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Abstract
Reinforcement learning (RL) is becoming more prevalent in
practical domains with human implications, raising ethical
questions. Specifically, multi-objective RL has been argued
to be an ideal framework for modeling real-world problems
and developing human-aligned artificial intelligence. How-
ever, the ethical dimension remains underexplored in the
field, and no survey covers this aspect. Hence, we propose
a review of multi-objective RL from an ethical perspective,
highlighting existing works, gaps in the literature, impor-
tant considerations, and potential areas for future research.
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Résumé
L’apprentissage par renforcement est de plus en plus em-
ployé pour des applications pratiques impactant l’humain,
soulevant ainsi des questions éthiques. Spécifiquement,
l’apprentissage par renforcement multi-objectif est con-
sidéré comme un cadre idéal pour la modélisation de
problèmes concrets et le développement de systèmes
d’intelligence artificielle alignés sur l’humain. Peu de
travaux du domaine adoptent une perspective éthique, et les
études existantes ne couvrent pas cet aspect. Ainsi, nous
proposons une revue de l’apprentissage par renforcement
multi-objectif d’un point de vue éthique, en détaillant les
travaux existants, les lacunes de la littérature, les consid-
érations importantes, et les potentielles pistes de recherche
futures.

Mots-clés
Apprentissage par renforcement, prise de décision multi-
objectifs, éthique computationnelle.

1 Introduction
The field of reinforcement learning (RL) has recently seen
numerous breakthroughs, notably featuring artificial intel-
ligence (AI) agents beating humans at a wide variety of
games [50, 8]. RL has also been applied to multiple real-
world problems, with a potentially large impact on soci-
eties, e.g., nuclear fusion control [16], healthcare [69]. This
calls for the study of the ethical issues that may arise from
such uses, and the development of techniques to ensure that
the agents have a behavior deemed ethically-aligned with

human principles; so as to guarantee this technology will
be beneficial to humanity. This is a complex endeavor, and
a few works have started paving the way [66, 52].
In this paper, we focus on multi-objective reinforcement
learning (MORL), a sub-field of RL in which multiple po-
tentially conflicting goals are considered rather than a sin-
gle one. Following the RL trend, MORL is being increas-
ingly used in real world applications such as public bicycle
dispatching [14] or energy management [19]. It has been ar-
gued that aligning AI with human goals is a multi-objective
problem [58], making the study of MORL interesting in
this regard. A few multi-objective decision making surveys
have been published [25, 48], focusing on the theory and
applications of multi-objective decision making algorithms.
The goal of this work is to highlight the need for ethically-
aligned multi-objective methods and to conduct an analysis
of MORL from a moral standpoint. To do so, we start by
discussing and categorizing existing MORL methods, be-
fore introducing important ethical considerations, which we
use to emphasize important gaps in the literature.

2 A motivating example
To illustrate the ethical concerns that can arise when AI
agents are deployed in the real-world, we propose to study
the case of self-driving vehicles. This sector has been in-
creasingly interested in RL [28], which is viewed as a suit-
able paradigm: vehicles can be represented by agents taking
actions such as steering and accelerating within an environ-
ment (road network).
RL agents typically optimize for a single objective, e.g.,
speed. However, when dealing with complex use-cases or
when humans can be impacted, more flexibility is desirable
to account for additional goals like cost saving and comfort.
MORL is ideal in such contexts, as it allows for represent-
ing and compromising between multiple objectives. This
multi-objective aspect is essential when autonomous vehi-
cles are deployed on real roads, as human error, technical
malfunctions or unexpected situations will inevitably oc-
cur, leading the machine to have to handle complex ethi-
cal dilemmas which require weighting between conflicting
moral values, e.g., ensuring safety for both passengers and
surrounding pedestrians in an inevitable accident scenario.
This example motivates the study of MORL agents with an
ethically-aligned behavior, and we will extend it throughout
this paper to illustrate some of the notions discussed.



3 Background
3.1 Reinforcement learning
Reinforcement learning is a general framework to solve
problems in which an agent alternatively takes actions
and receives observations and rewards from an environ-
ment, and aims at maximizing the cumulative reward ob-
tained. RL is usually modeled as a Markov decision process
(MDP), defined as a tuple ⟨S,A,P, R, γ⟩, where:

• S and A are the state and action spaces, respectively;

• P : S ×A×S → [0, 1] is the transition function, i.e.,
the probability of transitioning to a state st+1 given
that the action at was taken at time step t in state st;

• R : S × A × S → R is the reward function, which
outputs a scalar reward for a given (st, at, st+1) tuple;

• γ ∈ [0, 1) is a discount factor modulating the impor-
tance of long term rewards.

