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ABSTRACT

In recent years, deep learning techniques have achieved re-
markable success in video analysis and more especially in
action and gesture recognition. Even though convolutional
neural networks (CNNs) remain the most widely used mod-
els, they have difficulty in capturing the global contextual
information involving spatial and temporal domains or inter-
modality due to the local feature learning mechanism. This
paper introduces a Capsule Transformer Network, which
composed of a frame capsule module for extracting hand fea-
tures and a gesture transformer module for modeling the tem-
poral features and recognizing the dynamic gesture. Spatial
attention is ensured through the capsule module to enhance
the spatial information of the hand image, while the trans-
former module guarantees temporal attention through gesture
sequence. We propose to use multimodal data, including
RGB, depth and IR data, which improves the accuracy of our
approach as it better captures the 3D structure of the hand and
can distinguish between similar hand gestures. Testing on
two datasets, Briareo and SHREC17, the proposed approach
outperforms or equals previous methods.

Index Terms— hand gesture recognition, capsule net-
work, transformer , multi-modal data

1. INTRODUCTION

The increase in low-cost RGB-D devices has resulted in more
datasets that offer multimodal data, including infrared, depth,
and RGB data for each gesture, leading to more research on
multimodal methods. To ensure that the proposed method can
work in the presence of dramatic and fast light changes, recent
works use these light-invariant modalities [1]. To tackle hand
gesture recognition tasks using these different modalities, it is
necessary to develop a resilient algorithm that can accurately
identify hand gestures from RGB-D videos [2, 3]. In recent
years, the field of computer vision has seen a significant shift
in the way researchers approach image and video understand-
ing tasks. While Convolutional Neural Networks (CNNs)
have been the standard approach for many years [4, 5], they
face limitations such as invariance due to pooling and the in-
ability to understand the relationship of spatial features be-

tween convolutional layers. The introduction of Capsule Net-
works has been seen as a promising solution to these prob-
lems. While Capsule Networks are a relatively new approach,
they have already shown interesting results in hand gesture
recognition applications [6, 7]. In these works, Capsule Net-
works have proven their ability to extract more relevant spa-
tial features of the image and understand the hierarchical re-
lationships between these features. Besides, the same is ob-
served regarding temporal feature modelling. Initially, re-
current neural networks such as LSTMs are the most used
to capture motion dynamics [8]. However, since the appear-
ance of transformers by Vaswani et.al [9] several works in
the literature adopted transformers for video analysis [10, 1].
Authors of [11, 1] recently proposed transformer-based ap-
proaches in order to tackle the action and hand gesture recog-
nition tasks. Motivated by these observations regarding spa-
tial and temporal features evolution, we present in this paper
a spatio-temporal approach taking advantage of both capsule
network and transformers within multimodal data. The first
component helps to create links between spatial features and
to have more relevant features with routing by agreement.
The second one has as a role to incorporate temporal atten-
tion which enables the analysis of how the spatial features of
the hand evolve over time. This is critical for dynamic hand
gesture recognition, as the same hand shape may represent
different gestures depending on its motion. By capturing the
temporal evolution of hand gestures, the proposed approach
can more accurately predict the intended gesture. To valid
our approach, two benchmarks are used : Briareo [12] and
SHREC17 [13]. The main contributions of this paper are:
(i) We introduced a spatiotemporal capsule-transformer based
approach, which extracts efficiently spatiotemporal informa-
tion from dynamic hand gestures. (ii) We studied different
modalities and fusion strategies and their impact on the pro-
posed approach. (iii) Competitive results are achieved on two
benchmarks. The code of the proposed approach is available
in this link.

2. OUR APPROACH

As shown in Figure 1, our model is composed of three main
components. The first one is the feature extraction module. It
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is based on ResNet and CapsNet. The second is the tempo-
ral feature analysis, which contains the proposed transform-
ers encoder. The third component is ensuring the classifica-
tion step. This latter is composed of one dense layer which
predicts the probability distribution. In the following feature
extraction and temporal analysis modules are detailed.

