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Abstract

While most individuals suffer progressive disease following HIV infection, a small fraction
spontaneously controls the infection. Although CD8 T-cells have been implicated in this nat-
ural control, their mechanistic roles are yet to be established. Here, we combined mathemat-
ical modeling and analysis of previously published data from 16 SIV-infected macaques, of
which 12 were natural controllers, to elucidate the role of CD8 T-cells in natural control. For
each macaque, we considered, in addition to the canonical in vivo plasma viral load and SIV
DNA data, longitudinal ex vivo measurements of the virus suppressive capacity of CD8 T-
cells. Available mathematical models do not allow analysis of such combined in vivo-ex vivo
datasets. We explicitly modeled the ex vivo assay, derived analytical approximations that
link the ex vivo measurements with the in vivo effector function of CD8-T cells, and inte-
grated them with an in vivo model of virus dynamics, thus developing a new learning frame-
work that enabled the analysis. Our model fit the data well and estimated the recruitment
rate and/or maximal killing rate of CD8 T-cells to be up to 2-fold higher in controllers than
non-controllers (p = 0.013). Importantly, the cumulative suppressive capacity of CD8 T-cells
over the first 4—6 weeks of infection was associated with virus control (Spearman’s p =
-0.51; p =0.05). Thus, our analysis identified the early cumulative suppressive capacity of
CD8 T-cells as a predictor of natural control. Furthermore, simulating a large virtual popula-
tion, our model quantified the minimum capacity of this early CD8 T-cell response necessary
for long-term control. Our study presents new, quantitative insights into the role of CD8 T-
cells in the natural control of HIV infection and has implications for remission strategies.
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Author summary

HIV infection results in progressive disease culminating in AIDS in most individuals if
left untreated. A rare set of individuals, called natural controllers, however, can control
the virus without treatment. Understanding what underlies such control may help devise
strategies to elicit it in non-controllers. A challenge has been the limited understanding of
the mechanistic role of CD8 T-cells. Here, using new mathematical modeling which
enabled simultaneous analysis of in vivo and ex vivo longitudinal data from macaques
infected with SIV, we identified the cumulative infection suppressive capacity of CD8 T-
cells early in infection (4-6 weeks) as a measurable correlate of control in the chronic
phase of the infection. This cumulative suppressive capacity was significantly higher in
controllers than non-controllers, attributed by our model to superior CD8 T-cell recruit-
ment rate and/or maximal killing rate in the controllers. Our study quantifies the role of
CD8 T-cells in the natural control of SIV and has implications for interventions targeting
long-term HIV remission.

Introduction

Antiretroviral therapy (ART) suppresses viremia in individuals with HIV and arrests progres-
sion to AIDS but does not eradicate the virus [1]. Stopping treatment even after years of HIV
control under ART typically results in viral recrudescence and disease progression. ART must
therefore be administered lifelong. Enormous efforts are underway to devise interventions that
could elicit long-term virus control following short-term drug exposure [2-5]. These efforts
are inspired by the rare individuals, termed ‘natural controllers,” who control viremia without
any intervention [6].

Efforts to identify the determinants of natural control, in humans and non-human pri-
mates, point to the crucial role of CD8 T-cells in establishing such control. Natural controllers
have an over-representation of the protective major histocompatibility complex (MHC) class-I
haplotypes, like B*57 and B*27, which appear to facilitate strong, cross-reactive CD8 T-cell
responses to HIV [7-9]. Natural controllers tend to have a higher frequency of polyfunctional
[9,10] and Gag-specific [11, 12] CD8 T-cells and exhibit lower levels of CD8 T-cell exhaustion
[13] than non-controllers. Furthermore, memory-like CD8 T-cells were reported to develop
early after infection in controllers [14], which may confer protective immunity. Conversely,
suboptimal CD8 T-cell responses were correlated with impaired virus control [13,15,16].

Despite this substantial evidence, the processes determining CD8 T-cell response kinetics
that underlie natural control are yet to be clearly elucidated. This is possibly because most
studies offer either a static snapshot or a qualitative measure of the CD8 T-cell response,
whereas the CD8 T-cell response is dynamic and influences disease outcome by its quality as
well as magnitude [17]. Indeed, the frequency of the CD8 T-cells alone was found not to be a
reliable indicator of natural control [10,14,18].

In an effort to characterize the CD8 T-cell response more comprehensively, an ex vivo assay
was developed some years ago [19] and has since been employed in multiple studies on HIV
and SIV infections [9,11,14,20-24]. The assay measures the capacity of the CD8 T-cells drawn
from an individual to suppress the viral load in a culture of autologous target CD4 T-cells
exposed to the virus. This ‘suppressive capacity’ is thus a composite measure of the quality and
the quantity of the CD8 T-cells. Furthermore, longitudinal measurements of the suppressive
capacity provide a dynamic measure of the CD8 T-cell response during infection and hold
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promise of elucidating its mechanistic underpinnings in natural control. Because of the com-
plex, nonlinear interactions between CD8 T-cells and antigen, however, identifying character-
istics of the CD8 T-cell response associated with virus control would require analysis of the
suppressive capacity measurements simultaneously with measurements of plasma viral load
and other markers of disease state, such as the frequency of infected cells. Available mathemat-
ical models of virus dynamics have yielded profound insights into long-term HIV/SIV control
[8,25-28] but are incapable of this analysis. The challenge arises from the multiscale and com-
bined in vivo-ex vivo nature of the dataset, which current models cannot handle. Here, we
developed a new mathematical model that enables this analysis. We made conceptual advances
based on which our model not only described the suppressive capacity measurements but also
explicitly incorporated the influence of the suppressive capacity on in vivo virus dynamics,
enabling learning in vivo effector responses. We applied the model to analyze published data
from an SIV-cynomolgus macaque model [14], which showed robust maturation of virus-spe-
cific CD8 T-cell responses in natural controllers. We found that the cumulative CD8 T-cell
suppressive capacity early in the infection was a correlate of natural control at later stages.

Results

Model integrating ex vivo CD8 T-cell suppressive capacity with in vivo
virus dynamics

We developed our model in three stages (Methods): First, we modeled virus dynamics in the
ex vivo cultures, quantifying the CD8 T-cell suppressive capacity (S1 Fig). Second, we derived
analytical expressions from the ex vivo model that linked the suppressive capacity with the kill-
ing rate of infected cells by CD8 T-cells. Third, we integrated the analytical expressions into a
model of in vivo virus dynamics, thereby constructing a unified framework capable of simulta-
neously predicting and hence fitting the measured in vivo and ex vivo quantities. We tested
variants of the in vivo model using a formal model building strategy (S1 Text and S2 -S10 Figs
and S1-S10 Tables) to identify the best model (Methods). The following equations describe
the resulting model (Fig 1)

T
(Target cells) % =/ — BTV —d,T )
Productively dl (1—f,)BTV — kEI — d,1 (2)
infected cells dt b I

