
HAL Id: hal-04711339
https://hal.science/hal-04711339v1

Submitted on 26 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Fading regularization method for an inverse boundary
value problem associated with the biharmonic equation

Mohamed Aziz Boukraa, Laëtitia Caillé, Franck Delvare

To cite this version:
Mohamed Aziz Boukraa, Laëtitia Caillé, Franck Delvare. Fading regularization method for an inverse
boundary value problem associated with the biharmonic equation. Journal of Computational and
Applied Mathematics, 2024, 457, pp.116285. �10.1016/j.cam.2024.116285�. �hal-04711339�

https://hal.science/hal-04711339v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Journal of Computational and Applied Mathematics 457 (2025) 116285 

A
0
(

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Fading regularization method for an inverse boundary value
problem associated with the biharmonic equation
Mohamed Aziz Boukraa a,b, Laëtitia Caillé c, Franck Delvare b,∗

a UMA, Inria, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France
b Normandie Univ, UNICAEN, CNRS, LMNO, 14000 Caen, France
c Institut PPRIME, UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, 86000, Poitiers, France

A R T I C L E I N F O

Keywords:
Inverse boundary value problems
Cauchy problem
Method of fundamental solutions
Biharmonic equation

A B S T R A C T

In this paper, we propose a numerical algorithm that combines the fading regularization method
with the method of fundamental solutions (MFS) to solve a Cauchy problem associated with
the biharmonic equation. We introduce a new stopping criterion for the iterative process and
compare its performance with previous criteria. Numerical simulations using MFS validate the
accuracy of this stopping criterion for both compatible and noisy data and demonstrate the
convergence, stability, and efficiency of the proposed algorithm, as well as its ability to deblur
noisy data.

1. Introduction

The biharmonic equation is a fundamental mathematical equation widely used in the fields of physics and engineering. It finds
its applications in fluid mechanics for Stokes flows, where it governs the two-dimensional interior flow of viscous fluids at low
Reynolds number, and in elasticity theory. According to Kirchhoff plate theory [1], the biharmonic equation governs the bending
of thin plates subjected to load forces.

Kirchhoff’s assumptions lead to the expression of the transverse displacement of thin plates as the solution of a boundary value
problem, consisting of a biharmonic-type equation and two boundary conditions expressed at every point on the boundary. However,
in practical situations, it may not always be possible to specify boundary conditions at all points on the boundary.

This has led to many researchers considering Cauchy-type problems associated with the biharmonic equation, where a part of
the boundary is over-specified by prescribing all the boundary conditions, while another part of the boundary is under-specified,
where no boundary condition is available. Such problems are called ill-posed in the sense of Hadamard [2], since the uniqueness
or stability of the solution is no longer guaranteed, referred to as inverse problems.

Holmgren’s theorem, which was published in 1901 [3], guarantees that there is a unique solution for Cauchy boundary value
problems, particularly when the boundary data is compatible. Nonetheless, the stability of the solution in relation to the boundary
conditions on the accessible part of the boundary is still problematic. In these situations, standard direct methods for partial
differential equations are unsuitable for solving the resulting Cauchy inverse problem. To obtain a stable solution with respect
to the data, regularization techniques must be employed.

Cannon and Cecchi [4] numerically solved a similar problem where no information is given on the remaining part of the boundary
using the least square method and mathematical programming techniques. Zeb et al. [5] and Lesnic et al. [6] solved the biharmonic
inverse problem in the case of slow viscous incompressible flows. It consists of determining under-specified boundary conditions
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in terms of normal fluid velocity using additional pressure measurements on another part of the boundary. Atakhodzhaev [7] used
interior measurements inside the domain to determine unspecified boundary values. The uniqueness of the solution has been proven,
but no numerical results are given, and the ill-posedness of the problem persists, since the solution is not stable when the input data
have small perturbations. Later, Lesnic et al. [8] introduced a stable numerical method for obtaining this solution, using Tikhonov
regularization combined with a boundary element method (BEM).

Marin and Lesnic [9] addressed the problem where no boundary conditions are specified on a part of the boundary. They applied
he method of fundamental solutions (MFS) and combined it with Tikhonov regularization to overcome the ill-conditioned system.

The Tikhonov regularization method was developed by Tikhonov [10] to resolve ill-posed problems by introducing a control
erm with a regularization parameter to generate an approximately well-posed problem. Although this method has been widely
pplied to various elliptic inverse Cauchy problems to ensure stability, the solution depends on the choice of the regularization
arameter.

There are other methods besides the Tikhonov method for solving inverse problems related to elliptic PDEs. For instance,
ndrieux et al. [11,12] proposed the energy-like error functional, which has been used to solve Cauchy problems for a stationary

hermal field [11,12] and in elasticity theory [13,14]. This method separates the ill-posed Cauchy problem into two well-posed
roblems and minimizes the gap between the two separate fields. It has been combined with the Tikhonov method to overcome
nstability due to noisy data [15]. Optimal control techniques [16] and quasi-reversibility methods [17,18] are other methods used
o solve elliptic inverse Cauchy problems.

The fading regularization method, introduced in [19,20], is an iterative regularization technique that stabilizes the solution and
educes dependence on the regularization parameter. This method involves finding the best-fitting solution among all solutions of
he equilibrium equation that match the over-specified data on the accessible part of the boundary. The Cauchy problem is reduced
o a sequence of well-posed optimization problems, and the functional of each problem comprises two terms: a relaxation term
epresenting the gap between the optimal element and the over-specified boundary data, and a regularization term acting on the
ntire boundary, which controls the gap between the optimal element and the one obtained at the previous iteration.

The fading regularization technique has been successfully applied, in 2D situations, to Cauchy problems associated with various
quations, such as the Laplace equation [20–23], the anisotropic heat conduction [24,25], the biharmonic equation [26], the linear
lasticity system [27–29] and the Stokes system [30], and in both 2D and 3D situations for the Helmholtz equation [31,32]. It has
een implemented using different numerical techniques like the finite element method (FEM) [20,21,26–28], the boundary element
ethod (BEM) [21–24] and the method of fundamental solutions (MFS) [25,29–32].

The MFS is a meshless numerical method that was introduced by Kupradze and Aleksidze [33]. This method is commonly used
or solving direct and inverse boundary value problems due to its simple implementation and low computational cost. However,
ven in direct problems, MFS typically produces an ill-conditioned system.

In this work, we propose a novel approach for solving Cauchy-type biharmonic inverse problems in which no boundary conditions
re given on a part of the boundary, by combining the fading regularization method with the method of fundamental solutions (MFS).
he proposed method aims to obtain a stable and accurate numerical solution by iteratively minimizing a functional composed of a
elaxation term and a regularization term. To ensure convergence of the iterative process, we introduce a new stopping criterion and
nvestigate its performance in comparison with previous criteria. Our approach is tested on reconstructing inaccessible information
n a part of the boundary and the numerical results prove its effectiveness, efficiency and stability.

. The Cauchy problem for the biharmonic equation

Let 𝛺 be an open bounded domain of R2, with boundary 𝛤 = 𝛤𝑑
⋃

𝛤𝑖, where 𝛤𝑑 , 𝛤𝑖 ≠ ∅ and 𝛤𝑑
⋂

𝛤𝑖 = ∅. We consider the function
that satisfies the biharmonic equation in the domain 𝛺, namely

𝛥2𝑢(𝐱) = 0, 𝐱 ∈ 𝛺 (1)

r, equivalently introducing an auxiliary function 𝑣, the system of equations

𝛥𝑢(𝐱) = 𝑣(𝐱), 𝛥𝑣(𝐱) = 0 𝐱 ∈ 𝛺 (2)

Let 𝑢,𝐧 and 𝑣,𝐧 be the normal derivatives of 𝑢 and 𝑣 respectively (i.e. 𝑢,𝐧(𝐱) ≡ 𝜕𝐧𝑢(𝐱) and 𝑣,𝐧(𝐱) ≡ 𝜕𝐧𝑣(𝐱) at 𝐱 ∈ 𝛤 ). In the case of
nder-specified boundaries, where the solution 𝑢, 𝑣 and their normal derivatives are unknown on some part 𝛤𝑖 of the boundary 𝛤 ,
t is well known that the solution of (1) or (2) cannot be determined easily. Moreover, when the remaining part of the boundary
𝑑 is over-specified by having all of these four quantities prescribed on it, such that:

𝑢(𝐱) = 𝜑𝑑 (𝐱), 𝑢,𝐧(𝐱) = 𝜓𝑑 (𝐱), 𝑣(𝐱) = 𝜇𝑑 (𝐱), 𝑣,𝐧(𝐱) = 𝜙𝑑 (𝐱), 𝐱 ∈ 𝛤𝑑 (3)

he solution of the resulting problem is then unstable.
The problem consisting of the equilibrium equation (1) and the boundary conditions (3) is a Cauchy problem and can be

nterpreted as a dimensionless form of a mechanical bending problem where a thin plate is subjected to forces and moments acting on
ts boundary. According to Timoshenko and Woinowsky-Krieger [34], the vertical displacement 𝑢(𝐱) is a solution of the biharmonic

equation (1) and the boundary conditions (3) correspond to the vertical displacement 𝑢(𝐱), the normal rotation 𝑢,𝐧(𝐱), a function
𝑣(𝐱) depending on the bending moments and a function 𝑣,𝐧(𝐱) depending on the shear forces and the bending moments. A practical

example is obtained if we consider the boundary part 𝛤𝑑 as a free edge boundary. In this situation, the bending moments and shear

2 
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forces are zero, implying in (3) that 𝜇𝑑 (𝐱) = 0 and 𝜙𝑑 (𝐱) = 0 on 𝛤𝑑 . It is then only necessary to measure the vertical displacement
𝜑𝑑 (𝐱) and the normal rotation 𝜓𝑑 (𝐱) on 𝛤𝑑 .

This Cauchy problem is an inverse boundary value problem for the biharmonic equation. It is ill-posed, in the sense of Hadamard,
because even if a solution exists, it is unstable with respect to small perturbations in the boundary data on 𝛤𝑑 . Regularization methods
can be used in order to overcome this ill-posedness.

Several approaches can be used for solving Cauchy problem for the biharmonic equation. The first approach, tested in [26],
is to split the problem into a sequential resolutions of a Cauchy problem for the Laplace’s equation and of a Cauchy problem for
the Poisson’s equation. A disadvantage of this technique is that the solution 𝑣 of the Cauchy problem for the Laplace’s equation
corresponds to the second member of the Poisson’s equation. Due to the ill-posedness of the Cauchy problem for the Laplace’s
equation, the auxiliary function 𝑣 could be inaccurate and affects the resolution of the whole problem. A second technique is to
solve simultaneously, in a coupled system, the Cauchy problem for Laplace’s equation and the Cauchy problem for Poisson’s equation.
This technique is tested in [26] and compared to the first approach. This second technique is more accurate than the previous one.

In this paper, we use another technique, used for example in [9], which presents the advantage to lead to the resolution of Cauchy
problem for the biharmonic equation by a unique system and not a sequence of Cauchy problems nor a coupled system. Moreover,
we use the Method of Fundamental Solutions in conjunction with the fading regularization technique to overcome difficulties
encountered in [9] with the use of Tikhonov regularization, particularly concerning the choice of the regularization parameter.

3. The fading regularization method for the Cauchy problem

3.1. Continuous formulation

The application of the fading regularization method to the Cauchy problem associated with the biharmonic equation, may require
a particular attention in the choice of the functional spaces in which the solution will be sought in order to ensure the convergence
of the method. Let ℋ 2

0 (𝛺) be the space of solutions of the biharmonic equation defined by:

ℋ 2
0 (𝛺) = {𝑢 ∈ 𝐻2(𝛺) ∕ 𝛥2𝑢 = 0},

which is a closed subspace of

ℋ 2(𝛺) = {𝑢 ∈ 𝐻2(𝛺) ∕ 𝛥2𝑢 ∈ 𝐿2(𝛺)}

which is also a Hilbert space for the norm ‖.‖ℋ 2(𝛺) defined by

‖𝑢‖2
ℋ 2(𝛺)

= ‖𝑢‖2
𝐻2(𝛺)

+ ‖𝛥2𝑢‖2
𝐿2(𝛺)

.

e further define the space of trace operators:

𝑋(𝛤 ) = 𝐻3∕2(𝛤 ) ×𝐻1∕2(𝛤 ) ×𝐻−1∕2(𝛤 ) ×𝐻−3∕2(𝛤 )

with the scalar product ⟨., .⟩𝑋(𝛤 ) defined for all 𝛷 = (𝜑,𝜓, 𝜇, 𝜙) et 𝛷′ = (𝜑′, 𝜓 ′, 𝜇′, 𝜙′) in 𝑋(𝛤 ) such that:

⟨𝛷,𝛷′
⟩𝑋(𝛤 ) = ⟨𝜑,𝜑′

⟩𝐻3∕2(𝛤 ) + ⟨𝜓,𝜓 ′
⟩𝐻1∕2(𝛤 ) + ⟨𝜇, 𝜇′⟩𝐻−1∕2(𝛤 ) + ⟨𝜙, 𝜙′

⟩𝐻−3∕2(𝛤 ),

and its associated norm is denoted by ‖.‖𝑋(𝛤 ). We can thus define the space 𝐻(𝛤 ) of compatible traces (i.e. the space of traces which
corresponds to the solutions of the problem):

𝐻(𝛤 ) = {𝛷 = (𝜑,𝜓, 𝜇, 𝜙) ∈ 𝑋(𝛤 ) such there exists 𝑢 ∈ ℋ 2
0 (𝛺), 𝑣 = 𝛥𝑢 in 𝛺 and (𝑢, 𝑢,𝐧, 𝑣, 𝑣,𝐧) = (𝜑,𝜓, 𝜇, 𝜙)}.

It is therefore immediate that 𝐻(𝛤 ) is a Hilbert space as a closed subspace of 𝑋(𝛤 ). We denote by ‖.‖𝐻(𝛤 ) its induced norm and we
denote by 𝑋(𝛤𝑑 ) and 𝐻(𝛤𝑑 ) the restrictions of the spaces 𝑋(𝛤 ) and 𝐻(𝛤 ) respectively on the boundary part 𝛤𝑑 and by ‖.‖𝑋(𝛤𝑑 ) and
‖.‖𝐻(𝛤𝑑 ) their associated norms.

The definition of these functional spaces makes possible to formulate an equivalent problem to the Cauchy problem defined by
the equilibrium equation (1) and the boundary conditions (3):

{

Find 𝐔 = (𝑢∣𝛤 , 𝑢,𝐧 ∣𝛤 , 𝑣∣𝛤 , 𝑣,𝐧 ∣𝛤 ) ∈ 𝐻(𝛤 )

𝐔 = 𝜱𝑑 sur 𝛤𝑑
(4)

where 𝜱𝑑 = (𝜑𝑑 , 𝜓𝑑 , 𝜇𝑑 , 𝜙𝑑 ). Even if the solution to this problem exists, it remains unstable with respect to small perturbations in
the data since the solution does not depend on it continuously. It is therefore necessary to apply a regularization technique in order
to obtain a stable solution. For that, we apply the fading regularization method, which transforms the problem (4) into a sequence
of optimization problems represented by the following iterative algorithm:

⎧

⎪

⎨

⎪

Find 𝐔𝑘+1 ∈ 𝐻(𝛤 ) such that
𝐽𝑘+1𝑐 (𝐔𝑘+1) ≤ 𝐽𝑘+1𝑐 (𝐕), ∀ 𝐕 ∈ 𝐻(𝛤 )

𝑘+1 2 𝑘 2
(5)
⎩

with 𝐽𝑐 (𝐕) = ‖𝐕∣𝛤𝑑 −𝜱𝑑‖𝐻(𝛤𝑑 )
+ 𝑐‖𝐕 − 𝐔 ‖𝐻(𝛤 )

3 
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for which there exists a unique optimal element 𝐔𝑘+1 at each iteration characterized by:

⟨𝐔𝑘+1∣𝛤𝑑
−𝜱𝑑 ,𝐕∣𝛤𝑑 ⟩𝐻(𝛤𝑑 ) + 𝑐⟨𝐔

𝑘+1 − 𝐔𝑘,𝐕⟩𝐻(𝛤 ) = 0 ∀ 𝐕 ∈ 𝐻(𝛤 ). (6)

This result is immediate since the functional 𝐽𝑘+1𝑐 is continuous, convex and coercive thus admitting a unique solution characterized
by the optimality equation (6).

3.2. Convergence of the iterative algorithm

In this section, we recall the convergence results of the iterative algorithm (5).

