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Abstract

Black-box global optimization aims at minimizing an objective function whose analytical form is not
known. To do so, many state-of-the-art methods rely on sampling-based strategies, where sampling
distributions are built in an iterative fashion, so that their mass concentrate where the objective function
is low. Despite empirical success, the theoretical study of these methods remains difficult. In this work,
we introduce a new framework, based on divergence-decrease conditions, to study and design black-
box global optimization algorithms. Our approach allows to establish and quantify the improvement
of sampling distributions at each iteration, in terms of expected value or quantile of the objective. We
show that the information-geometric optimization approach fits within our framework, yielding a new
approach for its analysis. We also establish sampling distribution improvement results for two novel
algorithms, one related with the cross-entropy approach with mixture models, and another one using
heavy-tailed sampling distributions.

Keywords. Black-box optimization, Variational inference, Mixture models, Heavy-tailed distributions,
Kullback-Leibler divergence.

MSC2020 Subject Classification. 62F15, 62F30, 62B11, 90C26, 90C30.

1 Introduction

Finding the minimizer of a possibly non-convex objective function that is only accessible through a black-
box oracle is a challenging, yet important task, which has motivated many works [35, 29]. Given the presence
of eventual local minima and the difficulty of evaluating or even approximating gradients, many methods
resort to sampling procedures. These rely on evolution strategies to construct proposal distributions [17],
typically Gaussians, to generate samples close to the minimizers of the objective. Among these methods,
one can mention the class of estimation-of-distribution algorithms [24], the cross-entropy algorithm [23], or
the CMA-ES algorithm [18, 16].

A useful perspective to gain theoretical insights is to understand these algorithms as optimization schemes
aiming at minimizing an expectation-based reformulation of the original problem over a set of proposal
sampling distributions. The resulting reformulated problem can consist in minimizing the expected objective
value [14, 4, 25], or the expected transformed objective value, for some well-chosen transformation [34, 33, 9].
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These transformations can also be rank-based [34, 33]. Rank-based transforms only require a ranking of
solutions and thus preserve invariance properties with respect to monotonic transformation of the objective
function. Algorithms with such invariance properties behave identically on two problems with the same
ranking of solutions, allowing to generalize insights from one problem to another [21]. Invariance properties
usually yield better-performing algorithms [19, 8]. Rank-based transformations rely on reformulations that
depend on the retained proposal. In the infinite-population limit, a quantile-based reformulation of the
objective function is obtained [27].

In order to solve the reformulated optimization problem over a set of proposals, many algorithms resort
to natural gradient updates. These updates have been proposed in [6], and consist in a gradient descent step
preconditioned by the Fisher information matrix of the proposal. Natural gradients have been used in the
context of estimation-of-distribution algorithms [25, 9], evolution strategies [4, 33], or discrete permutation
problems [12]. Natural gradients yield invariance properties with respect to parametrization of the proposals
[33, 27]. They are straightforward to be computed when the proposal lies in the exponential family [22].
The natural gradient descent has been used jointly with a (rank-based) quantile-based reformulation of the
objective in [27, 5], leading to the so-called information-geometric optimization (IGO) framework. IGO
recovers many existing algorithms, such as the cross-entropy (CE) algorithm [23], also based on quantiles,
as well as various estimation-of-distribution algorithms [24].

The theoretical study of the aforementioned natural gradient methods mostly follows two main ap-
proaches. The first one is to establish asymptotic convergence of the proposals to a limit proposal distri-
bution well-suited to solve the original problem. This is the approach of [3, 8] showing the convergence of
Gaussian proposals used in IGO. Note that these results are established in an infinite sample size regime,
and for infinitesimally small step sizes, amounting to continuous time. Their applicability in practical imple-
mentations, characterized by non-zero step sizes and stochastic errors, is up to our knowledge still an open
problem. The second approach consists in proving an improvement on the reformulated optimization prob-
lem at every iteration. Such results are useful in practice as they hold without having to wait for an eventual
asymptotic regime to be reached. This is done in [4], in the case of expected objective value minimization
over Gaussian proposals, and in [27, 5] for the IGO reformulation of the original problem, although assum-
ing infinitesimally small step-sizes, or proposals within an exponential family. In [27, 5], the improvement
implies a quantile-based improvement on the original problem. This means that a larger fraction of the mass
of the proposals will concentrate where the objective function is low as the algorithm iterations progress.
We are not aware of any study connecting the two approaches, which can be explained by the very different
mathematical tools and paradigms used in both research lines (e.g., continuous versus discrete time).

We follow in this work the second approach, with the aim to establish new improvement results for
black-box optimization algorithms. Ideally, one would want proven improvement results that are valid
at every iteration, for realistic step sizes, and for a wide variety of proposal models. Typical motivating
examples, widely used in black-box global optimization, are heavy-tailed [31], and mixture [26, 1, 20, 2],
proposal distributions. However, such proposals would require infinitesimally small step sizes to benefit
from the available improvement results from [27, 5], since they do not form an exponential family. Further,
even for proposals within the exponential family, the results from [27, 5] do not quantify the magnitude of
the improvements. Therefore, there is still a need for novel wide-ranging criteria to ensure that black-box
optimization algorithms improve, and if so, how much, either in terms of reformulated problems or quantiles,
that we address in this work.

Our contributions are the following:

• We introduce novel divergence-based conditions, measuring, through a Kullback-Leibler (KL) or a
Rényi divergence, the discrepancy between a given target distribution and successive proposals. We
show that any generic algorithm satisfying those conditions improves in terms of the expectation-based
reformulation of the objective at every iteration, and we quantify the improvement. Namely, if the
divergence is decreasing between two consecutive proposals, then the decrease in divergence translates
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into a improvement both in the expectation-based reformulated objective and quantile. It is worthy
to emphasize that our results do not depend on the way the next proposal is designed, making our
conditions a versatile tool to study evolution strategy algorithms.

• We show that the IGO framework fits within the introduced divergence-decrease conditions, illustrating
the wide scope of our results. In the case of the IGO reformulation of the objective, we quantify the
quantile improvement that comes under our divergence-based conditions.

• We go beyond the scope of the aforementioned IGO works by considering mixture and heavy-tailed
proposals. We propose a novel mixture-based algorithm, reminiscent from the mixture-based CE
algorithm of [23, Example 3.2], and we show that it fits within our framework. We also propose a new
algorithm for Student proposals (having heavier tails than Gaussians and including Cauchy), and we
show that it satisfies our divergence-based conditions. We interpret our algorithms as the black-box
global optimization counterparts of existing methods in statistics.

Let us position our contributions with respect to existing literature. Our results allow to derive new proofs
for the quantile improvement in the IGO framework of [27, 5]. As we discuss later in detail, our results are
stated for the IGO quantile-based reformulation of the objective. They also hold for other expectation-based
reformulations of the objective such as the ones in [34, 33, 9]. We furthermore quantify the improvement in
terms of expectation-based reformulation and quantile, yielding more precise results than in [27, 5]. Contrary
to existing works, our results can be applied on proposals beyond the exponential family, as we show in several
examples, and hold without the stringent assumption of infinitesimal step sizes.

The paper is organized as follows. We give preliminary notions about black-box global optimization
problems, and algorithms to solve them, in Section 2. We then state our main results in Section 3, including
our novel conditions for improvement, and new results obtained under these conditions. Finally, we discuss
perspectives in Section 4.

2 Preliminary notions

Let us start with some preliminary notions on sampling-based black-box algorithms for global optimiza-
tion. These algorithms sample points from a proposal distribution that is updated iteratively so that it
concentrates around the solutions of the considered optimization problem. We first present how to refor-
mulate the initial optimization problem into an optimization problem on proposal distributions. Then, we
discuss algorithms to solve this resulting problem, making a particular focus on the IGO framework.