Non-productivel 4D
( P ! > ar =fpfTV —d,D (3)

infected cells

(Viremia) LZ—‘: =pl—d,V (4)
Effector dE I
— =/, +,E———d.E 5
(CDS T-cells) ae P PO, +1 (5)
s dk
(Killing rate) i w(kf - k) (6)
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Fig 1. Schematic of the mathematical model. (A) Model of the ex vivo assay. The events in the ex vivo cultures (left) leading to the
dynamics (right) and the reported suppressive capacity (S) as the difference in the antigen load in the cultures with and without CD8 T-
cells. The model enables prediction of § and hence analysis of its longitudinal measurements along with in vivo measurements such as
viremia (bottom), when integrated in a model of in vivo dynamics. (B) Model of in vivo dynamics. The events driving in vivo infection
contained in our model, including the CD8 T-cell suppressive capacity reflected in the effector response (yellow arrow), linking the ex
vivo and in vivo datasets (Methods).

https://doi.org/10.1371/journal.pcbi.1012434.9001
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Here, uninfected CD4 T-cells, T, are recruited at the rate A and die at the rate drT. They get
infected by free virions in plasma, V, at the rate STV. Because infected cell numbers are typically
proportional to the viral load (see below), the latter infection rate subsumes cell-cell transmis-
sion [29, 30]. A fraction fp, of these infections results in non-productively infected cells, D,
which do not produce virions. Over 95% of these cells are estimated to be abortively infected
and quickly die due to pyroptosis [31, 32].The remaining are long-lived latently infected cells
with defective or intact but silent proviruses. In an untreated infection, the contribution to vire-

< Time to peak > 2
Tmax = ln

antigen load o, —p

mia from the reactivation of the latent reservoir is small. For simplicity, we therefore did not
consider the latent reservoir separately and neglected the potential reinfection of non-produc-
tively infected cells. The remaining fraction, 1—fp, results in productively infected cells, I, which
produce virions at the rate pI. The productively infected cells die due to virus-induced cyto-
pathicity at the rate d;I or due to killing by virus-specific CD8 T-cells, E, at the rate kKEI. Free
virions are cleared at the rate dy/V. The cells E are produced at the rate A and die at the rate
dgE. They proliferate with the rate constant a and display a saturating dependence on the anti-
gen level for activation, with 0 the half-maximal saturation constant. The killing rate constant,
k, depends on the quality of the effector response. For a given effector population E, a more
focused effector response would imply a higher k. k can thus vary with time due to clonal expan-
sion, memory recall, exhaustion, and/or viral evolution [14, 33-35]. Immune escape and
exhaustion may cause k to decline. With time, the rate of escape slows down as the breadth of
the immune response increases [36-41]. On the other hand, the ability to recognize new viral
epitopes in chronic infection not recognized in primary infection [36, 37, 42-44] can increase k
with time. Here, we developed an empirical equation to capture these expected patterns of the
evolution of k. Accordingly, k evolves exponentially from an initial value, k;, and saturates at ks
with the changes occurring over the timescale Lw. We tested the various patterns (see below)
and found that an increasing k starting from k; = 0 yielded the best fits. CD8 T-cells can also
have non-cytolytic effects on infected cells [45, 46]. We considered those effects too (see below),
but found that the model above explained the data best (S1 Table).

S is the suppressive capacity measured using the ex vivo assay. In the experiments, it is esti-
mated as the difference between the antigen load in the CD4 T-cell cultures exposed to the
virus in the absence, V (0, 1), and presence, V (g, 1), of CD8 T-cells, measured at the time Ty,
when the antigen load peaks in the former culture [19]. At any time ¢ during the in vivo
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infection, S is estimated based on the CD4 and CD8 T-cells drawn from the infected macaque
at the time ¢ for the ex vivo assays. S is determined to be a function of ¢, the elimination rate of
infected cells in culture due to CD8 T-cells. o is thus the product of the killing rate constant k
and the population of CD8 T-cells employed in the assay that are virus-specific. C, is the total
population of CD8 T-cells in the assay, of which the fraction E/Cy is virus-specific, where Cj is
the total CD8 T-cell concentration in the host. ¢ thus links the ex vivo observations with the in
vivo dynamics. We assumed k to be the same ex vivo and in vivo. Where it has differed in the
two settings, factors like prolonged TCR stimulation using viral peptides, isolation of CD8 T-
cell clones, and unphysiological effector-to-target cell ratios have been implicated [47-49]. The
suppressive capacity assay uses unstimulated CD8 T-cells, does not choose specific clones, and
measures their responses to autologous CD4 T-cells instead of viral peptides, rendering it a
close mimic of the scenario in vivo [19] and justifying our assumption. The other parameters
in the expressions for V(a, 1) and T, are associated with the ex vivo assay (S7 Table) and are
described in the Methods along with a detailed derivation of the expressions for S,
V(a,7)(Methods) and .y (S2 Text).

The above model offered the unified framework necessary for the simultaneous analysis of
longitudinal in vivo measures of viral dynamics and ex vivo CD8 T-cell suppressive capacity.
We applied the model to the analysis of data from SIV-infected macaques.

Model recapitulated dynamics of all the markers

We considered longitudinal data of plasma viremia, SIV DNA levels and CD8 T-cell suppres-
sive capacity from 16 cynomolgus macaques infected with SIV (Methods). We fit our model to
the data using a nonlinear mixed effects approach (Methods). Our model provided excellent
fits to the data (Figs 2 and S10). The estimated population parameters for the best-fit model
are in Table 1, and the individual macaque parameters are in S10 Table. The parameter esti-
mates were consistent with previous reports, where available (see Discussion). All the measure-
ments, in vivo and ex vivo, were thus recapitulated by our model.

Controllers in the experiment were identified as macaques that brought the viral load below
400 copies mL " after the primary infection phase (~3 months post-exposure) and maintained
it below this limit throughout [14] (Methods). By this definition, the dataset had 12 controllers
and 4 progressors (or non-controllers). Our model fits yielded set-point viral loads above 400
copies mL™" in the four progressors and below 400 copies mL ™" in all controllers, consistent
with the experimental observations. Sensitivity analysis showed that these predictions were
robust to parameter variations (S11 Fig). We also fit models with three variants of the equation
for k: constant (dk/dt = 0) (S6 Fig and S6 Table), decreasing with time (k(0) = k; > k¢in Eq (6))
(S7 Fig and S7 Table), and initially rising and then falling to a plateau
(k=k, (1 —e ") —k,(1 — e *2"))(S8 Fig and S8 Table). We found that the increasing form
explained the data best (S1 Table). We also considered non-cytolytic effects of CD8 T-cells and
found that the present data best supported a model that did not explicitly incorporate them
(SI1 Text and S9 Fig and S9 Table). Using our best-fit model and parameter estimates, we
assessed next the differences between controllers and progressors, focusing on CD8 T-cell
responses.

CD8 T-cell responses had greater antiviral capacity in controllers than
progressors

Comparing best-fit parameter estimates, we found that controllers had a significantly higher
recruitment rate and/or maximal killing rate of CD8 T-cells, contained in the composite
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Fig 2. Model fits longitudinal in vivo virological and ex vivo suppressive capacity data. Model predictions (lines) from simultaneous fitting of the best-fit model
(Methods) to all the three datasets (symbols), namely, viremia (left panels), SIV DNA (middle panels) and suppressive capacity (right panels). Macaques
highlighted in red were progressors while those in black were controllers. The dashed line in the left panels indicates 400 copies mL™'. Open symbols are below the
limit of detection. The predictions for the remaining 12 macaques are presented in S10 Fig. The resulting population parameter estimates are in Table 1 and
individual parameter estimates are in S10 Table.

https://doi.org/10.1371/journal.pcbi.1012434.9002
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Table 1. Population parameter estimates for the best-fit model. Estimates of the parameters from fitting the best-fit
model (model #1, S1 Table) to the macaque data (Fig 2). Percent standard errors are in parentheses. dy, 0, and d were
fixed based on previous studies (Methods). Random effects for log;, 8 and log,, T(0) were removed as they were esti-
mated to be below 0.1 (Methods).

