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Abstract

Modelling daily precipitation data in a large territory is a complex issue due to its
asymmetric distribution with few and spatially sparse extremes. Most parametric
distributions fail to model rainfall correctly over a large area, and many impact
studies use the non-parametric empirical distribution instead of parametric ones,
preferring the robustness of the model on the observed data to the extrapolation
to unobserved extremes. In the present paper, we built a distributional semi-
parametric model for the bias correction of the ERA5-Land reanalysis using the
CERRA-Land reanalysis. The proposed inference procedure is constructed as fol-
lows. Firstly, we fit an Extended Generalized Pareto (EGP) distribution to the
data. These EGP models give a Generalized Pareto distribution in the upper tail
while allowing greater flexibility in the lower one. Secondly, for each location,
using an adapted version of the Berk-Jones (BJ) statistical test, we propose to
replace a portion of the EGP distribution with either the empirical distribution
or an eventually lighter-tail parametric distribution such as the Exponentiated
Weibull (ExpW) distribution. The final obtained model is a stitch between the
EGP, ExpW and the empirical distributions. The proposed semi-parametric stitch
model has been evaluated in a bias correction context against classical pure
parametric quantile mapping based on Gamma, ExpW and EGP distributions.
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Comparisons to other classical models show a reduction of the mean absolute
and extreme error metrics, especially by removing outliers.

Keywords: Bias correction, Extreme value theory, Goodness-of-Fit, Parametric
distribution, Precipitation modelling

1 Introduction

1.1 On the bias correction literature: a focus on heavy-tail
precipitations

Precipitation is one of the main input variables of hydrological models and processes,
where heavy rainfall produces catastrophic events with large economic and human
impact (Carrió et al., 2022; Costache and Tien Bui, 2020). Extreme Value Theory
(EVT) is well suited for modelling extreme hydrological events, especially when it
comes to flood events (Katz, 2002). EVT allows for distributions to fit block maxima
data in random samples for fixed intervals and to model heavy-tailed data (more
details on EVT can be found in De Haan and Ferreira (2006)). Accurate and high-
resolution daily precipitation data, especially on extremes, are crucial to correctly
calibrate models, forecast floods and contain natural catastrophes (Alfieri and Thielen,
2015; Sangati and Borga, 2009).
However, most available global or continental datasets do not have a high enough
resolution (Soares and Cardoso, 2018) for most local impact studies (Henckes et al.,
2018), or to represent correctly the extremes (Prein et al., 2016) due to the presence
of significant bias, and need to be downscaled and bias corrected (Şan et al., 2023;
Cucchi et al., 2020; Xu et al., 2015).
The most popular method for bias correction is the quantile mapping (Lafon et al.,
2013) based on the pure empirical distribution in a univariate context. The non-
parametric distribution is widely adopted since it does not require any distributional
model assumption. However, the corrected values are limited to the reference-period
observed ones, thus new extreme events can not be extrapolated or predicted cor-
rectly because they result from arbitrary workarounds (Déqué, 2007). Let xobs be the
reference time series, considered to have no bias and xmod a time series produced by
a biased model that must be corrected. The empirical quantile mapping method can
then be described as:

xcorr
mod = F−1

n,obs(Fn,mod(xmod)), (1.1)

where we use the notation Fn,data for the empirical cumulative distribution function
built on the sample data of size n, F−1

n,data for the associated quantile function (data
can be referring to obs and mod here) and xcorr

mod is the bias corrected model data.

In this study, the main focus is on the distributional fitting required in Equation (1.1).
The derived bias correction application is mostly an illustration of the performance of
the proposed stitch distribution instead of the empirical one. A deeper bias correction
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comparison, for longer time series, is discussed as an interesting future perspective in
Section 5 of this paper.

Parametric distributions have also been studied extensively for daily precipitation
modelling, with the Gamma distribution (Martinez-Villalobos and Neelin, 2019), a
mixture of Generalized Pareto (GP) distribution (Li et al., 2021) or the Extended
Generalized Pareto (EGP) distribution (Naveau et al., 2016) (see Equation (B.1) for
a precise definition). The light-tailed Gamma distribution fails to represent rainfall in
locations with heavy-tail precipitations, better fitted for instance by an ExpW or a
GP distribution which can both belong in the maximum Fréchet domain of attraction
given the appropriate parameters (Blain and Meschiatti, 2015; Vlček and Huth, 2009).
In particular, the GP distribution is the classical precipitation used in the peak-over-
threshold models (i.e., based on exceedances) (Rootzén and Tajvidi, 1997; McNeil
et al., 1997) and is also often used in extreme precipitation and flood modelling (Yue
et al., 2022; Acero et al., 2011). However, the need for a data-driven automatic thresh-
old selection makes it very computationally intensive when the area of interest becomes
large or with a highly-resoluted spatial data set. The selection of the threshold is
the main issue regarding the GP distribution. To overcome this calibration threshold
issue, the EGP distribution class has been developed and allows to model both lower
and upper heavy tails (Gamet and Jalbert, 2022; Tencaliec et al., 2019; Naveau et al.,
2016) without the need to select a threshold.
While this new distribution class may appropriately fit in some locations, it is not
satisfactory everywhere when the study covers a geographically large and resoluted
area. In the present work, we propose a method to produce a novel semi-parametric
distributional model based on an adapted version of the Berk-Jones (BJ) statistical
test (Berk and Jones, 1979; Moscovich et al., 2016). The proposed inference procedure
on the considered daily French precipitations will produce a final stitch between the
heavy-tailed EGP, the lighter-tailed ExpW and the empirical distribution function.
More precisely:

(i) We fit the EGP distribution on each location;
(ii) Based on the adapted BJ statistical test, the upper and lower tails are eventually

replaced by the ExpW distribution;
(iii) Finally, if neither parametric distribution was satisfactory enough, the empirical

distribution Fn is used.

This mixture of non-parametric and parametric distribution is often called a semi-
parametric approach in the literature while combining multiple parametric distribu-
tions is referred to as a stitch or a spliced distribution. In this article, we will refer to
this as a semi-parametric stitch distribution.

Structure of the paper. In Section 1.2, we present the datasets of daily rainfall over
France used in this paper and highlight the need for bias correction. Section 2 describes
the proposed semi-parametric distributional model. In Section 3, we apply our method
in a case study on the considered reanalysis ERA5-Land (ERA5-L) and CERRA-
Land (CERRA-L). Fit and bias correction results are presented in Section 4 with

3



139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

the bias correction of ERA5-L using CERRA-L. Conclusion and key points are dis-
cussed in Section 5. The considered metrics are presented in Appendix A and used
classical parametric distributions are recalled in Appendix B. Details on the mono-
tonicity correction of the proposed stitch distributional model are given in Appendix
C. Supplementary figures are available in Appendix D.