Lemma 1. The sequence
{

𝐔𝑘
}

𝑘≥1 corresponding to the optimal elements produced by the iterative algorithm verifies the following identity

‖𝐔𝑛+1 − 𝐔𝑒‖2𝐻(𝛤 ) +
𝑛
∑

𝑘=0
‖𝐔𝑘+1 − 𝐔𝑘‖2𝐻(𝛤 ) +

2
𝑐

𝑛
∑

𝑘=0
‖𝐔𝑘+1 −𝛷𝑑‖2𝐻(𝛤𝑑 )

= ‖𝐔0 − 𝐔𝑒‖2𝐻(𝛤 ) (7)

here 𝐔𝑒 is the solution of the Cauchy problem given by Eqs. (1) and (3), and 𝛷𝑑 = 𝐔𝑒|𝛤𝑑 .

Should be noted here that this Lemma is valuable only for compatible data.

heorem 1. Let 𝛷𝑑 be the compatible Cauchy data associated with the compatible solution
𝐔𝑒 = (𝑢𝑒, 𝑢𝑒,𝐧, 𝑣𝑒, 𝑣𝑒,𝐧 ) ∈ 𝐻(𝛤 ). Then, the sequence produced by the iterative algorithm (5) converges strongly to 𝛷𝑑 on 𝛤𝑑 and weakly

to 𝐔𝑒 on 𝛤 .

The proofs of Lemma 1 and of Theorem 1 are identical to those obtained in [26] for the Cauchy problem associated with
the biharmonic equation, where the method was implemented using FEM. Alternatively, similar convergence results have been
established in the seminal works [19,20], where the method was originally introduced for the Cauchy problem associated with the
Laplace equation.

4. Stopping criteria

As shown in the previous section, the sequence of optimal elements 𝐔𝑘𝑘≥0 converges to the exact solution of the problem. In
order to evaluate the quality of the numerical reconstructions obtained at convergence, a stopping iteration needs to be defined.
However, it is crucial to choose an appropriate stopping iteration. This can be challenging since we usually do not have knowledge
of the exact solution of the problem. Stopping the algorithm too early may result in reduced accuracy, while stopping it too late
can reintroduce the instability of the Cauchy problem when dealing with noisy data.

To address this issue, it is convenient to use control terms that can generate an accurate and reliable stopping criterion.

4.1. Previous stopping criteria

The fading regularization method incorporates different control terms to measure the convergence of the algorithm. For example,
Delvare [35] and Cimetière et al. [19] use a stopping criterion based on the sign of the scalar product, defined as:

𝑠𝑝(𝐔𝑘+1) ∶= ⟨𝐔𝑘+1 −𝜱𝑑,𝐔𝑘+1 − 𝐔𝑘⟩𝐻(𝛤𝑑 ). (8)

The condition ⟨𝐔𝑘+1 −𝜱𝑑,𝐔𝑘+1 −𝐔𝑘⟩𝐻(𝛤𝑑 ) ≤ 0 must be satisfied for 𝐔𝑘+1 to be an optimal element. This is a direct consequence
of the optimality equation (6), in which 𝐕 is replaced by 𝐔𝑘+1 − 𝐔𝑘 ∈ 𝐻(𝛤 ).

Moreover, we can demonstrate that the following sequences decrease during the iterative process:

∙ The data relaxation term at each iteration
(

𝐽𝑘𝛤𝑑
)

is defined as

𝐽𝑘+1𝛤𝑑
(𝐔𝑘+1) = ‖𝐔|𝛤𝑑𝑘+1 −𝜱𝑑‖2𝐻(𝛤𝑑 )

, (9)

where ‖ ⋅ ‖𝐻(𝛤𝑑 ) represents the Hilbert space norm on 𝛤𝑑 .
∙ The optimal value of the functional at each iteration

(

𝐽𝑘𝑐
)

is defined as

𝐽𝑘+1𝑐 (𝐔𝑘+1) = ‖𝐔𝑘+1|𝛤𝑑 −𝜱𝑑‖2𝐻(𝛤𝑑 )
+ 𝑐‖𝐔𝑘+1 − 𝐔𝑘‖2𝐻(𝛤 ), (10)

where ‖ ⋅ ‖𝐻(𝛤 ) represents the Hilbert space norm on 𝛤 .

Furthermore, the sequence
(

𝐽𝑘𝛤
)

, which is composed of the regularization term at each iteration:

𝐽𝑘+1𝛤 (𝐔𝑘+1) = 𝑐‖𝐔𝑘+1 − 𝐔𝑘‖2𝐻(𝛤 ) (11)

is bounded and converges towards zero. Based on previous works [31,36], which suggest that the sequence is decreasing, we
introduce three stopping criteria that are based on the decay properties of each sequence. In [31], a criterion related to 𝐽𝑐 was
used but was later replaced with the criterion related to 𝐽𝛤 because it does not require prior knowledge of data quality. Therefore,
we do not use the stopping criterion linked to 𝐽 in our work.
𝛤𝑑

4 
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Table 1
Summary of the four stopping criteria.
Criterion label Description

𝐶𝐽𝛤 Violation of the property 𝐽𝛤 decreases.
𝐶𝐽𝑐 Violation of the property 𝐽𝑐 decreases.
𝐶𝑠𝑝 Violation of the property 𝑠𝑝 ≤ 0.
𝐶𝑆𝑐 Violation of the property 𝑆𝑐 increases.

4.2. Proposition of a stopping criterion

We propose a new stopping criterion based on the equality presented in Lemma 1, where for compatible data 𝜱𝑑 , we have:

𝑘
∑

𝑗=0
‖𝐔𝑗+1 − 𝐔𝑗‖2𝐻(𝛤 ) +

2
𝑐

𝑘
∑

𝑗=0
‖𝐔𝑗+1 −𝜱𝑑‖

2
𝐻(𝛤𝑑 )

= ‖𝐔𝑒‖2𝐻(𝛤 ) − ‖𝐔𝑘+1 − 𝐔𝑒‖2𝐻(𝛤 ), ∀𝑘 ∈ N. (12)

However, when the data are noisy and therefore probably incompatible, this equality is no longer valid. For the sake of simplicity,
we introduce the following notations for each side of the equality (12):

∙ 𝑆𝑘+1𝑑 (𝐔𝑘+1) ∶=
∑𝑘
𝑗=0 ‖𝐔

𝑗+1 − 𝐔𝑗‖2𝐻(𝛤 ) +
2
𝑐
∑𝑘
𝑗=0 ‖𝐔

𝑗+1 −𝜱𝑑‖
2
𝐻(𝛤𝑑 )

,
∙ 𝑆𝑘+1𝑒 (𝐔𝑘+1) ∶= ‖𝐔𝑒‖2𝐻(𝛤 ) − ‖𝐔𝑘+1 − 𝐔𝑒‖2𝐻(𝛤 ).

In the case of compatible data, we have

𝑆𝑘+1𝑒 (𝐔𝑘+1) ⟶
𝑘→+∞

‖𝐔𝑒‖2𝐻(𝛤 )

and

𝑆𝑘+1𝑑 (𝐔𝑘+1) ⟶
𝑘→+∞

‖𝐔𝑒‖2𝐻(𝛤 ).

owever, we know from experience that the fading regularization method [19,31] is capable to filtrate the noise from the data.
hereby, in the case of noisy data �̃�𝑑 , we modify the term 𝑆𝑘+1𝑑 by removing the accumulation of the noise filtered by the

regularization process and which remains in the sum
𝑘
∑

𝑗=0
‖𝐔𝑗+1 − �̃�𝑑‖

2
𝐻(𝛤𝑑 )

.

his accumulation is approximated at the iteration (𝑘 + 1) by the term

(𝑘 + 1)‖𝐔𝑘+1 − �̃�𝑑‖
2
𝐻(𝛤𝑑 )

.

The left-hand side of the equality (12) is then replaced by

𝑆𝑘+1𝑐 (𝐔𝑘+1) ∶=
𝑘
∑

𝑗=0
‖𝐔𝑗+1 − 𝐔𝑗‖2𝐻(𝛤 ) +

2
𝑐

(

𝑘
∑

𝑗=0
‖𝐔𝑗+1 − �̃�𝑑‖

2
𝐻(𝛤𝑑 )

− (𝑘 + 1)‖𝐔𝑘+1 − �̃�𝑑‖
2
𝐻(𝛤𝑑 )

)

. (13)

It is easy to establish that the sequence
(

𝑆𝑘+1𝑐
)

𝑘≥0 is increasing independently of the nature of the data (noisy or compatible).