Parameter (Units) Fixed effect Random effect
AlcellsmL™ dh) 352.70 (35.7) 1.32(20.1)
log;o B’ (log mL cellstd ) -2.84 (0.52) -

fo 0.93 (0.61) 0.17 (19.7)
log,,4;(log d*) 0.15 (53) 0.25 (45.5)
d; (d™h) 0.10

dp (d) 6.9x107% (27) 0.69 (26.6)
¥ (cells™) 427.65 (25.7) 0.66 (32.1)
ag (dh) 0.63 (14.9) 0.20 (71.5)
O (cells mL™) 0.10

dg (d™h) 1.00

log,o w(log d™) -2.50 (6.38) 0.47 (24.2)
log;T(0) (log cells mL™) 4.21(0.39)

https://doi.org/10.1371/journal.pcbi.1012434 1001

parameter 4; = .k, than progressors (Fig 3A). (We estimated the composite parameter 1; =
/gk; because krwas not independently identifiable; see Methods for details.) Specifically, the

median value of /;, was 1.65 d”* in controllers and 0.86 d* in progressors, implying a nearly
2-fold enhancement in controllers (p = 0.013). Controllers also had a higher antigen-induced
proliferation rate of CD8 T-cells (cg), although the latter difference was not significant (Fig
3B). Thus, the CD8 T-cell response seemed more robust in controllers. The controllers, also,
interestingly, had a lower value of the ratio of viral production and clearance rates, ¥(S12 Fig),
possibly due to innate immune responses or other cytokine-mediated effects which curtail
viral production [14]. The other parameters were not significantly different between the
groups (512 Fig). Here, our aim was to assess whether CD8 T-cell responses would yield a cor-
relate of natural control, notwithstanding other factors. We therefore focused on the

A p=0.013 B p=0.10 C *

3 - 0.9 - 1.5 1
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5| '. 0.8 104 Progressors
o
o]
x5 "l'l. 074 o ° ©“
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Fig 3. Natural controllers elicit stronger CD8 T-cell responses than progressors. Best-fit model predictions (Fig 2) showed a higher (A) recruitment/killing rate
and (B) antigen-induced proliferation rate of CD8 T-cells in controllers (gray) compared to non-controllers (red). Each symbol represents a macaque and the bar is
the median. (C) Predictions using the best-fit parameters showed higher suppressive capacity in controllers than non-controllers. * indicates p = 0.04 at the last time
point using a Mann-Whitney U test.

https://doi.org/10.1371/journal.pchi.1012434.9003
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differences in 4, and ag, which would manifest as a difference in the suppressive capacity of
the CD8 T-cells. Using the best-fit parameter estimates, we predicted the early time-course of
the suppressive capacity, S for all the macaques and found that the predicted S was significantly
higher at day 28 in the controllers than progressors (Fig 3C). This suggested that the early sup-
pressive capacity of the CD8 T-cells could be a predictor of natural control. We evaluated this
possibility next.

Cumulative antiviral capacity of the early CD8 T-cell response was
correlated with viral control

By sampling parameter values from the distributions obtained in our fits above (Methods), we
generated a virtual population of 10> macaques and simulated the progression of SIV infection
in each using our model (Fig 4A and 4B). We found that the range of set-point viral loads real-
ized (10°~10° copies mL™") was consistent with the range observed in individuals with HIV
[50]. For each virtual macaque, we computed the time-averaged area-under-the-curve of
over the first 28 days of infection, which we denoted S,5. We found, interestingly, that S,3 was
inversely correlated with the set-point viral load (Fig 4C). Thus, early CD8 T-cell responses
with greater antiviral capacity were associated with lower set-point viral loads. Using data of
the set-point viral loads from the 16 macaques above and the corresponding best-fit
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Time post-infection (mo) Time post-infection (mo)
C D E Controllers Progressors
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Fig 4. Early cumulative suppressive capacity is a marker of natural control. Dynamics of (A) viremia and (B) suppressive capacity predicted for virtual
patients using our best-fit model. Trajectories for fifty controllers and fifty progressors are shown. Black dashed line indicates 400 copies mL ™. Correlation
between set-point viral load and cumulative suppressive capacity S, (see text) for (C) 100000 simulated individuals and (D) the 16 macaques studied. The
black curve in (C) is a LOESS regression curve to visualize the inverse correlation. (E) The fraction of virtual individuals achieving control (gray bars) or
experiencing progressive disease (red bars) as a function of S,s. Each bar has of width 0.1 units of S,s. The black curve is a fit of the estimated fractions to a
first-order Hill function (Methods). The blue line represents the minimum S,4 for >95% controllers, with control defined as set-point viral load <400
copies mL ™, Spearman’s p was calculated for assessing the correlations.

https://doi.org/10.1371/journal.pcbhi.1012434.9g004
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predictions of S, we found that the above correlation held also in the macaques we studied (Fig
4D). Thus, the cumulative antiviral capacity of the early CD8 T-cell response was a correlate of
viremic control.

A model that did not incorporate the suppressive capacity measurements (S1 and S13
Tables) could fit viral load data well (S13 and S14 Figs), as is the case with available models [26,
27, 51], but could not distinguish between the CD8 T-cell responses in controllers and progres-
sors (S15A Fig) and, therefore, could not identify the above correlate (S15B Fig). Since the
model was not constrained by any information about the CD8 T-cell function, the per-capita
antigen-dependent proliferation rate of CD8 T-cells was estimated to be higher in progressors
in response to their higher viral loads (S14 Fig). Moreover, not incorporating the suppressive
capacity data to fit the best model resulted in large random effects on parameter estimates (S16
Fig and S13 and S14 Tables). Constraining the model by all the three datasets thus seems to
explain a larger proportion of variability in parameter estimates between individuals than
when only viral load and SIV DNA data are used. This highlights the importance of our
modeling framework, which allows simultaneous fitting of the ex vivo suppressive capacity
measurements and the in vivo viral load and STV DNA measurements.

The correlate was robust to the duration (28 d) for evaluating the early CD8 T-cell response.
For instance, the correlate held when 42 d was used instead of 28 d; the correlation between
S4 and set-point viral load was as strong as the correlation with S,5 (S17A Fig). The correlation
was expectedly lost when the time period was too short or long. When the period was too
short (14 d, Sy4), a significant CD8 T-cell response was yet to be mounted, whereas when it
was too long (90 d, Sop), the early dynamics were masked by the dynamics in the chronic phase
(S17A Fig).

