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Abstract 

1. Landscape connectivity analyses can serve landscape planning with designing 

functional conservation networks. However, existing frameworks face challenges, such 

as achieving consistency between integrated data and modeled processes, 

implementing data-driven parameterization, and addressing connectivity within the 

home range. We propose restricting connectivity analyses to the home range scale to 

better relate landscape resistance, barrier effects and resource accessibility to daily 

movements and home range establishment. 

2. We introduce a home range connectivity modeling framework that allows deriving 

important connectivity parameters empirically. We identify areas that can support 

home ranges based on available resources and calculate resource patch accessibility 

using graph and circuit theory. Resistance values, patch isolation distances, and 

connectivity metrics are selected from statistical models using movement data. We 

demonstrate the framework's utility through a case study on urban blackbirds and 

increase its applicability by testing whether the use of simple presence/absence data 

without additional movement data, and the use of a coarser resolution affect the 

estimation of parameter values. 

3. In statistical analyses, the local connectivity showed a strong significant positive 

association with the probability of blackbird movement (β = 0.23, p < 0.005). We 

uncover that the connectivity parameters are better assessed with graph theory-

derived metrics when parametrized with movement data. We find a high barrier effect 

of high buildings and a moderate barrier effect of lower buildings and streets on 

blackbird movement. However, when assessed with presence/absence data, model 

parametrization can result in similar values only when using circuit theory metrics. 

Changing the resolution from 10 to 30 m has minimal impact on parametrization results 

with movement data. 

4. Our study showcases a data-driven parameterization using statistical model selection, 

which addresses several of the main limitations of recent connectivity modeling 

approaches. Presence/absence data and coarser resolution can be used judiciously, 

but independently. Restricting analyses to home ranges yields valuable insights into 

home range ecology, landscape impacts on movement in highly heterogeneous 

landscapes, and species distribution. 
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1. Introduction  

International agreements and resolutions increasingly emphasize the critical role of ecological 

connectivity in sustaining ecosystems and their services to humans (IUCN, 2021; UN General 

Assembly, 2021). Defined as the “degree to which a landscape facilitates or impedes 

movement among resource patches” (Taylor et al., 1993), ecological connectivity supports 

biodiversity and ecological processes from the level of an individual (e.g., resource allocation 

within home ranges) (Blazquez-Cabrera et al., 2014; Taylor et al., 1993) to the metapopulation 

(e.g., dispersal and gene flow between subpopulations) (Blazquez-Cabrera et al., 2016; 

Braaker et al., 2017). 

Ecological connectivity models offer valuable insights for landscape planning and aid in nature 

conservation (Foltête et al., 2014; Molné et al., 2023). They have been instrumental in creating 

conservation networks, assessing population fragmentation, and designing urban green 

spaces for both wildlife and humans (Koen et al., 2014; Mimet et al., 2016, 2020). Over the 

past two decades, numerous connectivity modeling approaches have emerged (Fletcher et 

al., 2019; McRae et al., 2008; Unnithan Kumar, Kaszta, et al., 2022; Urban et al., 2009; Van 

Moorter et al., 2023). These approaches encompass a spectrum of complexity, ranging from 

simple distance analyses of habitat patches (Calabrese & Fagan, 2004; Foltête et al., 2014) 

to intermediately complex methodologies utilizing graph and circuit theory with habitat 

patches, links, and resistance surfaces (McRae et al., 2008; Urban et al., 2009), and advanced 

approaches simulating individual movement (Unnithan Kumar, Kaszta, et al., 2022). Among 

these, graph and circuit modeling tools strike a balance between data requirements and the 

generation of sufficiently detailed model results (Calabrese & Fagan, 2004; Martensen et al., 

2017), rendering them prevalent at the research-landscape planning interface (Foltête et al., 

2014; Koen et al., 2014; Molné et al., 2023). However, the applications of these 

methodological frameworks suffer from a lack of consistent scales and trustworthy parameter 

values to ensure reliable results. These limitations undermine confidence in their outputs and 

consequently hinder their broad applicability (Moilanen, 2011; Unnithan Kumar, Turnbull, et 

al., 2022). In particular, graph and circuit theory modelling tools face the following challenges: 

(i) Scale inconsistencies: Many methodological approaches to connectivity models 

do not specify whether they address movement between patches within a home 

range or between populations at the scale of dispersal (Blazquez-Cabrera et al., 

2014). Within-home-range movements occur frequently, take less time, and involve 

travel between small resource patches, while dispersal movements are infrequent, 

time-consuming, and connect large, heterogeneous areas of high suitability 

(Blazquez-Cabrera et al., 2014; Mimet et al., 2016). Often, small and large-scale 

movements are mixed, ignoring the differences in the animals’ motivations, their 

timescales, and the spatial properties of the movements and the connected areas 

(Blazquez-Cabrera et al., 2014, 2016). Several studies infer dispersal processes 

from foraging movements which can result in erroneous parameter values (Zeller 

et al., 2018). For example, the landscape resistances that mammals experience 

differ if either data from dispersal or foraging is used for their parameterization 

(Blazquez-Cabrera et al., 2016; Zeller et al., 2016). 

(ii) Non-empirical derivation of landscape resistances: The resistance values of 

different land cover types are often evaluated based on expert knowledge and 

literature reviews rather than empirical data (Unnithan Kumar, Turnbull, et al., 

2022; Zeller et al., 2012). Conversely, well-parametrized connectivity models use 
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tracking data of individuals to estimate landscape resistances, but this is 

expensive, time-consuming and limited to only a few species (Zeller et al., 2012, 

2018). Acquiring tracking data for many species and conservation applications, 

therefore, is unrealistic, despite its necessity for parametrizing connectivity models 

(Koen et al., 2014; Zeller et al., 2018). In cases with available observational 

presence/absence data, species distribution models are often used to estimate 

habitat suitability, from which landscape resistance is directly derived (Keeley et al. 

2017; Zeller et al., 2018). However, this practice is contested (Keeley et al., 2017; 

Zeller et al., 2018). Hence, a systematic parametrization approach is needed to 

test various landscape resistances and facilitate the use of readily available data 

(Verbeylen et al., 2003). 

