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ABSTRACT
This PhD focuses on the privacy implications of querying graph data
structured in Resource Description Framework RDF and governed
by Web Ontology Language OWL semantics. We have identified
privacy breaches in these graph structures when queried. The aim
of this thesis is to address and remedy these issues.
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1 INTRODUCTION
Preserving privacy in graph data has become a critical concern. RDF
graphs, which follow OWL constraints, present unique challenges
in maintaining data privacy. Despite existing privacy protection
concepts, these methods often fall short when applied to ontology-
based graphs. The following work presents an experiment that
demonstrates the vulnerabilities in current privacy techniques.

2 MOTIVATIONAL EXPERIMENT
To illustrate the generality of this problem and to provide realistic,
easily demonstrable scenario, we have selected this particular mo-
tivational example. This choice aims to highlight how adding OWL
constraints to the graph can potentially increase the risk of privacy
breaches.

Consider a family tree, depicted in figure 1, representing mito-
chondrial disease, where each affected mother has all her children
affected, and each affected father has none of his children affected.
Consequently, the "parentof" relation is inherently sensitive. We
aim to protect such relations.

Mitochondrial disease :
(𝐴 isWomen )∧(A isAffected )∧(𝐴 ParentOf 𝐵) → (B isAffected )

The graph represents a family linked solely by the "parentof"
relation. "Childof" and "siblings" relations are inferred based on the
following OWL axioms:

𝐴 ParentOf 𝐵 → ¬(𝐵 ParentOf 𝐴) : Asymmetric Property
𝐴 ParentOf 𝐵 → 𝐵 ChildOf 𝐴 : InverseOf Property
(𝐴 ChildOf 𝐵)∧(𝐵 ParentOf 𝐶) → (𝐴 Sibling 𝐶) : Chain Axiom

Property
Consider a scenario where a newborn, Frank, is introduced into

a family. We assume a strong adversary who possesses knowledge
of mitochondrial inheritance patterns, ontology constraints, and
the existing family structure, yet remains uncertain about Frank’s
parentage. Additionally, medical personnel are interested in query-
ing the maximum number of siblings within this family for medical
statistical purposes. This query is among a restricted set of queries
permitted on the graph database. This task falls to a data analyst
whose trustworthiness is in question.

Figure 1: Family Graph Motivational Example

Q = SELECT (MAX( ? s i b l i n gNb ) AS ? maxS ib l ingCount )
WHERE {

SELECT ? i n d i v i d u a l (COUNT( ? s i b l i n g ) AS ? s i b l i n gNb )
WHERE {

? i n d i v i d u a l a <# I n d i v i d u a l > .
? i n d i v i d u a l doc : s i b l i n g ? s i b l i n g .

}
GROUP BY ? i n d i v i d u a l }

One adversary, unaware of the semantic axioms governing the
graph, cannot draw conclusions regarding Frank’s parentage based
solely on this query result. Assuming a uniform distribution across
all remaining individuals in the graph :

∀ Q Posterior belief = Prior belief = 1/(NumberOfIndividuls-1)
Conversely, another adversary who is aware of the semantic

axioms can draw probabilistic inferences from this query results:
Q=2→ Frank’s parent can be: Bob, Eve, Sabine, or David.
Attacker conclusion: Frank has 25% chance of having mitochon-

drial disease.
Q=3→ Frank’s parent can be: Alice or Carol.
Attacker conclusion: Frank has mitochondrial disease with 100%

certainty.
One way to protect individual relationships is to answer the

query in a manner that preserves privacy against a semantic-aware
attacker.

3 DIFFERENTIAL PRIVACY
Differential privacy [1] provides a robust solution for such situa-
tions by ensuring that the inclusion or exclusion of any individual’s
data does not significantly affect the outcome of a query or analysis.
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3.1 Differential Privacy Definition
Amechanism (Algorithm, System, Process..)𝑀 satisfies 𝜀-differential
privacy if for all neighboring data sets𝐷1 and𝐷2, and for all subsets
𝑆 of the range of𝑀 , we have:

Pr[𝑀 (𝐷1) ∈ 𝑆] ≤ 𝑒𝜀 × Pr[𝑀 (𝐷2) ∈ 𝑆]
One way to achieve differential privacy (DP) is by computing the
query sensitivity[4], which is defined as the maximum difference
between all query responses of neighboring databases of the orig-
inal one. Based on this sensitivity, noise is then added to query
result, calibrated according to both the query sensitivity and the
privacy budget, denoted by epsilon (𝜖). Epsilon serves as a balance
between privacy and utility. Therefore, the selection of epsilon is a
critical decision [3].