1.2 Bias correction importance on the considered daily
precipitations using the ERA5-Land and CERRA-Land
datasets

The whole of metropolitan France is used in this daily precipitation study which cov-
ers around 550000 km2. To perform bias correction and assess the performance of the
new method, a pseudo-observational and a to-be-corrected-model dataset are needed,
respectively corresponding to xobs and xmod in Equation (1.1). The xmod considered
is the ERA5-Land dataset (Muñoz-Sabater et al., 2021), while xobs is the Coper-
nicus regional reanalysis for Europe (CERRA-Land) dataset (Verrelle et al., 2021)
(ECMWF reanalysis can be freely downloaded through the Climate Data Store).
Both datasets cover Europe on a large range of climate variables and are produced by
the European Centre for Medium-Range Weather Forecast (ECMWF). The ERA5-L
reanalysis is a global reanalysis with a 0.1◦ × 0.1◦ (approx. 11 × 11 km) resolution,
spanning from 1950 to 2021, while the CERRA-L database is a high-resolution
reanalysis at 5.5 × 5.5 km resolution from January 1984 to July 2021. In this study,
we considered 36 common years from 01/01/1985 to 31/12/2020. The CERRA-L
uses the ERA5 (C3S, 2018) reanalysis for assimilation while ERA5-L is a spatially
enhanced version of ERA5 over the dry land areas. The CERRA-L data being on
a regular kilometres grid has been interpolated to a regular longitude-latitude grid
using the linear scattered interpolant (scatteredInterpolant) from MATLAB (The
MathWorks Inc., 2022). Then, the ERA5-L data has been interpolated to the same
grid as a simple mapping step using Python’s library SciPy CloughTocher2D inter-
polator. While the ERA5-L reanalysis has been extensively used for climate studies
(Yang et al., 2023; Malaekeh et al., 2022), the CERRA-L dataset is still new and has
not seen many published studies based on its data (Monteiro and Morin, 2023), and
none, to the best of our knowledge, for precipitation modelling and bias correction. A
visual analysis at the median and 99.5th quantile of daily precipitation over the con-
sidered period shows the similarity as well as the differences between both reanalysis
when it comes to daily rainfall.

Figure 1 (a,b) clearly shows similar median precipitations over France with differences
mainly focused on high-altitude areas (Massif Central and Alps region). While most
of France has a daily median precipitation of around 3 to 5mm per day, the Massif
Central region receives close to 10mm of precipitation for CERRA-L shown in Figure
1 (a), but only 7mm for ERA5-L in (b). These differences are much more noticeable
when looking at the extremes in the Cévennes region reaching 160mm for CERRA-
L in Figure 1 (c,d), while the same region does not exceed 100mm for ERA5-L. The
impact of higher resolution over strong orography regions is clear for extreme daily
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precipitations. Values from ERA5-L are smoothed compared to CERRA-L and inter-
polating the data to a higher resoluted grid cannot bring relevant variability, thus the
clear need for bias correction.

(a) Median CERRA-L (b) Median ERA5-L

(c) 99.5th quantile CERRA-L (d) 99.5th quantile ERA5-L

Fig. 1: Median (panels a and b) and 99.5th quantile (panels c and d) daily precipi-
tation in mm over the considered period for CERRA-L reanalysis data (first column)
and ERA5-L reanalysis data (second column)

In this paper, we only consider wet days of the given time series, with a threshold for
wet days at 1 mm. This means no correction over the dry days’ proportion is done
and the corrected data will keep the same number of dry and wet days. The number
of wet days differs from point to point, but the range is from 2627 to 7274 days for
ERA5-L and 1759 to 7641 days for CERRA-L (for a total of 13149 days).

Since both reanalysis were produced from the ECMWF and are influenced by a com-
mon reanalysis ERA5, a first naive approach could be to avoid the bias correction
phase, i.e., not apply Equation (1.1). However, this would result in erroneous mod-
els and impact studies. To illustrate this error, the Mean Absolute Error (MAE) and
Mean Absolute Error over the 95th quantile (MAE95sup) metrics (see Appendix A
for details) have been computed without any bias correction (see Figure 2).

5



231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

(a) MAE (b) MAE95sup

Fig. 2: Error metrics in mm (see Appendix A) between the CERRA-L and ERA5-L
reanalysis without bias correction

Both maps in Figure 2 show significant bias in the uncorrected interpolated ERA5-
L reanalysis. The median MAE is around 0.60mm with peaks at 7.02mm while the
median MAE95sup is at 3.43mm with peaks at 55.61mm.
Then, bias correction in Equation (1.1) seems to be a necessary step to correctly use
those datasets in the impact studies. Based on this consideration, we now aim to build
a flexible distributional model to fit both reanalysis precipitation datasets to apply
Equation (1.1). This is the goal of the next section.

2 The proposed semi-parametric stitch
distributional model

2.1 An adapted goodness-of-fit statistical test

The well-known Kolmogorov-Smirnov (KS) (Massey Jr., 1951), Cramer-von Mises
(CvM) (Anderson, 1962) and the Anderson-Darling (AD) (Anderson and Darling,
1954) are the most commonly used statistical tests to evaluate the adequacy of a
distribution and eventually discriminate between multiple models (Laio, 2004; Vlček
and Huth, 2009). However, the KS and CvM tests tend to underestimate the deviation
that occurs in the tail of the distribution (Steinskog et al., 2007) and while the AD
test includes a weight function able to increase the sensitivity on the distribution tails
and standardizes the variance, the AD test still mishandles the tails (Moscovich et al.,
2016). Instead of looking at the deviations of the distributions, the Berk-Jones (BJ)
statistical test (Berk and Jones, 1979) uses the most statistically significant deviation.
In this paper, we will use an adapted version of the consistent BJ test to determine
the best-fitting models for a considered time series. Let us introduce some notations:

• Let x̃ := {x̃1, ..., x̃n} be an i.i.d sample from a random variable X. Let X fol-
low a continuous cumulative distribution function (cdf) F . Then, under the null
hypothesis H0 : X ∼ F . The alternative hypothesis will be H1 : X ̸∼ F .

• Let x := {x(1), ..., x(n)} be empirical quantiles of the sample x̃, with x(1) < x(2) <
... < x(n) which are the order statistics of x (we can safely assume that none of the
i.i.d samples are equal).
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• We also denote the quantile of a distribution F corresponding to the i-th ordered
quantile as F−1( i−1

n ) = q(i),F , with F the candidate distribution fitted on x. Let
q := {q(1),F , ..., q(n),F }.

The random variable F (X) follows a uniform distribution U [0, 1] by the probability
integral transform result. Let consider ui,F = F (x(i)) for i = 1, . . . , n an i.i.d sample
from the U [0, 1] distribution and the corresponding order statistics ui,F . We know
that under H0, ui,F is a random sample from ui which has a known distribution:

ui ∼ Beta(i, n− i+ 1), for i = 1, . . . , n. (2.1)

The BJ test then computes the following p-values:

p∗i,F := P(Beta(i, n− i+ 1) < ui,F ). (2.2)

For each i, we can then define:

pi,F = min(p∗i,F , 1− p∗i,F ). (2.3)

In Moscovich and Nadler (2017), the Mn statistic is defined by:

Mn := min
1≤i≤n

pi,F ∈ [0, 1], (2.4)

where small values of Mn describe a bad fit of the candidate distribution F . The
p-value associated to α, denoted pα,n, is given by P(Mn ≤ pα,n) = α. Theoretical
properties including the asymptotic consistency of the BJ statistics and algorithms
to explicitly compute the p-values in Equation (2.3) can be found in Moscovich et al.
(2016); Moscovich and Nadler (2017); Moscovich (2023).
The BJ statistical test can detect deviations in both tails of the distributions. In the
case of skewed distributions, such as the ones used for precipitation modelling, most of
the weight is concentrated in the lower tail, making it harder to detect deviation from
the upper tail. However, heavy upper tail behaviour is a crucial issue if one aims to
model extremely large precipitation events. The way the BJ test is constructed allows
to associate each quantile (or rank) with a p−value. We can then use this p−value
to determine if the considered quantile deviation would have been enough to give a
rejection or not.
In practice, this translates to not severe enough statistics produced by the extreme
deviations, and errors of 50mm or even 150mm may not be considered significant
enough by the statistical test. Indeed the rejection threshold for such events, even for
α = 15% may be 10 or 20 times lower than the associated pi,F in Equation (2.3). To
increase the severity of the BJ test on the upper tails, we introduce a weight using
the prediction error between x(i), the ordered statistic of rank i, and the modelled
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corresponding quantile from the candidate distribution q(i),F . We define the weighted-
level ki,F such that

ki,F :=
pi,F

max(|x(i) − q(i),F |, 1)
, for i = 1, . . . , n. (2.5)