(iii) Unclear choice of connectivity modeling approach and related connectivity 

metric: The two connectivity modeling approaches graph and circuit theory both 

link patches in a landscape matrix that introduces resistance to movement between 

them (McRae et al., 2008; Urban et al., 2009). The two approaches are used 

equivalently, but the choice between them is rarely empirically-based, despite them 

having opposite assumptions on animal movement patterns (McClure et al., 2016; 

Palmer et al., 2011). In graph theory, the movement between two patches follows 

the least-cost path; the path of lowest cumulative resistance determined from a 

resistance map (Galpern et al., 2011; Urban et al., 2009), suitable for modeling 

animals with good memory in familiar areas (Palmer et al., 2011). By contrast, 

circuit theory models the movement of individuals as an electrical current thereby 

employing a random walk (McRae et al., 2008) and assuming animals lack prior 

knowledge, suitable for an unknown landscape or animals with bad memory 

(McClure et al., 2016). Besides the unclarity about the fitting approach, both 

approaches, particularly graph theory, offer numerous metrics partly covering 

similar and partly different aspects of connectivity (Foltête et al., 2012; Rayfield et 

al., 2010). Their suitability for a specific movement is unclear and untested (Foltête 

et al., 2012; Rayfield et al., 2010). 

(iv) Unclear effects of mapping resolution: Advancements in remote sensing and 

geospatial modeling have provided higher-resolution datasets for connectivity 

modeling (Morin et al., 2022). However, this comes at the cost of increased 

computational demands which limits the practicality of connectivity modeling in 

broader conservation planning (Molné et al., 2023). Furthermore, the resolution at 

which an animal perceives its environment is probably dependent on the species 

and the body mass (Hostetler & Holling, 2000). The best resolution for modeling 

the connectivity for a target species is not well researched so far (Zeller et al., 

2012). Therefore, it remains largely untested whether the widely available 

resolutions of 10 m and 30 m provide the same information for a target species 

(Molné et al., 2023). 

(v) Lack of home range connectivity modeling frameworks: The scale of the home 

range, defined as “the area or volume over which [an individual] normally travels in 

pursuit of its routine activities” (Okubo & Levin, 2001), is rarely considered in 

connectivity analyses (LaPoint et al., 2013; Mimet et al., 2020). Most connectivity 

modeling approaches target dispersal, i.e. “[circumstances] in which individuals 

leave their existing home ranges and do not return” (Stenseth & Lidicker, 1992). 

Connectivity does, however, also affect daily movements in home ranges (Koen et 

al., 2014; LaPoint et al., 2013; Zeller et al., 2016) and their size, formation, and 
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shape (Bevanda et al., 2015; Sutherland et al., 2015; Walter et al., 2009). In very 

heterogeneous landscapes like cities, connectivity is crucial for a species’ access 

to resources distributed across patches (Kirk et al., 2018), thereby influencing 

home range establishment and species distributions. Moreover, territories in such 

areas are relatively small compared to a vertebrate’s home range and their size 

corresponds more to one or few sub-populations than a metapopulation (Beninde 

et al., 2016; Braaker et al., 2017). Consequently, dispersal has limited explanatory 

power for the species' distribution and movement. Studying connectivity at the 

home range scale is more justified for compact and heterogeneous territories and 

emphasizes its essential role in home range establishment. 

This study aims to address these limitations by introducing a modeling framework for building 

and parametrizing home range connectivity models, thereby enhancing their applicability and 

reliability for planning and conservation (Foltête et al., 2014). Our two-step modeling 

framework is inspired by the hierarchy of habitat selection that distinguishes between the 

lower-order process of selecting a home range within the geographical range and the higher-

order process of choosing specific habitat components within the home range based on 

availability and accessibility (Johnson, 1980). By applying this hierarchical approach, our 

framework assesses two critical resource conditions impacting the occurrence of home range 

movements: resource amount (sufficient resources for home range establishment) and 

resource accessibility (the accessibility of resources in different patches through an 

individual’s movement). In a first step, areas that could support home ranges are delineated 

based on a species' minimum resource requirements. In a second step, connectivity between 

resource patches within these potential home range areas is modeled. Our framework utilizes 

statistical model selection to derive key connectivity parameters, including the amount and the 

type of resources that constitute a home range and a resource patch (home range resource 

map), resistance values of land cover types, maximum isolation distances between resource 

patches, and the most appropriate metric for movement description. This statistical approach 

expands and structures the methodology demonstrated by Verbeylen et al. (2003). 

We illustrate the utility of our modeling framework in a case study on the common blackbird 

(Turdus merula) in the city of Munich. Cities epitomize extreme environmental conditions with 

very heterogeneous landscapes, offering valuable insights into the fundamental mechanisms 

in the interplay between landscape structure, movement, and connectivity (Breuste et al., 

2008). 
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2. Methods 

2.1 Modeling framework 

The modeling framework introduced in this study generates home range scale connectivity 

maps using four empirically-derived key connectivity parameters (Figure 1). It employs a raster 

representation of the landscape that consists of a resource and a resistance landscape finally 

depicted in a home range resource and a resistance map (Table 1). Resource patches, 

identified from a land cover map, represent resources/foraging sites and comprise various 

vegetation types or water bodies. Potential home ranges, derived from the land cover map, 

consist of multiple pixels and indicate areas with sufficient resources for home range 

establishments without considering accessibility or disturbance. The resource landscape 

details resource patches within each home range and, therefore, requires a fine resolution. 

The resistance landscape quantifies the landscape’s resistance to an individual’s movement 

based on local land cover types and necessitates the same resolution as the resource 

landscape. 

 

Table 1: Definition of important terms used in the model description 

Landscape Term Definition 

Resource 

landscape 

Home range “The area or volume over which [an individual] normally 

travels in pursuit of its routine activities” (Okubo & Levin, 

2001). Home ranges can be approached by a circle defined 

by a species-specific radius, the home range radius (Arthur 

et al., 1996). 

Resource 

cell 

A pixel of a land cover type on the land cover map that 

provides resources for the target species (e.g. food, 

shelter)  

Resource 

patch 

Connected resource cells between which the animal can 

move without traversing a cell without resources 

Home range 

circle 

A circle with the size of a home range (Arthur et al., 1996) 

that is discretized on a raster map. This circle must not 

necessarily represent a home range; it is used to estimate 

the amount of resources available if a home range was 

located there. 

Home range 

resource 

map 

Identifies the resource patches located in areas providing 

sufficient resources for home range establishment 

Resistance 

landscape 

Resistance 

value 

Quantified resistance that is assigned to a specific land 

cover type. Resistance values are also assigned to 

resource cells 

Resistance 

map 

Map of resistance values in each cell that are determined 

from the local land cover types. If there are different land 

cover types in a cell, the resistance of a cell is the sum of 

the resistance values of the land cover types present in a 

cell weighted by their coverage. 
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Maximum 

patch 

isolation 

distance 

Maximum distance between patches that the target species 

crosses during home range movements 

 

Parametrization of the model requires observational presence/absence data of the target 

species and additional literature information on the species’ ecology (i.e., vegetation type used 

for foraging, home range size) as well as a list of connectivity metrics to be calculated. The 

data used is limited to presence/absence information since the presence of a home range 

hinges on meeting minimal resource requirements and ensuring sufficient accessibility 

(connectivity). Abundance data is inappropriate as abundance only increases after critical 

thresholds of resource amount and accessibility are surpassed and, thereby, introduces 

unnecessary complexity (see Appendix 1 for more details). The initially required information 

is retrieved in Step 0 of the analysis (Figure 1, Table 2). Parametrization is done in two 

modeling steps reflecting the hierarchical process of habitat selection (Johnson, 1980) (Figure 

2): 

Step 1 – Creating a Home Range Resource Map.  

