
HAL Id: hal-04711336
https://hal.science/hal-04711336v1

Submitted on 26 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On the Tractability of Yen’s Algorithm and Contact
Graph Modeling in Contact Graph Routing

Olivier de Jonckère, Juan A Fraire, Scott Burleigh

To cite this version:
Olivier de Jonckère, Juan A Fraire, Scott Burleigh. On the Tractability of Yen’s Algorithm and
Contact Graph Modeling in Contact Graph Routing. 2023 IEEE International Conference on
Wireless for Space and Extreme Environments (WiSEE), Sep 2023, Aveiro, France. pp.80-86,
�10.1109/WiSEE58383.2023.10289594�. �hal-04711336�

https://hal.science/hal-04711336v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On the Tractability of Yen’s Algorithm and Contact
Graph Modeling in Contact Graph Routing

Olivier De Jonckère∗, Juan A. Fraire†‡, Scott Burleigh§
∗Technische Universität Dresden, Dresden, Germany

†Univ Lyon, Inria, INSA Lyon, CITI, F-69621 Villeurbanne, France
‡CONICET - Universidad Nacional de Córdoba, Córdoba, Argentina

§D3TN U.S. Corp., Florida, 444 Brickell Avenue, Miami, FL 33131, USA

Abstract—Contact Graph Routing (CGR), later standardized
as Schedule-Aware Bundle Routing (SABR) by the Consultative
Committee for Space Data Systems (CCSDS), is commonly imple-
mented through modifications of Dijkstra and Yen’s algorithms.
The contribution of this paper lies in the detailed analysis and
measurement of the effects caused by Yen’s algorithm on CGR.
It is observed that Yen’s algorithm significantly reduces the
scalability of CGR, rendering it unsuitable for scenarios involving
numerous nodes numbering in the thousands or even hundreds.
Furthermore, our analysis sheds light on how Yen’s algorithm
introduces unpredictable performance in CGR, resulting in
substantial variations in memory usage and processing demands
during the scheduling of individual bundles. This critical ex-
amination of the algorithm’s behavior highlights operational
risks, as potential adversaries could exploit this vulnerability
by strategically forging and transmitting only a few bundles,
effectively paralyzing the network.

Index Terms—Contact Graph Routing, Bundle Protocol,
Schedule-Aware Bundle Routing

I. INTRODUCTION

The prediction of space network size growth, as discussed
in the “The future Mars Communications Architecture” report
by the Interagency Operations Advisory Group (IOAG) [1],
necessitates the scalability of the underlying routing mecha-
nisms.

As indicated by the IOAG, the Delay-Tolerant Network
(DTN) architecture [2] comprises relay orbiters, user vehicles
(both in orbit and on the surface), relevant Earth stations, and
Mission Operations Centers (MOCs) operating as DTN nodes.
Implementing the bundle protocol [3] within this architecture
enables the retention of bundles, which serve as the protocol
transfer unit, until subsequent intervals of connectivity.

Schedule-Aware Bundle Routing (SABR) [4] standardized
by the Consultative Committee for Space Data Systems
(CCSDS) is also identified by the IOAG as essential for
the service management function. SABR is derived from the
Contact Graph Routing (CGR) implementation [5]. CGR is
currently part of the Interplanetary Overlay Network (ION)
[6], NASA’s reference implementation of the DTN stack.

CGR is a deterministic routing algorithm that utilizes delay-
tolerant adaptations of Dijkstra and Yen’s algorithms [7]. In
a scheduled DTN, the intervals of connectivity, referred to
as contacts, are predetermined and known in advance. This
knowledge is facilitated through orbit trajectory predictions
and contact planning. The contact plan, which comprises the

list of contacts for the network, is provided to each node.
This contact plan enables the creation of a graph for efficient
pathfinding within the network.

