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STr-GCN: Dual Spatial Graph Convolutional Network and Transformer
Graph Encoder for 3D Hand Gesture Recognition
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2 IMT Nord Europe, CRIStAL UMR CNRS 9189, France

Abstract— Skeleton-based hand gesture recognition is a chal-
lenging task that sparked a lot of attention in recent years,
especially with the rise of Graph Neural Networks. In this
paper, we propose a new deep learning architecture for hand
gesture recognition using 3D hand skeleton data and we call
STr-GCN. It decouples the spatial and temporal learning
of the gesture by leveraging Graph Convolutional Networks
(GCN) and Transformers. The key idea is to combine two
powerful networks: a Spatial Graph Convolutional Network
unit that understands intra-frame interactions to extract pow-
erful features from different hand joints and a Transformer
Graph Encoder which is based on a Temporal Self-Attention
module to incorporate inter-frame correlations. We evaluate
the performance of our method on three benchmarks: the
SHREC’17 Track dataset, Briareo dataset and the First Person
Hand Action dataset. The experiments show the efficiency of
our approach, which achieves or outperforms the state of the
art. The code to reproduce our results is available in this link.

Keywords Hand gesture recognition, Skeleton, Graphs, Graph
Convolutional Networks, Attention, Transformers

I. INTRODUCTION

Hand gesture recognition has recently attracted great at-
tention in the human-machine interaction field thanks to the
opportunities it offers in different contexts such as health-
care, industry and entertainment. Based on the chosen modal-
ity, hand gesture recognition approaches are split into two
categories: image-based approaches which employ RGB or
RGB-D image sequences and skeleton-based methods which
use sequences of 2D or 3D euclidean coordinates of the
hand joints. The rapid development of low-cost depth sensors
such as Microsoft Kinect and Intel RealSense, coupled with
quick advances in hand pose estimation research, has enabled
to record RGB, RGB-D and hand skeleton data with high
precision.

Skeleton data provides efficient computation and storage,
and it has shown its effectiveness and robustness against
noise [1]. However, it lies in a non-euclidean space and
needs to be considered in an adequate geometric framework.
Recently, efficient representation of the skeleton data is
widespread using the natural graph representation of the hand
skeleton. In particular, using the graph representation leads to
the most successful representative work in the skeleton-based
action recognition ST-GCN [2]. This latter exploits joint
connections using graph convolutions in both spatial and
temporal domains. However, the self-attention mechanism
has recently demonstrated its capacity to extract powerful
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temporal information [3]. Motivated by that, we propose a
graph based approach that attempts to capture the spatial
dependencies among the joints using a Spatial Graph Con-
volutional Network (S-GCN) and the temporal correlation
using a proposed Transformer Graph Encoder (TGE) which
takes advantage of a self-attention module. Coupling these
two proposed modules has shown the effectiveness of our
approach on hand gesture recognition applications. Three
benchmarks were tested for validation: SHREC’17 Track
dataset [4], Briareo dataset [5] and FPHA dataset [6].

Our contributions can be summarized as follows:

« We introduced a temporal transformer graph based mod-
ule, which extracts correlations locally between pairs of
nodes, taking advantage of the hand graph structure.

o We studied different data preprocessing operations on
3D-skeleton sequences and their influence on the recog-
nition performance.

o Competitive results are achieved on main skeleton-
based hand gesture benchmarks.

The rest of this paper is structured as follows. In Section
related works on GCN, Self-Attention and transformer
based hand gesture recognition approaches are reviewed. In
Section [[II} our proposed approach is described. In Section
we report our experimental evaluations before concluding
in Section

II. RELATED WORK

Skeleton-based hand gesture recognition has become an
active research area in recent years, and it has been stud-
ied extensively, especially with the rise of deep learning.
This led to the development of many advanced skeleton-
based approaches [7], [8], [9], [10], [11], [12], [13], [14],
[15].In this work, we only focus on recent hand gesture
and action recognition related works that are based on
Graph Convolutional Networks(GCNs) [16], Self-Attention
and Transformers [17].