This step identifies resource patches within potential home ranges in the landscape. The 

output is the home range resource map that serves as an input for the connectivity model 

developed in Step 2 (Foltête et al., 2012; McRae et al., 2016). Step 1 consists of ten sub-steps 

and first processes a land cover map to attain a suitable modeling resolution (Table 2). To 

obtain the home range resource map, a first dataset with information on the presence/absence 

of the species is used to determine areas with sufficient resources for the species to sustain 

a home range (the "home range resource map" key parameter). Other necessary parameters 

include the land cover type providing resources for the target species and the species' 

minimum home range radius (Figure 1).  

Step 2 – Parametrizing the Connectivity Model.  

This step integrates species movement and resource accessibility through connectivity 

modeling. Step 2 consists of nine sub-steps and requires the home range resource map from 

Step 1 and a second dataset on the presence and absence of movement (Figure 1, Table 2). 

Step 2 models the connectivity for movement between resource patches within home ranges, 

excluding connectivity to patches outside (Figure 2). The aim of this modeling step is to 

determine key connectivity parameters, in particular resistance values of land cover types, 

maximum isolation distance between resource patches, and the best connectivity metric 

through statistical model selection (Figure 1). Step 2 creates connectivity maps for all 

reasonable combinations of the key connectivity parameters and then selects the parameter 

values that best explain the presence/absence of movement of the target species (Table 2). 

In a final step, it calculates connectivity maps based on the best parameter values (Table 2). 
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Figure 1: Parametrization procedure for the home range connectivity model in this study. 

Boxes with triangles represent either external data for parameter selection (black) or initial 

literature-based input parameter (green). Simple green boxes indicate empirical data chosen 

from the literature and orange boxes show key connectivity parameters empirically derived 

from the parametrization procedure. 
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Figure 2: Graphical representation illustrating the two modeling steps for a hypothetical 

species dependent on deciduous trees. Patches with deciduous trees are therefore resource 

patches (dark green pixels). We assume that the species can cross meadows (light green 

pixels) and agricultural fields (yellow pixels) but cannot cross rivers (blue pixels). In Step 1 of 

the algorithm, suitable home ranges (black circles) and the resource patches within them 

(black pictograms) are identified. Note that Step 1 also identifies the minimum amount of 

resources needed (in this example the number of patches with deciduous trees). Step 2 

models connectivity for movement between resource patches (black pictograms) within home 

ranges (black lines), excluding connectivity to patches outside (grey pictograms). 

 

Table 2: General description and adaptation to the case study of the input parameters, steps 

and sub-steps of the modeling framework parametrization procedure  
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 General description 
Model input or 

parameter 
Source Case study 

Step 0: Selecting input 

parameters 
        

0.1 Set minimum home 

range size  

Defines the minimum home range radius for the target 

species.    

Minimum home range 

radius  

From 

literature  

The average male blackbird home range in the city is 

approximately a 180 m radius circle (Ferry et al., 1981). It varies 

between sexes, and the most intensely used area is substantially 

smaller (Snow, 1966). We selected a radius of 100 m as a 

conservative value for the minimum home range size.  

0.2 Identify land cover types 

with resources  

Defines the land cover types where resources (for food, 

nesting, shelter) for the target species occur  
Land cover types   

From 

literature  

The initial highly resolving land cover map of Munich 

differentiates the following land cover types: buildings of different 

heights, streets, agricultural areas, water bodies, grass, shrubs 

and trees. Grass, shrubs, and trees are blackbirds' resources for 

feeding and/or nesting and land use types containing these 

resources can be defined as resource cells (Snow, 1966). For 

description of creation of land cover map of Munich, see 

appendix 2. 

0.3 Define what amount of 

resources constitutes a 

resource patch  

Defines the amount of all resources (in m2) that is sufficient 

to constitute at resource patch. Treats all identified resources 

(from step 0.2) equivalently independent of their initial 

vegetation or land cover type. The amount of resources 

should be small enough to identify important features in the 

landscape (e.g. a fully-grown tree). A very small threshold 

increases the computational requirements. The threshold is 

determined from visual inspection of the highly-resolved land 

cover map.  

Resource threshold  User-defined   
Resource cells that contain at least 20 m2 of vegetation to reflect 

the size of a well-grown tree (Konijnendijk, 2023) 
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0.4 Retrieve connectivity 

metrics to be tested 

Retrieves connectivity metrics that will be used to calculate 

entire raster maps with connectivity values for every cell. The 

available metrics depend on the used modeling tool. To test 

whether graph or circuit theory is more suitable to model the 

movement of a target species, connectivity metrics from both 

approaches should be selected. 

Connectivity metric 
From 

literature  

We decided to use metrics from both graph and circuit theory 

modeling tools and used the modeling tool Graphab (Foltête et 

al., 2012) for graph-theory-based analyses and the Julia-package 

Omniscape (Landau et al., 2021) for circuit theory. Both modeling 

tools allow for a landscape graph with many patches and 

omnidirectional movement (Foltête et al., 2012; Phillips et al., 

2021). For graph theory, we chose the four local connectivity 

metrics that are available in Graphab for extrapolation to the 

landscape, namely Flux (F), Interaction Flux (IF), corridors, and 

Betweenness Centrality (BC) (Clauzel et al., 2022). Only these 

metrics allow to produce raster maps of connectivity (Clauzel et 

al., 2022). For circuit theory, we selected two connectivity metrics 

available in the Julia-package Omniscape (Landau et al., 2021), 

Cumulative Current Flow (CF) and Normalized Current Flow 

(NCF) (for further description of metrics, see Appendix 3). 

Step 1: Creating home 

range resource map 
        

1.1 Aggregate land cover 

map to suitable resolution  

Aggregates the land cover map from initially very high 

resolution to the pixel size chosen for computation. For every 

land cover type, its proportion within the larger pixel is 

stored.  

Coarse-resolution land 

cover map  
User-defined 

Considering the minimum home range radius of 100 m and 

computational power, we aggregated the land cover map with an 

initial resolution of 40x40 cm to 10x10 m.  

1.2 Create map of resource 

cells  

Applies the resource threshold defined in step 0.2 to the 

coarse-resolution land cover map to obtain a map of 

resource and non-resource cells.  