However, SABR is recognized to encounter scalability chal-
lenges [8], primarily attributed to its algorithmic complexity.
The processing pressure of SABR is directly influenced by the
size of the contact plan, imposing substantial limitations on its
suitability for networks consisting of more than a few nodes
or contact plans spanning a long time horizon.

The integration and utilization of Yen’s K-shortest path
algorithm in CGR are quite unusual as scheduling events occur
during Yen’s algorithm main loop and not after the computa-
tion of the K-shortest paths. Such entanglement justifies new
hypotheses stating that the algorithmic complexity explanation
alone is insufficient to explain its high processing pressure.

Furthermore, it is worth noting that the algorithmic com-
plexity of Yen’s algorithm is contingent on the specific imple-
mentation of Dijkstra’s algorithm. Additionally, the increas-
ing adoption of node multigraph utilization [9]–[12] as an
approach to reduce the processing cost typically associated
with CGR asks for a deeper analysis of the impact of Dijkstra
and Yen’s algorithm in CGR.

This paper proposes an in-depth analysis of CGR’s function-
ing that allows a new level of understanding concerning CGR’s
scalability issues. This work highlights severe operational and
security risks and the results show that Yen’s algorithm is not
the sole scalability issue.

In Section II, the state-of-the-art will be covered. The analy-
sis of CGR will then be conducted in Section III. Evaluation of
the core issues follows in Section IV, and lastly, a conclusion
will be proposed in Section V.

II. STATE-OF-THE-ART

A. Yen’s Algorithm

Yen’s k-shortest path algorithm, introduced in 1972 by
Yen [13] and Lawler [14], is a technique used to find the
k-shortest paths between a given source and destination in
a graph. It operates iteratively by progressively exploring
alternative routes, eliminating previously discovered paths at
each iteration. The algorithm begins by finding the shortest
path using a conventional algorithm such as Dijkstra’s. It
then examines the set of nodes encountered on this shortest
path and identifies potential detours by temporarily removing

edges from the graph. By iteratively repeating this process,
the algorithm constructs a set of k shortest paths by consider-
ing different deviations and reconstructions from the original
shortest path. Yen’s algorithm provides a flexible and adaptive
approach to finding alternative routes, allowing for a diverse
range of path options based on the desired number of shortest
paths (K).

B. Contact Graph Routing

CGR consists of two main phases: route construction and
route selection.

a) Route Computation: During the route computation
phase, routes are calculated by a delay-tolerant version of
Dijkstra’s algorithm and incorporating an alternative route
search mechanism, typically Yen’s algorithm. These routes are
generated based on a specific destination without considering
the characteristics of individual bundles, such as priority, size,
expiration time, or node exclusions. Dijkstra’s algorithm is
adapted by assuming a bundle size of zero, thus disregarding
the residual contact volumes. The resulting routes are then
stored in routing tables on a per-destination basis.

b) Route Selection: During the route selection phase,
when a bundle needs to be scheduled, the routing table is
accessed for the specified destination to identify potential
routes for the particular bundle. The bundle’s specific aspects,
such as priority, size, expiration time, and node exclusions, are
considered in this phase. Unsuitable routes are disregarded,
and the most appropriate route with the earliest estimated
arrival time is selected. The route selection phase can be
resumed to compute a new route if no suitable route is found
in the routing table. This process continues until a computed
route that meets the requirements of the bundle is found and
selected or it is determined that no suitable route exists, leading
to the abandonment of bundle scheduling.

C. Yen’s Algorithm in CGR

Yen’s K-shortest path algorithm is commonly employed in
CGR with an adaptive approach. This is how CGR operates in
ION, for instance. The parameter K, representing the number
of paths to be discovered, is not explicitly specified. As a
result, the main loop of Yen’s algorithm does not terminate
after a fixed number of iterations, leading to an infinite loop
that can be temporarily suspended and resumed as required.