The pi,F assesses the goodness of fit for the rank i. The same consideration could
be applied on the weighted-level ki,F in (2.5) on the extremely large precipitation
quantile levels. For daily precipitation data, a high prediction error will typically be
magnitudes greater than 1mm. Thus, in these cases, the weighted-level as defined in
Equation (2.5) will be greatly reduced compared to the corresponding pi,F , making it
much easier to detect. The weighted-levels are penalizing large deviations in the tails
by reducing the corresponding pi,F . Such deviations should mostly occur when H0 is
False, especially for large enough sample sizes. While no theoretical proof is given
for the guarantee of the test significance level or power, one can conjecture that this
modification increases the power of the test.

2.2 Cutting indexes for the semi-parametric model

Sometimes, a single parametric distribution is not flexible enough to describe daily
rainfall time series on a broad range of locations. The selected model may only be
adequate up to (or starting from) a specific quantile and be misfitted otherwise.
To overcome this, we introduce a semi-parametric distribution based on the modified
BJ test introduced in Section 2.1 and on three distinct distribution types:

• A main heavy-tailed distribution Fheavy,
• A secondary lighter-tailed distribution Flighter,
• The empirical distribution of the data Fn.

The idea is quite simple: replace the badly fitted portion of the heavy-tailed distri-
bution with the lighter-tailed distribution using the previously adapted BJ test, and
finally, if needed, replace the upper and lower tails with the empirical distribution.
Precipitation modelling via semi-parametric distributions has been explored by a
few authors. The most common version is a stitch between a first distribution mod-
elling low and moderate precipitations and a Generalized Pareto distribution for the
extremes, also known as spliced distribution (Li et al., 2012; Castro-Camilo et al., 2019;
Kim et al., 2019). The main issue with semi-parametric and hybrid distribution is the
difficult selection of an appropriate threshold. This latter needs to be high enough in
the case of the Generalized Pareto so the Pickands–Balkema–de Haan theorem can be
applied (see Pickands (1975) and Balkema and Haan (1974)).
To implement our stitch model, we introduce the cutting indexes for a distribution F
from the p−values and weighted values pi,F and ki,F from Equations (2.3) and (2.5),
as follows.

Definition 1 (Cutting indexes). Let x(i) and q(i) be respectively the empirical and
modelled quantiles from a time series as described in Section 2.1. Let pi,F and ki,F be
the p−values and weighted levels induced from the BJ test as in Equations (2.3) and
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(2.5). Let pα,n be the rejection threshold at level α for the BJ test for a sample size n,
i.e., such that P(Mn ≤ pα,n) = α. Let lag be a strictly positive natural number.

1. Lower cutting index. The lower tail is considered adequate if and only if there
are no rejections at level pα,n for the next lag indexes. We define the lower cutting
index iℓ,F as equal to 0 if no rejection is detected at level pα,n for the first lag

ordered quantiles. Conversely, if a rejection is detected, we consider the first rank
not rejected at level pα,n, such that the next lag p−values are also not rejected at
the same level. Formally we can write

iℓ,F = i− 1

{
∀ 0 ≤ j < i,∃ 0 ≤ k ≤ lag, p(j+k),F < pα,n, and

∀ 0 ≤ j ≤ lag, p(i+j),F ≥ pα,n.
(2.6)

2. Upper cutting index The upper tail is considered adequate if and only if there
are no rejections at pα,n for the previous lag indexes. More precisely, we define the
upper cutting index iu,F , as the first index n − i − 1, for 0 ≤ i < n, satisfying the
following two conditions: the corresponding weighted level is not rejected at pα,n and
the previous lag weighted levels are also not rejected at pα,n.

iu,F = n− i− 1

{
∀ i < j ≤ n, ∃ 0 ≤ k ≤ lag, p(j−k),F < pα,n and

∀ 0 ≤ j ≤ lag, k(n−i−j),F ≥ pα,n.
(2.7)

Notice that iu,F can be equal to n− 1 (resp. iℓ,F can be equal to 0), which indicates
that no cut in the upper (resp. lower) tail of the considered distribution is needed.
From the upper and lower cutting indexes defined in Definition 1 (see Equations
(2.6) and (2.7)), we can list five types of possible rejections, denoted typeRejF in the
following.

Definition 2 (Types of rejection).

typeRejF == 1 No rejection: iℓ,F = 0 and iu,F = n − 1, neither the lower nor the
upper tail have been cut and the distribution F is kept as initially fitted.
typeRejF == 2 Left rejection: iℓ,F > 0, only the lower tail of the distribution has
been rejected at some degree and will be replaced.
typeRejF == 3 Right rejection: iu,F < n − 1, only the upper tail of the distribution
has been rejected at some degree and will be replaced.
typeRejF == 4 Double rejection: iℓ,F > 0 and iu,F < n − 1, both a left and right
rejection occurs and the distribution will be replaced for both tails.
typeRejF == 5 Total rejection: If the rejection on the upper tail or the lower tail is
too strong, we decide to completely reject the distribution. In particular for the upper
tail: if iu,F < lupper, the whole distribution is rejected. For the lower tail: if iℓ,F > llower

and at least one point is rejected in the upper tail (iu,F < n−1), the whole distribution
is rejected.

In the previous Definitions 1 and 2, lag, lupper and llower are all hyperparameters to
be calibrated. In our procedure, we evaluate iℓ,F and iu,F in Equations (2.6)-(2.7) and
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the rejection types typeRejF in Definition 2 with F being either Fheavy or Flighter.
Secondly, three booleans variables are defined as follows.

Definition 3 (Rejection booleans). Let us define rright as a boolean variable which
will be True if we replaced the upper tail of Fheavy with the upper tail of Flighter (a
lighter-tailed distribution). Then

rright = (typeRejFlighter
== 1 or typeRejFlighter

== 2) and typeRejFheavy
≥ 3

In this situation, the last iu,Fheavy
of Fheavy quantiles will be replaced with the Flighter’s

ones.
Let us define rleft as a boolean variable which will be True if Flighter replaces Fheavy’s
lower tail. Then

rleft =

{
(typeRejFlighter

== 1 or typeRejFlighter
== 3) and

(typeRejFheavy
== 2 or typeRejFheavy

== 4)

In this case, the iℓ,Fheavy
first quantiles of Fheavy will be replaced by the corresponding

quantiles of Flighter.
Let us define rall as a boolean variable which will be True if Flighter completely replaces
Fheavy. Then

rall =

{
typeRejFlighter

== 1 and typeRejFheavy
== 4 or

typeRejFlighter
≤ 4 and typeRejFheavy

== 5

In this case, Flighter’s quantiles will completely replace Fheavy’s quantiles.

The resulting model will be called below the Semi-Parametric Stitch Berk-Jones based
model (Stitch-BJ model or Stitch-BJ distribution in the rest of this paper).
Combining two distribution functions or stitching their quantile functions should be
done carefully to preserve classical properties. An analytical version of the resulting
distribution can be found in Appendix C as well as a proposed process to guarantee
the monotonicity of the resulting quantile function.