2.1 Problem setting and reformulation

We consider throughout the paper the generic black-box minimization problem

minimize
x∈X

f(x), (1)

where f : X → R may be non-convex and can only be accessed through a black-box that, for a given x ∈ X,
returns the value f(x). The search space X can be continuous, discrete, or mixed between continuous and
discrete variables. We assume the existence of a measure m on X for some σ-algebra over X. For instance,
if X = Rd, one can consider the Lebesgue measure, while if X = Nd, one can take the counting measure.

We focus in our work on algorithms that solve Problem (1) through a sampling-based approach. The
aim is to construct a parametric probability distribution pθ over X such that pθ is concentrated around the
minimizers of f over X. In this context, one does not search anymore for an optimal point x ∈ X, but instead
for an optimal parameter θ ∈ Θ, or alternatively, for an optimal probability distribution pθ ∈ {pθ, θ ∈ Θ}.
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In the following, we make the standard assumption that the considered proposals pθ have a density with
respect to m, also denoted by pθ. One way to transform Problem (1) into a problem over Θ is to consider
the minimization of θ 7−→ EX∼pθ

[f(X)]. This reformulation, which has been studied in [4, 25] for instance,
makes however the resulting algorithm sensitive to transformation of f .

In this work, we focus on an alternative reformulation of Problem (1), which has been proposed in the
context of IGO [27], and has the advantage of ensuring more invariance properties. Let the pθ-f -quantiles
at x ∈ X be defined by

q<θ (x) = PX∼pθ
[f(X) < f(x)],

q≤θ (x) = PX∼pθ
[f(X) ≤ f(x)].

For a given x ∈ X, q<θ and q≤θ measure the mass that pθ puts on points that achieve (strictly) better value
of f than x. Select next a weighting non-increasing function w : [0, 1] → R+. The authors of [27] then

introduced the preference function W f
θ : X → R which is defined for any x ∈ X as

W f
θ (x) =

w(q≤θ (x)) if q
≤
θ (x) = q<θ (x),

1

q
≤
θ (x)−q<θ (x)

∫ q
≤
θ (x)

q<θ (x)
w(u)du otherwise.

(2)

The function W f
θ is a quantile-based rewriting of f that is invariant under increasing transformation of the

objective f , as W f
θ ≡ Wϕ◦f

θ for any increasing function ϕ and θ ∈ Θ. Also, W f
θ reflects the behavior of

f . Indeed, consider (x, x′) ∈ X2 such that f(x) ≤ f(x′), q≤θ (x) = q<θ (x), and q≤θ (x
′) = q<θ (x

′). Then,

W f
θ (x) ≥ W f

θ (x
′). Under such definitions, given a proposal with parameter θ′ ∈ Θ, the authors of [27]

considered the search for a good proposal pθ to solve (1) as the maximization of the function J(·|θ′) : Θ → R
defined, for any θ ∈ Θ, by

J(θ|θ′) = EX∼pθ

[
W f

θ′(X)
]
. (3)

Note that J(θ|θ) = Zw for any θ ∈ Θ, with the notation Zw =
∫ 1

0
w(u)du.

Measuring the quality of a proposal pθ to solve Problem (1) using quantiles has also been proposed in
the framework of the CE method [23]. Given a proposal pθ and a scalar q ∈ (0, 1), the CE method relies on
q-quantiles of f(X) where X ∼ pθ, that is, any value u ∈ R such that

PX∼pθ
[f(X) ≤ u] ≥ q and PX∼pθ

[f(X) ≥ u] ≥ 1− q. (4)

Let us denote, as in [5], Qq
θ(f) as the largest of such values,

Qq
θ(f) = sup{u ∈ R such that (4) is satisfied}. (5)

If x is sampled from pθ, then f(x) is below Qq
θ(f) with a probability greater than q. Therefore, a good

proposal pθ to solve Problem (1) should be such that Qq
θ(f) is as low as possible. Remark that Qq

θ(f) only
depends on the current proposal, contrary to J .

It is actually possible to relate the behavior of the quantities J(θ|θ′) from the IGO framework, and Qq
θ(f)

from CE methods, for a particular case of weighting scheme w. This is done in [5] where the authors showed
that an increase in term of θ 7−→ J(θ|θ′) relates to a decrease in terms of θ 7−→ Qq

θ(f), as stated in the
lemma hereafter.

Lemma 1 (Lemma 8 in [5]). Consider the weighting function w(u) = δu≤q(u) with q ∈ (0, 1). If (θ, θ′) ∈ Θ2

satisfies the increase condition
J(θ|θ′) > J(θ′|θ′) = Zw, (6)

then we have Qq
θ(f) ≤ Qq

θ′(f). If further, PX∼pθ
[f(X) = Qq

θ′(f)] = 0, then Qq
θ(f) < Qq

θ′(f).
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The above result gives insights into the design and study of theoretically sounded black-box global
optimization algorithms, for either discrete or continuous optimization. Indeed, showing that consecutive
proposals achieve the increase condition (6) allows to apply Lemma 1 yielding a proposal with more mass
where the objective function is low.

2.2 The information-geometric optimization algorithm

We now recall here the information-geometric (IGO) framework from [27, 5]. The latter is an iterative
proposal construction algorithm, explicitly designed to achieve the increase condition (6) at every iteration.
The IGO framework has been shown in [27] to recover many existing algorithms to solve Problem (1), both
in discrete or continuous domains. Among the algorithms recovered by the IGO framework, let us mention
the CE algorithm of [23].

The quantity J(θ|θ′) defined in (3) is generally an intractable integral that needs in practice to be
approximated with sampling. Throughout this paper, we focus on idealized algorithms that are deterministic,
corresponding to the limit of an infinite number of samples. In such idealized setting, we only consider
discrete-time updates since they are closer to a practical implementation than continuous flows. Two types
of updates have been proposed in [5, 27] to satisfy the increase condition (6), leading to two distinct IGO-like
algorithms, that we will recall here.

The first algorithm in [27, 5] is based on natural gradient ascent updates. Consider an iteration k ∈ N,
with θk parametrizing the current proposal, and the objective function being J(·|θk). The natural gradient

of J(·|θk) at θ is the quantity ∇̃θJ(θ|θk) = I(θ)−1∇θJ(θ|θk), where I(θ) = −EX∼pθ
[∇2

θ ln pθ(X)] is the
Fisher information matrix of pθ. Given the above gradient expression, iterating a gradient ascent scheme
over k ∈ N leads to Algorithm 1. We remark that natural gradient updates have been used in other contexts
than IGO, see for instance [33].

Algorithm 1 IGO algorithm (natural gradient update)

Initialize θ0 and choose the step size τ > 0.
for k = 0, . . . do
Update θk+1 such that

θk+1 = θk + τ∇̃θJ(θ|θk)|θ=θk . (7)

end for

The second algorithm proposed in [27, 5] estimates the proposal parameters by performing a weighted
maximum likelihood update at every iteration. We provide its description in Algorithm 2. The CE algorithm
of [23] is recovered as a special case when the step size is τ = 1 and the weighting function is w(u) =
δu≤q(u) [27].

Algorithm 2 IGO algorithm (IGO-ML update)

Initialize θ0 and choose the step size τ > 0.
for k = 0, . . . do
Update θk+1 such that

θk+1 = argmax
θ∈Θ

(
(1− τ)

∫
ln(pθ(x))pθk(x)m(dx) + τ

∫
W f

θk
(x) ln pθ(x)pθk(x)m(dx)

)
. (8)

end for
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The theoretical properties of Algorithms 1 and 2 have been studied in [27, 5]. Algorithm 2 achieves the
increase condition (6), that is J(θk+1|θk) > Zw at every iteration k ∈ N, for step sizes τ ∈ (0, 1] [5, Theorem
6]. This result gives in turn improvement guarantees for the CE algorithm thanks to Lemma 1. Algorithm
1 has been shown to satisfy the increase condition (6) for sufficiently small step sizes [27, Proposition 7].
Moreover, Algorithms 1 and 2 have been shown to coincide when {pθ, θ ∈ Θ} forms an exponential family
[7], ensuring that Algorithm 1 satisfies (6) for τ ∈ (0, 1] in this case (see [5, Corollary 7]).