While suitable routes are available in the routing table,
the optimal route will be selected for forwarding the bundle,
effectively pausing the main loop of Yen’s algorithm. If the
existing routes are deemed unsuitable, the algorithm resumes
its main loop to calculate the next alternative route for a
single iteration. If the newly computed route is suitable, the
bundle can be forwarded using this route. However, further
iterations of Yen’s main loop are necessary if the route remains
unsuitable. Consequently, a single bundle scheduling event
may trigger multiple route computations.

This process, depicted in figure 1, is the core operational
approach implemented in ION.

Compute a new
route with Yen

A route is
suitable

Use the best route
for forwarding

yes

Success

A route
was found

Entrypoint

Failure

no

no

yes

Figure 1: Route selection and computation phases in CGR with
Yen’s algorithm.

D. Determinism and Predictability

Deterministic algorithms consistently produce the same
output for a given input, leading to predictable processing
and memory utilization behavior. This absence of randomness
holds considerable value in space missions, enabling effective
and risk-free operations.

In this context, Dijkstra’s algorithm shows a notable sensi-
tivity to the graph size, determined by the number of nodes and
edges. However, its algorithmic complexity does not exhibit
discernible sensitivity to the specific source and destination
inputs employed for pathfinding. In this case, the worst-case
computational pressure remains consistent.

The practical behavior of Dijkstra’s algorithm lends pre-
dictability to its routing capabilities, as graph update events
occur less frequently than message forwarding events. More-
over, the sizes of the provided contact plans are anticipated
to remain relatively stable between updates. As a result,
each update of the contact plan is not expected to introduce
substantial variations in the processing pressure associated
with Dijkstra’s algorithm.

Dijkstra and Yen’s algorithms are characterized by their
deterministic nature and predictability. Their predictability is
particularly crucial at the individual message-forwarding event
level. However, as discussed in Section II-C, it was concep-
tually illustrated that the number of iterations (K) needed
to schedule a bundle using Yen’s algorithm can vary. The
subsequent sections will delve into a quantitative analysis of
the predictability of CGR when Yen’s algorithm is employed
adaptively as its core component.

III. ANALYSIS

A. Graph structure

In the context of CGR, the graph structure is defined such
that the vertices represent contacts, and the edges represent
the periods of bundle retention. Dijkstra’s algorithm produces
a path composed of a sequence of vertices. Accordingly, when
applied within CGR, Dijkstra’s algorithm yields a route as its

start: 1
end: 2

B C

D2

D1

start: 30
end: 31

start: 10
end: 11

start: 7
end: 8

start: 5
end: 6

start: 3
end: 4

A

start: 20 end: 21

E

arrival time
at E: 20
(via S)

arrival time
at E: 7
(via C)

S

This contact would never be considered with node parenting
 as the parent of node E would be node C

(only the contact between C and E can be part of the best routes to D1 and D2)

Figure 2: Pathfinding variations opposing node parenting against contact parenting and analog techniques (figure from [11])

output, which can be represented as a sequence of contact
vertices, with the edges (absent but denoted by their order)
representing the intervals of message retention.

The routes reflect pretty well the contact graph description.
However, applying this description to a whole graph renders
its construction unintuitive.

This aspect is exemplified in ION, where a red-black
tree stores the graph data. Even though a tree is leveraged
internally, this data structure is a 1-dimensional ordered list
with relatively fast insertion and access (logarithmic com-
plexity). This choice deviates from a structure that readily
aligns with the contact graph representation. In contrast, CGR
implementations and alternative approaches that employ node
multigraphs [9]–[12] facilitate a direct and intuitive mapping
between the concept of node multigraphs and the data structure
utilized in the implementation. A node multigraph is usually
implemented with nested maps (with 2 levels, the first level
needs to be implemented as a hashmap for constant complexity
access). The inmost values are ordered lists of contacts for
single sender-receiver pairs (the sender being the key for the
first level and the receiver for the second level of the nested
maps). Rapid access to the contacts within the multigraph
offers a valuable feature for reducing processing pressure.
However, it is important to note that the output may vary
depending on the parenting strategy employed.