We asked next whether a threshold S,4 existed that was associated with the set-point viral
load of 400 copies mL ™" and could thus facilitate distinguishing controllers from progressors as
defined in the experiments [14]. We found from the above virtual population that as Sg
increased, the fraction of macaques that exhibited control increased (Fig 4E). The fraction was
~40% when S, was <0.1 and rose to ~95% when S,5 was ~0.6. Thus, we defined 0.6 as the crit-
ical S,g, above which the chance of achieving viremic control was >95% in our predictions.
We recognize that the threshold S,5 would depend on the level of viremia used to define con-
trol; a more stringent definition (set-point viremia lower than 400 copies mL™") would lead to
a higher threshold (S17B Fig). Nonetheless, once the set-point viremia for control is defined,
the corresponding threshold S, identified by our model offers a novel, measurable, early pre-
dictor of natural control.

Discussion

Identifying correlates of natural control of HIV infection has been a long-standing goal. Here,
combining mathematical modeling and analysis of longitudinal in vivo and ex vivo data from
SIV-infected cynomolgus macaques, we identified the cumulative response of CD8 T-cells
during the first 4-6 weeks of infection as an early, measurable marker of natural control. The
more efficient was the early CD8 T-cell response, measured in terms of its cumulative virus
suppressive capacity, the lower was the set-point viral load. The marker was robust to the dura-
tion (~4-6 weeks) over which the early CD8 T-cell response was measured. To our knowledge,
this is the first study to identify a quantitative marker predictive of long-term natural control
without antiretroviral treatment.

We made significant advances in mathematical modeling that enabled the identification of
the marker. The model had to contend with data that was a combination of in vivo virological
and ex vivo immunological measurements. Furthermore, the measurements involved nested
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time courses. Specifically, each CD8 T-cell suppressive capacity measurement was obtained
from time course data of antigen load from ex vivo cultures. Longitudinal measurements of
suppressive capacity during the in vivo infection thus had ex vivo assay time course datasets
nested within each measurement. Mathematical models thus far have not analyzed such com-
bined in vivo-ex vivo datasets. Besides, standard fitting algorithms cannot routinely handle
nested time course datasets. By analyzing the ex vivo assays, we developed an analytical expres-
sion that yielded the suppressive capacity as a function of the killing rate of infected cells by
CD8 T-cells. This eliminated the need to consider the ex vivo time courses. Recall that the sup-
pressive capacity is obtained as the difference in the antigen level in the ex vivo assays in the
CD4 T-cell culture and CD4-CD8 T-cell coculture at the time instant when the antigen level
peaks in the CD4 culture. Our analytical expression directly predicted this difference, without
the need to analyze the entire ex vivo time-courses, as a function of the CD8 T-cell killing rate.
Consequently, like the plasma viral load, the CD8 T-cell suppressive capacity became a quan-
tity that could be predicted by our model; it was a function of the parameters, specifically the
CD8 T-cell killing rate, and other quantities in the model such as the size of the effector pool.
Conversely, the suppressive capacity measurements could be used simultaneously with the in
vivo measurements to fit the model and constrain parameters. Compared to available models
[8,26,27,51], which typically rely on viral load and SIV DNA measurements alone, an extra
dimension of information by way of the CD8 T-cell suppressive capacity measurements thus
became accessible for constraining our model. This mechanism-based learning allowed more
accurate inferences of the in vivo dynamics and, in particular, enabled identification of the
above marker of natural control, which available models missed.

The quality of the fits (Fig 2) as well as the consistency of the best-fit parameter values with
independent estimates, where available, gave us further confidence in our inferences. For
instance, the best-fit value of the fraction of infection events resulting in non-productively
infected cells (fp) was 0.93, close to independent estimates of 95% infection events turning
abortive [31,32,51]. The best-fit initial target cell concentration was ~16 cells uL ™', which corre-
sponds to ~3% of the baseline CD4 T-cell count in blood (median 654 cells uL™'; ref [14]),
again consistent with ~5% of the CD4 T-cells in blood expressing CCR5 [52], required for
SIV macas: infection. The best-fit ratio of viral production and clearance rates, y, was ~400, con-
sistent with previous reports [26,53,54]. The best-fit timescale of the evolution of the quality of
the CD8 T-cell response (In 2/w) was ~220 days. While the processes driving this timescale are
yet to be established, it was comparable to the timescale of evolution of viral diversity (months
to years) [33,34].

Our study offers new insights into the potential role of CD8 T-cells in establishing natural
control of HIV infection. While several studies have measured CD8 T-cell responses during
infection, including in its early stages, the measurements have proven inadequate to distin-
guish between controllers and progressors [14,18]. Thus, despite the recognition of the impor-
tance of CD8 T-cells, a major gap existed in our understanding of their specific role in natural
control. Our study makes an important advance by accounting more comprehensively for the
antiviral activity of CD8 T-cells than has been done thus far in describing virus dynamics. Our
formalism considered not only the quality and the quantity of the CD8 T-cell response but
also its time course during the infection. The cumulative antiviral capacity of the CD8 T-cell
response early (~4-6 weeks) in infection thus emerged as a correlate of long-term virus
control.

In the experiments, although the suppressive capacity was observed to increase in the con-
trollers with time, the rise was significant only at late time points, precluding the identification
of the correlate [14]. Specifically, the suppressive capacity was similar between controllers and
progressors until 169 days post infection, although most of the controllers suppressed viremia
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within 90 days. The signatures of the differences in the early time points between the control-
lers and progressors were elucidated by the model fits. Future studies that may make more fre-
quent measurements in the early phase of the infection may offer a more rigorous
experimental test of our correlate.

In our analysis, the higher antiviral capacities in controllers were attributable to greater
recruitment rates and/or maximal killing rates of CD8 T-cells compared to progressors. Future
studies may also assess further the specific implications of this early cumulative response, such
as the restriction of the latent reservoir [55,56], the prevention or reversal of CD8 T cell
exhaustion [25,26,55], and/or the formation of an adequate memory pool [14], that may
underlie the long-term control realized.

We anticipate implications of our findings for the ongoing efforts to elicit long-term HIV
remission [4]. First, using the distribution of parameter values based on fits of our model to
the macaque data, our study identified a threshold strength of the marker (S,3) for achieving a
set-point viremia representative of long-term control. Future studies may translate this thresh-
old to humans, thereby predicting quantitative targets for interventions aimed at eliciting
potent early CD8 T-cell responses for achieving lasting control of HIV-1 infection. Such inter-
ventions include vaccination strategies [17] as well as immunotherapies with immune check-
point inhibitors [57] and broadly-neutralizing antibodies [58] aimed at eliciting better CD8 T-
cell responses. Second, early interventions with ART have been shown to increase the chances
of achieving post-treatment control [35,59]. While CD8 T-cell responses have been implicated
in the establishment of such control [25,26,35,59], how ART may trigger such responses is
unclear. Our study suggests that supplementing measurements of viral load with those of ex
vivo CD8 T-cell suppressive capacity may help elucidate the underlying mechanisms. Such
data could be analyzed using the modeling framework developed in our study. The analysis
may help understand whether natural control and post-treatment control are the same state
realized via two different routes or are two fundamentally distinct states. If the correlation
between CD8 T-cell responses early after treatment cessation and the ensuing set-point viral
load were similar to that observed in the present study, then post-treatment control would
likely be the same state as natural control. Then the notion of the threshold CD8 T-cell
response we identified here may be translated also to the post-treatment control scenario. This
would further inform the many strategies being explored today that combine ART with other
interventions, the latter often designed to improve CD8 T-cell responses, to achieve long-term
control [4,17,60].