2.1. Spatial feature module

Capsule network was originally presented in [14] that intro-
duced capsules inside a CNN. In their architecture, a group
of neurons that captures the parameters of a particular feature
is considered as a capsule entity. After the low-level feature
capsules have been computed, they can be aggregated by the
dynamic routing algorithm to form higher-level capsules that
represent more abstract features.

We used this CapsNet [14] to ensue a spatial attention to
enhance the spatial information of the hand image. In this
Capsnet, we replace the convolutions layers before the pri-
maries caps by a pretrained model, the Resnet18 [15], which
is pretrained on ImageNet. The spatial feature for each image
of a clip is computed as follows: RSi(x) = R0(x) ⊕ ... ⊕
Rj(x)⊕ ...⊕Rn(x) Where ⊕ denotes the operation of convo-
lution, RSi is the extracted feature for the clip i and Rj is the
extractd feature for the image j of the clip i.

Then, we adopt the Capsule Network (CapsNet) archi-
tecture, which provides a more efficient way to represent the
spatial relationships and hierarchies between the features.
The CapsNet uses dynamic routing to learn how to combine
the features of different images in a way that captures their
mutual dependencies and provides a more robust and accurate
representation of the hand. To begin the process, the scalar
input values generated by the CNN network are converted to
primary capsules within the Capsule Network architecture.
The PrimaryCaps layer comprises of N primary capsules,
with each capsule consisting of dp-dimensional vectors that
encode spatial features derived from the previous convolu-
tional operation. Through this transformation, the input data
is converted into a more structured representation that allows
for improved hierarchical learning. To scale and constrain the
output vectors of the Capsule Network, a non-linear squash-
ing function is applied at the output layer. This function is
designed to ensure that the magnitude of the output vector
is scaled to a value between zero and one, depending on the
length of the vector. By doing so, the output vector can ef-
fectively convey meaningful information to the downstream
layers of the neural network. Additionally, the non-linear
nature of the squashing function facilitates the handling of
output vectors with varying lengths and helps preserve the
spatial relationships between the features. The formula for
the squash function can be expressed using the following

equation: x = ∥x∥2

1+∥x∥2
x

∥x∥
where x is the vector that we squash. The next layer in the

Capsule Network architecture is the dense caps layer, which

is responsible for further processing the input data. Initially,
an affine transformation is applied to the input vectors using
the equation: ûjli = W ij. ûjli represents the predicted output
vector for the dense caps layer, W ij is the weight matrix, and
ui is the capsule obtained at the output of the primary cap-
sule layer. This affine transformation allows the dense caps
layer to learn more complex and abstract representations of
the input data, capturing higher-level features and patterns.

The next step in the Capsule Network is the routing by
agreement, which serves to ensure that the output vectors of
the dense capsules are properly aligned and combined to form
an accurate and comprehensive representation of the input
data. Once all the spatial features for each image of the hand
have been extracted, the features are concatenated and flat-
tened in preparation for the final processing step.

2.2. Temporal attention module

In our model, inspired from [1], we only use the transformer
encoder. This part corresponds to the analysis of the temporal
features. First a positional encoding is applied to the spatial
features extracted by our Capsnet using this equation:

PE(pos,2i) = sin(
pos

10000
2i

dmodel
)

PE(pos,2i+1) = cos(
pos

10000
2i+1

dmodel

)

Where pos is the current frame, i is the number of frames
in one clip and dmodel is the number of spatial features for one
image. It is a way to incorporate temporal information on the
order of the frame and to obtain information on the movement
of the hand. The definition of one transformer encoder is:
T (x) = Norm(x+ FC(muHead(x)))

Norm means the normalisation layer, FC is a fully con-
nected layers. muHead corresponds to the multi head atten-
tion. This equation shows that we keep the original encoded
features of the hand and the temporal features extract by the
multi head attention as :

muHead(x) = (Attention1(x)⊕ ...⊕Attentionn(x)).W
O

Where WO is a linear projection from our features to
change the representation subspace of our features. The
used attention function is defined as: Attentioni(x) =

softmax(
QiKi√

dk
)V i. Where Q is the queries, K is the keys,

V is the values, and dk is the number of keys and queries.
In practice we compute K, Q and V with a fully connected
Layer which take in input x the features of all hand in the
clip after the positional encoding. The attention block allow
us to analyse the movement of the hand encoded by the posi-
tional encoding and extract temporal features which help us
to classify the gesture.

