � an
ln

rd

ð1 � f Þb̂�T̂ 0

 !" #

ð14Þ

where an ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 4ð1 � f Þb̂T̂ 0�

q

. Combining the expressions of V̂ and τmax yielded the

desired link between S and σ:

SðsÞ ¼ log
10

V̂ ð0; tmaxÞ
� �

� log
10

V̂ ðs; tmaxÞ
� �

ð15Þ

where V̂ follows from Eq (13).

Estimates of S(σ) obtained from Eq (15) were close to those obtained by integrating Eq (11)

(S1D Fig).

Model building strategy for in vivo dynamics. To identify the number of SIV DNA com-

partments our within-host models should contain, we fit mono-, bi-, and tri-exponential

curves to the post-peak SIV DNA data. The SIV DNA data we used did not differentiate

between unintegrated and integrated (intact and defective) SIV DNA. If z(t) represents the

DNA level at time t, then a multi-exponential function is given by

zðtÞ ¼
Xm

i¼1

zie
� ni t ð16Þ

Here, m is the number of phases (or compartments), νi represents the decay rate constant of

the ith phase, and zi is the constant pre-factor for the ith phase, respectively. The initial condi-

tion zð0Þ ¼
Xm

i¼1

zi is the estimated DNA level in the blood at t = 0, the time point where the

measurement peaked for the macaque. We found that a bi-exponential curve explained the

data best (S18 Fig). Moreover, accounting for only a single SIV DNA compartment yielded

poorer fits (S19 Fig and S15 Table). Accordingly, we incorporated two SIV DNA compart-

ments in our in vivo models.

Next, we constructed several models to describe the in vivo dynamics with two SIV DNA

compartments (S1 Text). We compared these models by fitting data. The best model, with the

lowest Bayesian Information Criterion (BIC), is described in the Results. We analyzed the

model for its structural identifiability and applied it to fit data.

Structural identifiability of model parameters and data fitting

Before fitting our models to data, we analyzed their identifiability in the following way. For

each model, we first examined the structural identifiability using the differential-algebraic

elimination method implemented in the Julia package StructuralIdentifiability.jl [70]. Struc-

turally non-identifiable parameters are fixed to values obtained from the literature. Structural

identifiability does not guarantee practical identifiability, the latter dependent also on the data-

sets available. To ensure practical identifiability, we iterated the inference process in Monolix
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to identify the subset of the remaining free parameters that were responsible for practical non-

identifiability. Fixing them, again using literature values, resulted in full identifiability. We

thus had to fix the parameters dI, θE, and dE to make the remaining parameters of our best

model uniquely identifiable. Additional parameters had to be fixed in other tested models (S1

Table), as they involved more parameters (S2–S10, S12, S13, and S15 Tables).

From previous studies, we fixed θE = 0.1 cells mL-1 and dE = 0.1 d-1 [25,71]. We fixed dI =

0.1 d-1 based on recent estimates of the half-life of productively infected cells (1.0 d to 1.7 d)

[51,65,72] and estimates of>40% of infected cell loss attributable to CD8 T-cell function [73].

Note that our model prediction of the set-point viral load was not sensitive to dI (S11 Fig).

In the in vivo model, kf was not identifiable. So, we applied the transformation E* = kfE.

Also, viral production and clearance happen at a much faster rate than other in vivo processes

[29,30]. So, assuming quasi-steady state between virion production and clearance rates [29,30],

we simplified the equation for viremia, giving us pI� dVV) V(t) = γI(t) where γ = p/dV.

These transformations to the in vivo model combined with the analytical expression linking S
and σ for the ex vivo measurements yielded

dT
dt
¼ l � b

0TI � dTT ð17Þ

dI
dt
¼ ð1 � fDÞb

0TI � K∗E∗I � dII ð18Þ

dD
dt
¼ fDb

0TI � dDD ð19Þ

dE∗

dt
¼ l

∗
E þ aEE

∗ I
yE þ I

� dEE
∗ ð20Þ

dK∗

dt
¼ oð1 � K∗Þ ð21Þ

SðsÞ ¼ log
10

V̂ 0; tmaxð Þ
� �

� log
10

V̂ s; tmaxð Þ
� �

ð22Þ

V̂ ðs; tÞ ¼
V̂ 0e�

tðsþdþrÞ

2

2a
sþ d � rþ að Þe� ta2 þ r � s � dþ að Þeta2

� �
ð23Þ

tmax ¼
2

an � r
ln

an

V̂ 0b̂

rþ an

r � an
ln

rd

ð1 � f Þb̂�T̂ 0

 !" #

ð24Þ

s ¼ K∗Ĉ0

E∗

C0

� �

ð25Þ

where a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþ d � rÞ
2
þ 4ð1 � f Þb̂T̂ 0�

q

and an ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 4ð1 � f Þb̂T̂ 0�

q

. Here, β’ = γβ, K*
= k/kf, E* = kfE and l

∗
E ¼ lEkf . The above Eqs (17–25) were used for data fitting. Parameters

used for the ex vivo model are presented in S11 Table, and the initial conditions for the in vivo
model are provided in S16 Table. We note that dT is fixed by the pre-infection steady state of

the uninfected target cells, T(0) = λ/dT.
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Statistical model for longitudinal data fitting

We employed the nonlinear mixed effects modeling (NLME) approach for fitting longitudinal

data and used the implementation of stochastic approximation of expectation-maximization

(SAEM) algorithm in Monolix 2021R1 (https://lixoft.com/). Initial conditions for the in vivo
models are provided in S16 Table. The variables V = γI, I + D and S were fit to the viremia, SIV

DNA, and suppressive capacity datasets, respectively. We assumed random effects for all

parameters and removed them if they were less than 0.1. The statistical model describing these

observations is

y1
ij e

log
10
giIij þ a1ε

1
ij

y2
ij e

log
10

Iij þ Dij

� �
þ a2ε

2
ij

y3
ij e

SðsijÞ
� �

þ a3 þ b3SðsijÞ
� �

ε3
ij

ð26Þ

Here, yij represents the observations for the ith individual at the jth time point. The super-

scripts 1, 2 and 3 represent the log-transformed viremia, log-transformed SIV DNA and sup-

pressive capacity measurements, respectively. ε is the residual Gaussian error with a constant

standard deviation. Thus, for viremia and total SIV DNA datasets, we used a constant error

model, while for the suppressive capacity data, both constant and proportional error terms

were considered. Fits to the best-fit model are presented in Figs 2 and S10, while for the other

models, they are presented in S2–S10, S13, S16, and S19 Figs.

Sensitivity analysis

We performed sensitivity analysis of the set-point viral load estimates of our best-fit model.

Sobol’s method was employed using the GlobalSensitivity.jl [74] package in Julia.

Virtual population

All parameters except for fD, which followed a logit-normal distribution with bounds between

0 and 1, were assumed to follow a log-normal distribution. Consequently, log10 β’, log
10
l
∗
E,

log10 ω and log10 T(0) followed a normal distribution. After model fitting, analytical forms of

the corresponding distributions of the population parameters were used to generate the virtual

population (Fig 4A–4E).

The fraction of controllers estimated by our model, plotted in Fig 4E, was fit to a first-order

Hill function of S28 given by a1 þ ð1 � a1Þ
S28

a2þS28
using the nonlinear Levenberg-Marquardt

algorithm in Julia. Here, a1 and a2 were fit parameters. Accordingly, a1 is the probability of

achieving control in the limit of a negligible early CD8 T-cell response (S28! 0) and a2 is the

half-maximal saturation constant.

Data

We obtained data from a published study [14]. In the study, 16 macaques, of which 6 carried

the protective M6 MHC haplotype, were infected with SIVmac251 intrarectally. They were then

followed for 18 months without any intervention. Throughout this time, viremia, SIV DNA in

blood and suppressive capacity of CD8 T-cells were measured at different time points. By the

end of the study, 12 of the 16 macaques were identified as controllers. Viremia measurements

were made as copies of SIV RNA mL-1 of blood. SIV DNA levels per million cells were con-

verted from copies per 106 leukocytes to copies mL-1 of blood, using individual blood leuko-

cyte counts sampled simultaneously to the SIV DNA measurements.
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Supporting information

S1 Text. In vivo model variants.

(DOCX)

S2 Text. Derivation of τmax.