Algorithms 1 and 2 coincide with many existing black-box global optimization algorithms on discrete or
continuous domains [27, Section 5], allowing to get improvement guarantees for these algorithms as well.
However, the aforementioned study requires, as a preliminary step, to show that the considered algorithms fit
within the IGO framework, which is not always possible nor straightforward. In the next section, we present
our contribution, that aims at giving novel broader conditions under which the increase condition (6) is
satisfied. This allows, in particular, to exhibit new improvement guarantees beyond the IGO framework, the
latter being retrieved as a special case.

3 A general divergence-based condition for quantile improvement

We present our main results in this section. We start in Section 3.1 with the introduction of novel,
divergence-based, conditions. We show that they imply the increase condition (6). We go further by quan-
tifying the improvements in terms of reformulated objective and quantile. We then show in Section 3.2 that
IGO algorithms satisfy our conditions, allowing us to provide a new and refined perspective on these meth-
ods. We finally exploit our divergence-based conditions to show new improvement guarantees for algorithms
using proposals that do not form an exponential family. Namely, in Section 3.3, we study a mixture-based
algorithm and discuss his tight links with the mixture-based CE algorithm of [23, Example 3.2]. In Section
3.4, we study an algorithm with heavy-tailed proposals, namely Student distributions with arbitrary degree
of freedom parameter.

3.1 Quantile improvement with divergence-decreasing steps

The goal of this section is to show that the increase condition (6), i.e., the theoretical guarantee achieved
in the IGO framework, can be expressed as a consequence of divergence-based conditions, that we detail
below. Combining these conditions with Lemma 1 then yields a quantile improvement result. We also
go further and quantify the improvement on the reformulated objective and quantile that come from our
divergence-based conditions.

3.1.1 Proposed divergence-based condition

Our divergence-based conditions can be interpreted as the search for a proposal closer to a specific target
distribution than the previous proposal, in the sense of the Kullback-Leibler or Rényi divergence. Let us
start by specifying the target probability distribution we are going to consider. For θ ∈ Θ, we introduce πf

θ ,
the probability density with respect to m defined for any x ∈ X by

πf
θ (x) =

1

Zw
W f

θ (x)pθ(x). (9)

When w(u) = δu≤q(u) for some q ∈ (0, 1), πf
θ is a truncated version of pθ with support being the points

x ∈ X such that q<θ (x) < q, meaning that areas of X where the values reached by f are too high are given zero

mass. Let a given iteration k ∈ N. We aim at measuring the discrepancy between the target πf
θk

and either
the current proposal, or the next one. This discrepancy is measured using the KL or a Rényi divergence,
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with α ∈ (0, 1) ∪ (1,+∞). These are defined, respectively, for any probability densities p1, p2 with respect
to m by

KL(p1, p2) =

∫
ln

(
p1(x)

p2(x)

)
p1(x)m(dx),

Dα(p1, p2) =
1

α− 1
ln

(∫
p1(x)

αp2(x)
1−αm(dx)

)
.

If for some x ∈ X, p1(x) = 0, then we use ln(p1(x))p1(x) = 0 (see [28, Definition 7.1] for more details on these
singular cases). Note that we have Dα(p1, p2) −−−→

α→1
KL(p1, p2) [32, Theorem 5], so that the KL divergence

can be viewed as a limit case of the Rényi divergence.
We are now ready to state our first result, obtained when using the KL divergence to measure the

discrepancy between probability densities. We show hereafter that, when a generic algorithm constructs its
next proposal so that it gets closer, by a certain amount, to the target πf

θk
defined in (9), then it improves

upon the reformulated objective defined in (3), by an amount that we quantify.

Proposition 1. Let k ∈ N and θk ∈ Θ. Suppose that πf
θk

is given by Equation (9), and pθk+1
satisfies, for

some ∆k ∈ R,
KL(πf

θk
, pθk+1

) + ∆k ≤ KL(πf
θk
, pθk). (10)

Then, J(θk+1|θk) ≥ exp(∆k)J(θk|θk) = exp(∆k)Zw. In particular, (θk+1, θk) satisfy the increase condition
(6), i.e., J(θk+1|θk) > Zw with J defined in (3), if ∆k > 0.

Proof. By construction of πf
θk
, we can rewrite condition (10) as∫

ln

(
W f

θk
(x)pθk(x)

Zwpθk+1(x)

)
πf
θk
(x)m(dx) + ∆k ≤

∫
ln

(
W f

θk
(x)

Zw

)
πf
θk
(x)m(dx),

and remark that it is equivalent to having

−
∫

ln

(
pθk+1(x)

pθk(x)

)
πf
θk
(x)m(dx) ≤ −∆k.

We then get from Jensen’s inequality that

− ln

(∫
pθk+1

(x)

pθk(x)
πf
θk
(x)m(dx)

)
≤ −

∫
ln

(
pθk+1(x)

pθk(x)

)
πf
θk
(x)m(dx),

implying that ∫
pθk+1(x)

pθk(x)
πf
θk
(x)m(dx) ≥ exp(∆k).

Since by definition,
πf
θk

(x)

pθk
(x) =

W f
θk

(x)

Zw
for any x ∈ X, it comes that J(θk+1|θk) ≥ exp(∆k)Zw.

We now state a second similar result, that arises when one now measures the discrepancy between the
target density and the proposals using a Rényi divergence.

Proposition 2. Let k ∈ N, θk ∈ Θ and suppose that W f
θk

takes values in {0, 1}. Suppose that πf
θk

is given
by Equation (9) and that pθk+1

satisfies, for some ∆k ∈ R,

Dα(π
f
θk
, pθk+1

) + ∆k ≤ Dα(π
f
θk
, pθk), (11)

for some α ∈ (0, 1). Then, J(θk+1|θk) ≥ exp(∆k)J(θk|θk) = exp(∆k)Zw. In particular, (θk+1, θk) satisfy
the increase condition (6) if ∆k > 0.
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Proof. By definition of πf
θk

and since by assumption, W f
θk
(x)α = W f

θk
(x) for any x ∈ X, Equation (11) is

equivalent to

1

α− 1
ln

(∫ (
pθk+1

(x)

pθk(x)

)1−α

W f
θk
(x)pθk(x)m(dx)

)
+∆k ≤ 1

α− 1
ln

(∫
W f

θk
(x)pθk(x)m(dx)

)
=

1

α− 1
lnZw.

We deduce from there that ∫ (
pθk+1

(x)

pθk(x)

)1−α

πf
θk
(x)m(dx) ≥ exp((1− α)∆k).

Finally, since u 7−→ u1−α is concave due to the assumption on α, we apply Jensen’s inequality to obtain that∫
pθk+1

(x)

pθk(x)
πf
θk
(x)m(dx) ≥ exp(∆k),

showing by definition of πf
θk
, that

∫
W f

θk
(x)pθk+1

(x)m(dx) ≥ exp(∆k)Zw, and hence establishing the result.

Propositions 1 and 2 establish divergence-decrease conditions under which the increase condition (6) is
satisfied. Note that the construction mechanism of pθk+1

does not intervene in our result, while in [27, 5],
the increase condition (6) was achieved for specific algorithms only.

Remark 1. Results equivalent to Propositions 1 and 2 can be stated for other expectation-based reformu-
lations of Problem (1) (under very mild hypotheses). For instance, consider the minimization over Θ of
J : θ 7−→ EX∼pθ

[ϕ(f(X))] for some transform ϕ : R → R+ (see for instance [34]). Consider as well the tilted

densities πf
θ defined for θ ∈ Θ by πf

θ (x) ∝ ϕ(f(x))pθ(x) for any x ∈ X. Being able to define the probability

density πf
θ in this way is the only requirement on ϕ. Then, decrease conditions of the form (10), or (11) if ϕ

takes values in {0, 1}, imply that

EX∼pθk+1
[ϕ(f(X))] ≥ exp(∆k)EX∼pθk

[ϕ(f(X))],

translating the improvement in terms of divergence to an improvement in the reformulation of Problem (1).