Our study has limitations. First, although our model is complex, it considered the most par-
simonious description of in vivo dynamics based on the data available. It thus did not include
processes like CD8 T-cell exhaustion or memory. While the model successfully recapitulated
the datasets from the untreated macaques that we examined, extending it to treated macaques
may require explicitly considering the latter processes. Such advances may also alter the
dynamical features of the model—for instance, by introducing bistability [25,26,61]-the impli-
cations of which remain to be ascertained. Second, we employed an empirical framework to
describe the evolution of the quality of the CD8 T-cell response with time. Again, while such a
framework may be adequate for recapitulating natural control, a mechanistic framework,
involving phenomena such as CD8 T-cell clonal expansion, differentiation to memory pheno-
types and recall [14,62], may be required in other scenarios. Third, the data used in this study
was from a non-human primate cohort that had an unrealistically large percentage of natural
controllers compared to what is observed in humans [7,63]. In our virtual populations, we
ascertained that the range of set-point viral loads predicted by our model was consistent with
humans. Yet, to translate the threshold value of the cumulative suppressive capacity to
humans, parameters recapitulating not only the range but also the distribution of set-point
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viremia in humans would have to be employed. Fourth, the present data did not support a
model that explicitly considered non-cytolytic effects of CD8 T-cells. This was consistent with
observations of the loss of suppressive capacity when contact between CD8 T-cells and infected
cells was eliminated in the ex vivo assays [9,14]. Yet, the role of non-cytolytic effects of CD8 T-
cells, which have been observed in vivo [45,46,64,65], cannot be ruled out. Given that non-
cytolytic effects appear to be predominant with infected cells that are yet to become produc-
tive, deduced through modeling in vivo datasets [46], future studies that enable segregation of
the infected cells into their pre-productive and productive subsets, both in vivo and ex vivo,
may help refine our model and delineate more accurately the relative contributions of the cyto-
lytic and non-cytolytic effects of CD8 T-cells. Fifth, the ex vivo suppressive capacity measure-
ments were made with stock SIV ,,,.,5; virus [14]. Virus evolution is thus not accounted for in
these measurements. Future studies may employ autologous viruses for measuring suppressive
capacity. Our model could still be applied to such data, with best-fit estimates of the CD8 T-
cell killing rate accounting for the effects of such evolution.

In summary, our study identified a new, robust early marker of natural control of HIV
infection, which not only advances our understanding of the mechanisms driving such control
but also informs ongoing efforts to devise strategies for eliciting lasting HIV remission.

Methods
Model development

Model of ex vivo virus dynamics. We first considered the ex vivo assay of the CD8 T-cell
suppressive capacity measurements. Here, a fixed number of target CD4 T-cells drawn from
an individual is exposed to free virions in culture either in the absence or the presence of a
fixed number of autologous CD8 T-cells drawn simultaneously and the time course of the anti-
gen load in the supernatant is measured. We developed a model to predict the latter time
course. The suppressive capacity is estimated as the extent to which the antigen load is reduced
in the presence of CD8 T-cells compared to its peak level in their absence.

The following equations describe the virus dynamics in a culture of target CD4 T-cells
exposed to free virions (Fig 1A):

dt _BTV
dl . .
dTe - (]‘ _f)[),TV - pIe
i (1)
7 * — pl, —dI,
T
‘;—‘T/ =pl, —dv

Here, target cells, T, get infected by virus V" at the rate $7V. A fraction 1 — fof these infec-
tion events is productive, giving rise to infected cells in the eclipse phase, I, from which virus
production is yet to occur. The remaining fraction of the infection events results in non-pro-
ductively infected cells. These latter cells are assumed to be rendered non-susceptible because
they comprise abortively infected cells, which die due to pyroptosis, as well as cells that
undergo CD4 downregulation [66,67]. Infected cells in the eclipse phase transition to virus-
producing cells, I, at the rate pI_, and produce free virions at the rate pI,. Free virions are

cleared at the rate cV. The elimination rate of virus-producing cells is 51, 7 is the time from
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the start of the infection in culture. Further, we use the viral load, V, as a proxy for the antigen
load, such as p24 (capsid protein) or p27 (non-structural regulatory protein) levels used as a
marker of viral production [19] in the assay.

Because virus production and clearance are fast compared to infection [29, 30], we assumed
a quasi-steady state for the dynamics of V in Eq (11), so that ¢ = pp/cand V = pI, /c. In the
experimental study, ex vivo time courses were measured only in a few cases in order to esti-
mate the time point at which the antigen level would peak in the CD4 T-cell culture [14]. We
fit the ex vivo model to data from these cases. The model fit the data well (S1 A Fig), recapitulat-
ing the rise and fall of antigen with time, and yielded estimates of p (S11 Table). In all the other
cases, suppressive capacity was estimated by sampling the ex vivo cultures only at the fixed
time point at which the antigen level was expected to peak.

Next, to estimate the suppressive capacity, we applied the same model as above to data from
co-cultures with a 1:1 mixture of CD4 T-cells and CD8 T-cells exposed to the virus. We let the
elimination rate of virus-producing cells in Eq (11) be (¢ 4 8)I,, where & is the death rate con-
stant of infected cells due to virus-induced cytopathicity and o is the increase in the death rate
constant due to CD8 T-cells. Because the population of CD8 T-cells or their killing efficiency
is not expected to change during the timeframe of the assays, o can be assumed to be a con-
stant. Our model fit the few available instances of the time-evolution of the antigen load in the
co-culture assays as well (S1B Fig), yielding estimates of 0. From the fits, the difference in the
antigen load at the time when the antigen level peaks in the CD4 T-cell monoculture can be
calculated, linking o to the reported suppressive capacity, S, of the CD8 T-cells.

The above procedure, however, estimates o by analyzing the entire time-course of the
monoculture and co-culture assays at any in vivo measurement time point (Fig 1), which
would render data fitting challenging. We therefore developed approximations that would
yield an analytical expression linking 6 and S. The approximations would also enable more
robust analysis of longitudinal datasets of S obtained by making single measurements in each
ex vivo assay at the assay time point associated with the peak antigen load (see above).

Linking ex vivo suppressive capacity to in vivo killing rate of CD8 T-cells. Our approach
was the following. First, we derived an analytical expression of the time-evolution of the anti-
gen load in the ex vivo assay. Second, we obtained an analytical expression of the time at which
the antigen load would attain its peak in the monoculture, i.e. with 0 = 0, denoted 7,,,x. With
these two expressions, we predicted the difference in the antigen load between the monocul-
ture and co-culture assays at the time when the load peaked in the monoculture, thus yielding
S as a function of 0. We present details below.

We recognized that the target cell population remained close to its initial value nearly all
the way until the peak in the infection in the monoculture (S1A Fig). We therefore assumed
that the target cell population was constant, i.e., T(t) = T, the initial target cell concentration,
until the peak. This transformed our nonlinear model equations in (11) into the set of linear
equations below:

(12)

Solving equations in (12) for the viral load yielded

Voef‘r(rr+5+p)/2

V(O-vf) = 2%

((6+0—p+a)e ™+ (p—0—05+a)e™?) (13)
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where o = \/(0’ + 06— p)* +4(1 — f)BT,¢. Predictions with this approximation (Eq (13))

agreed well with the true solution (Eq (11)) of the antigen load until the peak (S1C Fig).