The agent acts according to a stochastic policy π : S×A →
[0, 1], which gives the probability of taking any action a ∈
A given the current state s ∈ S . If in every state one of the
actions is selected with probability 1, the policy becomes
deterministic, denoted π : S → A1.
At any time step t, we can compute the sum of future re-
wards, or return, defined as:

Gt = Rt+1 + γRt+2 + . . . =

T∑
k=t+1

γk−t−1Rk. (1)

The value of a state V π(s) = Eπ [Gt | St = s] is the ex-
pected return for an agent located in this state at time step t
and following policy π. In turn, our goal is to find the opti-
mal policy π∗ which, when followed, maximizes the value
for all states in S.
To this day, RL remains a highly active discipline, with
many emerging sub-fields such as multi-agent RL [23, 11],
model-based RL [33] and multi-objective RL, the latter of
which we discuss in the following section.

3.2 Multi-objective reinforcement learning
The field of multi-objective reinforcement learning
(MORL) deals with multi-objective Markov decision pro-
cesses (MOMDPs). MOMDPs differ from regular MDPs
only in that the reward (and by extension the value) is
vector-valued: r ∈ Rm with m objectives2. This implies
that finding a single optimal policy via a simple maximiza-
tion process becomes impossible, as maximizing one of the
component of the reward vector (called objective) could
lead to a decrease in another one.
Utility functions, also referred to as scalarization functions,
map the value vector Vπ of a given policy π to a single
scalar (u : Rm → R). They provide a convenient way
to formalize a decision maker’s preferences and trade-offs
over the objectives.

1Some works also use µ(s) = a specifically for deterministic policies.
2Note that we use the standard notation of boldface for vector variables.

A common and simple class of utility functions are linear
utilities, denoted as u(Vπ) = w⊤Vπ , which combines
a weight vector w in the (m−1)-simplex3 and the value
vector using a linear combination. Intuitively, each weight
wo ∈ w represents the importance of the associated objec-
tive Vπ

o .
If we have access to a linear utility function for the user,
we can use it to simplify the problem back into the single-
objective RL setting and solve it with classical methods.
However, this is not an option when the utility function is
not fully known in advance or is non-linear, which repre-
sents a large portion of real-life scenarios (see the motivat-
ing scenarios presented in [25]).
In these settings, we focus instead on a set of optimal poli-
cies: the Pareto front (PF). A policy π ∈ Π belongs to
the Pareto front PF(Π) if it is not Pareto-dominated by any
other policy. The Pareto-dominance of a policy π over a
policy π′ is defined as:

π ≻P π′ := (∀o : Vπ
o ≥ Vπ′

o ) ∧ (∃o : Vπ
o > Vπ′

o ). (2)

In plain words, π’s associated value vector is greater or
equal to the one associated with π′ for all objectives o, and
strictly greater for at least one.
As the PF can have multiple policies with the same in-
duced value function, we often refer to a Pareto coverage
set (PCS), which simply retains a single policy for each non
Pareto-dominated value function. Computing a PCS guar-
antees that we have access to all policies that are optimal
under some monotonically increasing utility function. This
allows to adapt to changes in the user’s preferences while
making minimal assumptions about u. In practice, how-
ever, PF and PCS can be prohibitively large to compute.
Recent works [48, 25, 41] have argued for a utility-based
approach, in which we use information we have about the
utility function to guide our search in the space of policies.
For example, when u is known to be linear, we can restrict
our focus to subsets of the PF referred as convex coverage
sets (CCS), which contain all maximal policies under this
assumption.
To illustrate these concepts, let’s take our example from
section 2. Keeping only 2 objectives (speed and comfort)
for ease of representation, we can visualize the PF and a
CCS in figure 1. Each point represents a policy and its as-
sociated value vector, compromising between the two ob-
jectives. We can see that increasing speed usually leads to
a decrease in comfort, but it is not always the case (for in-
stance, faster speeds on very uneven roads could smooth
out the cruise). Notice that points belonging to the rep-
resented CCS are also part of the Pareto front (in fact
CCS(Π) ⊆ PF(Π)). Here, point b is not Pareto-dominated
by any other point. Furthermore, there is no w for which a
linear scalarization would lead to b being maximal. Thus,
we can conclude that b belongs to the PF but not to a CCS.
When using a scalarization function, two optimization cri-
teria naturally arise: scalarized expected returns (SER) and