Map of resource cells  

Derived from 

step 0.3 and 

step 1.1 

Map of Munich with resource and non-resource cells.  

1.3 Calculate amount of 

resources per home range 

Calculates the amount of every resource type in a home 

range circle from the coarse-resolution land cover map. This 

calculation is performed for every home range circle that 

geometrically fits into the map. 

Map of amount of 

resources in all home 

ranges circles 

Derived from 

step 0.1 and 

step 1.1 

The amount of grass, shrub, and tree in a 100 m circle was 

calculated. The amount of resources was assigned as a value to 

the center cell of each circle. 

1.4 Define classes of 

resource amount per home 

range 

Discretizes the resource amount per home range circle to 

extract lower and upper thresholds of resource amount per 

resource type for a potential home range. For every resource 

type, several classes are created. The classes are defined 

by visual inspection of the statistical distribution of the 

amount of the different resources in home range circles 

around the points of species presence/absence. 

Classes of resource 

amount  
User-defined 

The following classes were created: 
 - 5 possible classes of grass: 0-5%, 5-20%, 20-30%, 30-50%, 

50-100% 
 - 3 possible classes of shrub: 0-5%, 5-15%, 15-100 % 
 - 4 possible classes of tree: 0-5%, 5-15%, 15-40%, 40-100% 
 Note that every home range has a value for these classes 

1.5 Assign resource amount 

classes to every home range 

circle 

Assigns the classes defined in step 1.4 to every home range 

circle 
Map of resource classes  

Derived from 

steps 1.3 

and 1.4 

Each home range circle was classified into a grass, a shrub, and 

a tree class according to the proportion of each of these three 

resources in the 100 m radius.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.22.571399doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.22.571399
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

12 

 

1.6 Create the combinations 

of resource amount classes 

Creates all possible combinations of resource amount 

classes. A combination of resource amount classes 

encompasses one class for every resource type. For every 

resource type, several classes can be taken together. The 

number of possible combinations is directly derived from the 

classes created in 1.4 

All possible combinations 

of resource amount 

classes 

Derived from 

step 1.4 

900 possible combinations of resource amount classes.  
 Examples: 
 - grass: classes 1 to 2, shrub: classes 1 to 1, tree: classes 1 to 4 
 - grass: classes 2 to 5, shrub: classes 1 to 3, tree: classes 1 to 1 

1.7 Create the home range 

maps to be tested 

Creates maps of potential home ranges for each 

combination of resource amount classes by mapping all the 

home range circles from step 1.3 that meet a combination of 

resource amount classes. 

Prediction map for each 

possible combination of 

resource amount classes 

Derived from 

steps 1.3 

and 1.6 

900 home range maps.   

1.8 Identify the resource 

amount classes for home 

range establishment 

Finds the combination of resource amount classes that best 

explains a presence/absence dataset. Each observation site 

is characterized by the presence/absence of the target 

species and a percentage of home range coverage as 

predicted from each combination of resource amount class. 

As the locations of an animal observation are very likely 

within a home range and unlikely outside, all presences are 

considered to indicate the presence of a home range. 
The selection of the combination of resource amount classes 

is based on the comparison of the contingency tables of the 

observed versus predicted presence/absence. It consists of 

selecting the combination(s) that best predicts (i) the 

observed presence of the target species and (ii) lowers the 

number of false predicted absences. The user must define a 

minimum home range coverage value to use as threshold to 

consider the site to be in/out potential home ranges. 

Resource amount class 

for home range 

establishment  

Empirically 

derived  

We used dataset 1 for presence/absence data of blackbirds (for 

description, Appendix 5). For each of the 900 combinations of 

resource amount classes, we considered a 10% home range site 

coverage threshold as a conservative threshold excluding sites 

where the blackbird observations were unlikely.   

1.9 Create the home range 

map  

Creates the home range map by mapping the home ranges 

that meet the requirements of the resource amount classes 

that best explains the presence/absence dataset determined 

in step 1.8 

Home range map  

Derived from 

steps 1.3 

and 1.8 

Home range map for Munich 

1.10 Create the home range 

resource map  

Creates the home range resource map by intersecting the 

map of resource cells from step 1.2 and the home range 

map from step 1.9.   

Map of resource patches 

within home ranges  

Derived from 

step 0.5 and 

1.7  

Home range resource map for Munich 

Step 2: Parametrization of 

connectivity model  
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2.1 Create sets of resistance 

values to be tested 

Creates sets of resistance values for the land cover types of 

interest which are tested for the target species' movement. 

The sets should be built to test competing solutions where 

the resistance values of land cover types vary relative to 

each other. Sets of resistance values should follow a 

species-specific logic (e.g. building height should not matter 

for a cursorial animal but could matter for a flying one). The 

logic helps to reduce the number of sets of resistance values 

and thereby to limit the computational effort.  

Sets of resistance values 

for the different 

landscape elements  

From 

literature  

We were interested in the barrier effect of urban land cover types, 

so we fixed the resistance values for resource patches at 1 and 

for agriculture and water at 10 because open areas are more 

resistant to bird movement (Shimazaki et al., 2016; Tremblay & 

St. Clair, 2009). A resistance value between 10 and 1000 was 

attributed to buildings according to their height and streets. We 

decided that a high building’s resistance cannot be lower than the 

resistance of a lower building but had no prior assumption on the 

relative resistance of buildings and streets. By applying this rule 

and the range of resistance values, we produced 24 sets of 

resistance values to be tested (Appendix 4).  

2.2 Create resistance maps 

to be tested 

Creates a resistance map from the coarse-resolution land 

cover map derived from step 1.1 for each set of resistance 

values defined in step 2.1. For each cell, the resistance 

value is computed as the sum of the resistance values of the 

land cover types present in the cell of the coarse-resolution 

land cover map weighted by their coverage.  

Resistance map for each 

set of resistance values 

to be tested 

Derived from 

step 2.1  

We obtained 24 resistance maps with resistance values ranging 

from 1:10 to 1:1000.  

2.3 Define maximum 

isolation distance between 

resource patches to be 

tested 

Defines the maximum patch isolation distances that are 

tested for best explanation of the target species' movement. 

Fixed maximum isolation distances between resource 

patches are selected based on literature values of typical 

movement distances and home range sizes of the animal. 

For logical reasons, the highest selected value should not be 

higher than two times the minimum home range radius.  

Maximum patch isolation 

distances for the target 

species  

From 

literature  

We fixed maximum patch isolation distances at 30, 60, 90, and 

150 m according to the literature on blackbird movement and 

home range sizes (Ferry et al., 1981).  