Next, we recognized, following epidemiological models [68,69], that the peak in the infec-
tion occurs when the effective reproductive ratio equals 1. Using next-generation matrix meth-
ods [68, 69], we derived an analytical expression for the effective reproductive ratio (52 Text).
This yielded 7,,.x as the time when the reduction in the target cell population due to the infec-
tion would drive the effective reproductive ratio to 1 (S2 Text):

A“"Ap”"ln( Po__ )] (14)
VP —2, (1=f)BeT,

where o, = \/ p?+4(1 —f)p T,¢. Combining the expressions of V and 7, yielded the

desired link between S and o:

S(o) = log,, (V(Oa Tmax)) - log10<\7(6, Tmax)) (15)

2
T = In
o, —p

where V follows from Eq (13).

Estimates of S(0) obtained from Eq (15) were close to those obtained by integrating Eq (11)
(S1D Fig).

Model building strategy for in vivo dynamics. To identify the number of STV DNA com-
partments our within-host models should contain, we fit mono-, bi-, and tri-exponential
curves to the post-peak SIV DNA data. The SIV DNA data we used did not differentiate
between unintegrated and integrated (intact and defective) STV DNA. If z(¢) represents the
DNA level at time ¢, then a multi-exponential function is given by

z(t) = izie’“t (16)

Here, m is the number of phases (or compartments), v; represents the decay rate constant of
the i phase, and z; is the constant pre-factor for the i phase, respectively. The initial condi-

tion z(0) = Z z, is the estimated DNA level in the blood at t = 0, the time point where the
i=1

measurement peaked for the macaque. We found that a bi-exponential curve explained the

data best (518 Fig). Moreover, accounting for only a single STV DNA compartment yielded

poorer fits (S19 Fig and S15 Table). Accordingly, we incorporated two SIV DNA compart-

ments in our in vivo models.

Next, we constructed several models to describe the in vivo dynamics with two SIV DNA
compartments (S1 Text). We compared these models by fitting data. The best model, with the
lowest Bayesian Information Criterion (BIC), is described in the Results. We analyzed the
model for its structural identifiability and applied it to fit data.

Structural identifiability of model parameters and data fitting

Before fitting our models to data, we analyzed their identifiability in the following way. For
each model, we first examined the structural identifiability using the differential-algebraic
elimination method implemented in the Julia package Structuralldentifiability.jl [70]. Struc-
turally non-identifiable parameters are fixed to values obtained from the literature. Structural
identifiability does not guarantee practical identifiability, the latter dependent also on the data-
sets available. To ensure practical identifiability, we iterated the inference process in Monolix
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to identify the subset of the remaining free parameters that were responsible for practical non-
identifiability. Fixing them, again using literature values, resulted in full identifiability. We
thus had to fix the parameters dj, 0, and d to make the remaining parameters of our best
model uniquely identifiable. Additional parameters had to be fixed in other tested models (S1
Table), as they involved more parameters (S2-S10, S12, S13, and S15 Tables).

From previous studies, we fixed 0z = 0.1 cells mL'and dp=0.1d"[25,71]. We fixed d; =
0.1 d”! based on recent estimates of the half-life of productively infected cells (1.0 d to 1.7 d)
[51,65,72] and estimates of >40% of infected cell loss attributable to CD8 T-cell function [73].
Note that our model prediction of the set-point viral load was not sensitive to d; (S11 Fig).

In the in vivo model, kfwas not identifiable. So, we applied the transformation E* = ka.
Also, viral production and clearance happen at a much faster rate than other in vivo processes
[29,30]. So, assuming quasi-steady state between virion production and clearance rates [29,30],
we simplified the equation for viremia, giving us pI ~ dy'V = V(1) = yI(t) where y = p/d,,.
These transformations to the in vivo model combined with the analytical expression linking S
and o for the ex vivo measurements yielded

dT
—=)-pBTI—-d,T 17
=TI~ d, (17)
1
% =(1—f)BTI—KEI—dI (18)
dD ,
at =fpf Tl —d,D (19)
dE . T )
? = )LE —+ OCEE @ — dEE (20)
dK*
= 1-K" 21
= o(l-K) (1)
S(J) = loglu (V(O7 Tmax)) - lOgm(V(O', Tmax)) (22)
A~ 1(c+d+p)
A V 7T o o
V(a,r):&T((aqté—p+oc)e’7+(p—a—5+oc)e7) (23)
max — 2 In AanA P + % 1n< péA ~ )] (24)
=P |V BP =% (1=f)BeT,

o= KC, (5> (25)

where o = \/(a +0—p) +4(1—f)pT,pand o, = \/p2 +4(1 — )BT 4. Here, B = yB, K*
= kiks E* = ki and Z;; = A,k;. The above Egs (17-25) were used for data fitting. Parameters
used for the ex vivo model are presented in S11 Table, and the initial conditions for the in vivo
model are provided in S16 Table. We note that dr is fixed by the pre-infection steady state of
the uninfected target cells, T(0) = A/dr.
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Statistical model for longitudinal data fitting

We employed the nonlinear mixed effects modeling (NLME) approach for fitting longitudinal
data and used the implementation of stochastic approximation of expectation-maximization
(SAEM) algorithm in Monolix 2021R1 (https://lixoft.com/). Initial conditions for the in vivo
models are provided in S16 Table. The variables V = yI, I + D and S were fit to the viremia, STV
DNA, and suppressive capacity datasets, respectively. We assumed random effects for all
parameters and removed them if they were less than 0.1. The statistical model describing these
observations is

¥ ~log,)l; + ag;
yizj ~log,, (Iij + Dij) + a28i2j (26)
¥~ (S(0,)) + (@, + b.S(,) )l

Here, y;; represents the observations for the i™ individual at the j time point. The super-
scripts 1, 2 and 3 represent the log-transformed viremia, log-transformed SIV DNA and sup-
pressive capacity measurements, respectively. € is the residual Gaussian error with a constant
standard deviation. Thus, for viremia and total SIV DNA datasets, we used a constant error
model, while for the suppressive capacity data, both constant and proportional error terms
were considered. Fits to the best-fit model are presented in Figs 2 and S10, while for the other
models, they are presented in $2-510, S13, S16, and S19 Figs.

Sensitivity analysis
We performed sensitivity analysis of the set-point viral load estimates of our best-fit model.
Sobol’s method was employed using the GlobalSensitivity.jl [74] package in Julia.

Virtual population

All parameters except for fp, which followed a logit-normal distribution with bounds between
0 and 1, were assumed to follow a log-normal distribution. Consequently, log;, 8, log,, 45,
log;o w and log; T(0) followed a normal distribution. After model fitting, analytical forms of
the corresponding distributions of the population parameters were used to generate the virtual
population (Fig 4A-4E).