3.1.2 Quantile improvement quantification

We now present an additional result that quantifies how an improvement in term of the reformulation
J(θ|θk), defined in (3), results in an improvement in terms of Qq

θ(f), defined in (5). As we explained in the
previous Section, in the particular case when w(u) = δu≤q(u), there is a link between J(θ|θk) and Qq

θ(f).
Our result can thus be seen as a quantitative and more precise version of Lemma 1. Although the previous
results hold in the continuous and discrete settings, this result hereafter requires assumptions on f and X
that will hold for most continuous optimization problems but will usually not hold for discrete problems.

Proposition 3. Assume that w(u) = δu≤q(u) for some q ∈ (0, 1). Let k ∈ N and (θk, θk+1) ∈ Θ2 such
that J(θk+1|θk) ≥ exp(∆k)Zw with exp(∆k)PX∼pθk+1

[f(X) ≤ Qq
θk+1

(f)] ∈ [0, 1]. Suppose that Fθk+1
: u 7−→

PX∼pθk+1
[f(X) ≤ u] is continuous and strictly monotonic, and hence bijective from the range of f (which is

thus an interval of R) to [0, 1]. Then, we have

Qq
θk
(f) ≥ F−1

θk+1

(
exp(∆k)Fθk+1

(Qq
θk+1

(f))
)
. (12)

8



If Fθk+1
is bijective and C1 in a neighbourhood of Qq

θk+1
(f) with F ′

θk+1
(Qq

θk+1
(f)) ̸= 0, then

Qq
θk
(f) ≥ Qq

θk+1
(f) + q∆k

(
F−1
θk+1

)′
(q) + o(∆2

k) (13)

for ∆k small enough, with
(
F−1
θk+1

)′
(q) > 0.

Proof. We first show that Fθk+1
(Qq

θk
(f)) ≥ q∆k, by adapting parts of the proof of [5, Lemma 8]. First,

following the arguments laid in the proof of [5, Lemma 8], we have that W f
θk
(x) = 0 for any x ∈ X such that

f(x) > Qq
θk
(f). This implies that J(θk+1|θk) ≤ PX∼pθk+1

[f(X) ≤ Qq
θk
(f)] = Fθk+1

(Qq
θk
(f)).

From our assumptions, we thus have that exp(∆k)q ≤ Fθk+1
(Qq

θk
(f)) since our choice of w implies

Zw = q. On the other hand, our assumption on Fθk+1
implies that Qq

θk+1
(f) is the only value satisfying

q = Fθk+1
(Qq

θk+1
(f)). These two facts imply that Fθk+1

(Qq
θk
(f)) ≥ exp(∆k)Fθk+1

(Qq
θk+1

(f)), establishing

Equation (12) with the bijectivity of Fθk+1
.

In order to prove Equation (13), we use Equation (12) and develop F−1
θk+1

◦exp around lnFθk+1
(Qq

θk+1
(f)).

We get the well-posedness and sign of
(
F−1
θk+1

)′
from the inverse function theorem.

Proposition 3 shows a complex interplay between the proposals and the objective f through the cumu-
lative density function Fθk+1

. This Proposition may be used to assess how a certain family of proposals is

adapted to the problem at hand. Indeed, one could aim for a family of proposals such that
(
F−1
θθk+1

)′
(q) is

as high as possible to ensure the largest quantile improvement possible.
In the particular case when w(u) = δu≤q(u), we can then extend the result of Propositions 1 and 2 with

Lemma 1 and Proposition 3 to obtain the following quantile improvement results from divergence-decrease
conditions.

Corollary 1. Assume that w(u) = δu≤q(u) for some q ∈ (0, 1) and that, at a given iteration k ∈ N, pθk+1
is

constructed such that
Dα(pθk+1

, πf
θk
) + ∆k ≤ Dα(pθk , π

f
θk
) (14)

for some ∆k ∈ R and α ∈ (0, 1], with α = 1 corresponding to the inequality KL(πf
θk
, pθk+1

) + ∆k ≤
KL(πf

θk
, pθk).

(i) Suppose that ∆k > 0. If α = 1, or if α ∈ (0, 1) and W f
θk

takes values in {0, 1}, then Qq
θk+1

(f) ≤ Qq
θk
(f).

(ii) If ∆k > 0 and PX∼pθ
[f(X) = u] = 0 for any θ ∈ Θ, u ∈ R, then Qq

θk+1
(f) < Qq

θk
(f).

(iii) Suppose that Fθk+1
: u 7−→ PX∼pθ

[f(X) ≤ u] is continuous and strictly monotonic. If α = 1, or if

α ∈ (0, 1) and W f
θk

takes values in {0, 1}, then Equation (12) holds.

(iv) Suppose that Fθk+1
: u 7−→ PX∼pθ

[f(X) ≤ u] is bijective and C1 around Qq
θk+1

(f) with F ′
θk+1

(Qq
θk+1

(f)) ̸=
0. If α = 1, or if α ∈ (0, 1) and W f

θk
takes values in {0, 1}, then Equation (13) holds for ∆k small

enough.

Proof. Point (i) follows from Propositions 1 and 2 with the first part of Lemma 1. Point (ii) follows by

remarking that, under our assumptions, for any θ ∈ Θ, x ∈ X, q<θ (x) = q≤θ (x), ensuring that W f
θk
(x) takes

values in {0, 1}. This also implies that PX∼pθk+1
[f(X) = Qq

θk
(f)] = 0. The result comes by applying the

second part of Lemma 1. Finally, points (iii) and (iv) are proven using the results from Propositions 1 and
2 together with the results of Proposition 3.
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3.1.3 Monitoring target construction

We now show that the KL and Rényi divergences can also be used to control the discrepancy between the
proposal pθ and the resulting target πf

θ . The resulting bound only depends on the choice of the weighting
function w.

Proposition 4. Consider θ ∈ Θ and the probability densities pθ and πf
θ . We have the following results,

writing D1(π
f
θ , pθ) for KL(πf

θ , pθ).

(i) If W f
θ takes values in {0, 1}, then Dα(π

f
θ , pθ) = − lnZw for any α > 0.

(ii) If w takes values in [0, 1], then Dα(π
f
θ , pθ) ≤ − lnZw for any α ∈ (0, 1].

Proof. Consider any α ∈ (0, 1) ∪ (1,+∞), we have

Dα(π
f
θ , pθ) =

1

α− 1
ln

(∫
W f

θ (x)
α

Zα
w

pθ(x)m(dx)

)
. (15)

(i) We have that W f
θ (x)

1−α = W f
θ (x) for any x ∈ X, thus showing with Equation (15) that Dα(pθ, π

f
θ ) =

− lnZw for any α ∈ (0, 1) ∪ (1,+∞) which implies the result, using [32, Theorem 3] for the case of the KL
divergence.

(ii) Since w takes values in [0, 1], we also have W f
θ (x) ∈ [0, 1] for any x ∈ X. Therefore, W f

θ (x)
α ≥ W f

θ (x)

for any x ∈ X when α ∈ (0, 1). We thus get from Equation (15) when α ∈ (0, 1) that Dα(π
f
θ , pθ) ≤ − lnZw.

Taking the limit α → 1, α < 1, we finally obtain that KL(πf
θ , pθ) ≤ − lnZw.

Remark 2. Consider, following Remark 1, that we use a target density of the form πf
θ (x) ∝ ϕ(f(x))pθ(x),

using ϕ◦f instead ofW f
θ . It would be possible to derive results like Proposition 4. However, the normalization

constant of πf
θ is

∫
ϕ(f(x))pθ(x)m(dx) which depends on θ, while using W f

θ ensures that the normalization

constant of πf
θ is equal to Zw for any θ ∈ Θ.