Then, an average pooling is used to get only one frame
and reduce the number of features. Finally, we have a Fully
Connected layers Y to predict the gesture.
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Fig. 1. Overview of the proposed method.

3. EXPERIMENTS AND RESULTS

This section provides details on the dataset used, the hyper-
parameters of the model, and the implementation particulars.
Subsequently, the outcomes associated with various modali-
ties and fusion strategies, as well as a comparison with state-
of-the-art approaches, are presented.

3.1. Dataset

Briareo dataset [12] contains dynamic hand gestures used for
recognition in automotive settings context. It provides RGB
images, depth maps, infrared intensities, and 3D hand joints
modalities. In addition, we compute the surface normals like
it was presented in [16]. The dataset consists of 12 gesture
performed by 40 subjects, each repeating 3 times.
SHREC17 dataset [13] contains 2800 videos of dynamic
hand gestures. It comprises 14 classes, which are performed
using one finger or the entire hand, thereby offering a total of
28 gestures if the two modalities are considered separately.

3.2. Training model

We employed a fixed-length clip approach of 40 frames for
both datasets. To normalize the input data, except for the
surface normals which are already normalized and contained
in the range [0, 1], each input data was individually normal-
ized to obtain zero mean and unit variance input. The frames
were then resized to 224x224 pixels, and random rotation
between -15 and 15 degrees was applied for data augmen-
tation to avoid overfitting. Subsequently, random crop was
used.We used the ResNet-18 architecture for initialization,
with weights pre-trained on ImageNet [15], while the other
parts of the architecture were trained from scratch. The cat-
egorical cross-entropy loss was minimized using the Adam
optimizer, with a learning rate of 1e-4, a scheduler, weight de-
cay of 1e-4, dropout of 0.1 for transformers, and an 8-sample
minibatch. The model was trained for 500 epochs, following
the official dataset splits. The PyTorch deep learning frame-

work was utilized for training, and the hardware configuration
comprised an Intel i9 9900k processor, Nvidia RTX Titan,
Nvidia GeForce RTX 3090, and 64 GB of RAM.

3.3. Ablation study

In this study, we investigate two fusion strategies: feature
concatenation and probability fusion. Our fusion approach
involves the consideration of two or more modalities, specif-
ically RGB, Depth, Normal or IR, with the aim of achieving
better results than using a single modality.
Fusion by feature concatenation (FF): After computing
spatial and temporal features for each modality, we make
fusion in the feature level by concatenating them. Then, three
fully connected layers are applied for gesture classification.
The weights of the networks trained on individual modalities
are frozen for training this fusion strategy.
Fusion by probability (FP) : It is a late fusion strategy that
can be defined as: Y = 1/N.

∑N
i Y i Where Y is the calcu-

lated probability, N is the number of classifier used classifiers
and Y i is the probability given by the ith tested classifier.

Table 1 presents the results of both unimodal and multi-
modal data on the Briareo dataset, whith color, depth IR and
computed normasl. Analysis of results using different com-
binations of these modalities show that he probability fusion
(PF) strategy is the more accurate giving best results. We
notice that this strategy is also requires less training time. Be-
sides, the best result, regarding selected modality, is given by
the PF applied to IR and normals for 97.57%. As shown in
table 2, for SHREC17 dataset, depth modality gives better re-
sults than normals. The PF applied to bith modalities helps
to improve results with a significant increase in accuracy of
about 5% for 14 and 28 gestures.