In the next section, we apply the proposed stitch semi-parametric distributional model
to the ERA5-L and CERRA-L reanalysis datasets.

3 Stitch-BJ model on reanalysis over France

We chose here (see Appendix B for details):

• Fheavy = Extended Generalized Pareto distribution (EGPD),
• Flighter = Exponentiated Weibull distribution (ExpWD),

The EGPD is supposed to be able to model both light and heavy-tailed data (Naveau
et al., 2016). The ExpWD is an extension of the Weibull distribution and has been
chosen for its ability to be both light or heavy-tailed depending on its shape parameter.

10
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Moreover, when its shape parameter is equal to 1, the ExpWD becomes a special case
of the EGPD.
When taking the quantile at level 1 of parametric distributions, we actually take the
quantile 1− 1

n+1 with n the number of wet days for the selected location.
Hyperparameters values in Definition 2 are fixed in our case study, both for ERA5-L
and CERRA-L, as follows:

lupper = ⌊97%× n⌋, llower = ⌊50%× n⌋ and lag = ⌊1%× n⌋,

where ⌊·⌋ is the floor number operator and n is the number of wet days of the given
time series. The lupper and llower hyperparameters are quite stable for our study, with
results being similar when small changes were applied to these parameters. The lag
parameter allows to adjust the sensitivity of the detection: a high value will make the
detection very sensitive to rejections, since a lone rejection happening far from a tail
may cause the whole tail to be rejected. This last parameter has been chosen based
on trials not shown here.
Applications 1, 2 and 3 below describe the steps we implemented to obtain a Stitch-BJ
model for the ERA5-L and CERRA-L reanalysis.

Application 1 Rejections type and cutting indexes for the EGPD

Step (1) Let us consider x and qEGP (see Section 1.2) the empirical quantiles and
the EGPD quantiles for a reanalysis data in a specific grid point of the French
territory.
Step (2) From Equations (2.2)-(2.3), compute p∗i,EGP and pi,EGP , for the consid-
ered EGPD in Step (1).
Step (3) Compute the weighted-levels kEGP = {ki,EGP , i = 1, ..., n} as in Equation
(2.5).
Step (4) Compute the cutting indexes and type of rejection iℓ,EGP , iu,EGP and
typeRejEGP as described in Definitions 1 and 2.

Steps (2) and (3) of Application 1 with respect to the empirical quantiles x are
illustrated in Figure 3. On both panels of Figure 3, the impact of the weighted-levels
ki,EGP in Equation (2.5) on the upper tail is noticeable. For panel (a), the ki,EGP are
rejected much faster than the original p−values pi,EGP , allowing the model to detect
misfitted quantiles better. On panel (b), the impact is even more noticeable with the
original pi,EGP never crossing the rejection threshold pα,n for the upper tail, while
the fit error exceeds 100m for some quantile points.

On both panels of Figure 4, one can appreciate that the vast majority of locations
in the considered French territory are either fully accepted (no rejection) or rejected
only on the lower tail (left rejection). Some regions exhibit fit that is not satisfying
enough with a high density of rejection of type 4 and 5 (respectively corresponding
to a rejection of both tails and a total rejection). Those regions are mainly focused
around the Cévennes and Alps regions for the ERA5-L reanalysis and the Cévennes
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(a) ERA5-L (b) CERRA-L

Fig. 3: Blue squares: Quantile-quantile plot of the EGP model at location (Longitude
2.94, Latitude 42.53). Red crosses: pi,EGP ; green stars: ki,EGP , for i = 1, . . . , n. The
horizontal red dashed line is the rejection threshold pα,n, for α = 5%. The scale for
pi,EGP and ki,EGP is represented in red on the right side

(a) ERA5-L (b) CERRA-L

Fig. 4: Rejection type map for the EGPD over France using α = 5% for our two
reanalysis datasets.

region for the CERRA-L reanalysis. To improve the model on these locations, we
replace the misfitted portions of the EGPD with the ExpWD (see Appendix B for
details) as described in Application 2 below.

QQ-plots in Figure 5 (panels a and c) show the difference for two chosen locations
between the modelled EGP quantiles and the ExpW ones in ERA5-L (panel a) and
CERRA-L (panel c) data. Here we decided to replace the upper tail of the EGP with
the ExpW one, due to the high errors of the last EGP quantiles. This can specifically
be seen on panel (c) where the last quantiles have a fit error of almost 200mm. To
illustrate Application 2, in Figure 5 (panels b and d) we also display the correspond-
ing pi,ExpW (red crosses) and ki,ExpW (green stars) in Equations (2.3) and (2.5).
Notice that all ki,ExpW are larger than pα,n, meaning that the ExpW upper tail is
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Application 2 Exponentiated Weibull distribution replacement

Step (1) Compute pExpW , kExpW , iℓ,ExpW , iu,ExpW and typeRejExpW as in Appli-
cation 1 (Step 2 to 4), for the ExpW distribution. Set the boolean variables
rright, rleft and rall as in Definition 3.
Step (2) If rright is True, replace the last n − 1 − iu,EGP quantiles by the
corresponding ExpW quantiles.
Step (3) If rleft is True, replace the first iℓ,EGP quantiles by the corresponding
ExpW quantiles.
Step (4) If rall is True, replace totally by the ExpW distribution.

not rejected and will replace the EGP upper tail for these locations.

While most locations can be modelled via Application 2 using only parametric distri-
butions (see for instance locations in Figure 5), for some locations with complex and
particularly skewed distributions, we chose to use the empirical distribution to replace
the misfitted parts, as detailed in Application 3 below.

Application 3 Empirical distribution replacement

Step (1) If rleft is False and iℓ,EGP > 0, replace the first iℓ,EGP quantiles by the
empirical ones.
Step (2) If rright is False and iu,EGP < (n − 1), replace the last n − iu,EGP − 1
quantiles by the empirical ones.
Step (3) If rall is False and typeRejEGP == 5, replace totally by the empirical
distribution.
Step (4) If rall is True and iℓ,ExpW > 0, replace the first iℓ,ExpW quantiles by the
empirical ones.
Step (5) If rall is True and iu,ExpW < (n − 1), replace the last n − iu,ExpW − 1
quantiles by the empirical ones.

In Figure 6, neither the EGP nor the ExpW distribution seems to be able to model
the upper tail and the lower tail correctly. In this case, the empirical distribution will
be used to model both tails on this specific location. Indeed both the ExpW and EGP
distributions meet the conditions for a double rejection as defined in Definition 2. In
Figure 6 we show the lower and upper index iℓ,EGP and iu,EGP . By using Application
3, the final stitch model with the lower and upper tails replaced by the empirical
distribution is called Replaced in Figure 6 (red triangles).
Moreover, Figure 6 illustrates cases where the monotonicity of the resulting final
quantile function may be broken. For instance here, at iu,EGP , the last EGP quantile
used is at around 180mm while the next quantile taken from the empirical distri-
bution is at around 110mm (see Figure 6 panel b, upper tail QQ-plot). A break in
monotonicity can also be detected on the lower tail at the iℓ,EGP cutting point (see
Figure 6 panel b, lower tail QQ-plot). We propose a simple method to correct breaks
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(a) ERA5-L at (Longitude 6.89, Latitude
44.86)

(b) ERA5-L at (Longitude 6.89, Latitude
44.86)

(c) CERRA-L at (Longitude 9.42, Lati-
tude 42.53)

(d) CERRA-L at (Longitude 9.42, Lati-
tude 42.53)

Fig. 5: First row: ERA5-L location. Second row: CERRA-L location. First column:
QQ-plot of respectively the whole, upper (above 97th quantile) and lower tail of the
EGP (green triangles) and ExpW (blue squares) against the empirical data. Second
column: corresponding pi,ExpW (red crosses) and ki,ExpW (green stars). Red horizontal
line is the rejection threshold pα,n for α = 5%

in the monotonicity, which is presented in Appendix C.