3The m-simplex, denoted ∆m, is the set of all nonnegative vectors of
m+ 1 dimensions whose components sum to 1.
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Figure 1: Visualization of the Pareto front and a convex
coverage set for a 2-objective self-driving car example.

expected scalarized returns (ESR). To optimize for SER,
we scalarize an expectation over multiple runs of the vector-
valued returns of a policy, whereas optimizing for ESR re-
quires having a scalarized return for each run, and then
computing an expectation over them. These two criteria
have different properties and should be used in different
scenarios. SER, the most studied one, is particularly suited
when we aim to optimize over many policy executions,
whereas using the ESR criterion is better to ensure that each
execution is maximal over our utility function.
See [48, 25] for a detailed overview of the theory and meth-
ods of multi-objective reinforcement learning.

3.3 Machine ethics
As autonomous machines are increasingly integrated into
domains with significant human implications, their im-
pact, whether it be positive or negative, requires investi-
gation. Machine ethics is concerned with ensuring that
AI agents demonstrate ethically-aligned behaviors, i.e., be-
haviors whose outcomes are acceptable according to some
human-chosen ethical framework [6]. In turn, we aim for
them to be explicit ethical agents [35], i.e., agents who are
not simply constrained to avoid unethical behaviors but who
integrate algorithmic capabilities [18] allowing them to per-
form ethics-related computations and to consider ethical
considerations in their decision-making process. To eval-
uate the ethical alignment of these behaviors, we leverage
insights from normative ethics. As it is concerned with the
morality of actions, this field provides a suitable framework
for such an analysis.
Normative ethics encompasses three main schools of
thought: consequentialism, virtue ethics and deontology.
According to consequentialism, only the outcomes of ac-
tions are necessary to judge whether these actions are ethi-
cal or not. Consequentialist ethics are most known for util-
itarianism, which argues that in every situation, the ethical
action is the one that maximizes happiness and well-being
for all. Virtue ethics shift the focus from the action to its
motivation. In this view, an agent is ethical if it acts ac-
cording to set values (e.g., confidence, honour, freedom).
Deontology takes a rule-based approach, in which actions

can either be right or wrong according to a list of princi-
ples. Kantian ethics is a prime example of deontological
ethical theories. We refer the interested reader to [54] for
an extensive review of western moral philosophy.
As discussed in section 3.1, a defining feature of reinforce-
ment learning agents is their ability to take actions in an
environment, making normative ethics a natural framework
for studying the ethical alignment of their behavior.
In fact, reinforcement learning has been characterized as an
ideal framework to develop ethical agents [1], and recent
work has surveyed RL-based moral learning agents [52].
Furthermore, we argue that the formulation of the reinforce-
ment learning objective as the maximization of a future re-
ward signal naturally aligns with a number of branches of
consequentialism. Although some methods allow for the
application of deontological ethics into RL [24, 5], none
to our knowledge directly takes a moral perspective and is
adapted to the multi-objective setting. Finally, it has been
argued that MORL, on top of being ideal to model a number
of real-world problems [25], is a particularly fitting frame-
work to develop human-aligned artificial intelligence [58].
Moreover, we suggest that it is also suited for modeling
virtue ethics, as each component of the vector-valued re-
ward can encode a virtue to be followed. For a comprehen-
sive overview of machine ethics implementations, refer to
the survey of Tolmeijer et al. [55].

4 Classical MORL methods
The most commonly used taxonomy for multi-objective se-
quential decision making [48, 25] classifies methods de-
pending on the type of policy and utility function they con-
sider, resulting in a number of criteria:

• single vs. multiple policies: As mentioned in sec. 3.2,
algorithms can either output a single solution (if the
utility is fixed and known in advance) or a set of op-
timal policies. Multi-policy methods are more costly,
but allow for greater flexibility: since fewer assump-
tions are made on the utility function, the user can
adapt in the face of new data or changing contexts.

• deterministic vs. stochastic policies: While it was
shown that stochastic policies can outperform de-
terministic ones in some environments [63, 56], their
use can become ethically questionable or impossible
in domains requiring strong guarantees (e.g., medical
treatments).