(DOCX)

S1 Fig. The ex vivo model predictions and fits. (A) Fits (lines) of the ex vivo model (Eq (11),

main text) to antigen load data (symbols) from CD4 T-cell cultures of 18 samples. Sample IDs

are presented on the top of the corresponding panels. Antigen p27 level is assumed to be mV̂ ,

where V̂ is the viral load and μ is the amount of antigen per copy of virion. μ and ρ were identi-

fiable and were estimated to be 6.2×10−7 ng copies-1 and 0.36 d-1, respectively. The pink curves

plot the corresponding target cell concentrations. (B) Fits of the ex vivo model to the 1:1 CD4

and CD8 T-cell co-cultures of 18 samples. Sample IDs are presented on the top of correspond-

ing panels. Estimated ρ from fits to CD4 T-cell cultures were used and σ was adjusted to fit the

model. (C) Estimates of viral load in the cultures by Eq (13) from main text (purple) and

numerical integration of system in Eq (11) from main text (gray). The CD4 T-cell culture cor-

responds to σ = 0, while the other cases are co-cultures. (D) Estimates of the suppressive capac-

ity calculated from the Eq (15) from main text (purple) and the numerical integration of

system (Eq (11), main text) (gray).

(TIF)

S2 Fig. Fits of model #2 to data. Model predictions (lines) from simultaneous fitting of model

#2 (Methods; S1 Table) to all the three datasets (symbols), namely, viremia (magenta), SIV

DNA (brown) and suppressive capacity (yellow). Macaques highlighted in red are progressors

while the rest are controllers. Empty symbols are observations below the limit of detection.

The parameter estimates resulting in these fits are in S2 Table.

(TIF)

S3 Fig. Fits of model #3 to data. Model predictions (lines) from simultaneous fitting of model

#3 (Methods; S1 Table) to all the three datasets (symbols), namely, viremia (magenta), SIV

DNA (brown) and suppressive capacity (yellow). Macaques highlighted in red are progressors

while the rest are controllers. Empty symbols are observations below the limit of detection.

The parameter estimates resulting in these fits are in S3 Table.

(TIF)

S4 Fig. Fits of model #4 to data. Model predictions (lines) from simultaneous fitting of model

#4 (Methods; S1 Table) to all the three datasets (symbols), namely, viremia (magenta), SIV

DNA (brown) and suppressive capacity (yellow). Macaques highlighted in red are progressors

while the rest are controllers. Empty symbols are observations below the limit of detection.

The parameter estimates resulting in these fits are in S4 Table.

(TIF)

S5 Fig. Fits of model #5 to data. Model predictions (lines) from simultaneous fitting of model

#5 (Methods; S1 Table) to all the three datasets (symbols), namely, viremia (magenta), SIV

DNA (brown) and suppressive capacity (yellow). Macaques highlighted in red are progressors

while the rest are controllers. Empty symbols are observations below the limit of detection.

The parameter estimates resulting in these fits are in S5 Table.

(TIF)

S6 Fig. Fits of the model #6 to data. Model predictions (lines) from simultaneous fitting of

model #6 (Methods; S1 Table) to all the two virological datasets (symbols), namely, viremia
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(magenta) and SIV DNA (brown). Macaques highlighted in red are progressors while the rest

are controllers. Empty symbols are observations below the limit of detection. The parameter

estimates resulting in these fits are in S6 Table.

(TIF)

S7 Fig. Fits of the model #7 to data. Model predictions (lines) from simultaneous fitting of

model #7 (Methods; S1 Table) to all the two virological datasets (symbols), namely, viremia

(magenta) and SIV DNA (brown). Macaques highlighted in red are progressors while the rest

are controllers. Empty symbols are observations below the limit of detection. The parameter

estimates resulting in these fits are in S7 Table.

(TIF)

S8 Fig. Fits of model #8 to data. Model predictions (lines) from simultaneous fitting of model

#8 (Methods; S1 Table) to all the three datasets (symbols), namely, viremia (magenta), SIV

DNA (brown) and suppressive capacity (yellow). Macaques highlighted in red are progressors

while the rest are controllers. Empty symbols are observations below the limit of detection.

The parameter estimates resulting in these fits are in S8 Table.

(TIF)

S9 Fig. Fits of model #9 to data. Model predictions (lines) from simultaneous fitting of model

#9 (Methods; S1 Table) to all the three datasets (symbols), namely, viremia (magenta), SIV

DNA (brown) and suppressive capacity (yellow). Macaques highlighted in red are progressors

while the rest are controllers. Empty symbols are observations below the limit of detection.

The parameter estimates resulting in these fits are in S9 Table.