Remark. In the case of compatible data, the term
𝑘
∑

𝑗=0
‖𝐔𝑗+1 −𝜱𝑑‖

2
𝐻(𝛤𝑑 )

will generate an accumulation of numerical approximation errors which will be subtracted by the term

(𝑘 + 1)‖𝐔𝑘+1 −𝜱𝑑‖
2
𝐻(𝛤𝑑 )

.

Moreover, we can show in this case that the sequences
(

𝑆𝑘+1𝑐
)

𝑘≥0 et
(

𝑆𝑘+1𝑒
)

𝑘≥0 are convergent and have the same limit.

Taking into account the previous outcomes, we define a new stopping criterion based on the violation of the property 𝑆𝑘𝑐 (𝐔𝑘+1)
increases.

A summary of all the criteria used to stop the fading regularization iterative algorithm is given in Table 1.
5 
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5. Discrete formulation of the iterative algorithm

5.1. Discrete formulation using the method of fundamental solutions (MFS)

We choose to implement the fading regularization algorithm (5) using the method of fundamental solutions (MFS). The MFS is
meshless method, which aims to approximate the solution in the domain and on its boundary without doing any integration. It

lso maintains effectiveness and accuracy. The ease of its implementation is also an advantage. In fact, the MFS usually generates
n ill-conditioned system to solve, even for direct problems. Hence, this will be convenient in our case where we associate it with
he fading regularization method which is a regularization technique. However, the knowledge of a fundamental solution of the
perator, the position of source points and their number, on which the approximation is very dependent, are the main drawbacks
f such method.

In the context of the inverse biharmonic problem, the MFS was already used by Marin and Lesnic [9] and Lesnic and Zeb [37]
here it was combined with Tikhonov’s regularization method. The approximation is thus realized by a linear combination of

undamental solutions of the Laplace equation ℱ1 and of the biharmonic equation ℱ2, which are given by, see [38]:
‖

‖

‖

‖

‖

‖

‖

‖

ℱ1(𝐱, 𝐲) = − 1
2𝜋

ln 𝑟(𝐱, 𝐲)

ℱ2(𝐱, 𝐲) = − 1
8𝜋
𝑟2(𝐱, 𝐲) ln 𝑟(𝐱, 𝐲)

, 𝐱 = (𝑥1, 𝑥2) ∈ 𝛺, 𝐲 = (𝑦1, 𝑦2) ∈ R2∖𝛺, (14)

where 𝑟(𝐱, 𝐲) =
√

(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2.
Hence,

𝑢(𝐱) ≈ 𝑢𝑀 (𝑎, 𝑏,𝐘; 𝐱) =
𝑀
∑

𝑗=1
𝑎𝑗ℱ1(𝐱, 𝐲𝑗 ) + 𝑏𝑗ℱ2(𝐱, 𝐲𝑗 ), 𝐱 ∈ �̄� (15)

where 𝑎 = (𝑎1,… , 𝑎𝑀 ) ∈ R𝑀 , 𝑏 = (𝑏1,… , 𝑏𝑀 ) ∈ R𝑀 and 𝐘 is an 𝑀-vector of source points, 𝐲𝑗 ∈ R2∖�̄�.
However, the aim here is to approximate the optimal element 𝐔𝑘+1 characterized by (6) which also involves approximations of

the elements 𝑢,𝐧, 𝑣 and 𝑣,𝐧. By linearity of the normal derivative and of the Laplace equation, one obtains:

𝑢′𝑀 (𝐱) ≈ 𝜕𝑢𝑀

𝜕𝑛
(𝑎, 𝑏,𝐘,𝐧; 𝐱) =

𝑀
∑

𝑗=1
𝑎𝑗ℱ

′
1(𝐱, 𝐲𝑗 ;𝐧) + 𝑏𝑗ℱ ′

2(𝐱, 𝐲𝑗 ;𝐧), 𝐱 ∈ 𝛤 , (16)

𝑣𝑀 (𝐱) ≈ 𝑣𝑀 (𝑎, 𝑏,𝐘; 𝐱) =
𝑀
∑

𝑗=1
𝑏𝑗𝒢2(𝐱, 𝐲𝑗 ), 𝐱 ∈ 𝛤 , (17)

𝑣′𝑀 (𝐱) ≈
𝜕𝑣𝑀
𝜕𝑛

(𝑎, 𝑏,𝐘,𝐧; 𝐱) =
𝑀
∑

𝑗=1
𝑏𝑗𝒢

′
2(𝐱, 𝐲𝑗 ), 𝐱 ∈ 𝛤 , (18)

where

ℱ ′
1(𝐱, 𝐲;𝐧) = − 1

2𝜋
1

𝑟2(𝐱, 𝐲)
((𝐱 − 𝐲).𝐧(𝐱)), 𝐱 ∈ 𝛤 , 𝐲 ∈ R2∖𝛺, (19)

ℱ ′
2(𝐱, 𝐲;𝐧) = − 1

8𝜋
(2 ln 𝑟(𝐱, 𝐲) + 1)((𝐱 − 𝐲).𝐧(𝐱)), 𝐱 ∈ 𝛤 , 𝐲 ∈ R2∖𝛺, (20)

𝒢2(𝐱, 𝐲) = − 1
2𝜋

(ln 𝑟(𝐱, 𝐲) + 1), 𝐱 ∈ 𝛤 , 𝐲 ∈ R2∖𝛺, (21)

𝒢 ′
2(𝐱, 𝐲;𝐧) = − 1

2𝜋
1

𝑟2(𝐱, 𝐲)
((𝐱 − 𝐲).𝐧(𝐱)), 𝐱 ∈ 𝛤 , 𝐲 ∈ R2∖𝛺. (22)

The approximations (15), (16), (17) and (18) can also be written as an algebraic system with 2𝑀 unknowns:

𝐗 = 𝐔𝑒 (23)

here  = (𝐱,𝐘;𝐧) is the matrix which contains the functions given by the Eqs. (14), (19), (20), (21) and (22), 𝐗𝑇 =
(𝑎1,… , 𝑎𝑀 , 𝑏1,… , 𝑏𝑀 ) is the vector of the 2𝑀 unknowns and 𝐔𝑇𝑒 = (𝑢, 𝑢,𝐧, 𝑣, 𝑣,𝐧).

We can see through this algebraic system that it is not necessary to discretize the whole domain in order to have the
pproximation of the solution on the boundary. We denote by 𝐔 the vector which contains the discrete values of the approximate
olution 𝐔ℎ ∈ ℎ(𝛤 ). If we consider 𝑁 collocation points on the boundary 𝛤 , we can write this vector in the form 𝐔 =
𝑢1,… , 𝑢𝑁 , 𝑢′1,… , 𝑢′𝑁 , 𝑣1,… , 𝑣𝑁 , 𝑣′1,… , 𝑣′𝑁 ). And by computing the matrice  at these collocation points, we can express this vector
sing the following linear system:

 𝐗 = 𝐔 (24)

here  = (𝐱,𝐘;𝐧) is evaluated at each collocation points 𝐱 = (𝐱1,… , 𝐱𝑁 ). We call  the matrice of fundamental solutions which
ize is 4𝑁 × 2𝑀 and constructed as follows:
or 𝑖 ∈ 1, 𝑁 :
6 
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– and for 𝑗 ∈ 1,𝑀 :

𝑖,𝑗 = ℱ1(𝐱,𝐘),
𝑁+𝑖,𝑗 = ℱ ′

1(𝐱,𝐘;𝐧),
2𝑁+𝑖,𝑗 = 0,

3𝑁+𝑖,𝑗 = 0.

– and for 𝑗 ∈𝑀, 2𝑀 :

𝑖,𝑗 = ℱ2(𝐱,𝐘),
𝑁+𝑖,𝑗 = ℱ ′

2(𝐱,𝐘;𝐧),
2𝑁+𝑖,𝑗 = 𝒢2(𝐱,𝐘;𝐧),
3𝑁+𝑖,𝑗 = 𝒢 ′

2(𝐱,𝐘;𝐧).