With Propositions 1 and 2, we have shown that if the divergence between the target and the next
proposal is lower than the divergence between the target and the current proposal, Equation (6) is satisfied.
In the particular case of an indicator weighting function, Corollary 1 shows that this leads to a quantile
improvement. With Proposition 4, we have furthermore shown that the divergence between the target and
the current proposal, from which the target is constructed, can be controlled by a quantity that depends
only on the weighting function w. This means that, for any algorithm satisfying a divergence-decrease
conditions at every step, divergences can also be used to understand both steps of the algorithms, namely
the construction of the target, and the construction of the next proposal. We illustrate this fact in Figure 1.

3.1.4 Finite sample regime

Our divergence-decrease conditions, presented in Propositions 1 and 2, are useful to analyze algorithms
working in the finite-sample regime. Indeed, our results hold independently of the construction strategy
adopted to define the next proposal. Actually, they even hold when the next proposal distribution degrades
the performance upon the current one, which corresponds to the case ∆k < 0 in Equations (10) and (11).
Such situation can typically arise in the finite sample regime, as we discuss hereafter.

In the case of finite sample size, the construction of the next proposal becomes inexact (i.e., noisy) as
gradients need to be approximated. This makes the analysis of the algorithm more difficult. If the noise
is controlled, in such a way that its effect is ‘absorbed’ by the parameter ∆k in the divergence-decrease
conditions of Equations (10) and (11), then all of our results still apply (for instance in expectation or with

10



{pθ, θ ∈ Θ}

πf
θk

pθk

pθk+1

r

(a)

{pθ, θ ∈ Θ}

πf
θk

pθk

pθk+1

r

(b)

Figure 1: A schematic view of one step of an algorithm covered by our divergence-based framework. Starting
from a proposal pθk , one first constructs the target πf

θk
following (9), i.e., a process that benefits from the

results of Proposition 4, with r = − lnZw. Then, one adapts pθk+1
such that a divergence-decrease (14),

for some α ∈ (0, 1], is achieved. (a) Case α ∈ (0, 1] and W f
θk

taking values in {0, 1}, corresponding to
Propositions 1 or 2 and Proposition 4 (i). (b) Case α ∈ (0, 1] and w taking values in [0, 1], corresponding to
Propositions 1 or 2 and Proposition 4 (ii).

high probability, depending on the control one has on the noise). Namely, it remains possible to establish
improvement, or control the degradation if ∆k < 0, in terms of expectation-based reformulation and then in
terms of quantile in such noisy contexts.

3.2 Analyzing the IGO algorithms with our framework

3.2.1 Main result

We now show that both IGO algorithms, namely Algorithms 1 and 2, proposed in [27], fall within our
divergence-decrease framework, showing the applicability of our construction. We quantify the improvement
achieved at each iteration in terms of divergence, which can then be used to quantify the quantile improvement
using Proposition 3.

Proposition 5. Consider a sequence {θk}k∈N constructed either from Algorithm 1 or Algorithm 2. Then,
at every iteration k ∈ N, we have the following.

(i) If Algorithm 1 is used, the proposal pθk+1
satisfies KL(πf

θk
, pθk+1

) ≤ KL(πf
θk
, pθk) for step sizes τ > 0

small enough, with equality if and only if θk+1 = θk.

(ii) If Algorithm 1 is used and {pθ, θ ∈ Θ} is an exponential family, we have (under some assumptions

detailed in the proof), that KL(πf
θk
, pθk+1

) + ∆k ≤ KL(πf
θk
, pθk) with ∆k = 1−τZw

τZw
KL(pθk , pθk+1

).

(iii) If Algorithm 2 is used, then KL(πf
θk
, pθk+1

) + ∆k ≤ KL(πθk , pθk) with ∆k = 1−τ
τZw

KL(pθk , pθk+1
).

Proof. Let k ∈ N.

11



(i) The update (7) in Algorithm 1 can be written as θk+1 = θk+τ
∫
W f

θk
(x)∇̃θ (pθ(x))|θ=θk

m(dx). Then,

using ∇̃θ (ln pθ(x))|θ=θk
= (1/pθk(x))∇̃θ (pθ(x))|θ=θk

, we obtain that (7) is equivalent to having

θk+1 = θk + τ

∫
W f

θk
(x)pθk(x)∇̃θ (ln pθ(x))|θ=θk

m(dx).

We can then notice that this is equivalent to performing θk+1 = θk−τZw∇̃θ

(
KL(πf

θk
, pθ)

)
|θ=θk

, from which

we deduce the result.
(ii) Suppose that {pθ, θ ∈ Θ} forms a minimal exponential family [7] with sufficient statistics Γ and log-

partition function A with Θ = domA. Then, A is differentiable on int domA with ∇A(θ) = EX∼pθ
[Γ(X)] [7,

Theorem 8.1]. We also suppose that (θk+1, θk) ∈ (intΘ)2 and that for any θ ∈ domA, KL(πf
θk
, pθ) < +∞.

From [5, Equation (15)], the IGO update over an exponential family at iteration k reads

ηk+1 = ηk + τ

∫ (
W f

θk
(x)(Γ(x)− ηk)

)
pθk(x)dx.

where ηk = ∇A(θk) and ηk+1 = ∇A(θk+1), both well-defined under our assumptions. This is equivalent to
having

EX∼πf
θk

[Γ(X)]−∇A(θk+1) +
1− τZw

τZw
(∇A(θk)−∇A(θk+1)) = 0. (16)

We now interpret Equation (16) as an optimality condition, showing that

θk+1 = argmin
θ∈Θ

(
KL(πf

θk
, pθ) +

1− τZw

τZw
KL(pθk , pθ)

)
.

This implies that θk+1 is such that

KL(πf
θk
, pθk+1

) +
1− τZw

τZw
KL(pθk , pθk+1

) ≤ KL(πf
θk
, pθk).

We now show that Equation (16) is the optimality condition of the problem solved by θk+1. Consider
any θ ∈ Θ and a probability density with respect to m, denoted by p. We have

KL(p, pθ) = EX∼p[ln p(X)]− ⟨EX∼p[Γ(X)], θ⟩+A(θ),

and thus obtain that ∇θKL(p, pθ) = ∇A(θ)− EX∼p[Γ(X)], which we then use to show the desired result.
(iii) The IGO-ML update (8) can be rewritten as

θk+1 = argmin
θ∈Θ

(
(1− τ)

∫
ln

(
1

pθ(x)

)
pθk(x)m(dx) + τ

∫
ln

(
1

pθ(x)

)
W f

θk
(x)pθk(x)m(dx)

)
= argmin

θ∈Θ
((1− τ)KL(pθk , pθ) + τZwKL(πθk , pθ))

= argmin
θ∈Θ

(
KL(πf

θk
, pθ) +

1− τ

τZw
KL(pθk , pθ)

)
.

We thus obtain by definition of θk+1 that

KL(πf
θk
, pθk+1

) +
1− τ

τZw
KL(pθk , pθk+1

) ≤ KL(πf
θk
, pθk).

12



3.2.2 Discussion

Proposition 5 shows that the IGO algorithms can be studied using our divergence-decrease condition
with the KL divergence. For Algorithm 1, i.e., the IGO algorithm using natural gradients, we recover in
Proposition 5 (i) that the increase (6), that is J(θk+1|θk) > Zw, is guaranteed for infinitesimal step sizes
[27, Proposition 7]. Similarly, we recover in Proposition 5 (iii) a similar result for Algorithm 2, i.e., the
maximum-likelihood IGO algorithm, for any step size in (0, 1], which was established in [5, Theorem 6].

Proposition 5 (ii) establishes a similar result for Algorithm 1 when the proposals form an exponential
family. In the proof of [5, Corollary 7], this result was achieved by remarking that in this case, Algorithms
1 and 2 coincide. We do a direct proof, showing that Algorithm 1 is equivalent to a proximal update with
a KL divergence objective. Note that [5, Corollary 7] ensured improvement for step sizes in (0, 1] while our
results allow for possibly larger step sizes (if w(u) = δu≤q(u) with q ∈ (0, 1), 1/Zw = 1/q > 1). This is

because the authors of [5] defined W f
θ such that Zw = 1, while we chose here a different convention.