• linear vs. monotonically increasing u: Using linear
utility functions simplifies the learning process, al-
lowing the MORL problem to be reduced to a single-
objective one (for single-policy algorithms) or to re-
strict the policy search to a CCS (for multi-policy algo-
rithms). Using monotonically increasing utility func-
tions enables the expression of a much richer rela-
tionship between the objectives, at the cost of a more
complex learning process, as the entire PF has to be
considered.



single policy (known u) multiple policies (unknown u)

deterministic stochastic deterministic stochastic

linear
scalarization

one policy in ΠDS: DQN [32], REINFORCE [51] CCS of policies in ΠDS: Envelope [68], PG-MORL [67],
PD-MORL [9], CN [2]

monotonically
increasing

scalarization

one policy in ΠD: EUPG
[46], MOCAC [43],
Q-steering [60]

mixture of policies in ΠDS:
π-mix [56], S-rand [63]

PCS of policies in ΠD:
PQL [34], PCN [42]

mixture of policies in ΠDS:
CAPQL [29], π-mix [56],
S-rand [63]

Table 1: Non-exhaustive classification of MORL algorithms, following the common utility-based taxonomy from [48, 25].
Here, ΠD and ΠDS denote the policy space restricted to deterministic and deterministic stationary policies, respectively.

For each combination of criteria, this taxonomy allows us
to define a solution set, i.e., the type of policies that will
constitute the solution to our given problem. In table 1, we
categorize a non-exhaustive list of popular MORL methods
according to said taxonomy. In this section, we present each
class of solution set alongside its corresponding methods.

4.1 Linear scalarization
When the utility function is linear, Roijers et al. [48] show
that deterministic stationary4 policies are optimal. Fur-
thermore, adding non-stationarity and stochasticity greatly
increases the size of the policy space. Thus, MORL meth-
ods developped for linear utility functions tend to limit their
search to deterministic stationary policies. In scenarios
where u is known, only a single optimal policy is required.
Conversely, when the utility is unknown or may change, we
seek to retrieve a convex coverage set.
Note that by definition, the SER and ESR optimization cri-
teria are equivalent under linear utility, and as such no dis-
tinction is made between them in this section.

4.1.1 One deterministic stationary policy
When a linear utility function is used, any single policy
MORL problem can be cast into single-objective RL by
scalarizing the reward vector. This setting can be solved
with most of the existing RL methods (e.g., value-based
methods, policy gradients).
For example, take the autonomous driving example dis-
cussed in section 2. Let’s assume our user is budget-
conscious, not in a hurry, and has recurrent back pain.
They might then decide on a preference (weight) vector
of [0.1, 0.5, 0.4], meaning that they assign an importance
factor of 0.1 to speed, 0.5 to cost saving, and 0.4 to com-
fort. When driving towards a speed bump, the car can ei-
ther brake or accelerate. The brake option yields a reward
of [−0.4, 0.4, 2.1] which gets scalarized to 0.1 · −0.4 +
0.5 · 0.4 + 0.4 · 2.1 = 1. Accelerating gives [5,−0.2,−1],
resulting in a scalarized reward of u([5,−0.2,−1]) = 0.
This indicates that braking is to be favored in this context.
When the agent receives a reward vector from the environ-
ment, single-objective RL methods like REINFORCE [51]
or DQN [32] can scalarize it as such before using the result-
ing value as their reward input.

4A policy π is stationary if the distribution of actions is constant in all
states, i.e., it is not conditional on time step-dependent information.

4.1.2 CCS of deterministic stationary policies
As mentioned in section 3.2, using a linear utility function
implies that all optimal policies lie on a convex coverage
set. This means that a multi-policy algorithm able to re-
cover a CCS has access to an optimal policy for any possi-
ble weight vector w.
Most algorithms use some form of neural network condi-
tioned on a weight vector in their architecture and train it
with random values, allowing the model to produce robust
outputs over any input w. Conditioned Networks (CN) [2]
popularized this approach by showing the potential of con-
ditioned deep Q-networks to generalize across the weight
space. Following work kept the same general structure,
while focusing on efficient exploration and alignment of
weight vectors. The authors of Envelope [68] propose to
use multiple schemes such as homotopy optimization and
Hindsight Experience Replay [7] and show that it allows
them to consistently outperform CN. PG-MORL [67] was
one of the first methods to tackle environments with large
continuous action spaces. It features an evolutionary stage
that allows it to efficiently search the space of policies and
weights to best improve the CCS. PD-MORL [9] was able
to beat Envelope and PG-MORL (on discrete and continu-
ous action tasks respectively) by adding a preference guid-
ance term to a double deep Q-network loss [62]. Note that
some of these works use the terms Pareto coverage sets and
convex coverage sets interchangeably, but their nature in
fact strictly limit them to the retrieval of CCS.