2.4 Derive connectivity 

models for all combinations 

of resistance values and 

patch isolation distances to 

be tested 

Derives (circuit and graph theory-based) connectivity models 

for the home range resource map using all possible 

combinations of resistance maps and maximum patch 

isolation distances. The graph theory-based model is pruned 

by the Euclidean maximum patch isolation distance. The 

circuit-theory-based connectivity is calculated allowing flow 

only between resource cells within the search radius of the 

patch isolation distance. The maximum size of a patch 

should be defined to equal the resolution of the input home 

range resource and resistance maps. This ensures that the 

resolutions of the inputs and movement modeling 

correspond to each other and that all resource patches are 

comparable in area and in their underlying ecological role 

and associated species movements.   

One connectivity model 

for each possible 

combination of resistance 

values and maximum 

patch isolation distances 

from home range 

resource map  

Derived from 

steps 1.10, 

2.2 and 2.3  

We used all 96 combinations of resistance maps and patch 

isolation distances to build connectivity models using graph (R 

package Graph4lg v. 1.8) (Savary et al., 2023) and circuit (Julia 

package Omniscape v. 0.5.8) (Landau et al., 2021) theory. For 

details on the model settings, see Appendices 8-9. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.22.571399doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.22.571399
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

14 

 

2.5 Derive connectivity 

metrics and maps for all 

combinations of resistance 

values and patch isolation 

distances to be tested 

Derives and maps connectivity metrics for all connectivity 

models created in step 2.4.   

Connectivity metrics and 

maps  
User-defined  

We computed the following metrics from graph theory (Clauzel et 

al., 2022): Flux (F), Interaction Flux (IF), Betweenness Centrality 

(BC), and Corridors (for description, see Appendix 3). We 

furthermore computed the following metrics from circuit theory 

(Landau et al., 2021): Cumulative Current Flow (CF), and 

Normalized Current Flow (NCF).  
We produced one connectivity map for every metric, resistance 

map, and isolation distances (24 resistance maps * 4 isolation 

distances * 6 metrics = 576 maps).  

2.6 Build logistic regression 

models for extraction of 

values for key connectivity 

parameters 

Runs logistic regression models for all connectivity models 

and metrics. This step uses data on the presence/absence of 

movement and the connectivity value at the observation 

location that is obtained from the connectivity maps created 

in step 2.5. This logistic regression model is used to explain 

the presence/absence of movement. More explanatory 

variables can be included.   

One logistic regression 

model for each 

combination of isolation 

distance, resistance 

values, and connectivity 

metric  

Derived from 

step 2.5  

We built 576 binomial Generalized Linear Mixed Effect Models 

(GLMMs) using data on the presence and absence of moving 

blackbirds in potential home ranges as response variables 

(dataset 2, detailed description in Appendix 6). We averaged the 

connectivity values across the observation transects and included 

this as a fixed factor. Other fixed factors added were the 

proportion of resource patches in the transects to account for the 

effect of local vegetation on bird presence and the number of 

pedestrians and the temperature during observations to control 

for other effects on bird presence. To exclude possible observer 

bias or date-related effects, we included these terms as random 

factors. We applied the R package lme4 v.1.1-33 (Bates et al., 

2015) to build the binomial GLMMs with a logit link function and 

tested for outliers, overdispersion, and zero inflation using the R 

package DHARMa v.0.4.6 (Hartig, 2022). For more details on the 

statistical models, see Appendix 10. 

2.7 Extract values for key 

connectivity parameters 

using statistical model 

selection  

Extracts the resistance values of landscape elements and 

the maximum isolation distance from the best models (step 

2.6) and finds the connectivity metric that best explains the 

presence/absence of movement data. This step uses a 

model selection procedure on the logistic regression models 

created in step 2.6.  

Maximum patch isolation 

distance, resistance 

values, connectivity 

metric  

Derived from 

step 2.6  

We selected the resistance maps and patch isolation distances 

from the logistic regressions with the lowest AIC and within a 

delta-AIC of 2 (across metrics). We averaged their input 

parameters (resistance values and maximum isolation distance) 

to obtain the final resistance values and patch isolation distances. 

As the resistance values scale exponentially, we applied a log10 

transformation before calculating the mean and standard 

deviation. We evaluated the AIC values per metric across 

resistance maps and isolation distances to obtain the metric with 

the highest explanatory power for our data. We considered a 

metric better when its lowest AIC value was lower than the delta-

AIC of 2 of the lowest AIC value of other metrics.  
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2.8 Create the final 

connectivity map from the 

values of the key 

connectivity parameters 

The values for the key connectivity parameters determined in 

step 2.7 and the home range resource map created in step 

1.10 are used to create a final connectivity map. The 

connectivity map is calculated using the best connectivity 

metric identified in step 2.7.  

Final connectivity map  

Derived from 

steps 1.10 

and 2.7  

One connectivity map for blackbirds in Munich based on the key 

connectivity parameters determined in step 2.7 and the home 

range resource map from step 1.10 
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2.2 Case study: Blackbirds in Munich 

Our case study has two primary objectives: The first objective is to demonstrate the 

applicability of our framework for deriving the values of the key connectivity parameters (home 

range resource map, resistance values, patch isolation distance, connectivity metrics) from 

movement and high-resolution land cover data (10 m). The applicability is also evaluated 

statistically by examining the importance of connectivity for explaining the movement of 

blackbirds. The second objective is to assess the feasibility of retrieving these values of the 

key parameters using widely accessible data, i.e. a coarser resolution (30 m) and simple 

presence/absence data. 

 

2.2.1 Study area  

Munich (48° 8' 23" N, 11° 34' 28" E, 529 m asl) is Germany's third-largest city with a population 

exceeding 1.5 million and the highest population density among German municipalities (5100 

persons/km2 in 2022) (Stadtverwaltung, n.d.). Despite its urban character, Munich's green 

spaces cover approximately 13.4% of the city's total area with the English Garden 

encompassing 375 ha that connect the city center with outer areas (muenchen.de, n.d.).  

 

2.2.2 The common blackbird 

The common blackbird, an urban dweller frequently found in European cities, was initially a 

forest species (Mohring et al., 2021). Blackbirds primarily feed on earthworms, invertebrates, 

and fruits on the ground, in open areas or under canopies (Snow, 1966). Both males and 

females establish territories, with suitable nest-sites in trees or shrubs being crucial for territory 

establishment (Snow, 1966). The radius of home ranges for male blackbirds in cities is up to 

180 m, but it varies with sex and building density (Ferry et al., 1981; Snow, 1966). Due to its 

distinctive look and song, the common blackbird is an easily identifiable urban species and, 

therefore, an ideal study subject. 