One of the first approaches that use GCNs on skeleton
data was ST-GCN, proposed by Yan et al. [2], in which
they construct a spatio-temporal graph from a 3D skeleton
body. Spatial graph convolution and temporal convolution
layers were introduced to extract the adequate features from
the body graph sequence. Some other approaches devel-
oped new architectures inspired by ST-GCN. AS-GCN [18]
introduced new modules to the ST-GCN architecture that
capture actional and structural relationships. This helps to
overcome their disregard for hidden action-specific joint
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correlations. Non-local graph convolutions [19] proposed to
learn a unique individual graph for each sequence. Focusing
on all joints, they decide whether there should be connections
between pairs of joints or not. 2S-AGCN [20] built a 2
stream architecture to model both the skeleton data and
second-order information such as the direction and length of
the bones. They used Adaptive GCN (AGCN) [21], which
learns 2 adjacency matrices individually for each sequence
and uniformly shared between all the sequences. The same
authors later proposed MS-AAGCN [22] that improves on
their previous architecture [21] by modeling a third stream
called the motion stream. AAGCN was proposed, which
further enhances on AGCN with a spatio-temporal attention
module, enabling the learned model to pay more attention
to important joints, frames and features. Transformers are
sequence models introduced primarily in NLP, which per-
form better feature extraction than recurrent models thanks
to the self-attention mechanism. The most recent and notable
related works include STA-GCN [3] which used spatial and
temporal self-attention modules to learn trainable adjacency
matrices. In STA-RES-TCN [11], spatio-temporal attention
was used to enhance residual temporal convolutional net-
works. The use of the attention mechanism enables the
network to concentrate on the important frames and features
and eliminate the unimportant ones that frequently add
extra noise. DG-STA [23] proposed to leverage the attention
mechanism to construct dynamic temporal and spatial graphs
by automatically learning the node features and edges. ST-TR
[24] proposed a Spatial and temporal Self-Attention modules
used to understand intra-frame interactions between different
body parts and interpret hidden inter-frame correlations. In
this work, in order to analyze the local and global relation-
ships between the hand joints in both spatial and temporal
domains, we adopt a fully graph based approach that exploits
this non-linear structure of the hand in these domains.

III. OUR APPROACH

In our method, we take advantage of two models: a

Spatial Graph Convolutional Network (S-GCN) is used for
spatial information extraction from graphs, coupled with a
Transformer Graph Encoder (TGE) for capturing temporal
features in sequences. Fig. [T] describes different units of
our proposed architecture for skeleton-based hand gesture
recognition.
Having a sequence of 3D hand skeletons, we use an ad-
jacency matrix to construct a graph sequence. First, in the
spatial domain, S-GCN is used to extract hand features at
each frame taking advantage of the natural graph structure of
the hand skeleton. Then, in a temporal domain and respecting
the graph structure of the spatial features, a transformer graph
encoder is proposed to extract inter-frame relevant features.
Finally, a global pooling operation is used to aggregate the
graph into a representation that can be interpreted by our
classifier.

A. Formulation

The proposed gesture recognition approach can be defined
as a function denoted by GT*

GT : RV*M¢ 5 RC
GT — Y (T(G(S) + PE))

This function predicts a probability distribution over C'
gesture classes from a sequence S € R7***® sampled out
of the input set of 3D skeleton sequences. We denote, by
the sequence length, A the number of hand skeleton nodes
constructing the graph and ¢ the number of features per node.

G is the function of the S-GCN module, PFE stands for
the positional encoding and 1" represents the TGE module
and Y represents the classifier. GT' can be decomposed into
three operations:

The first operation G corresponds to the S-GCN for spatial
features extraction from a hand skeleton:

G - Rfy*k*gﬁ N R'Y*)‘*dmodel
g=G(S)

dmoder 18 the embedding size of each graph node. An
embedding is a numerical vector representation of a complex
structured data object. It is calculated such that 2 similar
objects would have 2 similar embedding vectors. In our case,
g is a collection of embedding vectors of each node of the
graph.
The second operation 7" corresponds to the TGE module
for temporal feature extraction from inter-frame hand joints:

)

2

T - RV***dmodel —y RY*A*dmodel
t=T(§+ PE)

PFE is the Positional Encoding vector. The sequence in its
current state doesn’t carry information about the position of
each frame in the sequence. Thus, we add a PFE vector to g,
which is a vector that encodes the position of each frame in
the sequence. You can refer to Vaswani et al. [17] for more
information about the PE operation.

The third operation Y is the classifier. First, we apply
a global pooling operation that transforms a sequence of
temporal graph features into an aggregated feature map
f € R%model, Then a F'C layer maps the aggregated temporal
features into the C' potential gesture classes respecting the
following formula:

3)

Y : Rimodel — RY
j=Y(f)
We denote by ¢ the probability distribution over C' gesture
classes.

4)

B. Spatial Graph Convolutional Networks (S-GCN)

The spatial graph convolution operation is a weighted
average aggregating the features of each node with those
of all neighboring nodes to produce a new feature vector for
the former. This vector contains information about the current
node, its neighbors in the same frame, and the importance
degree of the connection between them in the hand.
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Fig. 1: Overview of our approach.

