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Abstract—The emerging paradigm of Direct-to-Satellite Inter-
net of Things (DtS-IoT) involves Earth surface nodes communi-
cating directly with Low Earth Orbit (LEO) satellites, utilizing
standard Low-Power Wide Area Networks (LPWAN) protocols.
One of the core challenges faced in this paradigm is scaling the
Medium Access Control (MAC) from a limited number of nodes
to potentially thousands within the satellite’s coverage area. To
address this issue, medium access control schemes can utilize a
priori information on the number of nodes the satellite will cover
along its orbit. However, developing technically viable solutions
for network size estimation that are both precise and accurate
remains an open research challenge. This work presents the
implementation, parameter selection, and evaluation of the first
LoRa/LoRaWAN-compatible network size estimation protocol
that leverages the onboard Optimistic Collision Information
(OCI) estimator. Our solution, LoRa-OCI (L-OCI), was inte-
grated into FLoRaSat, a C++ discrete-event DtS-IoT simulator
that integrates realistic orbital and LoRa/LoRaWAN communi-
cation models. Through an extensive simulation campaign, we
can determine appropriate LoRa configurations to achieve low
root mean square error (RMSE) and low power consumption.
Additionally, our results indicate that the approach is relatively
insensitive to LoRa parameters when assessing the aggregated
throughput of a Slotted ALOHA Game (SAG) protocol throttled
by L-OCI.

Index Terms—Direct-to-Satellite, Internet of Things,
LoRa/LoRaWAN, Network Size Estimation

I. INTRODUCTION

Direct-to-Satellite Internet of Things (DtS-IoT) is a novel
approach to integrated terrestrial and spatial wireless com-
munications where small low-energy nodes on Earth directly
communicate with a Low Earth Orbit (LEO) satellite [1].
Small satellites, including affordable CubeSats, enable the
establishment of dependable and cost-effective networks by
relaying packets to ground stations or other satellites in cases
where a constellation is deployed [2]. This can lead to an
expansion of the network’s coverage and support. Conven-
tional Low-Power Wide Area (LPWAN) technologies [3], such
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as LoRa, which are typically employed in urban and rural
applications, can be modified to support DtS-IoT networks [4].
Furthermore, adopting open standards like LoRaWAN fa-
cilitates the unrestricted deployment of LoRa networks, as
they comply with regional regulations. When coupled with
CubeSats, this approach offers an economical alternative for
building satellite networks that is competitive with available
low-power, low-data rate satellite solutions (e.g., Argos [5],
APRS [6], S-AIS [7], and ADS-B [8]).

One of the primary obstacles encountered in DtS-IoT net-
works involves the scalability of the network, particularly in
situations where thousands of nodes (e.g., asset tracking, en-
vironmental monitoring, smart metering, agriculture, utilities,
etc.) must be served by a single satellite. Using Intelligent
Medium Access Protocols (MAC) is critical in addressing
the unavoidable collisions between packets and enhancing the
network’s overall performance. Recent research has shown
that incorporating information on the network size, i.e., the
number of nodes under satellite coverage, into a purpose-built
MAC protocol [9] can significantly enhance the network’s
performance in terms of throughput. However, obtaining this
information is often challenging, as the nodes are frequently
deployed in harsh, remote environments and may be isolated
from one another [10].

This study aims to implement and evaluate a network size
estimation mechanism for DtS-IoT using the LoRa/LoRaWAN
protocol stack. We employ the Optimistic Collision Informa-
tion (OCI) estimator [10] to achieve this goal. The selection
of OCI is based on its superior performance in terms of
low Root Mean Square Error (RMSE) estimation and power
efficiency compared to other modern network size estimators.
Nevertheless, the simulations conducted in [10] relied on
simplistic assumptions without considering any underlying
DtS-IoT protocol or communication model. Our proposed
mechanism, named LoRa/LoRaWAN-based OCI (L-OCI), is
designed to operate on a Frame Slotted ALOHA approach,
employing LoRa/LoRaWAN framing and Chirp Spread Spec-
trum modulation with the corresponding Spreading Factors
(SFs) specified in the LoRa/LoRaWAN specification [11].
Consequently, our approach can be implemented on standard
commercial IoT nodes. To assess the feasibility of OCI in
a practical scenario, we offer a multi-objective parameter
selection algorithm for L-OCI. Also, we implemented L-979-8-3503-3567-5/23/$31.00 ©2023 IEEE



OCI and conducted a comprehensive simulation using the
FLoRaSat simulator [12]. FLoRaSat was specifically devel-
oped to simulate DtS-IoT networks, incorporating LoRa-based
networks and realistic orbital propagation and channel models.