Figure 7 shows the final and detailed stitch combination using Applications 1, 2 and
3, on every location for ERA5-L and CERRA-L reanalysis dataset.
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(a) ERA5-L at (Longitude 9.18, Latitude
42.39)

(b) CERRA-L at (Longitude 2.61, Latitude
42.67)

Fig. 6: QQ-plot of the EGP model (blue square), ExpW model (green stars) and the
EGP with empirical stitching model (red triangle). Green (resp. blue) dashed line is
the lower (resp. upper) cutting index iℓ,EGP (resp. iu,EGP ) as in Definition 1 for the
EGP model.

(a) ERA5-L (b) CERRA-L

Fig. 7: Final map of the Stitch-BJ model with the EGP (EGPD) and ExpW (WEIB)
and empirical (EMP) distributions. We display the proportion of locations for each
combination of models for both considered datasets

For both reanalyses, we can see that the vast majority of points are modelled using
fully parametric distributions, either with no modification or using a stitch. Inter-
estingly, for ERA5-L and CERRA-L datasets, a few locations (respectively less than
9% and 6.3%) use the empirical distribution to correct the upper tail and less than
respectively 0.02% and 0.03% use the empirical distribution to fully model the loca-
tion’s precipitation distribution. For almost 75% of the locations, a full parametric
distribution has been used for both datasets.

A more precise description of the number of locations where the lower (resp. upper)
tail has been replaced by an empirical (resp. parametric) distribution is available
in Table 1. Note that the proportion of lower and upper tail replacement locations
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Table 1: Summary of empirical and parametric distributions used for the
Stitch-BJ over France

EMPIRICAL
LOWER TAIL UPPER TAIL BOTH TAILS FULL

ERA5-L 18.48 % 5.56 % 3.63 % 0.02 %
CERRA-L 18.75 % 3.31 % 3.00 % 0.03 %

PARAMETRIC
LOWER TAIL UPPER TAIL BOTH TAILS FULL

ERA5-L 5.56 % 18.48 % 0 % 72.30 %
CERRA-L 3.31 % 18.75 % 0 % 74.91 %

by the empirical or parametric distributions only concern strictly lower or upper
replacements. If a location has been replaced on both tails or fully by the empirical
distribution, it is not taken into account in the lower and upper tail replacement pro-
portion. This explains why one needs to add the proportion of lower tail and upper
tail replacement of either the parametric or empirical distribution to the proportion
of both tail replacement and total replacement of both types of distributions to
reach 100%. To complete the information provided in Table 1, the distributions (via
boxplots) of the cutting indexes are available in Appendix D.

In the next section, we discuss the results of the proposed fitting procedure (Applica-
tions 1, 2 and 3) on both datasets (see Section 4.2). Then we use it in a bias correction
context (see Section 4.3).

4 Results

In this section, we evaluate the fit and the bias correction performance of the proposed
Stitch-BJ and we compare it with several classical parametric competitors. For the
fitting results (see Section 4.2), distributions are fitted to the wet days time series
separately for ERA5-L and CERRA-L data. For the bias correction results (see Section
4.3), we use both ERA5-L and CERRA-L fitted distributions to bias correct ERA5-L
time series. Note that the distributions are fitted on the whole period (01/01/1984-
31/12/2020) for both datasets as a simple application of a bias correction using the
quantile mapping method.
Using Equation (1.1), we identify:

• F−1
n,obs is the quantile function of the considered distribution fitted on CERRA-L.

• Fn,mod is the cdf of the considered distribution fitted on ERA5-L
• xmod is a wet-day time series of ERA5-L.

After bias correction in (1.1), quantiles of xcorr
mod (the bias-corrected time series) are

compared to the quantiles of xobs (the corresponding wet-days time series from
CERRA-L).

16



737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

4.1 Instructions for figures interpretation

In the following, multiple figures illustrate the performance of the proposed method
(for fit and bias correction) compared with more classical parametric distributions.
Four types of figures are shown:

1. Error maps for a specific metric for considered models.
2. Error differences maps between the proposed method and considered models for a

specific metric.
3. Error boxplots for the considered models for a specific metric.
4. QQ-plots for some selected locations.

Type 1 Figures 8, 9, 14, 15, 21 and 22 are the error maps for a given metric. The
error is evaluated between the empirical and the fitted quantiles for the fit section,
and between the corrected ERA5-L and CERRA-L quantiles for the bias correction
section. We limited the values range to reach the 99.9th quantile of the error produced
by our Stitch-BJ model for comparison.

Type 2 Figures 10, 11, 16, 17, 23 and 24 show the differences between the Stitch-BJ
and the other distributions for a given metric. Contrary to Type 1 figures, the error
range is not fixed and differs for each sub-figure, thus covering the whole range of
error differences for each distribution. Here, a positive (resp. negative) value indicates
that the competitor distribution performs better (resp. worst) than the Stitch-BJ
one. Note that the error range is not symmetric.

Type 3 Figures 12, 13, 18, 19, 25 and 26 are boxplots of Type 1 figure results. To
show both the lower and the extreme errors, a jump in the y-axis is implemented.
The horizontal dashed line represents the median error for the Stitch-BJ method. A
second boxplot, without the jump but zoomed on the median values is also shown.
The upper limit of the zoomed boxplot corresponds to the 3rd quartile of the worst
distribution for the considered boxplot.

Type 4 Figure 20 are QQ-plots of some selected locations, showing the quantile-
per-quantile performance of each method compared to the ground truth. For all Type
4 figures, blue squares represent time series modelled from the Stitch-BJ method,
the orange triangles from the EGPD and green crosses from the ExpWD. The red
line corresponds to the empirical quantile line. For the fit results, Type 4 figures also
include a short description of the resulting Stitch-BJ model by giving the selected
distributions of the proposed stitch. For example: EMP-EGP-ExpW means the lower tail
uses the empirical distribution, the centre is modelled by the EGPD and the upper
tail uses the ExpWD.

4.2 Fit results

As explained previously, bias correction requires the same distribution to be fitted
twice: once on the starting, biased data (ERA5-L), and once on the target data
(CERRA-L). While the two reanalyses show some similarities, differences between the
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resulting fitting procedure described in Section 3 are expected. We will study the fit
for the Stitch-BJ, EGP, ExpW and Gamma distributions globally over France, and
provide a local analysis into some selected locations.
Both datasets used a daily 1mm threshold to remove the drizzle effect (Chen et al.,
2021) and distributions are solely fitted on wet days precipitations. A location param-
eter was available for all distributions except the EGPD. A left shift of 1mm has been
applied when fitting to the EGPD (and constructing the Stitch-BJ) to compensate
for that. The shift is reintroduced when the quantile function of these distributions is
used. For the EGPD, a 3mm left censor has been used. This value was chosen after
testing and resulted in the best performance for our application. The interested reader
is also referred to Appendix B for details.

4.2.1 Spatialized metrics

Figures 8 and 9 display the MAE maps (see Appendix A) for the distributions fitted
on respectively ERA5-L and CERRA-L.