In ION, parenting is contact based, and each contact being
explored is assigned a parent contact (to construct a reverse
path from the last hop contact). This allows the algorithm to
find the best route as intended by the SABR standard.

Some implementations switch to node parenting by attach-
ing explored contacts to the receiver nodes of the contacts
(nodes being vertices in the graph). If node parenting is
leveraged, the computational pressure is minimal [9], [10].
Indeed, assigning and overriding the distances on vertices
(nodes) requires less effort compared to assigning and over-
riding the distances on edges (contacts), drastically reducing
the exploration scope and the number of elements eligible
to be the next current element for the next iteration within
Dijkstra (as they are way more contacts than nodes). Still,
the computed routes might not be the shortest in the sense of
SABR since they possibly show sub-optimal hop counts if the
topology involves multiple paths sharing the same last contact
(discussed later in Section III-B).

The differences in the contact and node parenting pathfind-

ing representations are depicted in figure 2.
Note that the parenting strategy is independent of the un-

derlying graph structure, and it can arguably be stated that the
minimal modification to alter CGR is a shift in the parenting
strategy rather than a shift in the graph structure.

To wrap up, contact parenting is preferred for optimizing
networking performance, while node parenting is favored for
enhancing computational performance.

However, making a definitive choice between these two
strategies is not necessarily mandatory. For instance, in the
context of SPSN (Shortest Path tree approach for Space
Networks), an alternative approach aimed at achieving the
objectives of SABR. Node parenting could still be observed
in [15] but was addressed in [11] through a hybrid approach
that combines contact parenting with node-based filtering. This
hybrid approach balances the two strategies and leverages the
strengths of each to optimize the overall performance of the
system.

B. Distance calculation

According to the SABR standard, the shortest path to a
destination is determined based on the earliest arrival time at
the destination. In cases where multiple paths have the same
optimal arrival time, the preference is given to the path with
the fewest contacts. Suppose a definitive decision cannot be
made based on these criteria. In that case, the tie is resolved
by considering the expiration time of each route, with a later
expiration time being preferred. Additionally, if necessary, the
node number of the receiving node for the initial contact of
each route is examined, with a smaller node number being
preferred as a final tiebreaker.

During the exploration and selection process, the arrival
time at a vertex (which represents the receiver of the contact
if the vertices are associated with contacts) is calculated. This
calculation considers the bundle’s arrival time at the sending
vertex (representing the contact’s sender), the contact’s start
time, and the latency associated with signal propagation be-
tween the sending and receiving nodes. In scenarios where
the search is volume-aware, as demonstrated in [10], [16],
or during the route selection process, the bundle size is also
considered a factor in the calculations.

In the Dijkstra algorithm, distance calculation involves
assigning a distance value to each vertex, the sum of the
distance from the previous vertex, and the cost of the edge

connecting them. This value is updated if a shorter distance is
found. However, in the context of SABR, the objective is to
minimize the arrival time rather than the transit time.

To illustrate this, consider a scenario of flight connections,
where the arrival time of a passenger is determined by the
arrival time of the last flight, regardless of the cumulative
transit times and arrival times of the previous flights taken
to reach the penultimate airport. In this scenario, the shortest
trip would be the one that allows the passenger to reach the
destination airport as soon as possible, prioritizing arrival time
over transit time.

Consequently, distance to the destination in CGR is quasi-
exclusively determined by the last hop contact rather than
being calculated in an additive manner due to the different
metrics involved. The route arrival time is more likely to
be constrained by the last contact arrival time, even if route
construction is volume-aware. If the start time of the last
contact is not later than the start time of the previous one,
then the arrival time will not be constrained by the last contact
but by the penultimate one, and the same comment applies to
each contact upstream on the route.

C. Yen’s algorithm unpredictability

This approach to distance calculation presents significant
side effects when Yen’s algorithm is used as the alternative
route construction technique.