The paper is structured as follows. Section II provides
background information on LoRa, LoRaWAN, and the current
state of network size estimation. Section III provides the
details of L-OCI. Section IV presents the simulation scenario
and discusses the results. Finally, conclusions are presented in
Section VI.

II. BACKGROUND

A. LoRa and LoRaWAN Communication

LoRa is an IoT radio communication technique developed
by Semtech and is widely used in various scenarios, making
it a suitable option for the DtS-IoT paradigm. The LoRa radio
has five configuration parameters that include Transmission
Power (TP), Carrier Frequency (CF), Spreading Factor (SF),
Bandwidth (BW), and Coding Rate (CR). The selection of
these parameters can significantly impact the network per-
formance. LoRa operates on license-free Industrial, Scientific,
and Medical (ISM) frequency bands regulated by telecommu-
nication organizations for different world regions [13].

LoRaWAN is a data link layer built on top of the physical
layer provided by LoRa [11]. The LoRaWAN specification
defines three operation modes, Class A, Class B, and Class
C, to enhance the adaptability of the network to different use
scenarios. LoRaWAN Class A nodes are typically low-power
end nodes that can send data to a gateway but only receive
data in response after sending data. Class B nodes, on the other
hand, can receive data at predetermined time slots to enable
time-critical applications. Lastly, Class C nodes continuously
listen for incoming data after sending it, making them suitable
for applications requiring immediate responsiveness.

LoRa/LoRaWAN has been demonstrated to be an effec-
tive communication technology for DtS-IoT in several recent
studies. In-orbit deployments, such as ThingSat, FossaSat,
and LacunaSat satellite series have successfully demonstrated
the feasibility of using LoRa/LoRaWAN in ISM bands for
direct node-to-satellite communications. Additionally, numer-
ous research papers, including [1], [4], [14], have supported
the approach. The present study centers on utilizing LoRa’s
regional parameter set for the European region in the context
of DtS-IoT. In addition, a variant of the LoRaWAN Class B
mode is assumed due to its beaconing-based approach, which
is deemed appropriate for detecting the presence of satellites
in the DtS-IoT framework.

B. OCI Network Size Estimator

OCI is based on the observation that in a network with a
large number of nodes, collisions frequently occur, while in a
network with a small number of nodes, collisions occur less
frequently. OCI uses the probability of successful transmission
to calculate the number of nodes in the network. To this end,
nodes transmit (small) dummy frames, and OCI estimates the
number of participating nodes on the receiver side [10]. The

OCI estimator has been proven to be highly accurate with
a low Root Mean Square Error (RMSE) compared to other
state-of-the-art estimators. Moreover, the OCI mechanism is
computationally efficient, making it feasible to implement on-
board resource-constrained nano-satellites. The OCI estimator
operates as follows.

a) Data Collection Phase: Participating nodes uplink
dummy frames following a Frame Slotted ALOHA (FSA)
delimited by a beaconing system. After the transmission of
a beacon, the frame starts. During the frame, the satellite
determines the status of each uplink slot, which can be
categorized as idle, successful, or collided depending on
whether there is no received signal (below power sensitivity), a
successful signal decode occurs, or two or more nodes attempt
to transmit on the same slot, respectively. The resulting tuple
i, c, s represents the number of idle, collided, and successful
slots, respectively. It should be noted, however, that a slot may
be perceived as idle by the satellite, even when multiple nodes
attempt to transmit on the same slot. Still, low reception power
makes successful decoding infeasible.