In order to construct our spatial graph, we need to build
an adjacency matrix that represents the connections between
different joints in the hand skeleton. We formulate the final
adjacency matrix Ax as follows:

Ka iy
A= D V2 A+ 1).D V2 Dy = Y (AT 1) )
k

Ay is the adjacency matrix of the fixed undirected graph
representing the connections between the hand joints. If we
apply the graph convolution on Ay, the result will not contain
the features of the node itself. We add I, an identity matrix,
to represent the self-connections of the nodes. As (/ik +1I)isa
binary and not normalized matrix. We multiply it by Dy ~'/2
(the inverse of the degree matrix of the graph) on both
sides to normalize it. Then, we use the following formula
to compute the graph convolution:

Ka
G(S) = (S.A).Wy, S € R0 (6)
k

Where S is a 3D skeleton sequence and K, is the kernel size
on the spatial dimension, which also matches the number
of adjacency matrices. The number of adjacency matrices
depends on the used partitioning strategy, which we will
explain below. W is a trainable weight matrix and is shared
between all graphs to capture common properties.

For each kernel, S.Ag calculates the weighted average of
the features of each node with its neighboring nodes, which
is then multiplied by the weights’ matrix (S.Ax).Wy. The
features calculated by all the kernels are then summed up
to form one feature vector per node. In this module, we
are inspired by the graph convolution from ST-GCN [2],
which uses a similar Graph Convolution formulation to the
one proposed by Kipf et al. [16]. We use the partitioning
and edge importance techniques to extract more informative
features about the node’s neighbors and the edges connecting
the nodes.

1) Partitioning: We adopt the partitioning technique in-
troduced by Yan et al. [2]. In their paper, they suggested three
partitioning strategies: uni-labeling, distance partitioning and
spatial configuration partitioning. We have decided to work
with the distance partitioning, which we adapt to the 3D hand
skeleton graph (see Fig. [2). We chose this strategy because

it allows us to capture both local and global features of the
hand skeleton. This strategy consists in setting the partitions

Root node (hop-distance=0)
© Direct or first level neighbors(hop-distance=1)

teighbors (hop-distance=2)
|— Important edge

\gjéj[/f \i\}éf/

Fig. 2: The hand on the left shows the partitioning using
the “distance” strategy”. The one on the right shows the
impact of edge importance. The bolder the edge, the more it
contributes to the movement of the root node.

according to the node’s hop distance in comparison to the
root node. The hop distance is the number of edges that
separate two nodes.

2) Edge importance: This operation is useful when a
node contributes to the motion of several surrounding nodes,
but these contributions are not equally significant. This
mechanism adds a learnable mask for each convolution layer
that learns the contribution of each edge to the movement
of different parts of the hand. Then, node features are
scaled according to the contribution of their edges to their
neighboring nodes.

C. Transformer Graph Encoder (TGE)

We propose a Transformer Graph Encoder (TGE) module,
which learns the inter-frame correlations locally between
joints. These local features are then used to learn the global
motion of the hand. As shown in Fig.|l| this module is com-
posed of multiple identical encoder layers stacked together,
with each one feeding its output to the next. Each encoder
layer applies two operations: multi-head attention and a
simple fully connected feed-forward network. Following
He et al. [25] and Ba et al. [26], we respectively employ a
skip connection around each of the two operations followed
by a layer normalization step. This operation improves
deeper models, making them easier and faster to optimize
without sacrificing their performance.

This TGE module was inspired from the encoder block
introduced in the transformer paper [17]. The original Trans-
former Encoder (TE) handles sequences of words, which are
represented as numerical vectors. However, our hand’s spatial



’ Multi-head-attention \
1
1

P— 1

self-attention

head 1
h g Temporal

1 Graph . Y I

: 1

- R

1 sequence N

1 self-attention I

\ , head ) 1
~
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features are represented by a graph. Thus, we have to adapt
‘TE’ to work on a non-linear graph structure. We alter the
self-attention mechanism so that it is computed between the
individual nodes of a graph sequence.