Remark 3. Proposition 5 (ii) actually holds in the setting of Remark 1. More explicitly, we get the same
result, with same ∆k, when optimizing θ 7−→ EX∼pθ

[ϕ(f(X))] over an exponential family using natural gradi-

ent descent with πf
θ defined as in Remark 1. This allows to control the improvement of θ 7−→ EX∼pθ

[ϕ(f(X))]
over iterations thanks to the result outlined in Remark 1.

3.3 A new result on mixture-based methods with our framework

We now show how our proposed framework can be applied for the study of black-box global optimization
algorithms with mixture proposals. As already explained, such situation is challenging to analyze by sticking
to the IGO framework, as mixture proposals do not form an exponential family nor yield a closed-form
solution for the IGO-ML update (8) in Algorithm 2. We focus on a particular algorithm, linked both with
the M-PMC algorithm of [11], a type of expectation-maximization (EM) algorithm proposed in the context of
computational statistics, and with the mixture-based CE method proposed in [23, Example 3.2]. Similarly to
IGO, our proposed algorithm can be applied to discrete and continuous optimization problems. By exploiting
the paradigm we introduced in Section 3.1, we show that each iteration of the considered algorithm achieves
a divergence-decrease, thus implying that the increase condition (6) is fulfilled. We can then apply Corollary
1 to establish quantile improvement.

3.3.1 Proposed algorithm

Let us first introduce the algorithm we are going to consider, summarized in Algorithm 3. In this
algorithm, the weight as well as the parameters of each component of the mixture are adapted at every
iteration. We consider in the following mixture models with J ∈ N components pθ =

∑
j=1 λ

(j)pϑ(j) such

that, for every j ∈ N, λ(j) ∈ [0, 1] and pϑ(j) ∈ {pϑ, ϑ ∈ Θ}, with
∑J

j=1 λ
(j) = 1. We thus have the global

parameters θ = ({λ(j)}Jj=1, {ϑ(j)}Jj=1).
Algorithm 3 shares links with the EM point of view adopted in [9]. In this work, several estimation-

of-distribution algorithms [24] were shown to be EM algorithms with maximum likelihood steps that are
reweighted using the objective to be minimized f (see also the fitness EM algorithm of [34] and the discussion
in [4, Section 5.3]). Algorithm 3 recovers the M-PMC algorithm of [11], which is also an EM-like algorithm,
but with rank-based weights (see [27, Equation (14)] or Equation (22)) instead of importance weights. Note
that, contrary to [9] which does not explicitly consider mixture models, we do so here. Let us also remark
that Algorithm 2 can also be linked to EM, using a similar analysis.
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Algorithm 3 Mixture-based ML algorithm

Initialize the parameters ϑ
(j)
0 and the mixture weights λ

(j)
0 for j = 1, . . . , J , and form the global parameter

θ0 = ({λ(j)
0 }Jj=1, {ϑ

(j)
0 }Jj=1).

for k = 0, . . . do

For each j = 1, . . . , J , define the function ρ
(j)
k : X → R defined for any x ∈ X by

ρ
(j)
k (x) =

λ
(j)
k p

ϑ
(j)
k

(x)∑J
i=1 λ

(i)
k p

ϑ
(i)
k

(x)
. (17)

Update θk+1 = ({λ(j)
k+1}Jj=1, {ϑ

(j)
k+1}Jj=1) such that for every j = 1, . . . , J ,

λ
(j)
k+1 = EX∼πf

θk

[ρ
(j)
k (X)], (18)

ϑ
(j)
k+1 = argmax

ϑ∈Θ
EX∼πf

θk

[ln pϑ(X)ρ
(j)
k (X)]. (19)

end for

3.3.2 Main result

We now show in Proposition 6 that Algorithm 3 achieves a decrease in terms of KL divergence at every
iteration. Our proof techniques are reminiscent from the recent work [13] on variational inference. The
result of Proposition 6 can then be used to apply Proposition 1 and Corollary 1 and get insights on the
optimization performance of Algorithm 3.

Proposition 6. Consider a sequence {θk}k∈N generated by Algorithm 3 with θk = ({λ(j)
k }Jj=1, {ϑ

(j)
k }Jj=1) for

every k ∈ N. Suppose that the problem in (19) is uniquely maximized at every iteration. Then, at every
iteration k ∈ N, Algorithm 3 achieves the decrease

KL
(
πf
θk
, pθk+1

)
+∆k ≤ KL

(
πf
θk
, pθk

)
, (20)

with ∆k > 0, unless λ
(j)
k+1 = λ

(j)
k and ϑ

(j)
k+1 = ϑ

(j)
k for every j = 1, . . . , J , in which case ∆k = 0.

Proof. We adapt the ideas of the proof of [13, Theorem 2]. We compute the quantity

KL(πf
θk
, pθk+1

)−KL(πf
θk
, pθk) =

∫
− ln

∑J
j=1 λ

(j)
k+1pϑ(j)

k+1

(x)∑J
i=1 λ

(i)
k p

ϑ
(i)
k

(x)

πf
θk
(x)m(dx)

=

∫
− ln

 J∑
j=1

ρ
(j)
k (x)

λ
(j)
k+1pϑ(j)

k+1

(x)

λ
(j)
k p

ϑ
(j)
k

(x)

πf
θk
(x)m(dx)

≤
∫

−
J∑

j=1

ρ
(j)
k (x) ln

λ
(j)
k+1pϑ(j)

k+1

(x)

λ
(j)
k p

ϑ
(j)
k

(x)

πf
θk
(x)m(dx)

using Jensen’s inequality and that the ρ
(j)
k (x) sum to one for any x ∈ X. We can then decompose the above
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quantity into two terms, namely,

∫
−

J∑
j=1

ρ
(j)
k (x) ln

λ
(j)
k+1pϑ(j)

k+1

(x)

λ
(j)
k p

ϑ
(j)
k

(x)

πf
θk
(x)m(dx) = −

J∑
j=1

ln

(
λ
(j)
k+1

λ
(j)
k

)∫
ρ
(j)
k (x)πf

θk
(x)m(dx)

+

J∑
j=1

∫
ρ
(j)
k (x) ln

(
p
ϑ
(j)
k

(x)

p
ϑ
(j)
k+1

(x)

)
πf
θk
(x)m(dx). (21)

Due to the definition of λk+1, given in Equation (18), that is λ
(j)
k+1 =

∫
ρ
(j)
k (x)πf

θk
(x)m(dx), the first term in

the right-hand side of Equation (21) is equal to −
∑J

j=1 ln

(
λ
(j)
k+1

λ
(j)
k

)
λ
(j)
k+1 which is non-positive from Jensen’s

inequality, being null if and only if λk = λk+1. The second term in the right-hand side of (21) is a sum of

J terms, each being non-positive from the definition of ϑ
(j)
k+1 given in Equation (19). Each term is zero if

and only if ϑ
(j)
k+1 = ϑ

(j)
k , due to our assumption that each maximization problem of the form (19) is uniquely

maximized. We have thus shown the decrease (20), with equality holding if and only if λk+1 = λk and
θk+1 = θk.

3.3.3 Discussion

Since our Proposition 6 can be used to apply Corollary 1, it can be viewed, to our knowledge, as the
first result to establish quantile improvement for black-box global optimization algorithms that are explicitly
mixture-based. Indeed, mixtures were not explicitly considered in [27, 5], and they often do not admit closed-
form solutions for the maximization problem (8) in Algorithm 2. The strategy adopted in the literature was
usually to perform EM-like updates, as it was done in [23, Example 3.2] for instance, which can now be
handled with our divergence-decrease condition. Many variational inference or adaptive importance sampling
methods explicitly consider mixtures, see for instance [11, 10, 13], showing the potential for further links
between black-box global optimization with mixture models and variational inference. Let us also remark
that compared to more complex mixture-based algorithms, such as the ones proposed in [26, 1, 2], whose
convergence has only been verified empirically, the proposed Algorithm 3 has a fixed number of mixture
components.