We can then define the space H𝑁 (𝛤 ) of discrete solutions of the biharmonic equation by:

H𝑁 (𝛤 ) =
{

𝐔 = (𝐔,𝐔′,𝐕,𝐕′) ∈ R𝑁 × R𝑁 × R𝑁 × R𝑁 as it exists 𝐗 ∈ R2𝑀 such that  𝐗 = 𝐔
}

.

5.2. Discrete iterative algorithm obtained with the MFS

The discrete iterative algorithm obtained with the method of fundamental solutions comes down to determining a sequence of
vectors (𝐗𝑘)𝑘∈N solutions to minimization problems, as for 𝑐 > 0 and 𝐗0 = 0R2𝑀 we have:

⎧

⎪

⎨

⎪

⎩

𝐗𝑘+1 = min
𝐗∈R2𝑀

𝐽𝑘+1𝑐 (𝐗)

where 𝐽𝑘+1𝑐 (𝐗) = ‖
|𝛤𝑑

𝐗 −Φ𝑑‖
2
𝐻(𝛤𝑑 )

+ 𝑐‖ 𝐗 − 𝐗𝑘‖2𝐻(𝛤 )

(25)

Hence, minimizing, at the iteration 𝑘, the functional 𝐽𝑘+1𝑐 with respect to 𝐗 leads to solve the following linear system:

(𝑡
|𝛤𝑑


|𝛤𝑑

+ 𝑐𝑡)𝐗 = 𝑡
|𝛤𝑑

Φ𝑑 + 𝑐𝑡 𝐗𝑘.

where 
|𝛤𝑑

represents the restriction of  evaluated at the collocation points belonging to the boundary 𝛤𝑑 .

6. Numerical results

Herein we present numerical simulations obtained using the fading regularization method combined with the MFS for the inverse
Cauchy problem composed by the equilibrium equation (1) and the boundary conditions (3). These simulations are carried out by
using data generated from an analytical solution 𝑢𝑎𝑛, i.e. 𝛷𝑑 = (𝜑𝑑 , 𝜓𝑑 , 𝜇𝑑 , 𝜙𝑑 ) = (𝑢𝑎𝑛

|𝛤𝑑
, 𝑢𝑎𝑛,𝐧|𝛤𝑑

, 𝑣𝑎𝑛
|𝛤𝑑
, 𝑣𝑎𝑛,𝐧|𝛤𝑑

). We consider the following
two analytical solutions:

Analytical solution 1

𝑢𝑎𝑛(𝐱) = 𝑥31 + 𝑥
3
2,

𝑣𝑎𝑛(𝐱) = 𝛥𝑢𝑎𝑛(𝐱) = 6(𝑥1 + 𝑥2),
𝐱 = (𝑥1, 𝑥2) ∈ 𝛺, (26)

Analytical solution 2

𝑢𝑎𝑛(𝐱) = 1
2
𝑥1(sin 𝑥1 cosh 𝑥2 − cos 𝑥1 sinh 𝑥2),

𝑣𝑎𝑛(𝐱) = 𝛥𝑢𝑎𝑛(𝐱) = cosh 𝑥2 cos 𝑥1 + sinh 𝑥2 sin 𝑥1,
𝐱 = (𝑥1, 𝑥2) ∈ 𝛺, (27)

where 𝛺 is an open bounded domain. We firstly investigate the reconstructions for a smooth two-dimensional domain represented
by the unit disk 𝛺 = {𝐱 = (𝑥1, 𝑥2) ∣ 𝑥21 + 𝑥22 ≤ 1} (Fig. 1), where the accessible part of the boundary is the upper semi-circle
𝛤𝑑 = {𝐱 ∈ 𝛤 ∣ 0 ≤ 𝜃(𝐱) ≤ 𝜋}, whereas the inaccessible part is the lower one 𝛤𝑖 = {𝐱 ∈ 𝛤 ∣ 𝜋 ≤ 𝜃(𝐱) ≤ 2𝜋}, in which 𝜃(𝐱) denotes
the angular coordinate of 𝐱. Next, we give some reconstructions for a non-regular domain taken as the square domain [0, 1] × [0, 1]
(Fig. 2), where only two sides of its boundary are accessible.

We recall MFS parameters the number of source points 𝑀 that are taken uniformly distributed on a circle outside the domain 𝛺
and the distance 𝑑 which separates them from the boundary 𝛤 . The collocation points on the boundary 𝛤 are likewise uniformly
distributed (see Fig. 1).

Figs. 3 and 4 give the reconstructions of the solution 𝑢 and of the components 𝑢,𝐧, 𝑣 and 𝑣,𝐧 on the whole boundary obtained
by the fading regularization method combined with the method of fundamental solutions for the two analytical solutions and for
three different values of the regularization parameter 𝑐 (10, 10−1 and 10−3). The MFS parameters taken here are such as 𝑀 = 10,
𝑑 = 10 for the analytical solution 1 and 𝑀 = 10, 𝑑 = 8 for the analytical solution 2. These reconstructions are obtained using the
criterion 𝐶𝐽𝛤 . It can be noticed that the reconstructions of all the boundary conditions are accurate and independent on the choice
of the parameter 𝑐.
7 
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Fig. 1. Regular domain 𝛺 surrounded by source points 𝐲𝑗 located on a circle at the distance 𝑑 from the boundary 𝛤 .

Fig. 2. Rectangular domain 𝛺 with an accessible part 𝛤𝑑 located on two adjacent sides (a) or two opposite sides (b) surrounded by source points 𝐲𝑗 uniformly
distributed on a circle outside the domain.

To study the noisy data case, we consider that the analytical boundary data are perturbed as following:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜑𝑑 (𝐱) = 𝑢𝑎𝑛(𝐱) + 𝛿max
𝐲∈𝛤𝑑

(|𝑢𝑎𝑛(𝐲)|)𝜌, 𝐱 ∈ 𝛤𝑑 ,

𝜓𝑑 (𝐱) = 𝑢𝑎𝑛,𝐧 (𝐱) + 𝛿max
𝐲∈𝛤𝑑

(|𝑢𝑎𝑛,𝐧 (𝐲)|)𝜌, 𝐱 ∈ 𝛤𝑑 ,

𝜇𝑑 (𝐱) = 𝑣𝑎𝑛(𝐱) + 𝛿max
𝐲∈𝛤𝑑

(|𝑣𝑎𝑛(𝐲)|)𝜌, 𝐱 ∈ 𝛤𝑑 ,

𝜙𝑑 (𝐱) = 𝑣𝑎𝑛,𝐧 (𝐱) + 𝛿max
𝐲∈𝛤𝑑

(|𝑣𝑎𝑛,𝐧 (𝐲)|)𝜌, 𝐱 ∈ 𝛤𝑑 ,

(28)

where 𝛿 is the level of noise and 𝜌 is a pseudo-random number from the standard uniform distribution in [−1, 1].
The reconstructions in the case of noisy data are given by Figs. 5 and 6 for both examples of analytical solutions and by applying

the criterion 𝐶𝐽𝛤 . Fig. 7 gives the reconstruction of the solution on the accessible part of the boundary 𝛤𝑑 . We note that the fading
regularization method succeeded in denoising all the data on this part even in the presence of a high noise level 𝛿 = 10%.

In order to investigate the accuracy of the solution obtained at each iteration of the iterative process, we consider the following
error estimations:

𝑢𝑘𝑒𝑟𝑟 =
‖𝑢𝑎𝑛 − 𝑢𝑘‖𝐿2(𝛤 )

‖𝑢𝑎𝑛‖𝐿2(𝛤 )
; 𝑢′𝑘𝑒𝑟𝑟 =

‖𝑢𝑎𝑛,𝐧 − 𝑢𝑘,𝐧‖𝐿2(𝛤 )

‖𝑢𝑎𝑛,𝐧 ‖𝐿2(𝛤 )
; 𝑣𝑘𝑒𝑟𝑟 =

‖𝑣𝑎𝑛 − 𝑣𝑘‖𝐿2(𝛤 )

‖𝑣𝑎𝑛‖𝐿2(𝛤 )
; 𝑣′𝑘𝑒𝑟𝑟 =

‖𝑣𝑎𝑛,𝐧 − 𝑣𝑘,𝐧‖𝐿2(𝛤 )

‖𝑣𝑎𝑛,𝐧 ‖𝐿2(𝛤 )
. (29)

6.1. Comparison of the stopping criteria

Herein we investigate the performance of the stopping criteria proposed to stop the fading regularization algorithm. Hence, we
shall give some numerical tests by varying the parameters 𝑐, 𝑁 , 𝑁𝛤𝑑 and the proportion of 𝛤𝑑 for compatible and noisy data. These
tests are carried out by considering the analytical solution 1 and the MFS parameters such as 𝑀 = 10 and 𝑑 = 10.
8 
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Fig. 3. Reconstructions of 𝑢 (a), 𝑢,𝐧 (b), 𝑣 (c) and 𝑣,𝐧 (d) on the whole boundary for the analytical solution 1 and for different values of 𝑐 = 10, 10−1 and 10−3

with compatible data.