3.2 Differential Privacy on Knowledge Graphs
When applying differential privacy (DP) to relational databases,
two databases are considered neighboring if they differ by only
one record. However, when dealing with graphs that consist of
nodes and edges, the concept of neighboring databases needs to
be redefined. Many researchers have proposed effective notions of
neighboring distances for graphs [2], including:

• K-Edge-DP: Defines neighboring graphs as those differing
by k edges, with Edge-DP being a special case where k equals
one.

• Node-DP: Two graphs are considered neighboring if they
differ by one arbitrary node and all its incident edges.

These notions have proven effective in protecting graph data.
However, the following work will show that they present privacy
breaches when dealing with graph that follows OWL constraints.

4 LIMITATION OF DIFFERENTIAL PRIVACY
IN SEMANTIC GRAPHS

When generating all graph neighbors with edge-dp distance, we
initially obtain 49 neighbors for the graph depicted in figure 1.
After filtering out neighbors that do not comply with OWL con-
straints and those that are illogical (e.g., self-parenting), we are left
with 37 valid neighbors. Figure 3 illustrates examples of both valid
and invalid neighbors (the invalid graph results from the OWL
asymmetric property).

Figure 2: Edge-dp neighboring graphs

Consequently, the number of graphs that the attacker could
confuse with the original has decreased. This reduction in neigh-
borhood size can impact the effectiveness of protection, as a smaller

set of neighboring graphs may make it easier for an attacker to
distinguish the original graph.

We have also detected another issue where an attacker may be
able to infer the true structure of the graph without even submitting
a query. For instance, let’s suppose now that Frank is indeed the
child of Bob and that the graph follow an additional rule indicating
the minimum number of children in this graph is two. This knowl-
edge constraints the graph structure, requiring that each parent
node, such as Bob, must have at least two children.

OWLDescription: ObjectProperty(parentOf, minCardinality(2))

Figure 3: The only valid neighbor

By incorporating this knowledge, all neighbors are eliminated
except for the one depicted in Figure 3, Frank’s privacy is completely
compromised, and the adversary’s prior belief about his status
(unaffected) becomes 100% accurate, even without the need to apply
any queries.

5 CONCLUSION
For RDF graphs that follow OWL constraints, we have demon-
strated that existing privacy concepts for protecting graphs are
insufficient. In this PhD research, we aim to utilize graph data with
ontology semantics to establish an optimal neighbor distance for
ensuring differential privacy. Additionally, we will develop method-
ologies and metrics to quantify the loss of data privacy due to the
incorporation of ontologies into graphs.

6 ACKNOWLEDGMENTS
Ph.D. Work funded by CyberINSA (France 2030 ANR-23-CMAS-
0019)

REFERENCES
[1] Cynthia Dwork. 2006. Differential privacy. In International colloquium on automata,

languages, and programming. Springer, 1–12.
[2] Michael Hay, Chao Li, Gerome Miklau, and David Jensen. 2009. Accurate estima-

tion of the degree distribution of private networks. In 2009 Ninth IEEE International
Conference on Data Mining. IEEE, 169–178.

[3] Jaewoo Lee and Chris Clifton. 2011. How much is enough? choosing 𝜀 for dif-
ferential privacy. In Information Security: 14th International Conference, ISC 2011,
Xi’an, China, October 26-29, 2011. Proceedings 14. Springer, 325–340.

[4] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2007. Smooth sensitivity
and sampling in private data analysis. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing. 75–84.


	Abstract
	1 Introduction
	2 Motivational Experiment
	3 Differential Privacy
	3.1 Differential Privacy Definition 
	3.2 Differential Privacy on Knowledge Graphs

	4 Limitation of Differential Privacy in Semantic Graphs
	5 Conclusion
	6 Acknowledgments
	References