4.2 Monotically increasing scalarization
When the utility function is non-linear, deterministic sta-
tionary policies are not guaranteed to be optimal. To
retrieve policies from the Pareto front that do not lie on
convex coverage sets, we need to introduce either non-
stationarity or stochasticity.
Note that in this context of non-linear scalarization func-
tions, the ESR and SER optimization criteria are distinct.
Although not explicitly mentioned here, each method pre-
sented in this section optimizes for one of them.

4.2.1 Deterministic non-stationary policies
When the solution policies must be deterministic and
the utility function is non-linear, White shows that non-
stationary policies can dominate stationary ones [65]. Con-
sequently, it is necessary to consider non-stationary policies
to retrieve a PCS in this context.



Imagine an autonomous delivery company working for two
large clients A and B. Its goal is to distribute as many
items as possible, while avoiding to neglect either A or B
as not to lose an important partnership. An autonomous
truck receives a reward of [1, 0] when customer A gets a
successful delivery, and [0, 1] for customer B. The utility
function to use could then be u(Vπ) = min(V π

A , V π
B ), ef-

fectively maximizing the total number of deliveries while
ensuring no client is left out. Here, a deterministic non-
stationary policy would be able to yield a satisfying utility
while a stationary one would not. Indeed, instead of always
acting the same in each state — which would be equiva-
lent to always picking the same client and thus yielding a
utility of 0 — the non-stationary policy could condition on
the time-dependent past rewards. This allows the agent to
make informed decisions about actions to take depending
on whether A or B was most chosen until now.
The first and third cells in the second row of table 1 re-
spectively represent the single and multi-policy (PCS) so-
lution sets for deterministic non-stationary policies. Con-
structing such policies is often done by conditioning them
on the current timestep t (EUPG [46], PCN[42]5), or by
splitting G (see eq. 1) into past (also known as accrued)
and future returns (PQL [34], EUPG [46], MO-CAC [43]).
For example, the EUPG algorithm employs a modified pol-
icy gradient loss including both accrued rewards and a t-
conditioned policy. Q-steering [60] takes another approach,
forming non-stationary combinations of deterministic sta-
tionary base policies. Q-steering is based on Q-learning,
and as such is limited to discrete state and action spaces.

4.2.2 Deterministic stationary mixture policies
As previously mentioned, there are contexts in which hav-
ing a predictable, deterministic policy is essential. Con-
versely, other applications can tolerate some degree of
stochasticity. For example, when designing a fleet of au-
tonomous cars, we might want to add randomness to the
path-finding algorithm, such that not all agents converge to
the same road, thus avoiding congested traffic and globally
sub-optimal behaviors.
When allowed, stochastic policies should be considered as
part of the solution, as they can dominate deterministic poli-
cies under non-linear utility function [48]. It was shown
that in some cases, we can construct a Pareto front from
a mixture (i.e., a stochastic combination) of deterministic
stationary policies [56, 63]. This is ideal, as it means that
recovering a CCS is sufficient to construct the entire PF,
greatly reducing the amount of computation needed to find
optimal policies.
For example, Vamplew et al. [56] introduce a new al-
gorithm, which we refer to as π-mix, that randomly se-
lects a deterministic policy at the start of each episode
and for its entire duration. Although this method works
as expected under SER, using one deterministic policy per
episode is not suitable for learning under ESR. Following

5Pareto Conditioned Networks can be seen as a sort of deterministic
non-stationary policy method, as the agent follows a policy trained using
supervised learning that conditions on the “desired horizon”.

our autonomous delivery example from section 4.2.1, π-
mix could learn to alternate between two policies, each fa-
voring only client A or B. In expectation over multiple
episodes, this would indeed result in a fair delivery be-
tween them. However, on a per-episode basis, one customer
would not be supplied, and thus could end the contract.
The ESR case is more complex, as the choice of policy
needs to happen at each state (instead of each episode), be-
ing effectively equivalent to a stochastic policy. Wakuta
[63] introduces a such method in a simplified setting, which
we designate as S-rand, where the probability of picking
one of k policy is the same at each state.
However, Lu et al. [29] show that finding the correct
weights of a stochastic policy to retrieve a specific value
vector is in practice infeasible. They propose CAPQL
which uses reward augmentation to recover otherwise un-
reachable value functions from the Pareto front, although
the resulting policies are not stochastic.