 

2.2.3 Data  

2.2.3.1 Land cover map for Munich 

We obtained the following high-resolution remote sensing data from the Bavarian State Office 

for Digitization, Broadband and Surveying (https://www.ldbv.bayern.de/index.html): a digital 

elevation model at 1 m resolution, a surface model at 40 cm resolution, and color-infrared 

orthophotos at 20 cm resolution. These were used to create a 40 cm resolution land cover 

map for Munich in 2017. The map encompasses vegetation classes (grass, shrubs, trees), 

building height classes (< 10 m, 10 – 18 m, > 18 m), streets, agricultural areas, and water 

bodies (Appendix 2). We aggregated the land cover data at a 10 m resolution by extracting 

the percentage of each land cover class per 10 m raster cell. 

 

2.2.3.2 Observational blackbird data 

In our case study, we employed three distinct sets of blackbird data (Appendices 5-7). All three 

datasets were collected on and around 103 urban squares in Munich that cover a gradient of 

tree density, square size and proximity to the city center (Fairbairn et al., 2023; Mühlbauer et 
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al., 2021). Datasets 1 and 2 were used to target the first objective whereas dataset 3 was 

applied for the second objective. 

For dataset 1 (Mühlbauer et al., 2021), a trained ornithologist acoustically and visually 

determined bird species for 20 minutes on the 103 squares during three sessions in spring 

2017. We utilized dataset 1 to create the home range resource map and to estimate the 

minimum resource requirements for home range establishment in Step 1 within the first 

objective. 

For dataset 2, ecologists recorded the number of blackbirds flying across 217 10 x 60 m street 

transects adjacent to the 103 Munich squares within four minutes. The movement data in 

dataset 2 was applied for the parametrization in Step 2 within the first objective. 

Dataset 3 was retrieved from acoustically monitoring all bird species using bird recorders on 

the 103 squares for 24 hours and determining the species using the BirdNET algorithm (Kahl 

et al., 2021). This dataset served as a comparative dataset to assess the potential 

replacement of the movement dataset (dataset 2) in the second objective (retrieving the values 

of the key connectivity parameters from more widely data).  

 

2.2.4 First objective: Applicability of modeling framework 

The applicability of our modeling framework was tested by applying it to the blackbird in 

Munich. For every modeling step, we described the application to the blackbird case study in 

Table 2 in the last column. In the table, we also justified the selection of input parameters and 

the development of the statistical models. We derived the input parameters (Step 0), the 

resource requirements necessary for home range establishment and the home range resource 

map (Step 1) as well as the values for the other key connectivity parameters (resistance 

values, maximum patch isolation distance, connectivity metric) (Step 2). 

In Step 2.6, we utilized binomial General Linear Mixed Effect Models (GLMMs) to select the 

values of the key connectivity parameters (resistance values, patch isolation distance, 

connectivity metric) and then evaluated the significance of the local connectivity value for 

whether a blackbird moved at a location or not (dataset 2). Thus, the movement of a blackbird 

across a street transect (0/1), was modeled as a function of the fixed factors connectivity value 

averaged across the street transect, the proportion of resource patches in the street transect, 

observed pedestrian count, and temperature, and the random factors observer and date (more 

details in Appendix 10). This comprehensive approach enabled us to examine whether the 

connectivity value significantly accounted for variations in blackbird movement, and whether 

this influence differed from that of proportion of resource patches within the same area. The 

values of the key connectivity parameters, obtained using movement data and averaging the 

best models, were considered as reference values in the second objective.  

 

2.2.5 Second objective: Retrieving values of key connectivity parameters using widely 

accessible data 

The second objective of the case study was to test the impact of using widely accessible data, 

i.e. a coarser resolution (30 m instead of 10 m) and presence/absence data instead of 

movement data, on resistance values and patch isolation distances, comparing them to 

reference values obtained from the first objective. We first tested their effect individually and 
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then in a combined analysis, i.e. we modeled connectivity at 30 m resolution using movement 

data, at 10 m resolution using presence/absence data, and at 30 m resolution using 

presence/absence data. 

To assess the effects of coarser resolution, we aggregated the land cover map from 40 cm to 

30 m instead of 10 m and repeated all modeling steps, starting with the calculation of the home 

range resource map (Table 2, Step 1.1).  

To assess the effect of using presence/absence instead of movement data, we built binomial 

GLMMs using the 95 datapoints from dataset 3 located within potential home ranges 

determined in step 1. The presence/absence in dataset 3 was recorded with acoustic 

recorders that detect singing birds within a circle of up to 50 m radius. Therefore, we averaged 

the connectivity value across a circle with 50 m radius for building the GLMMs. We included 

the proportion of resources in the 50 m circle to account for the effect of local vegetation on 

bird presence and temperature as additional fixed and date as random factors. The 

methodology to extract the parameters with the highest explanatory power follows the 

procedure described in Table 2, Step 2.7 (mode details in Appendix 10). 

We evaluated the ability of coarser resolution and presence/absence data to retrieve reference 

parameters values using a point-based system. This system compared parameter values from 

10 m resolution modeling with movement data to results obtained for 30 m resolution modeling 

and presence/absence data individually for each connectivity metric. The evaluation included 

both relative (relative order of the resistance values of the urban land cover type) and absolute 

assessments of resistance values, and absolute assessment of patch isolation distances. We 

assigned one point if high buildings had the highest resistance value and one point for every 

urban land cover type whose resistance was lower than that of high buildings. We added one 

point for each urban land cover type and the patch isolation distance when the standard 

deviation of the value overlapped with the reference value. The final evaluation was the sum 

of points for each metric, resolution, and datatype combination. More points, therefore, 

indicate a closer match to the reference values (more details in Appendix 11). 

All analyses were conducted in R v.4.1.3 and v.4.2.3 (R Core Team, 2022). 
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3. Results of the case study 

3.1 First objective: Applicability of modeling framework 

3.1.1 Minimum resource requirements for home range establishment of blackbirds 

We identified suitable conditions for blackbird home range establishment. The home range for 

blackbirds should have 5-40% tree cover, a maximum of 20% shrub cover, and no specific 

limitations for grass proportion (all measured within a 100-meter radius). Munich generally 

provided favorable conditions for potential home range establishment, with some less suitable 

areas in the city center and in the North where buildings or agriculture predominate (Fig. 3a, 

Fig. 3b). 
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Figure 3: Map of central Munich left and zooms in the smaller panels with colored frames 

showing a) land use, b) the home range resource maps derived from Step 1, i.e., mapped 

resources within potential home range areas, c) resistance values derived from Step 2, and 

d) associated final connectivity maps. For c and d), the parameters used to create the large 

maps and the left zooms are obtained from presence/absence data using the Normalized 

Current Flow metric from circuit theory and the right zooms from movement data and the Flux 

metric from graph theory representing the reference maps. 