3.4. Comparison with state of the art

We present in Table 3 a comparison of our proposed multi-
modal method with state-of-the-art approaches. Our approach
outperforms state-of-the-art accuracy with 97.57% accuracy



modality Single modality Accuracy
Color (C) 93.75
Depth (D) 90.28
IR 97.20
Normal (N) 92.36
modality PF FF
C + D 95.83 92.36
C + IR 97.20 97.20
C + N 94.44 75
D + IR 95.83 96.53
D + N 96.18 93.06
IR + N 97.57 97.20
C + D + IR 96.18 95.14
C + D + IR 95.49 93.06
C + IR + N 97.22 96.88
D + IR + N 96.52 96.18
C + D + IR + N 96.88 96.18

Table 1. Our results on Briareo using different modalities.

modality PF 14 gestures PF 28 gestures
Depth 83.33 79.29
Normal 82.38 78.33
Depth + Normal 88.69 84.04

Table 2. Our results on SHREC’17 using different modalities.

Approach Briareo SHREC17
C3D [12] IR 87.5 -
D’Eusanio et al.[1] N+IR 97.2 -
D’Eusanio et al.[1] N+D - 89.40(14) 88.93(28)
D’Eusanio et al. [17] D+IR 92.0 -
Chen et al. [18] D+C 94.1 -
Ohn-Bar et al [19] D - 83.85(14) 76.53(28)
Oreifej et al [20] D - 78.53(14) 74.03(28)
Key frames [13] D - 82.90(14) 71.90(28)
Ours (IR+N) 97.57 -
Ours (N+D) - 88.69(14) 84.04(28)

Table 3. Comparison with state of the art approaches

on the Briareo dataset using PF on infrared data and surface
normals. For SHREC17 dataset, we compare our approach
with the methods that used Depth or image data. We com-
puted the results of D’Eusanio et al [1] on this dataset using
the same hyperparameters as they proposed in their work. Our
approach achieves comparable results with their approach for
14 gestures, but we observe a decrease in accuracy for 28 ges-
tures. Notably, the fusion of modalities greatly improves the
accuracy of our approach. We note that SHREC17 dataset
is unbalanced in terms of frame number per sequence which
lead to more challenging recognition process.

3.5. Real time application and computational time

We have developed an online hand gesture recognition sys-
tem for real time application by deploying our approach on
on the NVIDIA Jetson TX2 device. The program has been
constructed utilizing several software components, including
Python 3.8, PyTorch 1.10, Torchvision 0.11.1, and OpenCV
4. As shown in Fig. 2, the developed application is able to
capture, visualize and recognize hand gestures trained from
the Briareo dataset using an RGB camera. To ensure optimal
performance, we propose capture RGB data with a resolu-
tion of 640x480 at 30 frames per second, selectively ignoring
some frames during the capture process. We also conducted
a comparative analysis of the execution time of our approach
with D’Eusanio et al. [1] regarding Briareo dataset. As shown
in Table 4. The results indicate that our approach offers bet-
ter execution times. Additionally, the number of parameters
in our approach is lower, making it more suitable for deploy-
ment in real-time applications.

Frame 4 Frame 81Frame 42

Fig. 2. Visualization of the developed application.

Approach/Modality C D IR N
D’Eusanio et al.[1] 295 280 281 330
Ours 203 208 203 205

Table 4. Running Time in ms on Briareo dataset

4. CONCLUSION

In this paper, we present a novel Capsule Transformer Net-
work for video-based hand gesture recognition. The proposed
network leverages the benefits of Capsule Networks, which
enable the creation of stronger connections between spatial
features compared to traditional CNNs, resulting in improved
features for the transformer’s input which ensured the tem-
poral attention through the gesture sequence. Additionally,
Capsule Networks can better capture and process information
about symmetrical gestures, which are sometimes confused
by CNNs. We evaluate the proposed method using multiple
modalities of data from an RDB-D camera, and test different
fusion strategies. Our approach achieves state-of-the-art re-
sults by extracting features at the image level and aggregating
them temporally using the transformer. In future work, we
plan to further develop our model for deployment in real-life
HCI contexts.
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