Multi-head attention: Multi-Head Attention is a self-
attention layer that models the inter-frame relationship be-
tween the hand joints. An example of the used multi-head
attention module is represented in Fig. 3] To formulate it in
the following, we set the number of heads to four:

mhAtt(x) = FC(Att1 @D Att, P Atts @ Atts)  (7)

P is the concatenation operator. Att; is a self-attention head.
Each head is initialized differently. In theory, this should
allow each head to extract different features from the graph
sequence. F'C' is a fully connected layer that projects the
concatenation of our attention heads into a 512-dimensional
feature space. Attention is computed between each joint
i € [1..\] at frame ¢, and its corresponding joint in all
other frames ¢ € [l..y]. Self-attention Att; is denoted by
this formula:

Attl . Rfy*)\*dv N R’y*)\*dv
Atti(x) = softmax(Qi. Ki//dy). Vi

where © = g+ PFE is the spatial features, Wq;i, Wk;i and Wy;
are trainable weight matrices. Q;, K; and V; are independent
projection matrices of the joints spatial feature vectors and
are computed as follows: Q) = zWq; € RMv*d | K, =
eWyi € R4, Vi = aWy; € RV, d, = 32 is the
feature size of the matrix V. d, = 32 is the feature size of
matrices K; and @;. It is also used as a scaling factor, Q;.K;
is multiplied by 1/1/dy to scale large dot product values.
The operation in equation [§| is called the scaled dot
product, which is calculated locally between the joints. An
example of the self-attention head is shown in Fig. {]

®)

IV. EXPERIMENTS AND RESULTS

In this section, we provide details about the datasets
and training protocols that we use for our experiments. We
discuss our training details and interpret our ablation study
of our approach. Finally, a comparison of our results with the
state-of-the-art approaches is performed on three datasets.

A. Datasets

SHREC’17 TRACK [4]: It is one of the first benchmark
for the recognition of hand gestures recorded in 2
configurations: 14 gestures performed using one finger and
28 gestures performed with the full hand. Each gesture
is performed between 1 and 10 times by 28 participants

o Conv2D
1 o

1
Gy ConvaD

Jseauenc
! \
Conv2D

Fig. 4: proposed self-Attention head.

totaling 2800 sequences. In the experiments, this data is
divided into a 70/30 split.

Briareo [5]: Recently released in 2019, this dataset was

mainly collected in the automotive context for applications
that aim to reduce driver inattention. The dataset contains
12 gestures performed by 40 different subjects with the right
hand, where each gesture is repeated three times. The entire
dataset contains 1440 sequences with subjects from 1 to 26
used for training, 27 to 32 used for validation and 33 to 40
used for testing.
FPHA [6]: The First Person Hand Action dataset provides
dynamic hand action sequences of subjects performing daily
life tasks. In total 1175 samples, containing 6 actors 45
different gestures performed by manipulating 26 objects in
3 scenarios. We use the 1:1 data split ratio proposed in the
original paper, with 600 action sequences used for training
and 575 for testing.

B. Training details

We conduct our experiments using PyTorch on an NVIDIA
Quatro RTX 6000. Adam was used as an optimizer and
Cross-entropy as the loss function. For our hyperparameters,
a batch size of 32 was chosen for training. The initial
learning rate was set to le-3, reduced by a factor of 2 if
the learning stagnates and the loss doesn’t improve in the
next 5 epochs. The training stops if the validation accuracy
doesn’t improve in the next 25 epochs. We set the number
of encoders to 6, the number of heads for the multi-head
attention to 8, the value of dyoqe1 to 128 and we used the
mish activation function through all of our layers. Taking
into account the context of each, a fixed number of frames
~ was chosen for each dataset: 30 for SHREC’17, 40 for
Briareo and 100 for FPHA dataset. To avoid overfitting and
improve our model performance, we choose to augment data
by random moving. Introduced in Yan et al.[2], it is a form
of random affine transformations applied to the sequence to
generate an effect similar to moving the angle of the view
point of a camera on playback. We also augment data by
noise augmentation, which consists in adding very small
values of random noise to the input sequence. This also
prevents overfitting and allows the model to generalize better.
L1 [27] and L2 [28] Regularization techniques and dropout
with a rate of 0.3 are used. We initialize the weights of our
model by the Xavier initialization [29] such that the variance
of the activation functions is the same across every layer.
This initialization contributes to a smoother optimization and
prevents exploding or vanishing gradients.



C. Ablation study

We explore how different operations on our architecture
and data can affect the performance of our approach. All
results in this study are carried out on the Briareo dataset
(see Table [I).

Comparing the original graph convolution operation ex-
tracted from [16] and our proposed S-GCN (inspired by
st-gen [2]), we prove the benefits of using such module
for spatial features extraction. This module uses multiple
kernels and edge importance, allowing the extraction of
richer features from the graphs nodes and edges.

In order to set a partitioning strategy that helps to design
an informative label map, we report results on three different
partitioning strategies. The distance strategy achieves the best
results because it gives the best low-level formulation of the
spatial features representing the hand joints.