(TIF)

S10 Fig. Fits of the best-fit model to data. Model predictions (lines) from simultaneous fit-

ting of the best-fit model (Methods; S1 Table) to all the three datasets (symbols), namely, vire-

mia (magenta), SIV DNA (brown) and suppressive capacity (yellow), shown for 12 of 16

macaques. Plots for the remaining 4 macaques are presented in Fig 2. Macaques highlighted in

red are progressors while the rest are controllers. Empty symbols are observations below the

limit of detection. The parameter estimates resulting in these fits are detailed in Table 1 of the

main text and S10 Table.

(TIF)

S11 Fig. Sensitivity analysis. Sensitivity of the set-point viral load predicted by the best-fit

model to its parameters estimated using Sobol’s method.

(TIF)

S12 Fig. Comparison of parameters estimated by model #1. Parameters estimated for all the

individuals are grouped based on their control status—controllers vs. progressors—and com-

pared. Presented here are five parameters (λ, dD, αE, fD and log10ω). The others are in Fig 3.

Mann-Whitney U test was used to estimate the significance levels.

(TIF)

S13 Fig. Fits of the model that does not incorporate suppressive capacity measurements

and constant k (model #10) to data. Model predictions (lines) from simultaneous fitting of

model #10 (Methods; S1 Table) to all the two virological datasets (symbols), namely, viremia

(magenta) and SIV DNA (brown). Macaques highlighted in red are progressors while the rest

are controllers. Empty symbols are observations below the limit of detection. The parameter

estimates resulting in these fits are in S12 Table.

(TIF)
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S14 Fig. Comparison of parameters estimated by the model that does not incorporate sup-

pressive capacity measurements (model #10) for fitting. Parameters estimated for all the

individuals are grouped based on their control status—controllers vs. progressors—and com-

pared. Mann-Whitney U test was used to estimate the significance levels.

(TIF)

S15 Fig. Comparison of CD8 T-cell killing rate between model with and without suppres-

sive capacity. (A) Effector response dynamics of CD8 T-cells, given by K*E*, predicted for the

macaques by the best-fit model (solid) and model #10, which does not incorporate suppressive

capacity measurements for fitting (dashed). (B) Correlation plot between S28 and set-point

viral load as predicted by model #10. Gray symbols are controllers, while red symbols are pro-

gressors. Spearman’s ρ was calculated for assessing the correlation. Note that here the set-point

viral load increases with S28, which is the opposite of what is expected.

(TIF)

S16 Fig. Fits of the main model without incorporating the suppressive capacity measure-

ments (model #11) to data. Model predictions (lines) from simultaneous fitting of model #11

(Methods; S1 Table) to all the two virological datasets (symbols), namely, viremia (magenta)

and SIV DNA (brown). Macaques highlighted in red are progressors while the rest are control-

lers. Empty symbols are observations below the limit of detection. The parameter estimates

resulting in these fits are in S13 Table.

(TIF)

S17 Fig. Robustness of correlate. (A) Sensitivity to duration for evaluating the early CD8

T-cell responses. Correlation between set-point viral load and AUC of suppressive capacity

averaged over 14, 42 and 90 days post infection, respectively, for the 16 macaques. Gray sym-

bols are controllers, while red symbols are progressors. The bar plot at the bottom right pres-

ents the predicted correlation between set-point viral load and the time-averaged area-under-

the-curve of S estimated for different durations. Asterisks represent significant correlations

with p<0.05; ns: not significant. (B) Minimum S28 required for control increases with a

stricter definition of control. The minimum S28 estimated to be required for 95% likelihood

of control as a function of the threshold viral load for control. Spearman’s ρ was calculated for

assessing the correlations.

(TIF)

S18 Fig. Identifying number of phases of SIV DNA. Mono- (dashed), bi- (solid), and tri-

exponential (dotted) curves are fitted to longitudinal SIV DNA data post the peak in the mea-

surements. Empty symbols are below detection limit. Data were fit in Monolix (Methods;

main text). The bi-exponential curve explained the data best (BICs: 164.48 for the mono-expo-

nential curve; 140.36 for the bi-exponential curve; and 171.13 for the tri-exponential curve).

(TIF)

S19 Fig. Fits of the model with constant k and no D compartment (model #12) to data.

Model predictions (lines) from simultaneous fitting of model #12 (Methods; S1 Table) to all

the two virological datasets (symbols), namely, viremia (magenta) and SIV DNA (brown).

Macaques highlighted in red are progressors while the rest are controllers. Empty symbols are

observations below the limit of detection. The parameter estimates resulting in these fits are in

S15 Table.