We now discuss the links between Algorithm 3 and the CE algorithm of [23, Example 3.2]. To make
these links more explicit, we discuss the finite sample size implementation of Algorithm 3. This requires the
computation of integrals with respect to πf

θk
, as discussed in [27]. To do so, N points xk,n, n = 1, . . . , N ,

are first sampled from the mixture distribution pθk =
∑J

j=1 λ
(j)
k q

ϑ
(j)
k

. This is done by drawing a component

j with probability λ
(j)
k via multinomial sampling, and then drawing from p

ϑ
(j)
k

. Each sample xk,n receives a

rank-based weight ω̂k,n defined as in [27, Equation (14)] by

ω̂k,n =
1

N
w

(
rank(xk,n) + 1/2

N

)
, (22)

where rank(xk,n) is the number of samples in {xk,n}Nn=1 with value of f strictly less than f(xk,n). Then, one
can show using [27, Proposition 27] and Slutsky’s Lemma that for any integrand h such that EX∼pθk

[h(X)2] <
+∞, and conditioned on θk, that

1∑N
n=1 ω̂k,n

N∑
n=1

ω̂k,nh(xk,n)
a.s.−−−−−→

N→+∞
EX∼πf

θk

[h(X)]. (23)
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In light of the above formula, Algorithm 3 can be approximated at iteration k ∈ N by setting, for every
j = 1, . . . , J ,

λ
(j)
k+1 =

1∑N
n=1 ω̂k,n

N∑
n=1

ω̂k,nρ
(j)
k (xk,n),

ϑ
(j)
k+1 = argmax

ϑ∈Θ

1∑N
n=1 ω̂k,n

N∑
n=1

ω̂k,n ln pϑ(xk,n)ρ
(j)
k (xk,n).

In order to compare with the mixture-based CE algorithm of [23, Example 3.2], let us introduce ξ
(j)
k,n

which is a latent variable being equal to 1 if xk,n has been sampled from the component j of the mixture
and zero otherwise. Then, the CE algorithm of [23, Example 3.2] has the following update at iteration k ∈ N
and for every j = 1, . . . , J .

λ
(j)
k+1 =

1∑N
n=1 ω̂k,n

N∑
n=1

ω̂k,nξ
(j)
k,n,

ϑ
(j)
k+1 = argmax

ϑ∈Θ

1∑N
n=1 ω̂k,n

N∑
n=1

ω̂k,n ln pϑ(xk,n)ξ
(j)
k,n.

We thus observe that the approximated version of Algorithm 3 and the mixture-based CE algorithm

are very similar, except that ξ
(j)
k,n is used instead of ρ

(j)
k (xk,n) in the latter. Since ρ

(j)
k (xk,n) = E[ξ(j)k,n|xk,n],

using ρ
(j)
k (xk,n) instead of ξk,n amounts to a Rao-Blackwellized version (i.e., a random variable is replaced

by its conditional expectation [11]) of the CE algorithm from [23, Example 3.2]. The procedure used in
the approximated version of Algorithm 3 does not entail additional evaluations of the objective f , while
providing better numerical stability [11], as all the components of the mixtures appear in every update.
This shows how our divergence-based conditions can be used to better understand and design algorithms
for mixture-based proposals. It also allows to turn divergence-minimizing methods such as the M-PMC
algorithm of [11] into black-box global optimization algorithms, simply by changing the target distribution
and using rank-based weights.

3.4 A new result for heavy-tailed proposals with our framework

We finally apply our theoretical tools to study a black-box global optimization algorithm with proposals
being Student distributions with a fixed degree of freedom parameter ν > 0. Specifically, we propose an
algorithm to update the location and scale parameters of the proposals at every iteration, and show that it
satisfies our divergence-decrease conditions. Note that, contrary to our previous analysis which also held for
discrete problems, in this section, we now assume that X = Rd and take m to be the Lebesgue measure.

3.4.1 Proposed algorithm

We consider Student distributions in dimension d with ν > 0 degrees of freedom indexed by their location
parameters µ ∈ Rd and scale parameters Σ ∈ Sd

++, the set of positive definite matrices in dimensions d.
The density with respect to the Lebesgue measure of the Student distribution T (·;µ,Σ, ν) is defined for all
x ∈ Rd by

T (x;µ,Σ, ν) ∝
(
1 +

1

ν
(x− µ)⊤Σ−1(x− µ)

)− ν+d
2

(24)
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with normalization constant being equal to Γ(ν/2)
Γ((ν+d)/2) (ν

dπd det(Σ))1/2, Γ denoting the Gamma function and

det the determinant. When ν = 1, the Cauchy distributions are recovered, while Gaussian distributions are
recovered in the limit ν → +∞. Alternatively, the density in (24) can be written as the continuous mixture

T (x;µ,Σ, ν) =

∫ +∞

0

N
(
x;µ,

1

z
Σ

)
G
(
z;

ν

2
,
ν

2

)
dz, (25)

where the latent variable Z is distributed following the Gamma distribution with parameters ( ν2 ,
ν
2 ) and

probability density G(z; ν
2 ,

ν
2 ) for any z ∈ (0,+∞). Conditionally on Z, X follows a Gaussian distribution

with mean µ and covariance 1
ZΣ, and density N (x;µ, 1

ZΣ) for any x ∈ Rd. We will use the point of view
from (25) in the following. We fix ν > 0, and consider parameters θ = (µ,Σ) with associated densities
pθ = T (·;µ,Σ, ν). In this context, we propose the heavy-tailed black-box global optimization algorithm,
summarized in Algorithm 4.

Algorithm 4 Heavy-tail ML algorithm

Initialize the parameters θ0 = (µ0,Σ0) and choose the degree of freedom parameter ν > 0.
for k = 0, . . . do

Define the function γ
(ν)
k : X → R defined for any x ∈ X by

γ
(ν)
k (x) =

ν + d

ν + (x− µk)⊤Σ
−1
k (x− µk)

. (26)

Update θk+1 = (µk+1,Σk+1) such that

µk+1 =
EX∼πf

θk

[γ
(ν)
k (X)X]

EX∼πf
θk

[γ
(ν)
k (X)]

, (27)

Σk+1 =
EX∼πf

θk

[γ
(ν)
k (X)XX⊤]

EX∼πf
θk

[γ
(ν)
k (X)]

− µk+1µ
⊤
k+1. (28)

end for

When the degree of freedom parameter ν goes to infinity, we have that T (x;µ,Σ, ν) → N (x;µ,Σ) for
any x ∈ Rd, meaning that Student distributions recover the Gaussian distributions. Moreover, we have at

any iteration k ∈ N that γ
(ν)
k (x) → 1 when ν → +∞. In this case, the updates (27) and (28) in Algorithm

4 recover the updates of Algorithm 2 with step size τ = 1 when Gaussian distributions are used. Moreover,

evaluating the function γ
(ν)
k does not imply a heavy computational burden, as it does not involve additional

computations of the objective function f .

3.4.2 Main result

We now show that Algorithm 4 achieves our divergence-decrease condition. This means that the improve-
ment (6) is satisfied at every iteration, and thus that one can use Corollary 1 to get quantile improvement
when w(u) = δu≤q(u) is used.

Proposition 7. Consider a sequence {θk}k∈N generated by Algorithm 4. At every iteration k ∈ N, we have
the decrease

KL(πf
θk
, pθk+1

) + ∆k ≤ KL(πf
θk
, pθk), (29)
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with ∆k > 0, unless θk+1 = θk in which case ∆k = 0.