The adaptive implementation of Yen’s algorithm is likely the
most cost-efficient strategy in CGR. Computing all possible
routes beforehand is impractical, as the number of paths
needed cannot be determined in advance (as discussed in
Section II-C). Instead, the adaptive strategy allows for the
computation of only the routes necessary for the specific rout-
ing requirements at hand. By dynamically generating routes as
needed, the adaptive approach minimizes unnecessary compu-
tations and optimizes allocating computational resources. This
adaptive strategy balances computational efficiency and meets
the routing demands of CGR.

However, while a single Dijkstra call typically incurs a
minimal computational cost, cycling through Yen’s main loop
can involve multiple algorithm iterations. Each iteration, in
turn, requires additional Dijkstra calls, with the total count
proportional to the number of iterations multiplied by the
average path length. Therefore, the computational cost as-
sociated with Yen’s algorithm can accumulate as the main
loop progresses, potentially leading to increased processing
requirements during bundle scheduling.

The critical question revolves around the stability of the
number of iterations required for scheduling a single bundle,
as it directly impacts predictability. The number of iterations
is influenced by network load and topology.

To illustrate a worst-case scenario, as discussed in [11] and
depicted in Figure 3, let’s consider two bundles to be scheduled
between a source node S and a destination node D. The two
final contacts with node D, denoted as C1 and C2, have node
G as the transmitting node. The topology is intentionally dense
between nodes S and G, and the start time of contacts C1 and

S

G

D

Two ends of a very dense section of the network

C1 C2

Figure 3: Problematic configuration example for Yen’s algo-
rithm (figure from [11])

C2 happens further in the future with respect to the dense
section of the network.

The first bundle fully utilizes the volume of C1, necessitat-
ing Yen’s algorithm to find a route with C2 as the last hop
contact for the second bundle. Several Yen’s iterations might
be needed to arrive at a feasible route in such a configuration.
Specifically, once the first bundle is scheduled with a route
ending at C1. Let set 1 be the list of routes sharing C1 as
the last contact. Any route sharing C1 as the last hop will be
considered shorter than any route ending with C2. With set 2
the list of routes sharing C2 as the last contact. Since Yen’s
algorithm discovers routes in increasing order of distance,
CGR must identify all routes in set 1 before it can detect
the first route in set 2. This scenario highlights the potential
challenges and delays in determining suitable routes for bundle
scheduling.

The refinement of the issue focuses on the size of set 1 and
its potential operational consequences. Specifically, it raises
two concerns: the memory pressure and the processing time
associated with computing set 1. If set 1 can become arbitrarily
large, it may impose unsustainable memory usage, potentially
leading to resource exhaustion. Alternatively, if memory is
not the bottleneck, the processing time required to handle set
1 could render the routing algorithm unresponsive, causing
delays in route determination. Both scenarios highlight the
importance of understanding the limitations and scalability of
the routing algorithm, as excessively large set 1 could pose
significant operational challenges and impact the network’s
overall performance.

Yen’s algorithm needs two containers, usually named A
(the output) and B (internal memory for candidates to be
pushed in A). In CGR, the container A can be the routing
table, and each Yen’s algorithm iteration inserts a new route
to the routing table. The container B is an internal memory for
Yen’s algorithm, and each iteration can insert several routes

into this container. Consequently, the memory pressure is not
only reflected in the routing table sizes and could be highly
underestimated if only the routing tables are considered.

Furthermore, all the routes in set 1 will likely be disregarded
in subsequent bundle scheduling after the two original bundles
have been scheduled. This is because all these routes share
the same issue of an exhausted contact (C1). Consequently,
the memory pressure resulting from storing routes in set 1
would not provide any benefit or contribute to scheduling
future bundles. This underscores the potential inefficiency and
wastage of system resources caused by such routes in the
routing algorithm.