The fraction of controllers estimated by our model, plotted in Fig 4E, was fit to a first-order

Hill function of S,5 given by a, + (1 — a,) a;f;g using the nonlinear Levenberg-Marquardt
algorithm in Julia. Here, a, and a, were fit parameters. Accordingly, a, is the probability of
achieving control in the limit of a negligible early CD8 T-cell response (S,3 — 0) and a, is the

half-maximal saturation constant.

Data

We obtained data from a published study [14]. In the study, 16 macaques, of which 6 carried
the protective M6 MHC haplotype, were infected with SIV .5 intrarectally. They were then
followed for 18 months without any intervention. Throughout this time, viremia, SIV DNA in
blood and suppressive capacity of CD8 T-cells were measured at different time points. By the
end of the study, 12 of the 16 macaques were identified as controllers. Viremia measurements
were made as copies of STV RNA mL™" of blood. STV DNA levels per million cells were con-
verted from copies per 10° leukocytes to copies mL™" of blood, using individual blood leuko-
cyte counts sampled simultaneously to the SIV DNA measurements.
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Supporting information

S1 Text. In vivo model variants.
(DOCX)

S2 Text. Derivation of T,,,y.
(DOCX)

S1 Fig. The ex vivo model predictions and fits. (A) Fits (lines) of the ex vivo model (Eq (11),
main text) to antigen load data (symbols) from CD4 T-cell cultures of 18 samples. Sample IDs
are presented on the top of the corresponding panels. Antigen p27 level is assumed to be uV,
where V is the viral load and y is the amount of antigen per copy of virion. y and p were identi-
fiable and were estimated to be 6.2x107 ng copies™ and 0.36 d”', respectively. The pink curves
plot the corresponding target cell concentrations. (B) Fits of the ex vivo model to the 1:1 CD4
and CD8 T-cell co-cultures of 18 samples. Sample IDs are presented on the top of correspond-
ing panels. Estimated p from fits to CD4 T-cell cultures were used and o was adjusted to fit the
model. (C) Estimates of viral load in the cultures by Eq (13) from main text (purple) and
numerical integration of system in Eq (11) from main text (gray). The CD4 T-cell culture cor-
responds to ¢ = 0, while the other cases are co-cultures. (D) Estimates of the suppressive capac-
ity calculated from the Eq (15) from main text (purple) and the numerical integration of
system (Eq (11), main text) (gray).

(TIF)

S2 Fig. Fits of model #2 to data. Model predictions (lines) from simultaneous fitting of model
#2 (Methods; S1 Table) to all the three datasets (symbols), namely, viremia (magenta), SIV
DNA (brown) and suppressive capacity (yellow). Macaques highlighted in red are progressors
while the rest are controllers. Empty symbols are observations below the limit of detection.
The parameter estimates resulting in these fits are in S2 Table.

(TIF)

S3 Fig. Fits of model #3 to data. Model predictions (lines) from simultaneous fitting of model
#3 (Methods; S1 Table) to all the three datasets (symbols), namely, viremia (magenta), SIV
DNA (brown) and suppressive capacity (yellow). Macaques highlighted in red are progressors
while the rest are controllers. Empty symbols are observations below the limit of detection.
The parameter estimates resulting in these fits are in S3 Table.

(TIF)

S4 Fig. Fits of model #4 to data. Model predictions (lines) from simultaneous fitting of model
#4 (Methods; S1 Table) to all the three datasets (symbols), namely, viremia (magenta), SIV
DNA (brown) and suppressive capacity (yellow). Macaques highlighted in red are progressors
while the rest are controllers. Empty symbols are observations below the limit of detection.
The parameter estimates resulting in these fits are in S4 Table.

(TIF)

S5 Fig. Fits of model #5 to data. Model predictions (lines) from simultaneous fitting of model
#5 (Methods; S1 Table) to all the three datasets (symbols), namely, viremia (magenta), SIV
DNA (brown) and suppressive capacity (yellow). Macaques highlighted in red are progressors
while the rest are controllers. Empty symbols are observations below the limit of detection.
The parameter estimates resulting in these fits are in S5 Table.

(TIF)

S6 Fig. Fits of the model #6 to data. Model predictions (lines) from simultaneous fitting of
model #6 (Methods; S1 Table) to all the two virological datasets (symbols), namely, viremia
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(magenta) and SIV DNA (brown). Macaques highlighted in red are progressors while the rest
are controllers. Empty symbols are observations below the limit of detection. The parameter
estimates resulting in these fits are in S6 Table.

(TIF)

S7 Fig. Fits of the model #7 to data. Model predictions (lines) from simultaneous fitting of
model #7 (Methods; S1 Table) to all the two virological datasets (symbols), namely, viremia
(magenta) and SIV DNA (brown). Macaques highlighted in red are progressors while the rest
are controllers. Empty symbols are observations below the limit of detection. The parameter
estimates resulting in these fits are in S7 Table.

(TIF)

S8 Fig. Fits of model #8 to data. Model predictions (lines) from simultaneous fitting of model
#8 (Methods; S1 Table) to all the three datasets (symbols), namely, viremia (magenta), SIV
DNA (brown) and suppressive capacity (yellow). Macaques highlighted in red are progressors
while the rest are controllers. Empty symbols are observations below the limit of detection.
The parameter estimates resulting in these fits are in S8 Table.

(TIF)

S9 Fig. Fits of model #9 to data. Model predictions (lines) from simultaneous fitting of model
#9 (Methods; S1 Table) to all the three datasets (symbols), namely, viremia (magenta), SIV
DNA (brown) and suppressive capacity (yellow). Macaques highlighted in red are progressors
while the rest are controllers. Empty symbols are observations below the limit of detection.
The parameter estimates resulting in these fits are in S9 Table.

(TIF)

S$10 Fig. Fits of the best-fit model to data. Model predictions (lines) from simultaneous fit-
ting of the best-fit model (Methods; S1 Table) to all the three datasets (symbols), namely, vire-
mia (magenta), SIV DNA (brown) and suppressive capacity (yellow), shown for 12 of 16
macaques. Plots for the remaining 4 macaques are presented in Fig 2. Macaques highlighted in
red are progressors while the rest are controllers. Empty symbols are observations below the
limit of detection. The parameter estimates resulting in these fits are detailed in Table 1 of the
main text and S10 Table.

(TTF)

S11 Fig. Sensitivity analysis. Sensitivity of the set-point viral load predicted by the best-fit
model to its parameters estimated using Sobol’s method.
(TIF)

$12 Fig. Comparison of parameters estimated by model #1. Parameters estimated for all the
individuals are grouped based on their control status—controllers vs. progressors—and com-
pared. Presented here are five parameters (4, dp, o, fp and log;ow). The others are in Fig 3.
Mann-Whitney U test was used to estimate the significance levels.

(TIF)

S13 Fig. Fits of the model that does not incorporate suppressive capacity measurements
and constant k (model #10) to data. Model predictions (lines) from simultaneous fitting of
model #10 (Methods; S1 Table) to all the two virological datasets (symbols), namely, viremia
(magenta) and SIV DNA (brown). Macaques highlighted in red are progressors while the rest
are controllers. Empty symbols are observations below the limit of detection. The parameter
estimates resulting in these fits are in S12 Table.