4.3 Challenges and way forward
As seen throughout this section, the field of multi-objective
reinforcement learning, despite its growing popularity, re-
mains sparse and fragmented. The recent work of Hayes et
al. [25] identifies a few understudied areas of MORL that
require further exploration: complex multi-objective bench-
marks, dedicated many-objectives methods, specificities of
multi-agent settings and the dynamical identification and
evolution of objectives.
In particular, the study of many-objectives methods seems
like an important future research area for MORL. Indeed,
most MORL algorithms suffer from the curse of dimen-
sionality, i.e., the exponential growth of the search space in
the number of objectives makes retrieving satisfying poli-
cies highly complex. Note that the lack of MORL bench-
marks has been partly addressed since the survey. Notably,
the widely-used RL library Gymnasium was extended to the
multi-objective case with MO-Gymnasium [21].

5 MORL and ethics
While it is important to take into account the normative
ethics considerations mentioned in section 3.3, deploying
MORL agents in society introduces additional concerns.
Drawing from the machine ethics literature and consider-
ing potential issues caused by the use of naive MORL al-
gorithms in real life scenarios, we identify four desirable
features associated with ethical MORL agents.
They should have the ability to: (a) prioritize user experi-
ence, (b) adapt to an evolving society, (c) adhere to a set
of norms, and (d) account for other agents. Interestingly,
the evolution of objectives and the multi-agent aspect are
part of the list of open challenges for MORL research men-
tioned in section 4.3. Note that these properties are pointers
for researchers wanting to consider the impact of their al-
gorithms, and not an exhaustive list of required attributes to
develop agents with ethically-aligned behaviors. These fea-
tures can even be contradictory in some cases, e.g., when a
user’s preferences are incompatible with the set of norms
the agent ought to follow.



In this section, we define each of the aforementioned prop-
erties, review their place in the MORL literature, highlight
potential future work, and conclude by discussing ways of
benchmarking ethics in a MORL settings. A summariz-
ing classification of existing methods according to our four
principles is presented in table 2.

5.1 The user-centric approach
User-centric methods bring an explicit consideration of
the user alongside the traditional performance goals. These
approaches aim to empower users with agency, helping
them to make informed decisions while minimizing their
cognitive load. Algorithms mentioned in section 4 are ca-
pable of producing one policy (or a set of policies) that ef-
ficiently solves the input problem. However, most of them
do not tackle how to find what utility function to use or
which policy to pick from the Pareto front. Consequently,
the end-user is tasked with making these decisions which
can be non-trivial, for when the Pareto Front is not easily
visualizable (m > 3). Etzioni and Etzioni [20] advocate
for the ethics bot, an AI program that “extracts specific eth-
ical preferences from a user and subsequently applies these
preferences to the operations of the user’s machine”. This
resonates with the example discussed in sec. 4.1.1 in which
we want the agent to learn the passenger’s preferences (e.g.,
prioritize speed if they are in a hurry or low costs if they
want to save up) and adapt its driving profile accordingly.
Zintgraf et al. [71] noticed this gap in the literature and
made a first step to address it by proposing and evaluat-
ing several preference elicitation strategies. Following this
work, a number of papers have focused on making the hu-
man decision maker a bigger part of the MORL process.
With GUTS [47], Roijers et al. introduce an interactive ap-
proach for multi-armed bandits, where the agent learns si-
multaneously about the environment and the user’s prefer-
ences. Contrary to previous methods, GUTS is able to learn
non-linear utility functions, while querying the user a prov-
ably limited number of times.
MORAL [40] proposes a two-step method for aligning an
agent’s behavior with the preferences of a user. First, a set
of reward functions is learned from expert demonstrations
using adversarial inverse reinforcement learning [22]. The
user is then faced with multiple queries, allowing the agent
to find a preference vector between expert reward functions,
while simultaneously optimizing a policy on this combi-
nation. Empirically, the authors show that an adversarial
user would not be able to teach the agent behaviors ac-
tively avoided by the expert demonstrations, although no
formal proof is given. DWPI [30] learns the user’s prefer-
ence vector from demonstrations of their behavior in the
environment (in a way reminiscent of inverse RL [70]).
Chaput et al. [13] argue for a more contextual and intel-
ligible approach, and propose QSOM-MORL, which learns
to identify and solve ethical dilemmas using contextual hu-
man preferences.
Although not discussed in this work, it is important to con-
sider potential biases in the construction of the utility func-
tion when developing single-policy user-centric algorithms.