(a) Stitch-BJ (b) EGP (c) ExpW

Fig. 8: MAE of considered models fitted to ERA5-L over Metropolitan France

(a) Stitch-BJ (b) EGP (c) ExpW

Fig. 9: MAE of considered models fitted to CERRA-L over Metropolitan France

For the ExpW model, the errors’ spatial distribution is quite similar to the EGP one,
with high errors being more prominent in the Cévènnes and around the city of Nice.
The Stitch-BJ shows differences mainly focused around the Cévènnes and Alps region
where it has an improvement with very few locations exceeding the 0.5mm MAE for
ERA5-L (Figure 8) and 0.8mm for CERRA-L (Figure 9). Notice that most of the
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Cévènnes region exceeds this threshold for the EGPD and ExpWD. The Gamma
distribution map is not shown as its errors are very large over most of France (see
boxplots in Figures 12 and 13).

By analysing the differences maps in Figures 10 and 11, the EGPD seems to per-
form better than the Stitch-BJD in specific locations, but when looking carefully at
the actual improvement, the MAE is only slightly reduced. Conversely, the improve-
ments of the Stitch-BJD over both the EGPD and ExpWD (in particular around the
Cévènnes region) are important in magnitude.

(a) EGPD difference (b) ExpWD difference

Fig. 10: MAE differences of considered models against the Stitch-BJ distribution
fitted to ERA5-L over Metropolitan France

(a) EGPD difference (b) ExpWD difference

Fig. 11: MAE differences of considered models against the Stitch-BJ distribution
fitted to CERRA-L over Metropolitan France

In the MAE in Figures 12 and 13, the impact of the Stitch-BJ method on extreme
outliers are clear. The ExpW produces much less extreme outliers than the EGP on the
CERRA-L data, however, the median error and the spread are much worse compared
to both the EGP and the Stitch-BJ. The median error of the EGP and Stitch-BJ are
very similar which is expected since the proposed inference procedure keeps as much
EGP model in the final Stitch-BJ one as possible.
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Fig. 12: Boxplots of MAE for considered models fit on ERA5-L
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Fig. 13: Boxplots of MAE for considered models fit on CERRA-L

(a) Stitch-BJ (b) EGP (c) ExpW

Fig. 14: MAE95sup of considered models fitted to ERA5-L over Metropolitan France.

20



921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

(a) Stitch-BJ (b) EGP (c) ExpW

Fig. 15: MAE95sup of considered models fitted to CERRA-L over Metropolitan
France

In Figures 14 and 15, we display the errors on the upper tail (See Appendix A). The
improvements of the Stitch-BJ are further confirmed with a noticeable improvement
over the Cévennes compared to all the other distributions, where the colour is not
saturated compared to the EGPD and ExpWD for both ERA5-L and CERRA-L data.

(a) EGPD difference (b) ExpWD difference

Fig. 16: MAE95sup differences of considered models against the Stitch-BJ distribution
fitted to ERA5-L over Metropolitan France

(a) EGPD difference (b) ExpWD difference

Fig. 17: MAE95sup differences of considered models against the Stitch-BJ distribution
fitted to CERRA-L over Metropolitan France
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Looking at Figures 16 and 17, the conclusion are very similar to Figures 10 and 11
with the error range difference being even greater. The improvements by the Stitch-
BJ can also be explained by the use of the empirical distribution on locations where
the EGP produces completely inaccurate values.
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Fig. 18: Boxplots of MAE95sup for considered models fit on ERA5-L
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Fig. 19: Boxplot of MAE95sup for considered models fit on CERRA-L.

Analogously to Figures 12 and 13, we can observe the ability of Stitch-BJ to correct
extreme outliers locations errors in boxplots of Figures 18 and 19 with a maximum
MAE95sup being reduced from 120mm to around 7mm for the models on ERA5-L,
and 200mm to 14mm for the models on CERRA-L compared to the EGP. The median
for the MAE95sup remains unchanged between the EGP and Stitch-BJ model and
the ExpW is noticeably worse than the two previous distributions, especially on the
CERRA-L data.

4.2.2 Detailed analysis on selected locations

For a more precise study, we selected two locations in the Provence-Alpes-Côte d’Azur
region to illustrate various study cases. The selected locations are near Cros (Longitude
3.80, Latitude 44.00) and Bézaudun-les-Alpes (Longitude 7.08, Latitude 43.82).
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(a) ERA5-Land (b) CERRA-Land

Fig. 20: QQ-plots of the Stitch-BJ (blue squares), EGP (red triangles) and ExpW
(green crosses) fitted on ERA5-L and CERRA-L in the two selected locations

In Figure 20, the QQ-plots for the Stitch-BJ, ExpW and EGP models are shown,
fitted for both ERA5-L and CERRA-L, for two different locations. For both ERA5-L
and CERRA-L, the first location (Cros) shows a case where the upper tail is replaced
by the ExpW, while the EGP is only used for the mid/high precipitation values. The
other location, Bézaudun-les-Alpes, is a location where both parametric distributions
were unable to correctly model the upper tail which result in the use of the empirical
distribution for the extremes. While the ExpW exhibits visually a good fit for the
upper tail on this location for both ERA5-L and CERRA-L, the deviation is enough
to produce a rejection for the modified BJ test. For both locations and both datasets,
neither parametric distribution was able to correctly model the lower tail, therefore it
has been modelled using the empirical distribution.

4.3 Bias correction results

After fitting the Stitch-BJ and the other considered distributions on both ERA5-L and
CERRA-L, we can now compare the performance of bias correction of the ERA5-L
reanalysis against the CERRA-L reanalysis for the same period.

4.3.1 Spatialized metrics

(a) Stitch-BJ (b) EGP (c) ExpW

Fig. 21: MAE of considered models for the bias correction of ERA5-L using CERRA-
L over Metropolitan France.
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(a) Stitch-BJ (b) EGP (c) ExpW

Fig. 22: MAE95sup of considered models for the bias correction of ERA5-L using
CERRA-L over Metropolitan France.

Figures 21 and 22 show metrics (MAE and MAE95sup) for the bias correction error
of ERA5-Land using CERRA-L. For both metrics, the Stitch-BJ produces the least
extremes, both in number (spatially) and in intensity. The highest MAE is divided by
3 when comparing the EGPD and the Stitch-BJ model while the highest MAE95sup
is improved from over 274mm (resp. 62mm) for the EGPD (resp. ExpWD) to 12mm
with the Stitch-BJ model.

(a) EGPD MAE difference (b) ExpWD MAE difference

Fig. 23: MAE differences of considered models against the Stitch-BJ distribution for
the bias correction of ERA5-L using CERRA-L over Metropolitan France
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(a) EGPD MAE95sup difference (b) ExpWD MAE95sup difference

Fig. 24: MAE95sup differences of considered models against the Stitch-BJ distribution
for the bias correction of ERA5-L using CERRA-L over Metropolitan France

Figures 23 and 24 allow us to appreciate the impact of the correction spatially. Most
of the Stitch-BJ improvements are located on the Cévènnes and Alps region compared
to respectively the EGPD and ExpWD.
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Fig. 25: Boxplots of MAE for the bias corrected ERA5-L over CERRA-L for the
considered models.
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Fig. 26: Boxplots of MAE for the bias corrected ERA5-L over CERRA-L for the
considered models
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Boxplots in Figures 25 and 26 confirm the previous observations, with both extremes
and median MAE being greatly reduced compared to all the other tested distribu-
tions. Median MAE95sup is not noticeably improved compared to the EGPD, however
extreme outliers are mostly corrected. Interestingly, while the ExpW model performed
worse than the EGP one in terms of median error in the fit context, it actually
outperforms the latter in the bias correction context for the MAE.
After bias correction the maximum MAE (resp. MAE95sup) of the Stitch-BJ is
more than 3 times (resp. 5 times) lower than the next model highest MAE (resp.
MAE95sup).