Detecting all routes in set 1 can potentially lead to a
behavior comparable to a combinatorial explosion. The con-
sequences may not be noticeable in simple scenarios with
few contacts (as those typically analyzed in CGR-related
literature). However, in scenarios involving dense networks
with multiple nodes and large contact plan time horizons,
the likelihood of encountering a configuration similar to the
scenario depicted in Figure 3 increases. This is particularly
true during operational periods when a specific destination has
fewer and later connections than other nodes in the system. In
such cases, the number of routes to be detected and processed
by the routing algorithm can grow significantly, potentially
causing computational and memory issues.

A ring road network [17], [18] is a network encompassing
orbiters and surface nodes with DTN capabilities. This issue
was detected on a realistic ring road scenario encompassing
15 satellites and 15 ground stations. This experience highlights
two essential aspects.

Firstly, the issue discussed is not limited to networks with
many nodes and contacts. The severity of the problem is
determined by the density of the network between the source
and the problematic contact rather than the overall number of
nodes. Even in relatively small scenarios, if there is sufficient
network density and the start time of the problematic contact
is late enough, the issue can still arise.

Secondly, it is important to note that this issue is not
restricted to unrealistic laboratory scenarios. The scenarios
we use in the evaluation section were generated using real
satellite orbit information and still present significant issues.
This highlights that the problem can manifest in real-world
scenarios, emphasizing the practical significance of addressing
it.

D. Security threats

The identified vulnerability raises concerns about the poten-
tial for targeted attacks on specific nodes within the network.
If an attacker has knowledge of the network’s contacts and
identifies a critical contact, they can exploit this information
by sending bundles of carefully chosen sizes. This can result
in the targeted nodes, and potentially the entire network, being
paralyzed.

This attack might be easy to implement as only a few
bundles of specific sizes are required to trigger a node fail-
ure. Additionally, the flexibility of Bundle encapsulation [19]

allows the attacker to encapsulate the bundle that can cause
the desired consequences for a particular destination within
a bundle that can be sent to another target node. Once the
encapsulated bundle is received on the target node, forwarding
it may lead to a failure.

These findings highlight the importance of addressing the
security vulnerabilities associated with bundle processing and
the need for robust measures to protect against targeted attacks
within the network.

Handling bundle expiration is crucial to avoid triggering
the identified issue when resuming Yen’s algorithm’s main
loop. When the bundle expiration time is earlier than the
current time, the routing algorithm is expected to drop the
bundle immediately. However, if the bundle expiration time
is later than the present time, an important check needs to
be performed before resuming Yen’s algorithm’s main loop:
the bundle can be dropped if a newly route constructed route
shows an arrival time later than the bundle expiration. Failure
to implement this check properly can result in Yen’s algorithm
continuing to search for routes as long as new routes to the
destination can be detected.

Such handling of the expiration time is not discussed in the
standard, and the potential operational risks would motivate
the introduction of such concerns in SABR.

IV. EVALUATION

A. Algorithms and Scenarios

The study’s evaluation demonstrates that using Yen’s al-
gorithm in the context of bundle routing presents scalability
limitations and highlights the independent nature of the iden-
tified issue from the parenting strategy employed. In addition
to evaluating Yen’s algorithm, the study plans to assess the
performance of contact parenting by replacing Yen’s algorithm
with a limiting contact approach, as described in [16]. This
approach is known to exhibit minimal processing pressure.
Furthermore, different flavors of routing strategies, including
limiting contact approaches and node parenting, will be eval-
uated for control purposes.