For example, some work (notably in the economics litera-
ture) show that there can be a gap between observed and
ground truth preferences [10]. As MORL algorithms get
better, this discrepancy may become a bottleneck in user
satisfaction, further emphasizing the need to take these fac-
tors into account.

5.2 Evolving values and preferences
The methods for learning a user’s preferences or utility
function introduced in the previous section assume that this
target is fixed and not subject to change. However, the
owner of a self-driving vehicle, who usually favors comfort
and savings over speed, may radically change their prefer-
ences in the case of an emergency. Similarly, the vehicle
could be part of an autonomous taxi fleet, having to adapt
to each customer profile. Therefore, it can be desirable for
autonomous agents to have the ability to detect and adapt
to user preference changes.
A few MORL methods have been developed to tackle this
problem. CN [2] and DMCRL [37] take similar approaches,
using prior information from learned policies to adapt to
changing preferences. Q-steering [60] includes an interac-
tive mode, allowing the user to update the target during or
after the learning phase.
As society evolves, the three values proposed in our exam-
ple of section 2 could fail to address emerging considera-
tions such as environmental impact. Pavaloiu and Koose
[39] emphasize that morality is subjective, varies across
cultures, and continuously evolves. Thus, we may want our
agent to adapt to newly introduced objectives while re-
taining previously learned knowledge. One naive way to
approach this aspect could be to use a linear scalarization
function, and take advantages of methods which support
non-stationary reward functions (e.g., continual RL [27],
Q(D)SOM [12]). Hayes et al. [25] identify the challenge of
dynamic identification and addition of objectives as one of
the main areas for future work in MORL, and to our knowl-
edge the formulation of a variable sized vector-valued re-
ward function has not been studied yet.

5.3 Lawful agents
Approaches for the ethical alignment of agents behavior can
be categorized into 3 classes [4]:

• Bottom-up approaches do not enforce any obligatory
or prohibited actions. Instead, the ethical behavior is
learned through experience, and emerges from the def-
inition of the agent and environment.

• Top-down approaches are rule-based, and incorporate
a priori knowledge (such as deontological duties).

• Some works [52, 17] argue for hybrid methods which
combine the top-down and bottom-up approaches.

When discussing their ethics bots, Etzioni and Etzioni [20]
mention that they only address moral preferences, and dis-
regard normative aspects (e.g., a legal framework). Thus,
a MORL-based implementation of an ethics bot would
only learn in a bottom-up fashion. Although some works



MORL methods user-centered adaptable normative multi-agent
CN [2], DMCRL [37], Q-steering [60] ✓ ✓

MAEE [44] ✓ ✓

GUTS [47], MORAL [40], DWPI [30], QSOM-MORL [13] ✓

EE [45], TLO [59] ✓

MO-MIX [26], PRBS/D [31], moral rewards [53] ✓

Table 2: Qualification of MORL methods with regards to ethical properties.

[64, 53] argues that top-down approaches are challenging
and pose some risks, having a set of guarantees (via top-
down or hybrid agents) can be crucial in some applications.
Typically, we want to ensure that self-driving vehicles de-
ployed on real roads act according to the locally enforced
traffic regulations, so that their behavior is safe and pre-
dictable for human drivers. In fact, Pagallo [38] argues
that values alone are not enough for the coordination of AI
agents and that rules are needed. Thus, it is desirable for
our agents to be able to follow a set of norms.
In MORL, Rodriguez-Soto et al. [45] take the perspective
of the environment designer, allowing them to derive theo-
retical guarantees for the alignment of agents w.r.t. chosen
ethical values. To do so, they start from a MOMDP whose
reward functions are built upon a value system. Their
proposed Multi-Valued Ethical Embedding (EE) algorithm
then proceeds to compute a solution weight vector, resulting
in a linearly scalarized MDP with the desired properties.
Using potential-based rewards, TLO [59] focuses on
impact-minimizing agents, i.e., agents performing a pri-
mary task while aiming at disrupting the environment as
little as possible. This approach is bottom-up by design,
yet the authors demonstrate strong empirical results show-
ing the ethical alignment of trained agents. These results
are for now limited to discrete states and actions, although
the algorithms proposed are theoretically extensible to the
continuous cases.
For single-objective RL, a few works propose top-down or
hybrid approaches. Shielding [5] uses temporal logic to en-
force a set of properties on the resulting policy. AJAR [3]
uses argumentation-based judges to compute the rewards
based on a set of moral values. Extending such methods to
the multi-objective case presents promising possibilities for
future research.