 

3.1.2 Statistical evaluation of importance of connectivity for blackbird movement 

We used binomial GLMMs to retrieve the connectivity maps that best explain the observed 

movement of blackbirds using statistical model selection. The connectivity modeling and 

subsequent model selection procedure from the GLMMs resulted in the selection of eight best 

connectivity maps with comparable AIC values. We found a significant effect of the 

connectivity values in all eight maps on the probability of observing a moving blackbird  

indicating that movement within the home range of a blackbird is more likely where 

connectivity is high (β = 0.144 to β = 0.23, SE = 0.067 to SE = 0.043, p < 0.005). The probability 

of movement was lower with an increasing number of pedestrians (β = -0.044 to β = -0.052, 

SE = 0.7 to SE = 0.73, p = 0.03 to p = 0.06). At the same time, no significant effects of the 

proportion of resources and temperature on the probability of movement across the street 

transects were detected, indicating that the effect of resources was already accounted for by 

the home range resource analysis and, therefore, did not significantly contribute to the 

movement of blackbirds. The marginal R² values ranged from 0.22 to 0.25, suggesting that a 

substantial proportion of the observed movement could be explained by the included fixed 

factors (more details in Appendix 12). 
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3.1.3 Resistance values, patch isolation distance and connectivity metric for blackbirds 

In this analysis, we derived reference resistance values and patch isolation distances from the 

best eight connectivity maps (delta-AIC < 2) parametrized using movement data at 10 m 

resolution and all six metrics. High buildings had the highest resistance value (mean of 1000 

across all eight best GLMMs), followed by medium buildings (mean 178, ranging from 100 to 

1000), streets (mean 100 across all eight best GLMMs), and low buildings (mean 75, ranging 

from 10 to 100) (Fig. 4). The standard deviation of resistance values for high buildings did not 

overlap with other urban land cover types, suggesting robustly higher resistance values for 

high buildings. In contrast, the standard deviations for all other urban land cover types 

overlapped, making resistance rankings uncertain. The reference patch isolation distance 

between resource patches varied from 90 to 150 m, with a mean of 127.5 m (Fig. 5). 

 

 

Figure 4: Mean and standard deviation of log10-transformed resistance values for streets, 

high, medium, and low buildings. Black bars represent reference resistance values (10 m 

resolution, in-flight data, averaged across best metrics). Colored bars indicate mean values 

per metric, datatype, and resolution, averaged across the best models for each combination 

of metric, datatype, and resolution. A 'B' above a bar signifies one of the best models for a 

specific combination of resolution and datatype. 
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Figure 5: Mean and standard deviation of maximum patch isolation distances. Black bars 

represent reference values (10 m resolution, in-flight data, averaged across best metrics). 

Colored bars indicate mean values per metric, datatype, and resolution, averaged across the 

best models for each combination of metric, datatype, and resolution. A 'B' above a bar 

signifies one of the best models for a specific combination of resolution and datatype. 

 

The metrics used to evaluate the reference resistance values and maximum isolation distance 

(i.e., selected in the best eight models explaining the movement data at 10 m resolution) were 

the Betweenness Centrality, Flux, and Interaction Flux derived from graph theory (Fig. 4, Fig. 

5). They produced similar absolute values (Fig. 4, Fig. 5).  

 

3.2 Second objective: Retrieving values of key connectivity parameters using 

widely accessible data 

When either presence/absence instead of movement data with 10 m resolution OR when 

movement data but a coarser of 30 m resolution was used, reference values were retrieved, 

but this feasibility depended on the used metric. Using both presence/absence data and a 

coarser resolution reduced their match to the reference values compared to the individual 

application of either presence/absence data or a coarser resolution. 

Betweenness Centrality and Flux performed best in aligning with reference resistance values 

when movement data was used for model selection, showing overlapping resistance values 

and matching order at both resolutions. However, they fell short in replicating the reference 
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patch isolation distance at 30 m resolution. In contrast, the Normalized Current Flow excelled 

in retrieving both reference resistance values and patch isolation distance when using 

presence/absence data but underestimated the patch isolation distance at 30 m resolution 

(Fig. 4, Fig. 5). Nevertheless, Normalized Current Flow proved to be the best performing metric 

across all datatype and resolution combinations (Table 3).  Current Flow delivered satisfactory 

results for presence/absence data at 30 m resolution as well (Fig. 4, Fig. 5) but had mixed 

results when considering all combinations of datatype and resolution (Table 3). Corridors 

consistently performed the weakest across all combinations of datatype and resolution (Table 

3, more detailed results in Appendix 13). 

 

Table 3: Performance (in points) of the six connectivity metrics in reproducing the reference 

resistance values and reference patch isolation distance.  

Metric Overall performance in percentage of total 

points 

Betweenness Centrality (graph theory) 50 % 

Current Flow (graph theory) 41 % 

Corridors (graph theory) 37 % 

Flux (graph theory) 50 % 

Interaction Flux (circuit theory) 44 % 

Normalized Current Flow (circuit 

theory) 

57 % 
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4. Discussion 

In this paper, we introduce a novel modeling framework for data-driven home range 

connectivity models addressing key limitations in current connectivity research. We restricted 

our analyses to home range movements to explore how they are impacted by connectivity and 

to ensure the model's robustness by distinguishing foraging from dispersal movement. Our 

parametrization procedure utilizes readily available empirical presence-absence data to derive 

landscape resistance and incorporates a data-driven selection of connectivity theory and 

metrics. To tackle computational challenges, we explored whether coarser resolutions yield 

comparable parameter values to fine-scale resolutions. 

For our case study on common blackbirds, we aimed to test the framework's applicability (first 

objective) and extend its use. Our investigation involved utilizing blackbird presence/absence 

data and coarser resolution modeling to approximate reference parameter values typically 

derived from finer resolution and movement data (second objective). 

 

4.1 Applicability of the modeling framework (first objective) 

4.1.1 Relation to other connectivity modeling frameworks 

Our connectivity analyses focus exclusively on home range scale movements (LaPoint et al., 

2013; Mimet et al., 2020). This approach aligns with the small-scale movement as modeled in 

Mimet et al. (2016). Unlike this study, we explicitly use data on movement within the home 

range, capturing its specific distances and landscape resistances (Blazquez-Cabrera et al., 

2016; Zeller et al., 2016). Our modeling framework is particularly suited for small-scale case 

studies, where home range movement predominantly explains species occurrences and 

individual movement, rendering a meta-patch approach unnecessary (Mimet et al., 2020). 