5 Conclusion and discussion

In this study, we introduced a novel semi-parametric stitch distribution based on the
BJ statistical test for daily precipitation modelling, which is able to automatically
deduce cutting indexes and stitch our quantile functions and cdf. We then compared
its fit and bias correction performance to the EGP, ExpW and Gamma distribution
over the ERA5-L and CERRA-L reanalysis on France. We first conducted a short
comparison of the ERA5-L and CERRA-L reanalysis in order to justify the need
for bias correction. Our novel semi-parametric stitch distribution allows for a better
representation of the extremes, either by using another parametric distribution, or by
using the best known data available i.e. the empirical distribution.
The Stitch-BJ distribution is constructed in 4 steps : (i) cutting indexes and rejection
types are inferred for the EGPD, (ii) same for the ExpWD and replace portions of the
distribution accordingly, (iii) if neither parametric distributions are satisfactory, use
the empirical distribution and (iv) classical properties (for instance monotonicity) of
the cdf and quantile function are restored if they’ve been broken by the previous steps.
Fit results shows that the model is able to find the right combination of distributions,
resulting in large improvements over the EGP or ExpWmodel on the extremes, against
a trade-off over lower and medium precipitations value. In a bias correction context, the
Stitch-BJ method reduced the median MAE by respectively 20% and 40% compared
to the ExpWD and EGPD, and the maximum MAE by respectively 67% and 86%. The
median MAE95sup was reduced by respectively 14% and 3.5%, while the maximum
MAE95sup was reduced by respectively 80% and 95%.
We conclude that the proposed Stitch-BJ distribution is able to improve the extremes
against all the parametric distributions tested in this paper, making it a strong
contender for rainfall modelling.
However these results should be considered with care as the use of the empirical distri-
bution on the tails or for the whole distribution on some locations may be responsible
for the largest improvements seen. However, as we have seen in Figure 7 and Table 1,
the empirical distribution is used in most around 9% of locations in the upper tail, and
the replacement is mostly for the last 2 or 3% of the distribution (see Appendix D).
This work allowed us to develop a flexible semi-parametric model for daily precipita-
tion modelling, but many improvements and applications are yet to be done, from
applications in a climate change context to modelling other climate variables using
different distributions. Indeed, we used the empirical distribution when none of the
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proposed distributions were able to model the data with enough precision because
it is the best performing model in a bias correction context when considering the
same time-period. However, the performance in a climate change context may vary.
This open interesting perspectives to perform a proper comparison of bias correction
performance between parametric and empirical quantile mapping in a climate change
context, using long enough time series to be able to split them. One may also want
to completely remove the implication of the empirical distribution by involving more
parametric distributions.

Data availability: All data, material, and programming codes used in this study
are available upon request. ERA5-Land and CERRA-Land datasets analyzed in the
current study are available on the Copernicus Climate Change Service (C3S) Climate
Data Store.
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A Considered metrics

To quantify and spatially visualise fit and bias correction errors of our distributional
models and data, we selected two metrics: one taking into account the whole distribu-
tion (MAE) and the other one focused on the upper tail (MAE95sup, i.e., the MAE
over the 5th last quantile).
Let q = {q1 = 0, q2 = 1

n , ..., qn = 1 − 1
n}, with n = 1000. For faster computation

times and standardization, we produce an equally spaced quantile representation of
the target and prediction data using q. The quantile function used is from Python’s
numpy package, with the linear interpolation method.
The ordered data quantiles are noted y and ŷ for respectively xobs and xmod, the
observed and modelled data.
The Mean Absolute Error is defined as:

MAE =
1

n

n∑
i=1

|y(i) − ŷ(i)|.

The Mean Absolute Error over quantile α (MAEαsup) is derived from the MAE to
focus on the upper tail. More precisely, it is the MAE over the quantile α. It is defined
as:

MAEαsup =
1

n− ⌈α× n⌉

n∑
i=⌈α×n⌉

|y(i) − ŷ(i)|,

with ⌈x⌉ being the ceiling function.
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B Considered parametric distributions

We introduce some parametric distributions: the Extended Generalized Pareto (EGP)
distribution, the Exponentiated Weibull (ExpW) distribution and the Gamma distri-
bution. The first two distributions are used to construct our semi-parametric model
and the Gamma distribution is used for comparisons.
Note that for precipitation modelling, we used a 1mm threshold to separate between
wet and dry days. The support of the following distributions being ]0,+∞[, a shift of
1mm has been applied before fitting, since the wet days threshold chosen is also 1mm.

The Gamma distribution

The Gamma distribution is a well-known light-tailed and often used distribution for
daily and monthly precipitation modelling (Martinez-Villalobos and Neelin, 2019;
Husak et al., 2007). Its cumulative distribution function can be written as:

F (x) =
1

Γ(k)
γ(α, βx),

for x > 0 and α > 0 and β > 0 respectively the shape and rate parameters.

The Extended Generalized Pareto distribution

An extension of the Generalized Pareto distribution have been introduced in Naveau
et al. (2016); Papastathopoulos and Tawn (2013). This extension removes the difficult
choice of the threshold for the classical generalized Pareto distribution (GPD).
The distribution has the following form:

FEGP (x;G) =

{
G
(
1− (1 + ξx/σ)−

1
ξ

)
, ξ > 0,

G
(
1− e−

x
σ

)
, ξ = 0,

(B.1)

with σ and ξ being the usual parameters of the GPD distribution, and G a continuous
cumulative distribution function on [0, 1] to that fulfils the necessary conditions from
Naveau et al. (2016).
In the aforementioned article, multiple distributions for G have been presented that
satisfy the required conditions. In this paper, we will focus on the first model denoted
by EGP, which uses the power law distribution: G(x) = xκ, for κ and x > 0, i.e.,

FEGP (x) =

{(
1− (1 + ξx/σ)−

1
ξ

)κ

, ξ > 0,(
1− e−

x
σ

)κ
, ξ = 0.

Left censoring can also be applied when fitting the distribution (more information on
the censoring can be found in the original article Naveau et al. (2016)). We fixed at
3mm the left censoring in our application in Section 3.
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Exponentiated Weibull distribution

The Exponentiated Weibull (ExpW) distribution has been introduced by Mudholkar
and Srivastava (1993) and generalizes the Weibull distribution by adding a second
parameter shape. Its cumulative distribution function can be written as:

F (x; k, λ, α) =
[
1− exp(−(x/λ)k)

]α
,

for x > 0 and k, α, λ > 0 being respectively the first and second shape parameter
and the scale parameter of the distribution. Taking α = 1 gives the usual Weibull
distribution and k = 1 gives the Exponentiated distribution.
The Exponentiated Weibull distribution has been used historically for failure rates
(Khan, 2018; Pal et al., 2006) and survival data modelisation (Mudholkar et al., 1996),
but has also been used in some cases to model precipitation data (Nadarajah and
Choi, 2007; Sharma et al., 2022; Ristić and Balakrishnan, 2012).

C Monotonicity correction and analytical
description of the proposed semi-parametric
distributional model

Replacing a portion of the quantile function with the empirical quantile function or
the lighter-tailed Flighter quantile function should be done carefully. Since the quan-
tile function is an increasing function, corrections may be needed to guarantee the
monotonicity. To solve this issue, we introduce in the next section a modification for
all locations.