b) Naive Estimation Phase: Using the collected data,
a simple estimate of the number of nodes nk within the
satellite’s footprint (or cluster size) during frame k is obtained,
assuming that no more than two nodes are involved in every
collision. This estimate ϕ of nk is computed as ϕ = s + 2c.
However, it should be noted that the naive estimation may not
be accurate in realistic scenarios where high-order collisions
are not neglected, and it may underestimate the number of
nodes when nk > w. Fig. 1 illustrates the naive estimation
as a function of the cluster size nk for various frame lengths
in terms of slots w, demonstrating that it always converges to
2w.

c) Polynomial Fitting Phase: To address the underesti-
mation issue without knowledge of the order of collisions,
OCI creates a function that maps the naive estimations curve
to the real number of nodes curve. For this method to work,
the naive estimations and the real number of nodes must be
bijective, and the frame length w must be long enough so
that the naive estimation has no repeated values. To create
the function, two polynomial fits are utilized. The first fit is
applied to smooth the naive estimation curve, while the second

Fig. 1. Naive estimations for frames with different number of slots w
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fit maps the resulting curve of the first fit to the real number
of nodes curve.

d) Operation Phase: After obtaining the polynomial
coefficients of the second fit, the OCI mechanism enters the
operational phase, where the function is applied to the naive
estimation to obtain the OCI estimation of the real value.
The value obtained from OCI can be utilized to optimize the
performance of MAC schemes by regulating their operation.
This value can be stored onboard or delivered to ground
operations for future use.

The efficiency of OCI is remarkable and discussed in [10].
However, the OCI estimator was conceived based on a series
of assumptions that limit its applicability. The assumption
that the beacon is always decoded and all nodes remain
synchronized with the satellite neglects the potential for errors
in realistic DtS-IoT networks. The model assumes that each
frame contains a separate stable cluster of nodes that remain
under satellite coverage for the entire time frame. However, in
a realistic scenario, the nodes within the satellite’s coverage
area can experience rapid changes. Some nodes may receive
the beacon signal but subsequently move out of coverage,
while others may come into coverage but miss the beacon.
Moreover, the model only accounts for collisions as the cause
of data loss, neglecting the possibility of the capture effect
signal strength below the receiver sensitivity level.

In the subsequent section, we present a modification of
the OCI estimator tailored to the practical LoRa/LoRaWAN
protocols implemented in DtS-IoT, thereby alleviating the
aforementioned idealized premises.

III. L-OCI

One cannot directly use the OCI estimator in LoRa-based
networks without extending the MAC layer specified by Lo-
RaWAN. Specifically, a protocol based on a TDMA technique
with time-slotted frames and a time synchronization system
must be added to the MAC layer.

For L-OCI, we leverage LoRaSync [15], which we find
is an appropriate Class B variant technique that satisfies the
synchronization requirements of OCI and DtS-IoT. LoRaSync
extends LoRaWAN Class B by adopting a beaconing mecha-
nism that enables time synchronization and scheduling uplink
slots during the beacon window. Fig. 2 depicts the structure
of the beacon period, which is divided into three phases.

a) Phase 1: Beacon Reserved: During this phase, the
gateway broadcasts the beacon, and ground nodes decode it.
To optimize energy usage, avoiding persistent reception in
resource-constrained nodes is important. Therefore, it is nec-
essary to use appropriate techniques such as [16] to estimate
the satellite visibility, which can determine the optimal time
to open the reception window. Once the beacon is received,
the node will be synchronized on a frame level.

b) Phase 2: Beacon Window: Then, uplink slots (UL)
are slotted in time during this phase. A UL includes a
maximum clock offset threshold time δmax at the beginning
and end of the slot and a maximum time on air ToAmax

in between, which depends on the LoRa parameters and the

Fig. 2. LoRaSync beacon period and slot structure (adapted from [15])

payload size. The parameter δmax provides the required time
synchronization contention guards for the beacon and clock
drifts in DtS-IoT. Note that the downlink mechanism defined
by LoRaWAN Class B still exists but is not depicted here since
user data downlinks are unnecessary for L-OCI estimation.

c) Phase 3: Beacon Guard: Finally, the beacon period
ends with the guard phase, allowing the gateway to decode
the last transmissions.