The presented parametrization procedure extends the statistical model selection introduced 

by Verbeylen et al. (2003) and employs it for resistance values, patch isolation distance, and 

connectivity metric identification. This approach can be adapted for other parameters, 

including randomization parameters in randomized shortest paths models (Van Moorter et al., 

2023). Unlike habitat suitability-based resistance estimations, our methodology avoids 

assuming that the properties of an area supporting an individual’s observation are necessarily 

the same as the ones supporting its movement (Keeley et al., 2017; Zeller et al., 2018). While 

tracking data applied to resource selection functions yield the most accurate connectivity 

models (Blazquez-Cabrera et al., 2016; Zeller et al., 2018), their limited availability 

underscores the value of our more accessible yet robust methodology. Alternative data 

sources like camera traps or road kills could be employed (Koen et al., 2014; LaPoint et al., 

2013).. 

 

4.1.2 Realism of approach 

Our case study not only highlights the utility of our modeling framework but also assesses its 

results. Statistical analysis from the model selection procedure revealed a strongly significant 

positive relation between connectivity and the probability of blackbird movement and 

underlines the robust predictive power of our connectivity models. Interestingly, the proportion 

of resources showed no such correlation. This indicates that local resource accessibility, rather 
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than quantity, influences the occurrence of blackbird movement. This may be attributed to 

Step 1 of our analysis that already accounts for landscape-wide resource availability. 

The outcomes of our case study align with our understanding of blackbird ecology. The 

observed higher resistance values for urban land cover types within home ranges, especially 

buildings over 18 m, indicate strong avoidance that could be caused by increased energy costs 

and mortality (Loss et al., 2014; Robertson & Radford, 2009). The findings are in accordance 

with studies on urban bird movement which found that streets and buildings are less likely to 

be crossed by birds than vegetation, providing support for our model results (Shimazaki et al., 

2016; Tremblay & St. Clair, 2009). 

 

4.1.3 Connectivity metric for blackbird home range movement 

We evaluated the predictive power of various connectivity metrics from both graph and circuit 

theory. Connectivity maps generated through the least-cost path approach in graph theory 

outperformed those from the random walk approach in circuit theory in explaining blackbird 

movement. This finding aligns with the hypothesis that blackbirds depend on memorized 

pathways within their home range that matches the tendency of birds to re-use routes (Biro et 

al., 2004; Wallraff, 2005). 

Despite their theoretical differences in reflecting connectivity (Rayfield et al., 2012), the graph 

theory metrics Flux, Interaction Flux, and Betweenness Centrality demonstrated equivalent 

predictive power for blackbird movement. They resulted in the selection of similar values of 

key connectivity parameters, indicating their interchangeability for depicting home range 

movement. However, the computation of Betweenness Centrality was computationally 

intensive. 

 

4.2 Second objective: Retrieving values of key connectivity parameters from 

widely accessible data 

Our modeling framework can be used for pinpointing crucial patches and barriers for small-

scale movement in fragmented landscapes and assessing the impact of development plans 

(Foltête et al., 2014). We explored the potential use of coarser resolution and readily available 

data, such as simple presence/absence data, to enhance the accessibility of our modeling 

framework for planning and conservation applications. 

 

4.2.1 Using a coarser resolution 

While we investigated the impact of coarser resolution (30 m instead of 10 m) on connectivity 

models to address high computational demands, we found that resistance values were 

qualitatively similar for the graph theory metrics Flux and Betweenness Centrality when using 

movement data. However, none of the metrics produced a patch isolation distance 

comparable to the reference value using the coarser resolution of 30 m. The results suggest 

that, with careful consideration of the chosen connectivity metric and maximum patch isolation 

distance, coarser resolution parametrization could be suitable, albeit with a potential 

underestimation of the patch isolation distance.  
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4.2.2 Using presence/absence data 

We explored the use of simple presence/absence data for model selection to enhance 

accessibility. Comparing reference resistance values derived from movement data with those 

from presence/absence data showed that presence/absence data can approximate reference 

values effectively with the right connectivity metric. Most metrics, whether from graph or circuit 

theory, maintained a consistent rank order for resistance values with presence/absence data, 

which is known to be more important than absolute values for comparable connectivity 

outcomes (Beier et al., 2009). In particular, when using Normalized Current Flow, a circuit 

theory metric, absolute resistance values with reference values overlapped. This suggests 

that most connectivity metrics can retrieve the most important aspect, the reference rank order 

of connectivity values, and that especially the circuit theory models are robust for 

parametrization based on simple presence/absence data (Zeller et al., 2018). Nevertheless, 

presence/absence data yielded a wider range of resistance values per urban land cover type. 

 

4.2.3 Limitations for using widely accessible data  

Our comparisons of the reference values retrieved from movement data and 10 m resolution 

modeling with more accessible presence/absence data and 30 m modeling reveal that it is 

possible to cautiously obtain the values of key connectivity parameters using these more 

available data sources. However, several limitations apply: 

i) Species specificity and generalization: Our study focused on the common 

blackbird; thus, generalizing findings regarding the use of more accessible data and 

connectivity metrics requires replication across diverse species. 

ii) Data type and resolution: Movement data and finer resolution appeared preferable 

for deriving the values of key connectivity parameters for the home range scale where 

small elements can play a major role. Movement data and fine resolution showed a 

greater consistency in parametrization results. 

iii) Combining presence/absence data and coarse resolution: In our case study, 

combining presence/absence data with coarse resolution led to strongly deviating 

parameter values. Those results indicate that a choice between the two should be 

made. 

iv) Metric for movement data and coarser resolution: For movement data and coarser 

resolution, the Flux from graph theory appears as a good choice due to its predictive 

accuracy and lower computational requirements. Retrieving patch isolation distances 

from coarser resolution was more complicated and is not recommended in the current 

state of framework development. 

v) Metric for presence/absence data and fine resolution: Normalized Current Flow 

from circuit theory appeared as a robust metric for determining key connectivity 

parameters from simple presence/absence data and a fine resolution (Zeller et al., 

2018). 

vi) Uncertainty assessment: We suggest using the means and standard deviations of 

parameter values calculated in the framework’s workflow to assess uncertainty of the 

modeling results and visualize it in a map of standard deviations (Beier et al., 2009). 

 

Despite these challenges, we believe a robust parametrization procedure can bridge the gap 

between the need for user-friendly, data-driven connectivity models and the high data 

demands of individual-based models. 
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In this paper, we introduced a home range connectivity modeling framework for analyzing the 

impact of local resource amounts and small-scale barriers on animal movements. It can be 

applied to any animal species. It requires a land cover map fine enough to map resources 

within home ranges and capture important barriers to movement. We tested the model using 

data on the common blackbird, but application to other species and landscapes will allow a 

more comprehensive understanding of how local movements restrict the occurrence of 

species in a heterogenous environment.
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