6.1.1. Influence of the parameter 𝑐
We can see from Figs. 8 and 9 that the algorithm is always convergent no matter the value taken for the parameter 𝑐. We can

also observe that all the control terms are decreasing and become constant almost at the same iteration.
The results given by Fig. 10 validate the new stopping criterion (13). In fact, it highlights the validity of the equality (𝑆𝑑 = 𝑆𝑒)

given by Lemma 1 only for compatible data. However, we can see that the modification, given by the term 𝑆𝑐 to re-establish the
equality of the lemma for incompatible data, is well established because we get that 𝑆𝑐 = 𝑆𝑒 after a certain number of iterations.
Moreover, this is also valid for noisy data as well as for compatible data. The idea is therefore to consider this modification to
propose a new stopping criterion valid for any type of data. As the quantity 𝑆𝑐 is increasing (a sum of positive quantities), the
algorithm can be stopped when this quantity (13) becomes quite constant. This can be compared with the other stopping criteria,
where in Fig. 11 all control terms become roughly constant within a common range of iterations. Next, a more complete study is
conducted where we compare criteria by evaluating the error norms taken at each corresponding stopping iteration.

Tables 2 and 3 show more precise comparisons between the reconstruction results given by Figs. 3 and 5 and can provide us
with the conclusion that the differences between the used criteria only occur when the coefficient 𝑐 ≥ 10−1 and that as well for
compatible data as for noisy data.

We also notice, thanks to Tables 2 and 3 that the criterion 𝐶𝐽𝛤 is less reliable when the regularization coefficient 𝑐 ≥ 1. Indeed,
this criterion is activated too early. On the other hand, the other criteria give roughly the same results. Moreover, one can note that
the coefficient 𝑐 only accelerate the convergence rate of the algorithm but that it is not necessarily interesting to choose it too small
in order to keep a regularization effect. We also notice that the reconstructions of 𝑢 and 𝑢,𝐧 are always less precise than those of 𝑣
and 𝑣,𝐧.

Table 4 shows the evolution of error estimates while varying the level of noise and for different values of regularization parameter
𝑐. We can notice some kind of stability towards the increase of the noise level and that the error increases are roughly linear compared
to the level of noise.

6.1.2. Influence of the extension of the accessible part 𝛤𝑑
A small number of data or a small accessible part 𝛤𝑑 may exist in practice and therefore having an effective stopping criterion

in these cases seems very useful. To this end, we carry out tests by varying the accessible part of the boundary for compatible data

and noisy data. We further denote by 𝜁 the coefficient such that |𝛤𝑑 | = 𝜁 |𝛤 |.

9 
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Fig. 4. Reconstructions of 𝑢 (a), 𝑢,𝐧 (b), 𝑣 (c) and 𝑣,𝐧 (d) on the whole boundary for the analytical solution 2 and for different values of 𝑐 = 10, 10−1 and 10−3

with compatible data.

Tables 5 and 6 show the evolution of the error estimates and of the evolution of the stopping iteration for different values of 𝜁
for both compatible and noisy data. We notice that all stopping criteria give almost the same reconstruction results, except when
the accessible part 𝛤𝑑 is very small. We observe in this case that the criterion 𝐶𝐽𝛤 would be more efficient than the others when the
data are noisy but it is however the least efficient in the case of compatible data. Moreover, the new criterion proposed 𝐶𝑆𝑐 gives
identical results to those obtained using the criterion 𝐶𝐽𝑐 .

6.2. Influence of the MFS parameters

As indicated previously, the position of the source points and their number are crucial parameters when using the method of
fundamental solutions. We study here the influence of the number of sources 𝑀 as well as the influence of their positioning on the
quality of the reconstructions. Therefore, we will vary each parameter for a fixed value of the rest and for a different number of
collocation points 𝑁 . Indeed, when the number of source points varies, the number of collocation points on the boundary must also
vary to establish a complete numerical analysis.

Table 7 shows the influence of the number of source points 𝑀 on the numerical results retrieved by the fading regularization
method for different number of collocation points 𝑁 and at a fixed distance 𝑑 = 10. We can notice that the number of source points
𝑀 should not be very low to have good reconstructions. Moreover, we notice that the ratio 𝑀∕𝑁 should be greater than 1∕3 to
have accurate results. This appears to be a very good agreement with the corresponding results in [38–40] on the application of
the MFS to problems associated with elliptic partial differential operators.

Table 8 shows the influence of the distance 𝑑 for different number of source points 𝑀 and collocation points 𝑁 such as the ratio
𝑀∕𝑁 is equal to 2∕3. We can see that the parameter 𝑑 highly affects the accuracy of the reconstructions. In fact, it must be large
enough, but not too much, to obtain an accurate solution. Note also that the numerical errors are larger when reconstructing 𝑢 and
𝑢′ than 𝑣 and 𝑣′.

6.3. Reconstruction in the case of a square domain

We consider here the case of a non-regular domain: the unit square [0, 1]×[0, 1] ⊂ R2 (Fig. 2). We apply the fading regularization
method combined with the MFS to solve the inverse Cauchy problem in order to reconstruct the boundary conditions on the whole
10 
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Fig. 5. Reconstructions of 𝑢 (a), 𝑢,𝐧 (b), 𝑣 (c) and 𝑣,𝐧 (d) on the whole boundary for the analytical solution 1 with different levels of noisy data (𝛿 = 1%, 3%
and 5%) and 𝑐 = 10−3.

Table 2
Evolutions of the error estimates and of the stopping iteration for each stopping criterion and for different values of 𝑐 with
compatible data.
𝑐 Criterion 𝑘 𝑢𝑒𝑟𝑟 (%) 𝑢′𝑒𝑟𝑟 (%) 𝑣𝑒𝑟𝑟 (%) 𝑣′𝑒𝑟𝑟 (%)

10

𝐶𝐽𝛤 971 32.76 22.90 10.46 19.71
𝐶𝐽𝑐 12 011 0.58 0.43 4.16 × 10−2 8.51 × 10−2

𝐶𝑠𝑝 12 934 0.45 0.33 2.58 × 10−2 5.24 × 10−2

𝐶𝑆𝑐 12 934 0.45 0.33 2.58 × 10−2 5.24 × 10−2

1

𝐶𝐽𝛤 718 2.76 2.05 3.33 × 10−1 6.85 × 10−1

𝐶𝐽𝑐 1 565 0.29 0.21 4.73 × 10−3 8.10 × 10−3

𝐶𝑠𝑝 1 565 0.29 0.21 4.73 × 10−3 8.10 × 10−3

𝐶𝑆𝑐 1 565 0.29 0.21 4.73 × 10−3 8.10 × 10−3

10−1

𝐶𝐽𝛤 179 0.23 0.17 9.40 × 10−4 2.05 × 10−3

𝐶𝐽𝑐 187 0.22 0.16 1.94 × 10−3 4.81 × 10−3

𝐶𝑠𝑝 179 0.23 0.17 9.40 × 10−4 2.05 × 10−3

𝐶𝑆𝑐 187 0.22 0.16 1.94 × 10−3 4.81 × 10−3

10−2

𝐶𝐽𝛤 24 0.05 0.07 5.63 × 10−2 1.23 × 10−1

𝐶𝐽𝑐 18 0.05 0.07 5.64 × 10−2 1.23 × 10−1

𝐶𝑠𝑝 18 0.05 0.07 5.64 × 10−2 1.23 × 10−1

𝐶𝑆𝑐 18 0.05 0.07 5.64 × 10−2 1.23 × 10−1

10−3

𝐶𝐽𝛤 11 0.13 0.12 1.10 × 10−1 2.32 × 10−1

𝐶𝐽𝑐 10 0.13 0.12 1.10 × 10−1 2.32 × 10−1

𝐶𝑠𝑝 7 0.13 0.12 1.10 × 10−1 2.32 × 10−1

𝐶𝑆𝑐 10 0.13 0.12 1.10 × 10−1 2.32 × 10−1

10−4

𝐶𝐽𝛤 6 0.14 0.12 1.10 × 10−1 2.30 × 10−1

𝐶𝐽𝑐 5 0.14 0.12 1.10 × 10−1 2.30 × 10−1

𝐶𝑠𝑝 4 0.14 0.12 1.10 × 10−1 2.30 × 10−1

𝐶𝑆𝑐 4 0.14 0.12 1.10 × 10−1 2.30 × 10−1
11 
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Fig. 6. Reconstructions of 𝑢 (a), 𝑢,𝐧 (b), 𝑣 (c) and 𝑣,𝐧 (d) on the whole boundary for the analytical solution 2 with different levels of noisy data (𝛿 = 1%, 3%
and 5%) and 𝑐 = 10−3.