The number of slots w in the frame is a crucial param-
eter for L-OCI, as illustrated in Fig. 1. It is calculated as
w = ⌊Twin/Tslot⌋, where Twin is the beacon window time,
and Tslot is slot duration. Therefore, w depends on the frame
length, the maximum time-on-air (ToAmax), and the underly-
ing LoRa parameters. The choice of SF and BW parameters
of LoRa, and the frame length influence this non-trivial trade-
off that determines the optimal operation of L-OCI. A higher
SF (e.g., SF12) increases communication range and ToAmax

but reduces the number of slots in the frame, which can
limit the number of transmission opportunities. Conversely,
a lower SF like (e.g., SF9) reduces both communication range
and ToAmax, allowing more slots in the frame but reducing
communication range. An optimal L-OCI parameter selection
mechanism is provided below.

A. Parameter Selection Algorithm

The parameters involved in LoRa and LoRaSync are nu-
merous. This study focuses on three specific parameters:
Spreading Factor (SF), Bandwidth (BW), and frame length
(BCN). A heuristic approach is proposed to determine the
optimal combination of parameters x = (SF,BW,BCN) for
a given cluster size nk. To establish an optimal solution, a
Multi-objective Optimization Problem (MOP) is defined in this
study based on two objectives related to the OCI estimator.
The first objective is minimizing the energy spent to obtain
the estimator’s polynomial coefficients, while the second is
minimizing the estimation error. The problem is formalized as

minimize F (x) = (f1(x), f2(x))
T , s.t. x ∈ Ω, (1)

where Ω is the decision space. The first objective function,
f1(x), is the amount of energy consumed in transmissions that
failed to be decoded due to collisions or insufficient received
signal power during the OCI estimation phase. The second



objective, f2(x), is the estimation error attained during the
OCI test phase. Here, x is only constrained to live in Ω.

Various methods address the MOP presented in equation
(1). The approach utilized in this study is MOEA/D [17],
a genetic programming-based algorithm that facilitates ob-
taining the Pareto curve of optimal solutions for a given
multi-objective optimization problem. It is chosen due to
its excellent search performance and high computation
efficiency. To adapt the problem to MOEA/D, the pa-
rameter vector x was converted into the decision vector
x̄ = {w(SF,BW,BCN), T oAmax(SF,BW )}. The remain-
ing parameters of LoRa and LoRaSync are treated as fixed
values. The Pareto curve of the optimal solution to the MOP
is obtained by the MOEA/D algorithm, which decomposes
the objectives into two scalar optimizations. During each
generation, the population of candidates’ objective function
F (x) is calculated by simulating a smaller version of L-OCI.
The model considers the spatial distribution of the network
using LoRaSync, making it more accurate than OCI but less
than L-OCI as implemented in the FLoRaSat simulator.

B. Performance Metrics

a) RMSE: To assess the efficacy of the OCI estimations,
the evaluation criterion of choice is the Root-Mean-Square
Error (RMSE), also used in [10]. The RMSE is derived
through the calculation of the formula

ϵrsme =

√√√√ K∑
k=1

(ϕk − nk)2/K, (2)

where K corresponds to the number of clusters being exam-
ined, nk signifies the actual number of nodes in the kth cluster,
and ϕk denotes the estimated value of nk. This approach
provides an intuitive measure of the accuracy of the estima-
tor’s predictions by quantifying the differences between the
predicted and actual values of network size, thereby allowing
for comparing the estimator’s performance under different
network configurations.

b) Throughput: The Slotted Aloha Game (SAG) [9] is
a MAC protocol proposed for satellite networks using FSA
communication, thus suitable for OCI and L-OCI. SAG gives
a transmission probability to each node based on the number of
slots and the currently active nodes in the network (estimated
with OCI or L-OCI). If there are fewer nodes than slots,
the probability is set to 1, meaning all nodes will attempt
to transmit during the frame. If there are more nodes than
slots, the probability is adjusted so that the number of nodes
attempting to transmit is close to the number of slots. SAG
aims to achieve the maximum theoretical throughput with
arbitrarily large node populations. It is calculated as the
number of successful transmissions in a frame divided by the
time length of the frame in slots.