This evaluation comprises four algorithms:
• cgr-1st-dep: node parenting, limiting contact approach

(first depleted) [16]
• cgr-1st-end: node parenting, limiting contact approach

(first ending) [16]
• cgr-1st-end-cvic: contact parenting, limiting contact ap-

proach (first ending)
• cgr-yen-ion: node parenting, Yen’s algorithm (first de-

pleted).
The algorithms utilized in the evaluation use a node multi-

graph (whatever parenting strategy leveraged). Also, various
techniques to mitigate processing pressure of cgr-yen-ion
have been applied to ensure that the simulation times remain
tractable in practice. To control the computational complexity,
a maximum value of K (the number of paths to find) has
been set to 1000. If this upper bound is reached during the
route computation, the bundles are dropped to avoid excessive

15s15g 30s30g
scenario

0

2

4

6

8

10

av
er

ag
e

ru
nt

im
e

pe
r

TX
 /

s
cgr-1st-dep
cgr-1st-end

cgr-1st-end-cvic
cgr-yen-ion

Figure 4: Avg. runtime per transmission (processing overhead).

computational burden. Additionally, two iterations at most are
allowed for a single bundle scheduling. After two attempts,
if a suitable route is not found, the bundle is dropped.
This approach prevents prolonged execution times and, more
importantly, prevents individual bundles from consuming a
significant portion of the allocated 1000 iterations.

This evaluation presents two realistic ring road satellite
network scenarios1:

• 15s15g: 15 satellites and 15 ground stations, 1445 bundle
injections, 3608 contacts.

• 30s30g: 30 satellites and 30 ground stations, 5784 bundle
injections, 22242 contacts.

The scenarios allow inter-satellite links, and the contacts
have an average duration of about 7 minutes 30, and the
contact plan covers an operational period of 48 hours.

B. Results
a) Processing Overhead: Figure 4 gathers the results

for the processing time per transmission (simulation time
included). The cgr-1st-end and cgr-1st-dep algorithms act as
controls as they do not use contact parenting or Yen’s algo-
rithm. The processing times per bundle transmission do not
exceed 200 ms for the cgr-1st-dep and cgr-1st-end algorithms,
while they exceed 3 seconds for cgr-1st-end-cvic and more
than 6 seconds for cgr-yen-ion for the 30s30g scenario. Results
are compelling evidence that contact parenting (cgr-1st-end-
cvic) and the use of Yen’s algorithm (cgr-yen-ion) present
two concrete causes for the scalability limitations of CGR.
Concerning scalability, switching from the 15s15g scenario to
the 30s30g scenario represents a multiplication of the average
runtime per transmission of 17 for cgr-1st-dep, 26 for cgr-1st-
end, 49 for cgr-1st-end-cvic, and 98 for cgr-yen-ion. It shall
be recalled that the processing baselines (i.e., on the 15s15g)
are way lower for the limiting contact approaches.

b) Simulation Overhead: The simulation overhead is not
excluded from the runtime results but is negligible. In practice,
simulation overhead is proportional to the number of transmis-
sions. Figure 5 proves that this overhead cannot account for
the differences observed in the processing pressure.

1Generated with https://gitlab.com/d3tn/dtn-tvg-util

15s15g 30s30g
scenario

0

10000

20000

30000

40000

bu
nd

le
 tr

an
sm

is
si

on
s

cgr-1st-dep
cgr-1st-end

cgr-1st-end-cvic
cgr-yen-ion

Figure 5: Transmission count (simulation overhead).

15s15g 30s30g
scenario

0

20

40

60

80

100

120

140

160

de
liv

er
y

ra
te

 /
%

cgr-1st-dep
cgr-1st-end

cgr-1st-end-cvic
cgr-yen-ion

Figure 6: Delivery ratio.

c) Delivery Ratio: The algorithm cgr-1st-dep acts as
a control to show that the load is high, as this flavor is
known to perform better in congested environments compared
with other CGR flavors [16]. Figure 6 confirms that some
congestion is present for the 15s15g scenario as the delivery
rate of the cgr-1st-dep flavor is higher than the other flavors.
Switching to the 30s30g scenario highlights that the mitigation
techniques used for the cgr-yen-ion algorithm, i.e., setting
K to 1000, do not allow Yen’s approach to functioning
as intended. Lifting the mitigation technique would possibly
increase networking performance by allowing CGR to find
routes for the now-dropped bundles. In other words, lifting the
mitigation techniques would increase the already problematic
processing pressures with mitigation.