Table 3
Evolutions of the error estimates and of the stopping iteration for each stopping criterion and for different values of 𝑐 with noisy
data (𝛿 = 3%).
𝑐 Criterion 𝑘 𝑢𝑒𝑟𝑟 (%) 𝑢′𝑒𝑟𝑟 (%) 𝑣𝑒𝑟𝑟 (%) 𝑣′𝑒𝑟𝑟 (%)

10

𝐶𝐽𝛤 683 45.88 30.88 14.65 26.13
𝐶𝐽𝑐 11 799 10.58 7.98 3.21 6.17
𝐶𝑠𝑝 13 010 10.56 8.04 3.24 6.22
𝐶𝑆𝑐 13 010 10.56 8.04 3.24 6.22

1

𝐶𝐽𝛤 804 10.90 7.62 3.02 5.67
𝐶𝐽𝑐 1 756 10.57 8.09 3.24 6.23
𝐶𝑠𝑝 1 756 10.57 8.09 3.24 6.23
𝐶𝑆𝑐 1 794 10.57 8.09 3.24 6.23

10−1

𝐶𝐽𝛤 173 10.57 8.10 3.25 6.24
𝐶𝐽𝑐 210 10.56 8.11 3.25 6.26
𝐶𝑠𝑝 192 10.56 8.11 3.25 6.25
𝐶𝑆𝑐 210 10.56 8.11 3.25 6.26

10−2

𝐶𝐽𝛤 21 12.99 7.73 1.93 2.32
𝐶𝐽𝑐 16 13.00 7.73 1.93 2.32
𝐶𝑠𝑝 15 13.00 7.74 1.93 2.32
𝐶𝑆𝑐 16 13.00 7.73 1.93 2.32

10−3

𝐶𝐽𝛤 10 13.07 7.77 1.83 2.12
𝐶𝐽𝑐 8 13.07 7.77 1.83 2.12
𝐶𝑠𝑝 7 13.07 7.77 1.83 2.12
𝐶𝑆𝑐 8 13.07 7.77 1.83 2.12

10−4

𝐶𝐽𝛤 6 13.07 7.77 1.82 2.12
𝐶𝐽𝑐 5 13.07 7.77 1.82 2.12
𝐶𝑠𝑝 5 13.07 7.77 1.82 2.12
𝐶𝑆𝑐 5 13.07 7.77 1.82 2.12
12 
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Fig. 7. Reconstructions of 𝑢 (a), 𝑢,𝐧 (b), 𝑣 (c) and 𝑣,𝐧 (d) on the boundary part 𝛤𝑑 for the analytical solution 1 with noisy data (𝛿 = 10%) and 𝑐 = 10−3.

Fig. 8. Evolutions of the control terms 𝐽𝛤 , 𝐽𝛤𝑑 and 𝐽𝑐 (a) and of the error estimates (b) for compatible data according to the number of iterations 𝑘 with 𝑐 = 1.
13 



M.A. Boukraa et al.

b
s

Journal of Computational and Applied Mathematics 457 (2025) 116285 
Fig. 9. Evolutions of the control terms 𝐽𝛤 , 𝐽𝛤𝑑 and 𝐽𝑐 (a) and of the error estimates (b) for compatible data according to the number of iterations 𝑘 with
𝑐 = 10−2.

Fig. 10. Evolution of the quantities 𝑆𝑒, 𝑆𝑐 and 𝑆𝑑 according to the number of iterations 𝑘 for compatible data (a) and noisy data (𝛿 = 3%) (b) with 𝑐 = 1.

oundary. We present numerical reconstructions using data generated from the available analytical solution 2 such that only two
ides of the square are accessible. Let 𝑠 be a curvilinear abscissa varying from 0 to 4 such that when 𝑠 ∈ [0, 1] denotes the edge
𝑥2 = 0, 𝑠 ∈ [1, 2] the edge 𝑥1 = 1, 𝑠 ∈ [2, 3] the edge 𝑥2 = 1 and 𝑠 ∈ [3, 4] the edge 𝑥1 = 0. Hence, we will examine two different
situations when these accessible sides are adjacent (𝑥2 = 0 and 𝑥1 = 1, Fig. 2(a)) or opposite (𝑥2 = 0 and 𝑥2 = 1, Fig. 2(b)). For the
MFS parameters, we choose to fix the source points on a circle surrounded the domain such that its centre is ( 12 ,

1
2 ) and its radius

is 5.
The reconstructions in the case of noisy data are given by Figs. 12 and 13 where the data are located respectively on two adjacent

sides or on two opposite sides. The reconstructions are clearly better in the second case because all corners of the domain belongs
to the known boundary part 𝛤𝑑 , thus generating an ease of reconstruction of the normal derivative since it is discontinuous at these

points. However, the reconstruction in the case of adjacent sides is not so bad since the reconstruction kept the shape of the exact

14 



M.A. Boukraa et al. Journal of Computational and Applied Mathematics 457 (2025) 116285 
Fig. 11. Evolution of the control terms 𝐽𝛤 , 𝐽𝛤𝑑 and 𝐽𝑐 according to the number of iterations 𝑘 for compatible data (a) and noisy data (𝛿 = 3%) (b) with 𝑐 = 1.

Fig. 12. Reconstructions of 𝑢 (a), 𝑢,𝐧 (b), 𝑣 (c) and 𝑣,𝐧 (d) for the analytical solution 2 with 𝑐 = 10−1 and noisy data 𝛿 = 3% located on two adjacent sides of
the square domain.

solution curve with a small offset but clearly showing the discontinuity of the normal derivatives 𝑢,𝐧 and 𝑣,𝐧 at the corners belonging
to 𝛤 .
𝑖

15 
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Fig. 13. Reconstructions of 𝑢 (a), 𝑢,𝐧 (b), 𝑣 (c) and 𝑣,𝐧 (d) for the analytical solution 2 with 𝑐 = 10−1 and noisy data 𝛿 = 3% located on two opposite sides of
the square domain.

Table 4
Evolutions of the error estimates and of the stopping iteration associated with the criterion 𝐶𝑆𝑐 for the analytical solution 1,

for different noise levels 𝛿 and different values of 𝑐.
𝛿 𝑐 𝑘 𝑢𝑒𝑟𝑟 (%) 𝑢′𝑒𝑟𝑟 (%) 𝑣𝑒𝑟𝑟 (%) 𝑣′𝑒𝑟𝑟 (%)

1%
10−3 12 3.53 2.67 1.08 2.08
10−2 46 3.53 2.67 1.08 2.08
10−1 374 3.53 2.67 1.08 2.08

3%
10−3 8 13.07 7.77 1.83 2.12
10−2 16 13.00 7.73 1.93 2.32
10−1 212 10.56 8.11 3.25 6.26

5%
10−3 10 16.42 13.41 5.37 10.35
10−2 45 16.57 12.10 5.37 10.35
10−1 364 17.47 11.41 5.37 10.35

10%
10−3 10 34.94 26.82 10.74 20.70
10−2 43 30.04 22.82 10.74 20.70
10−1 360 32.94 22.82 10.74 20.70

7. Conclusion

In this paper, we used the fading regularization method to solve the Cauchy problem associated with the biharmonic equation,
here no boundary conditions are given on a part of the boundary. We presented the continuous formulation of the method and
e also proposed a new stopping criterion for the fading regularization algorithm. The numerical implementation of this algorithm
as carried out using the method of fundamental solutions and two kind of domains, regular and non-regular, were examined.