C. Implementation in FLoRaSat

FLoRaSat (Framework for LoRa-based Satellite Networks)
is a simulation tool built on top of OMNeT++ discrete-event

simulator to model end-to-end satellite IoT scenarios using
LoRa/LoRaWAN adaptations for space applications [12].

The simulator is a combination of several existing frame-
works. The LoRa portion of the simulation software is founded
on the FLoRa (Framework for LoRa), initially designed to
investigate IoT applications in urban and suburban areas.
FLoRaSat is designed to replicate LoRa’s capture effect
by decoding the initial transmission, with any subsequent
overlapping signals considered collisions. As all nodes are
assumed to have the same configuration settings, it can be
expected that the nearest node to the satellite will transmit the
first and strongest signal during a given period. In addition,
the LoRaWAN layer was modified to include the LoRaSync
and L-OCI mechanisms. To incorporate satellite mobility, the
OS3 [18] and leosatellites [19] frameworks were updated and
adapted, resulting in a suitable implementation of the SGP4
orbital propagator model.

FLoRaSat generates the dataset for naive estimations dur-
ing the L-OCI training phase. The L-OCI is then trained
offline with this dataset using our Python implementation. The
resulting estimators are then provided to the nodes’ MAC
layer in the extended FLoRaSat to simulate the SAG traffic
simulations1.

IV. RESULTS

A. Scenario and Parameters
This study considers a specific scenario where a Low

Earth Orbit (LEO) satellite serves as the DtS-IoT gateway for
relaying packets from ground nodes to the network server via
a ground station. The satellite is assumed to be in a circular
orbit with an altitude of 600 kilometers and an inclination of 98
degrees. Ground nodes are randomly and uniformly deployed
over a circular region. The satellite is positioned directly above
the deployment center to ensure all nodes receive L-OCI’s bea-
con signal. Consequently, all nodes attempt to transmit during
the frame on a randomly selected slot according to a uniform
distribution. Fig. 3 depicts this scenario using the FLoRaSat
GUI, where the red area represents the communication range
based on the selected parameters.

The control variables of our study are the spreading factor
(SF), the bandwidth (BW) of LoRa in kHz, and the beacon
period (BCN) in seconds. At the same time, the remaining
parameters comply with the LoRa Alliance specification for
the European region [13]. The payload size is set to 20 bytes.
We determine the time on air (airtime) and the maximum range
of communication (range) for a LoRa transmission based on
the values of (SF,BW ). The channel model assumed is a
free space path loss model, and we consider the received
sensitivity values from a typical LoRa transceiver, Semtech’s
SX1272 [20]. We run 30 simulation repetitions with different
seeds for each input set (SF,BW,BCN).

B. Experiments and Results Analysis
1) Sensitivity to LoRa Parameters: The present study ex-

amines the influence of several L-OCI estimators trained using

1FLoRaSat repository with L-OCI: https://gitlab.inria.fr/jfraire/florasat
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Fig. 3. DtS-IoT simulation scenario (FLoRaSat UI)

TABLE I
STUDY PARAMETERS AND ERROR

(TRAINING PARAMETERS: w=167, SF = 10, BW = 125, BCN = 91)

SF BW BCN RSME
9 125 50 29.693
10 125 91 5.556
11 250 80 5.586
11 125 152 5.747
12 125 295 17.909

different sets of parameters listed in Table I on a simulation
with identical settings (SF = 10, BW = 125, BCN = 91).
The study employs w = 167 slots and varies the number
of nodes from 1 to 501 in increments of 10 nodes. The
RSME of the estimators is presented in the last column
of Table I, and their estimations are illustrated in Fig. 4.
At the same time, the nodes’ positions are adjusted with
respect to the training phase. Although the smallest RSME
is achieved when the simulation parameters match the trained
L-OCI ((SF = 10, BW = 125, BCN = 91)), SF11 yields
comparable performance, even when operating in a different
BW , unlike SF9 and SF12. Further analysis revealed a
considerable number of lost transmissions due to weak signal
power in the reception during the L-OCI estimation phase,
resulting in an overestimation of the number of nodes by L-
OCI. The findings suggest that L-OCI is insensitive to LoRa’s
SF10 and SF11 and that a single L-OCI estimator can be
applied to both.