C.1 Monotonicity correction and application

Let F1 and F2 two distribution functions non-decreasing and right-continuous with
associated quantile functions F−1

1 and F−1
2 . We define F̃−1 as the following con-

structed pseudo-quantile function

F̃−1(p) =

{
F−1
1 (p), ∀ p ≤ pstitch,

F−1
2 (p), otherwise,

for pstitch ∈ [0, 1]. Notice that the monotonicity condition of F̃−1 is not guaranteed.
A breakage in the monotonicity of the pseudo-quantile function F̃−1 at probability
pstitch is characterized by the following condition:

∃ ϵ > 0 | F̃−1 (pstitch) > F̃−1 (pstitch + ϵ) , i.e.,

F−1
1 (pstitch) > lim

ϵ→0+
F−1
2 (pstitch + ϵ) .

We will consider two types of breaks: small breaks (with amplitude smaller than 5
mm) and large breaks with amplitude larger than 5 mm. This amplitude of 5mm was
chosen arbitrarily in the present work and can be modified.
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In the first case, the correction is a shift on all values higher than the breaking point
quantile F−1

1 (pstitch),

F̃−1(p) = F−1
2 (p) + F−1

1 (pstitch)− lim
ϵ→0+

F−1
2 (pstitch + ϵ)︸ ︷︷ ︸

C

,∀p > pstitch. (C.1)

In the second case, the values produced by F−1
1 near pstitch are considered as too high

and they might significantly change the quantile function if the correction in Equation
(C.1) is applied. In this second case, a type of ceiling function is applied to the values
produced by F1 for all probabilities lower than the breakage point:

F̃−1(p) = min
{
F−1
1 (p), lim

ϵ→0+
F−1
2 (pstitch + ϵ)︸ ︷︷ ︸

Cceil

}
, ∀ p ≤ pstitch. (C.2)

Using these corrections on F̃−1, the resulting quantile function is well-defined.

Application 4 Correction of monotonicity

Step (1) Find the breaking point index i (either iℓ,EGP , iu,EGP , iℓ,ExpW or iu,ExpW .
If there is more than one break in the pseudo-quantile function, the corrections
should be applied in ascending order (lower indexes first) and are cumulative.
Step (2) Determine the amplitude of the break η defined by q(i−1) − q(i)
Step (3) If η ≤ 5, correct the monotonicity by shifting all values on the right of
the breaking point by the amplitude η as described in Equation (C.1).
Step (4) If η > 5, correct the monotonicity break by mapping those values to x(i)

for all indices lower than i as in Equation (C.2).
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Fig. 27: QQ-plots of a location where the monotonicity has been broken on both the
lower and upper cutting index

In Figure 27, both types of break in monotonicity have been corrected. In the lower
quantiles (right panel), the break have been corrected by shifting all following values
using Equation (C.1). In the higher quantiles (center panel), the break has been cor-
rected using (C.1) as well thus shifting the values to obtain the monotonicity. If the
break was greater than η = 5, the correction using (C.2) would have been used. From
the newly corrected quantile function, it is now possible to properly define a proper
cdf.
We can now give an analytical description for both the resulting stitched quantile
function and associated cdf which will allow for both interpolation and extrapolation
on unobserved values where the empirical distribution has not been stitched.

C.2 Analytical model

A semi-continuous description of the Stitch-BJ distribution can be derived using the
cutting indexes and rejection types iu,F , iℓ,F and typeRejF for Fheavy and Flighter

as defined in Definitions 1 and 2, and the booleans rall, rleft and rright as defined in
Definition 3. In Definition 2, we have at most three different quantile functions used to
describe infer the Stitch-BJ model. Let us define F−1

1 , F−1
2 and F−1

3 , three potentially
identical quantile functions as follows:
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F−1
1 =


F−1
n , if typeRejFheavy

and typeRejFlighter
== 2, 4 or 5

F−1
lighter, if rleft is True, or rall is True and typeRejFlighter

̸= 2 or 4

F−1
heavy, otherwise

(C.3)

F−1
2 =


F−1
n , if rall is False and typeRejFheavy

== 5

F−1
lighter, if rall is True

F−1
heavy, if rall is False and typeRejFheavy

̸= 5

(C.4)

F−1
3 =


F−1
n , if typeRejFheavy

and typeRejFlighter
≥ 3

F−1
lighter, if rright is True, or rall is True and typeRejFlighter

≤ 2

F−1
heavy, otherwise

(C.5)

Let us define iℓ and iu as follow :

• iℓ =


0 if rall is True, or iℓ,Fheavy

== 0

iℓ,Fheavy
if iℓ,Fheavy

> 0 and rall == False

iℓ,Flighter
if iℓ,Flighter

> 0 and rall is True

• iu =


n− 1 if rall is True or iu,Fheavy

== n− 1

iu,Fheavy
if iu,Fheavy

< n− 1 and rall == False

iu,Flighter
if iu,Flighter

< n− 1 and rall == True

A different quantile function is used depending on the considered quantile, i.e.,

F̃−1(p) =


F−1
1 (p), if p < iℓ

n

F−1
2 (p), if iℓ

n ≤ p < iu+1
n

F−1
3 (p), if iu+1

n ≤ p.

(C.6)

This is a pseudo-quantile function because the monotonicity condition is not yet
verified with the resulting F̃ from (C.6).
Let us also define C1, C1ceil, C2 and C2ceil as defined in Equations (C.1) and (C.2),
as the corrections coefficient for respectively the lower and upper cutting index.
If the index is such that the correction coefficient cannot be defined (if the index is
equal to 0 or n− 1 for respectively iℓ and iu) , then C = 0 and Cceil = +∞.
Since the corrections (C.1) and (C.2) can not happen simultaneously, if C > 0, then
Cceil = +∞, otherwise we let C = 0 if Cceil ̸= +∞. The corrected-quantile function
can then be defined as:

F−1(p) =


min(F̃−1(p), C1ceil) if p < iℓ

n

min(F̃−1(p) + C1, C2ceil) else if iℓ
n ≤ p < iu+1

n

F̃−1(p) + C1 + C2 otherwise.

(C.7)

38



1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

Given the properly quantile function defined in Equation (C.7), one can express the
corresponding cdf given F1, F2 and F3 in (C.3)-(C.5), the corrections C1, C1ceil, C2
and C2ceil from Equations (C.1)-(C.2), and cutting indexes, i.e.,

F (x) =


F1(x) if x < F−1( iℓn )

F2(x− C1) if F−1( iℓn ) ≤ x < F−1( iu+1
n )

F3(x− C1− C2) if F−1( iu+1
n ) ≤ x.

D Complementary figures

Boxplots of the proportion of upper and lower tail replacements are shown in Figure
28. In this figure, iℓ,data,emp and iℓ,data,mod (resp. iu,data,emp and iu,data,mod) refer to
the lower (resp. upper) cutting indexes introduced in Definition 1 of locations where
respectively the empirical or the ExpW distributions were used to replace the lower
(resp. upper) tail for a given time series. When emp or mod are not specified, i.e.
iℓ,ERA5L, iℓ,CERRAL, iu,ERA5L, iu,CERRAL in Figure 28, it refers to any cutting index
of locations where a replacement occurred. We can see that for the upper tail, most
replacements are done only on the last part of the upper tail, with at most 0.08% of
the distribution replaced on the upper tail by an empirical distribution. On the lower
tail, the proportion of the distribution replaced is higher. However, this point is less
crucial for this particular study since small precipitations usually have a negligible
impact on considered extreme rainfalls.
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Fig. 28: Proportion of replaced upper and lower tail for the model fitted on ERA5-L
and CERRA-L.
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