We carried out a numerical comparative study allowing the validation of the new stopping criterion. We had come to the
onclusion that almost all the criteria proposed to stop the fading regularization algorithm give roughly the same results, except for
pecial situations like a regularization coefficient 𝑐 ≥ 10−1 or a small amount of data. We therefore studied the influence of MFS

parameters on the reconstruction of boundary conditions.
The reconstruction results thus obtained are examined in the case of domains with smooth boundaries where it has been shown

that the obtained solution is stable with respect to noisy data. The reconstructions obtained in the case of a square domain are
16 
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Table 5
Evolutions of the error estimates and of the stopping iteration for each criterion and for different values of 𝜁 for compatible data
with 𝑐 = 10−1.
𝜁 Criterion 𝑘 𝑢𝑒𝑟𝑟 (%) 𝑢′𝑒𝑟𝑟 (%) 𝑣𝑒𝑟𝑟 (%) 𝑣′𝑒𝑟𝑟 (%)

1∕5

𝐶𝐽𝛤 762 42.02 30.24 27.96 46.53
𝐶𝐽𝑐 21 833 14.83 9.71 4.97 9.21
𝐶𝑠𝑝 19 850 16.33 10.90 5.62 10.64
𝐶𝑆𝑐 23 168 13.97 9.02 4.58 8.51

2∕5

𝐶𝐽𝛤 730 7.95 5.85 1.13 2.22
𝐶𝐽𝑐 1 644 1.09 × 10−1 9.23 × 10−2 6.67 × 10−2 1.32 × 10−1

𝐶𝑠𝑝 1 438 4.02 × 10−1 2.98 × 10−1 1.21 × 10−1 2.40 × 10−1

𝐶𝑆𝑐 1 644 1.09 × 10−1 9.23 × 10−2 6.67 × 10−2 1.32 × 10−1

3∕5

𝐶𝐽𝛤 63 5.08 × 10−2 4.22 × 10−2 2.44 × 10−3 6.10 × 10−3

𝐶𝐽𝑐 60 5.19 × 10−2 4.27 × 10−2 2.41 × 10−3 5.99 × 10−3

𝐶𝑠𝑝 56 5.48 × 10−2 4.41 × 10−2 2.37 × 10−3 5.78 × 10−3

𝐶𝑆𝑐 60 5.19 × 10−2 4.27 × 10−2 2.41 × 10−3 5.99 × 10−3

4∕5

𝐶𝐽𝛤 18 2.37 × 10−2 3.51 × 10−2 3.61 × 10−4 1.17 × 10−3

𝐶𝐽𝑐 16 2.37 × 10−2 3.51 × 10−2 3.56 × 10−4 1.17 × 10−3

𝐶𝑠𝑝 16 2.37 × 10−2 3.51 × 10−2 3.56 × 10−4 1.17 × 10−3

𝐶𝑆𝑐 16 2.37 × 10−2 3.51 × 10−2 3.56 × 10−4 1.17 × 10−3

1

𝐶𝐽𝛤 9 1.58 × 10−2 3.17 × 10−2 5.10 × 10−5 1.03 × 10−4

𝐶𝐽𝑐 11 1.58 × 10−2 3.17 × 10−2 4.97 × 10−5 1.03 × 10−4

𝐶𝑠𝑝 8 1.58 × 10−2 3.17 × 10−2 5.15 × 10−5 1.02 × 10−4

𝐶𝑆𝑐 8 1.58 × 10−2 3.17 × 10−2 5.15 × 10−5 1.02 × 10−4

Table 6
Evolutions of the error estimates and of the stopping iteration for each criterion and for different values of 𝜁 for noisy data
(𝛿 = 3%) with 𝑐 = 10−1.
𝜁 Criteria 𝑘 𝑢𝑒𝑟𝑟 (%) 𝑢′𝑒𝑟𝑟 (%) 𝑣𝑒𝑟𝑟 (%) 𝑣′𝑒𝑟𝑟 (%)

1∕5

𝐶𝐽𝛤 743 43.58 34.54 32.17 45.33
𝐶𝐽𝑐 68 767 131.23 141.11 55.79 123.57
𝐶𝑠𝑝 65 551 123.02 133.20 53.45 118.54
𝐶𝑆𝑐 72 013 139.63 149.18 58.16 128.66

2∕5

𝐶𝐽𝛤 874 7.96 7.98 8.23 14.58
𝐶𝐽𝑐 1 783 10.99 10.40 9.07 16.21
𝐶𝑠𝑝 1 588 10.73 10.22 9.03 16.12
𝐶𝑆𝑐 1 804 11.01 10.42 9.08 16.21

3∕5

𝐶𝐽𝛤 67 4.83 2.14 0.86 0.77
𝐶𝐽𝑐 58 4.83 2.14 0.86 0.77
𝐶𝑠𝑝 58 4.83 2.14 0.86 0.77
𝐶𝑆𝑐 58 4.83 2.14 0.86 0.77

4∕5

𝐶𝐽𝛤 18 2.47 1.05 0.36 0.49
𝐶𝐽𝑐 17 2.47 1.05 0.36 0.49
𝐶𝑠𝑝 17 2.47 1.05 0.36 0.49
𝐶𝑆𝑐 17 2.47 1.05 0.36 0.49

1

𝐶𝐽𝛤 11 1.15 0.80 0.30 0.49
𝐶𝐽𝑐 9 1.15 0.80 0.30 0.49
𝐶𝑠𝑝 7 1.15 0.80 0.30 0.49
𝐶𝑆𝑐 9 1.15 0.80 0.30 0.49

relatively accurate despite the presence of corners in the unknown part of the boundary and they also showed a robustness of the
method in the case of data located on two opposite sides. It was also observed that the errors in the numerical normal derivatives,
obtained using the fading regularization-MFS algorithm, were higher than those corresponding to the reconstructed solutions.
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Table 7
Evolutions of the error estimates and of the stopping iteration for different numbers of collocation points 𝑁 and source points
𝑀 fixed at a distance 𝑑 = 10 from the boundary with noisy data (𝛿 = 3%) and 𝑐 = 10−1.
𝑁 𝑀 𝑘 𝑢𝑒𝑟𝑟 (%) 𝑢′𝑒𝑟𝑟 (%) 𝑣𝑒𝑟𝑟 (%) 𝑣′𝑒𝑟𝑟 (%)

30
5 27 404.32 259.07 72.51 63.16

10 129 10.81 6.44 1.37 2.39
20 569 7.43 6.51 1.45 2.53
30 664 7.25 6.66 1.11 2.18

60
10 169 9.23 5.90 2.19 4.64
20 582 9.82 5.21 1.99 4.12
40 637 9.41 5.05 1.78 2.22
60 738 9.34 5.01 1.80 2.25

120

10 208 12.47 8.34 2.55 4.43
40 658 4.57 4.31 1.23 1.34
80 704 4.64 4.39 1.24 1.37

120 715 4.68 4.43 1.25 1.38

240
20 519 5.66 4.98 0.86 1.79
80 722 5.21 4.62 0.35 0.67

160 707 5.09 4.53 0.34 0.65
240 679 5.12 4.55 0.33 0.65

Table 8
Evolutions of the error estimates and of the stopping iteration for different values of the distance 𝑑 that separates the source
points from the boundary and for different numbers of collocation points 𝑁 and source points 𝑀 such as 𝑁∕𝑀 = 2∕3 and
|𝛤𝑑 | =

1
2
|𝛤 | with noisy data: analytical solution 1 (𝛿 = 3%) and 𝑐 = 10−1.

𝑁∕𝑀 𝑑 𝑘 𝑢𝑒𝑟𝑟 (%) 𝑢′𝑒𝑟𝑟 (%) 𝑣𝑒𝑟𝑟 (%) 𝑣′𝑒𝑟𝑟(%)

𝑁 = 60
𝑀 = 40

5 1087 28.71 39.74 7.77 17.98
10 169 9.23 5.90 2.19 4.64
15 164 4.07 2.12 0.59 0.92
20 86 8.90 8.22 5.51 7.36

𝑁 = 120
𝑀 = 80

5 2001 32.79 26.28 11.81 29.20
10 704 4.64 4.39 1.24 1.37
15 173 7.24 3.48 1.04 0.89
20 1120 154.01 119.21 95.46 71.01

𝑁 = 240
𝑀 = 160

5 2205 17.34 21.92 5.81 16.45
10 1707 5.09 4.53 0.34 0.65
15 1139 1.90 1.52 0.34 0.60
20 1121 209.02 168.41 118.56 100.21
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