Method Briareo(%)
GCN+TGE 78.31
S-GCN+TGE 83.34
S-GCN+Partitioning(Uni-labeling)+TGE 72.58
S-GCN-+partitioning (Spatial Configuration)+TGE 92.19
S-GCN-+Partitioning (distance)+TGE 95.92
S-GCN+Partitioning (distance)+Edge importance+TGE | 96.64

TABLE I: Recognition accuracy (%) on Briareo dataset
considering different model configurations.

The uni-labeling strategy provides limited information
about the graph adjacency. The spatial configuration strategy
provides information about the joints in relation to the
barycenter of the hand, and this is not very informative
in the case of the hand skeleton. The combination of S-
GCN, distance partitioning and edge importance performed
the best. This shows the capacity of the distance partitioning
strategy and edge importance in extracting local and global
details from the 3D skeleton sequence. We will retain the
best setup in the following experiments.

D. Comparison with state-of-the-art approaches

We evaluate our method by comparing it to other hand ges-
ture recognition approaches that use the 3D-skeleton modal-
ity. We conduct this comparison on 3 datasets: SHREC’17
Track, Briareo and FPHA. We collect most of the results in
Table [II| from [12]. However, due to the lack of experiments
on Briareo and FPHA, we train ST-GCN [2] and DG-STA
[23] on these 2 datasets. For the fairest comparison, we
use the code that they publicly released, and we train their
models using the same protocol. For our first experiments,
We test our methods’ ability in distinguishing specific details
and patterns of an action out of numerous actions. To achieve
this, we experiment on FPHA dataset, which contains up to
45 different classes of actions. The results in Table [[Il show
that our method achieves competitive results, despite that it
wasn’t designed to interpret objects and actions that include
an interaction with objects.

For SHREC’17 dataset [4], our method outperforms all
approaches that don’t exploit the graph representation of
the hand. This demonstrates that understanding the local

’

Method FPHA(%) lig?‘g )C 12?(?2%) Briareo(%)
Huang et al.[14] 84.35 - - -
Huang et al.[15] 71.57 - - -
Caputo et al.[8] - 89.5 - -
SoCJ+HoHD+HoWR[9] | - 88.2 81.9 -
SEM-MEM+WAL[10] - 90.83 85.95 -
Res-TCN[11] - 91.1 87.3 -
STA-Res-TCN[11] - 93.6 90.7 -
HPEV+HMM+FRPV[12] 90.96 92.5 88.8 -
ST-TS-HGR-NET[13] 93.22 94.29 89.4 -
ST-GCNJ2] 85.16 92.7 87.7 93.73
DG-STA[23] 78.51 94.4 90.7 90.91
Ours 91.16 93.39 89.20 96.64

TABLE II: Recognition accuracy (%) of our method in
comparison with other state-of-the-art approaches.

relationships between the joints, and detecting their inter-
frame correlations, are decisive operations.

On Briareo dataset, where the gestures are performed by
40 subjects, we test the ability of our method to recognize
gestures independently of the subject. We achieve a 96.64%
accuracy, outperforming other state-of-the-art methods on
this benchmark. This demonstrates the intra-class robustness
of our method and its capacity to recognize the action while
ignoring subject related features. The confusion matrix of
our approach in Fig. [5a] compared to that of st-gen in Fig. [5b]
shows that our method achieves similar or better performance
on most of the gesture classes. Our method outperforms st-
gen, especially with gestures that are executed in opposite
directions. We conclude that this is due to self-attention being
computed between the individual joints of all the frames, al-
lowing the extraction of more details, compared to Temporal
Convolutional Networks used in st-gen that perform temporal
features extraction on the whole sequence at once. Through
our experiments, we show that our method performs well on
multiple benchmarks with different characteristics, proving
its robustness and stability.

V. CONCLUSION

In this paper, we proposed a new deep learning architec-
ture STr-GCN for 3D skeleton-based hand gesture recogni-
tion. It utilizes a Spatial Graph Convolutional Network in
the spatial domain and a Transformer Graph Encoder in the
temporal domain to extract informative features from a graph
sequence. We performed extensive experiments and have
demonstrated the robustness of our method in dealing with
multiple datasets that have different characteristics and taken
in different contexts. In future works, it could be interesting
to consider a multi-modal approach coupled with the one
proposed in order to exploit RGB, depth and IR modalities.
We intend to evolve our architecture for the online hand
gesture recognition task required in many Human-Computer-
Interaction applications.
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