(TIF)

S1 Table. Comparison of different models fitted to the data. Every model fit to the data is

summarized, comparing the BICs of fits. *These fits do not include suppressive capacity
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datasets and hence cannot be compared with other models directly. S14 Table presents the

comparison of BIC of these models with that of the main model after eliminating the contribu-

tion from the suppressive capacity data for the latter.

(DOCX)

S2 Table. Population parameter estimates for model #2. The fixed and random effects of

each parameter is provided along with respective percent standard errors in parentheses. In

addition to the parameters fixed in model #1, fD is fixed to 0.95 and θX is fixed to 5 cells mL-1

[1, 2].

(DOCX)

S3 Table. Population parameter estimates for model #3. The Hill coefficient for the exhaus-

tion rate, n = 1. The fixed and random effects of each parameter is provided along with respec-

tive percent standard errors in parentheses. In addition to the parameters fixed in model #1, fD
is fixed to 0.95, ϕ is fixed to 2 and κ is fixed to 1 d-1 [1–3].

(DOCX)

S4 Table. Population parameter estimates for model #4. The Hill coefficient for the exhaus-

tion rate, n = 4. The fixed and random effects of each parameter is provided along with respec-

tive percent standard errors in parentheses. In addition to the parameters fixed in model #1, fD
is fixed to 0.95, ϕ is fixed to 2 and κ is fixed to 1 d-1 [1–3].

(DOCX)

S5 Table. Population parameter estimates for model #5. The fixed and random effects of

each parameter is provided along with respective percent standard errors in parentheses. In

addition to the parameters fixed in model #1, fD is fixed to 0.95 [1].

(DOCX)

S6 Table. Population parameter estimates for model #6. The fixed and random effects of

each parameter is provided along with respective percent standard errors in parentheses. Simi-

lar to the best-fit model (Table 1), parameters dI, θE and dE were fixed.

(DOCX)

S7 Table. Population parameter estimates for model #7. The fixed and random effects of

each parameter is provided along with respective percent standard errors in parentheses. Simi-

lar to the best-fit model (Table 1), parameters dI, θE and dE were fixed. In addition, log10 ω was

fixed to -2.50 from Table 1.

(DOCX)

S8 Table. Population parameter estimates for model #8. The fixed and random effects of

each parameter is provided along with respective percent standard errors in parentheses. Simi-

lar to the best-fit model (Table 1), parameters dI, θE and dE were fixed. In addition, log10 β’ and

log10 T(0) were fixed using values from Table 1.

(DOCX)

S9 Table. Population parameter estimates for model #9. The fixed and random effects of

each parameter is provided along with respective percent standard errors in parentheses. In

addition to the parameters fixed in model #1, fD is fixed to 0.95 [1].

(DOCX)

S10 Table. Individual parameter estimates for the best-fit model. Fixed parameters are dI,

θE and dE respectively [1,2], as detailed in Methods of main text. Random effects for log10 β’

and log10T(0) were less than 0.1, and were thus removed, rendering them to be same across
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macaques.

(DOCX)

S11 Table. Parameters of the ex vivo model. The table lists the values used, and the references

thereof. CD8 T-cell count in untreated SIV-infected cynomolgus macaques was close to 106

cells mL-1 [5], similar to the levels in HIV-infected humans [6,7]. So, we fixed C0 to 106.

(DOCX)

S12 Table. Population parameter estimates for model #10. The fixed and random effects of

each parameter are provided along with respective percent standard errors in parentheses. In

addition to the parameters fixed in the best-fit model, fD is fixed to 0.95 [1].

(DOCX)

S13 Table. Population parameter estimates for model #11. The fixed and random effects of

each parameter are provided along with respective percent standard errors in parentheses. In

addition to the parameters fixed in the best-fit model, fD is fixed to 0.95 [1].

(DOCX)

S14 Table. Comparison of model fits without suppressive capacity data. Contribution of

suppressive capacity data to BIC of model #1 was removed to compare it with models #10 and

#11.

(DOCX)

S15 Table. Population parameter estimates for model #12. The fixed and random effects of

each parameter is provided along with respective percent standard errors in parentheses.

(DOCX)

S16 Table. Initial conditions used for in vivo model fitting. Note that the exhaustion com-

partment, Q, is present only in models #3 and #4. Viral inoculum sizes have been estimated

using the volumes of distribution [1].

(DOCX)
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