2) Impact on Throughput: In this experiment, we investi-
gate the impact of using L-OCI estimations on the throughput
of the SAG protocol, as presented in [9], [10], during the
operational phase. We use the OCI estimations with BW =
125 obtained from the previous experiment: SF9, SF10, and
SF12. The obtained throughput is compared with the FSA
pure throughput, where no uplink throttling is applied, serving
as a baseline. ALOHA’s maximum theoretical throughput is
provided in a red horizontal line. The results are presented
in Fig. 5. We explain the results above ALOHA’s theoretical

Fig. 4. Comparison of different L-OCI estimators

Fig. 5. Throughput comparison using estimations from Fig. 4

throughput with the capture effect modeled in FLoRaSat.
Indeed, a collision can still result in successful frame decod-
ing. The pure FSA protocol achieves maximum throughput
between 200 and 300 nodes, slightly higher than the scenarios
employing SAG, but FSA’s throughput decreases steadily after
that, validating the findings in [10]. Instead, with the SAG ac-
cess control, the throughput peaks when the number of nodes
equals the number of slots, oscillating around these values after
that. The highest average throughput is observed when using
the OCI estimations obtained with SF10 (48.1%), which also
has the lowest RSME, as it was the parameter for which L-OCI
was trained. However, the difference in throughput concerning
SF9 (46.5%) and SF12 (46.8%) scenarios is minimal. To wrap
up, the throughput results suggest using SF10 or SF11 to
provide the best performance of the trained L-OCI model.

3) Error and Energy Trade-off: This experiment evaluates
the effectiveness of the MOP heuristic proposed in Sec-
tion III-A for optimizing energy consumption and estimation
error in LoRa networks. The wasted power and RMSE are
jointly analyzed in Fig. 6, where the former is calculated as
the power spent by a node in non-successful transmissions.
A parameter selection campaign was conducted for 100, 500,
1000, and 1500-node network sizes. Results show that wasted
energy and estimation error increase with the number of nodes
in the network. Moreover, the most energy-efficient solutions
were obtained using SF = 9 and BW = 125 for all cases.



Fig. 6. Pareto curves for different network sizes obtained from MOP

For instance, the Pareto curve for a network of 500 nodes
suggests that a parameter set with SF = 9 and BW = 125
can achieve an estimation error of RSME = 5 and a wasted
energy per node of 16mW . To further reduce the error,
switching to SF = 11 and BW = 250 is required, resulting
in a reduced error of RSME = 2.5 but increased wasted
energy to 27mW per node (see red arrow in Fig. 6). The
results demonstrate the effectiveness of the MOP heuristic for
optimizing energy utilization and estimation error in LoRa
networks. Furthermore, in light of the observations in the
previous experiment, the marginal improvement in error might
not be justified in terms of throughput due to the significant
increase in energy consumption.

C. Takeaways

The study found that L-OCI is well-suited for LoRa-based
DtS-IoT networks, but the modulation parameters and beacon
period also impact communication. Multiple OCI estimators
may be required for optimal performance, but when resources
are limited, a single estimator can support diverse parameters
with minimal error and negligible impact on throughput. SF9
provides optimal energy utilization at the expense of reduced
error, but higher SF may be necessary for tighter link budgets.

V. CONCLUSION

In this work, we proposed L-OCI: a LoRa/LoRaWAN
realization of the Optimistic Collision Information (OCI) for
Direct-to-Satellite IoT (DtS-IoT). We evaluated L-OCI in
realistic LoRa-based DtS-IoT networks providing the first
evidence of the expected performance of the approach. An
extensive simulation campaign showed that L-OCI maintains
low error estimations and power efficiency, even in scenarios
with a high packet loss rate. Also, L-OCI proved insensitive
to SF = 10 and SF = 11 regarding RSME and throughput,

suggesting a single estimator can fit both use cases. However,
in resource-full satellites, multiple estimators could co-exist
for optimal performance. Furthermore, our analysis showed
that SF = 9 and BW = 125kHz are appealing candidates for
improving energy efficiency if the link budget can be closed
under such parameters. Future work includes an extended anal-
ysis with different orbital parameters, more training parameters
for L-OCI, and L-OCI extensions considering multiple SFs in
the same frame.
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