Proof. Consider any θ = (µ,Σ) ∈ Θ = Rd × Sd
++ and any distribution p over the optimization variables

x ∈ Rd and the latent variables z ∈ (0,+∞). We then have∫
ln pθ(x)π

f
θk
(x)dx =

∫∫
ln pθ(x)p(z|x)dz πf

θk
(x)dx

=

∫∫
ln

(
pθ(x, z)

pθ(z|x)

)
p(z|x)dz πf

θk
(x)dx

=

∫∫
ln

(
pθ(x, z)

p(z|x)

)
p(z|x)dz πf

θk
(x)dx−

∫∫
ln

(
pθ(z|x)
p(z|x)

)
p(z|x)dz πf

θk
(x)dx

=

∫∫
ln

(
pθ(x, z)

p(z|x)

)
p(z|x)dz πf

θk
(x)dx+

∫
KL(p(·|x), pθ(·|x))πf

θk
(x)dx.

Hence, we have that ∫
ln pθ(x)π

f
θk
(x)dx ≥

∫∫
ln

(
pθ(x, z)

p(z|x)

)
p(z|x)dz πf

θk
(x)dx, (30)

with equality if and only if pθ(z|x) = p(z|x) for any z ∈ (0,+∞) and x ∈ Rd.
We now compute the gap in Kullback-Leibler divergence and using Equation (30), we obtain

KL(πf
θk
, pθk+1

)−KL(πf
θk
, pθk) = −

∫
ln pθk+1

(x)πf
θk
(x)dx+

∫
ln pθk(x)π

f
θk
(x)dx

≤ −
∫∫

ln

(
pθk+1

(x, z)

pθk(z|x)

)
pθk(z|x)dz π

f
θk
(x)dx

+

∫∫
ln

(
pθk(x, z)

pθk(z|x)

)
pθk(z|x)dz π

f
θk
(x)dx

= −
∫∫

ln pθk+1
(x, z)pθk(z|x)dz π

f
θk
(x)dx

+

∫∫
ln pθk(x, z)pθk(z|x)dz π

f
θk
(x)dx.

Since the degree of freedom parameter is kept constant, we have that pθ(x, z) = pθ(x|z)p(z), with pθ(x|z) =
N (x;µ, 1

zΣ) and p(z) = Γ(z; ν
2 ,

ν
2 ) that does not depend on θ. In particular, we can write

KL(πf
θk
, pθk+1

)−KL(πf
θk
, pθk) ≤ −

∫∫
ln pθk+1

(x|z)pθk(z|x)dz π
f
θk
(x)dx

+

∫∫
ln pθk(x|z)pθk(z|x)dz π

f
θk
(x)dx.

Therefore, showing that θk+1 = (µk+1,Σk+1) is such that

θk+1 = argmax
θ∈Θ

∫∫
ln pθ(x|z)pθk(z|x)dz π

f
θk
(x)dx, (31)

establishes the decrease in Equation (29) with equality if and only if θk+1 = θk. We now show that θk+1 =
(µk+1,Σk+1) as constructed in Algorithm 4 satisfies (31).
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For any θ ∈ Θ, we have that pθ(x|z) = N (x;µ, 1
zΣ). Hence, we can compute that∫∫

ln pθ(x|z)pθk(z|x)dz π
f
θk
(x)dx = − ln det(Σ)− 1

2

∫∫
zpθk(z|x)dz (x− µ)⊤Σ−1(x− µ)πf

θk
(x)dx.

For any x ∈ Rd, one can check that pθk(·|x) is the density of a Gamma distribution with parameters(
ν+d
2 , 1

2 (ν + (x− µk)Σ
−1
k (x− µk))

)
. We then remark that γ

(ν)
k as defined in (26) satisfies for any x ∈ Rd

γ
(ν)
k (x) =

∫
zpθk(z|x)dz

and we thus get an explicit expression for the objective in (31) of the form∫
ln pθ(x|z)pθk(z|x)dz π

f
θk
(x)m(dx) = − ln det(Σ)− 1

2
EX∼πf

θk

[γ
(ν)
k (X)(X − µ)⊤Σ−1(X − µ)],

from which the result follows.

3.4.3 Discussion

The result of our Proposition 7 allows to give improvement guarantees for heavy-tailed distributions,
that do not form an exponential family. In particular, this applies for any Student family, including Cauchy
distributions when ν = 1, and to Gaussian distributions in the limit ν → +∞. Cauchy proposals perform
better than Gaussian proposals in low dimension, while the reverse is true when the dimension of the problem
grows [30]. Our algorithm allows to interpolate these two regimes, possibly opening the way to a tail-adaptive
algorithm able to select good values of the degree of freedom parameter, as it is done for instance in [13, 15].

Similarly to the result of Proposition 6, the result of Proposition 7 leverages an analysis used on existing
divergence-minimization algorithms. This shows that such algorithms can be turned into black-box global
optimization algorithms by using other types of targets distributions.

Algorithm 4 requires the computation of expectations with respect to πf
θk

at every iteration k ∈ N. In
practice, these expectations can be approximated with samples from the current proposal pθk that are then
weighted according to their rank, as we discussed in Section 3.3. Such approximations are consistent when
the number of samples goes to infinity, as discussed in Section 3.3 and [27]. In the context of computational
statistics, algorithms similar to Algorithm 4 have been implemented for experiments in [11].

4 Conclusion and perspectives

We have proposed in this work divergence-based conditions that imply the quantile improvement results
achieved by the IGO framework, and can also be used to show improvements in terms of other expectation-
based reformulations of the original problem. Therefore, our results can be seen as an alternative way to
IGO, to prove that an algorithm achieves a quantile improvement result. The introduced divergence-based
conditions are more general, in the sense that IGO algorithms satisfy them, and our results further allow to
predict the magnitude of the quantile improvement from the decrease in divergence. Our divergence-based
conditions also allow to cover more general families of proposals than exponential families, including mixtures
or heavy-tailed distributions.

In our proofs, we leveraged existing results from statistics and machine learning, related to divergence
minimization in the context of variational inference. This connection between the two fields opens new
perspectives for the design and study of black-box global optimization algorithms. Future works could exploit
this connection to use more complex proposal distribution and adaptation strategies. In particular, existing
schemes achieving a divergence-decrease can be turned into black-box global optimization algorithms by
using an optimization-based target distribution, as we demonstrated for mixture and heavy-tailed proposals.

19



References

[1] A. Ahrari, K. Deb, and M. Preuss. Multimodal optimization by covariance matrix self-adaptation
evolution strategy with repelling subpopulations. Evolutionary Computation, 25(3):439–471, 2017.

[2] A. Ahrari, S. Elsayed, R. Sarker, D. Essam, and C. A. C. Coelo. Static and dynamic multimodal
optimization by improved covariance matrix self-adaptation evolution strategy with repelling subpopu-
lations. IEEE Transactions on Evolutionary Computation, 26(3):527–541, 2022.

[3] Y. Akimoto, A. Auger, and N. Hansen. Convergence of the continuous time trajectories of isotropic
evolution strategies on monotonic C2-composite functions. In Proceedings of the Conference on Parallel
Problem Solving from Nature (PPSN), pages 42–51, 2012.

[4] Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi. Theoretical foundation for CMA-ES from information
geometry perspective. Algorithmica, 64(4):698–716, 2012.

[5] Y. Akimoto and Y. Ollivier. Objective improvement in information-geometric optimization. In Proceed-
ings of the Conference on Foundations of Genetic Algorithms (FOGA), pages 1–10, 2013.

[6] S.-I. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998.

[7] O. Barndorff-Nielsen. Information and Exponential Families in Statistical Theory. John Wiley & Sons,
Ltd, 2014.

[8] H.-G. Beyer. Convergence analysis of evolutionary algorithms that are based on the paradigm of infor-
mation geometry. Evolutionary Computation, 22(4):679–709, 2014.

[9] D. Brookes, A. Busia, C. Fannjiang, K. Murphy, and J. Listgarten. A view of estimation of distri-
bution algorithms through the lens of expectation-maximization. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (GECCO), pages 189–190, 2022.

[10] M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Mı́guez, and P. M. Djuric. Adaptive importance
sampling: The past, the present, and the future. IEEE Signal Process. Mag., 34(4):60–79, 2017.
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[24] P. Larrañaga. A Review on Estimation of Distribution Algorithms. Springer, 2002.
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