(TIF)
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S14 Fig. Comparison of parameters estimated by the model that does not incorporate sup-
pressive capacity measurements (model #10) for fitting. Parameters estimated for all the
individuals are grouped based on their control status—controllers vs. progressors—and com-
pared. Mann-Whitney U test was used to estimate the significance levels.

(TIF)

S15 Fig. Comparison of CD8 T-cell killing rate between model with and without suppres-
sive capacity. (A) Effector response dynamics of CD8 T-cells, given by K*E*, predicted for the
macaques by the best-fit model (solid) and model #10, which does not incorporate suppressive
capacity measurements for fitting (dashed). (B) Correlation plot between S,5 and set-point
viral load as predicted by model #10. Gray symbols are controllers, while red symbols are pro-
gressors. Spearman’s p was calculated for assessing the correlation. Note that here the set-point
viral load increases with S,g, which is the opposite of what is expected.

(TIF)

S16 Fig. Fits of the main model without incorporating the suppressive capacity measure-
ments (model #11) to data. Model predictions (lines) from simultaneous fitting of model #11
(Methods; S1 Table) to all the two virological datasets (symbols), namely, viremia (magenta)
and SIV DNA (brown). Macaques highlighted in red are progressors while the rest are control-
lers. Empty symbols are observations below the limit of detection. The parameter estimates
resulting in these fits are in S13 Table.

(TIF)

$17 Fig. Robustness of correlate. (A) Sensitivity to duration for evaluating the early CD8
T-cell responses. Correlation between set-point viral load and AUC of suppressive capacity
averaged over 14, 42 and 90 days post infection, respectively, for the 16 macaques. Gray sym-
bols are controllers, while red symbols are progressors. The bar plot at the bottom right pres-
ents the predicted correlation between set-point viral load and the time-averaged area-under-
the-curve of S estimated for different durations. Asterisks represent significant correlations
with p<0.05; ns: not significant. (B) Minimum S, required for control increases with a
stricter definition of control. The minimum S,5 estimated to be required for 95% likelihood
of control as a function of the threshold viral load for control. Spearman’s p was calculated for
assessing the correlations.

(TIF)

S18 Fig. Identifying number of phases of SIV DNA. Mono- (dashed), bi- (solid), and tri-
exponential (dotted) curves are fitted to longitudinal STV DNA data post the peak in the mea-
surements. Empty symbols are below detection limit. Data were fit in Monolix (Methods;
main text). The bi-exponential curve explained the data best (BICs: 164.48 for the mono-expo-
nential curve; 140.36 for the bi-exponential curve; and 171.13 for the tri-exponential curve).
(TIF)

S19 Fig. Fits of the model with constant k and no D compartment (model #12) to data.
Model predictions (lines) from simultaneous fitting of model #12 (Methods; S1 Table) to all
the two virological datasets (symbols), namely, viremia (magenta) and SIV DNA (brown).
Macaques highlighted in red are progressors while the rest are controllers. Empty symbols are
observations below the limit of detection. The parameter estimates resulting in these fits are in
S15 Table.

(TIF)

S1 Table. Comparison of different models fitted to the data. Every model fit to the data is
summarized, comparing the BICs of fits. *These fits do not include suppressive capacity
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datasets and hence cannot be compared with other models directly. S14 Table presents the
comparison of BIC of these models with that of the main model after eliminating the contribu-
tion from the suppressive capacity data for the latter.

(DOCX)

$2 Table. Population parameter estimates for model #2. The fixed and random effects of
each parameter is provided along with respective percent standard errors in parentheses. In
addition to the parameters fixed in model #1, fj, is fixed to 0.95 and 0y is fixed to 5 cells mL™*
(1, 2].

(DOCX)

S3 Table. Population parameter estimates for model #3. The Hill coefficient for the exhaus-
tion rate, n = 1. The fixed and random effects of each parameter is provided along with respec-
tive percent standard errors in parentheses. In addition to the parameters fixed in model #1, f;,
is fixed t0 0.95, ¢ is fixed to 2 and x is fixed to 1 d*t[1-3].

(DOCX)

S4 Table. Population parameter estimates for model #4. The Hill coefficient for the exhaus-
tion rate, n = 4. The fixed and random effects of each parameter is provided along with respec-
tive percent standard errors in parentheses. In addition to the parameters fixed in model #1, fj,
is fixed to 0.95, ¢ is fixed to 2 and x is fixed to 1 d*[1-3].

(DOCX)

S5 Table. Population parameter estimates for model #5. The fixed and random effects of
each parameter is provided along with respective percent standard errors in parentheses. In
addition to the parameters fixed in model #1, fp, is fixed to 0.95 [1].

(DOCX)

S6 Table. Population parameter estimates for model #6. The fixed and random effects of
each parameter is provided along with respective percent standard errors in parentheses. Simi-
lar to the best-fit model (Table 1), parameters d;, 0 and dp were fixed.

(DOCX)

S7 Table. Population parameter estimates for model #7. The fixed and random effects of
each parameter is provided along with respective percent standard errors in parentheses. Simi-
lar to the best-fit model (Table 1), parameters d;, 05 and di were fixed. In addition, log;q w was
fixed to -2.50 from Table 1.

(DOCX)

S8 Table. Population parameter estimates for model #8. The fixed and random effects of
each parameter is provided along with respective percent standard errors in parentheses. Simi-
lar to the best-fit model (Table 1), parameters d;, 8z and dy were fixed. In addition, log;o 8’ and
log;o T(0) were fixed using values from Table 1.

(DOCX)

S9 Table. Population parameter estimates for model #9. The fixed and random effects of
each parameter is provided along with respective percent standard errors in parentheses. In
addition to the parameters fixed in model #1, fp, is fixed to 0.95 [1].

(DOCX)

$10 Table. Individual parameter estimates for the best-fit model. Fixed parameters are dj,
0 and d respectively [1,2], as detailed in Methods of main text. Random effects for log;o 5
and log;(T(0) were less than 0.1, and were thus removed, rendering them to be same across
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macaques.
(DOCX)

S11 Table. Parameters of the ex vivo model. The table lists the values used, and the references
thereof. CD8 T-cell count in untreated SIV-infected cynomolgus macaques was close to 10°
cells mL™ [5], similar to the levels in HIV-infected humans [6,7]. So, we fixed C, to 10°.
(DOCX)

$12 Table. Population parameter estimates for model #10. The fixed and random effects of
each parameter are provided along with respective percent standard errors in parentheses. In
addition to the parameters fixed in the best-fit model, fp, is fixed to 0.95 [1].

(DOCX)

$13 Table. Population parameter estimates for model #11. The fixed and random effects of
each parameter are provided along with respective percent standard errors in parentheses. In
addition to the parameters fixed in the best-fit model, fp, is fixed to 0.95 [1].

(DOCX)

$14 Table. Comparison of model fits without suppressive capacity data. Contribution of
suppressive capacity data to BIC of model #1 was removed to compare it with models #10 and
#11.

(DOCX)

$15 Table. Population parameter estimates for model #12. The fixed and random effects of
each parameter is provided along with respective percent standard errors in parentheses.
(DOCX)

$16 Table. Initial conditions used for in vivo model fitting. Note that the exhaustion com-
partment, Q, is present only in models #3 and #4. Viral inoculum sizes have been estimated
using the volumes of distribution [1].

(DOCX)
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