5.4 Ethics as a multi-agent problem
Murukannaiah et al. [36] argue that the study of ethics in-
trinsically needs to be done in a multi-agent context, high-
lighting that research in AI ethics is to this day largely con-
stituted of single-agent works and ignores the societal con-
text. As trained MORL algorithms are deployed a real-life
situations, they are likely to encounter other actors, both
artificial and human. Therefore, we argue that our agents
should be able to account for and interact with other ac-
tors. The field of multi-objective multi-agent reinforcement
learning (MOMARL) accounts by design for the interac-

tions that can emerge in these cases. Being at the inter-
section of two sub-fields, MOMARL remains relatively un-
derstudied. Rădulescu et al. [41] have surveyed the field of
multi-objective multi-agent decision making and concluded
that many gaps still exist in the literature, particularly for
RL-based methods. Although some MOMARL approaches
have been proposed [26, 31], and there has been work on
ethics in the multi-agent setting [15], very few MOMARL
papers specifically take an ethical perspective. Rodriguez-
Soto et al. [44] propose a method (MAEE) to construct
environments in which agents are guaranteed to have an
ethically-aligned behavior, while pursuing their individual
goals. However, the multi-objective reward function they
use is very simple, with only two component: an individ-
ual objective and an ethical objective (itself split between a
normative and evaluative part). QSOM and QDSOM [12]
are multi-agent algorithms based on self-organizing maps.
Although not multi-objective, they were tested with vari-
ous reward functions combining ethical stakes, analogously
to ESR-optimized MORL. Tennant et al. [53] analyze the
behavior of intrinsically-motivated RL agents rewarded ac-
cording to moral theories when faced with moral dilemmas.

5.5 Benchmarking ethics
While some papers tackle the evaluation of MORL algo-
rithms and the available benchmarks [57], few environ-
ments have become standard, and most of them are too sim-
ple for modern methods [25].
When trying to ensure the ethical alignment of an AI
agent’s behavior, the metric of success may be more com-
plex than a simple sum of reward signals. Few MORL envi-
ronments with an ethics-first approach have been proposed.
The ethical gathering game by Rodriguez-Soto et al. [44]
extends the regular gathering game, with the addition of
beneficence as a moral value. Scheirlinck et al. [49] in-
troduce the ethical smart grid, a complex environment with
continuous actions and observations. They propose to use
a number of (sometimes conflicting) moral values from the
literature to evaluate the behavior of agents.
Additionally, there is a number of environments which are
not created with ethics in mind but allow for the inclusion
of one or more of the constraints previously mentioned.
As such, any MORL environment (e.g., DST [61]) can be
viewed through a user-centric lens by changing the setting
or adding queries to a user to learn their preferences. Sim-
ilarly, we can modify multi-agent multi-objective environ-



ments (e.g., MOBDP [31]) to shift the focus towards the
alignment of agents with some specified ethical values.

6 Conclusion
As artificial intelligence agents are being increasingly de-
ployed in society, there is a growing need to study ways of
ensuring the ethical alignment of their behaviors. In this
paper, we have focused on multi-objective reinforcement
learning, a framework that has been deemed ideal for mod-
eling the complexities of both ethics and real-world prob-
lems. First, we proposed a classification of existing multi-
objective RL methods according to the prevalent taxonomy.
Then, we explored the considerations required when one
wishes to work in MORL while adopting an ethics-centered
perspective. The literature at the intersection of MORL and
ethics is still very limited, and a lot of work remains to be
done, notably on methods explicitly implementing one or
more of the four desirable properties for ethical agents high-
lighted in section 5: adherence to user preferences, adapt-
ability to societal changes, compliance with norms and reg-
ulations, and considerations of other agents. We hope that
this work can serve researchers at the intersection of MORL
and ethics to visualize the state of current research and the
still lacking areas deserving of further investigations.
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