C. Analysis

a) Yen’s Intractability: The results of our study under-
score the severity of the issues identified. Even with im-
plementing countermeasures to prevent extended processing
delays, the average processing time per transmission remains
considerable for Yen’s algorithm. The impact of Yen’s algo-
rithm is validated by comparing cgr-1st-end with cgr-yen-
ion on the 30s30g scenario (from ≈0.2 to ≈6.3 seconds).
Moreover, the processing load of Yen’s algorithm was ef-
fectively controlled through our mitigation measures, which

were triggered over 3800 times during the evaluation. Ad-hoc
experiments in the 15s15g scenario proved that more than an
hour might be needed for Yen to deliver a valid route without
mitigation. However, mitigation reduced the delivery ratio to
approximately 37%, although the existence of routes for at
least 99.7% of the generated traffic. This demonstrates the
significant impact of the processing limitations on the overall
performance of Yen’s algorithm. Additionally, the average hop
count for Yen’s algorithm was 1.33, in contrast to the average
hop count of 4.86 observed for the cgr-1st-end flavor. This
disparity highlights that the mitigation measures are activated
relatively early in the planned end-to-end path.

b) Contact Parenting: The use of contact parenting was
found to have higher processing pressure than expected, sig-
nificantly contributing to CGR’s scalability issues while being
essential to accurate path detection (see section III-A). This
impact was validated through a comparison between the cgr-
1st-end flavor and the cgr-1st-end-cvic variant in the 30s30g
scenario, multiplying the scheduling times by 26.

Furthermore, it was observed that implementing a node
multigraph did not adequately alleviate the processing pressure
associated with contact parenting. Despite this approach, the
processing pressure in CGR persists. These findings under-
score the importance of conducting further investigations and
optimizations to address the identified issues in CGR effec-
tively (for example with hybrid parenting like in [11]).

V. CONCLUSION

In this paper, we conducted a detailed analysis of the
scalability issues in CGR and the associated operational risks.
Our analysis identified two independent aspects contributing
to the high processing pressure: the occurrence of long hangs
during bundle scheduling due to the integration of Yen’s
algorithm in CGR and the processing pressure associated with
contact parenting in Dijkstra’s exploration.

Through our evaluation, we demonstrated the independent
nature of these issues by observing problematic processing
pressures in flavors that utilize contact parenting and Yen’s al-
gorithm separately. Furthermore, we emphasized the indepen-
dence between the graph structure and parenting, challenging
the traditional association of node multigraph implementations
with strict node parenting and contact parenting with the
concept of contact graph.

Considering the future Mars Communications Architecture
report predictions from the IOAG, which indicate a network
of 25 delay-tolerant nodes by 2026, our findings indicate
that CGR will be highly challenged to provide robust routing
capabilities for such a network.

Future work will focus on developing mitigation techniques
that preserve networking performance for Yen’s algorithm
or exploring alternative route search strategies. Additionally,
there is a need to introduce mitigation techniques to address
the processing pressure in Dijkstra’s algorithm within CGR.

ACKNOWLEDGMENT

This research was conducted during doctoral studies super-
vised by Marius Feldmann and with a simulation platform pro-

vided by Felix Walter. This research has received support from
the EU’s H2020 R&D program under the Marie Skłodowska-
Curie grant agreement No 101008233 (MISSION project) and
the French National Research Agency (ANR) ANR-22-CE25-
0014-01.

REFERENCES

[1] “The future mars communications architecture,” In-
teragency Operations Advisory Group, 2022. [On-
line]. Available: https://www.ioag.org/Public%20Documents/MBC%
20architecture%20report%20final%20version%20PDF.pdf

[2] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
and H. Weiss, “Rfc 4838,” Delay-Tolerant Networking Architecture,
IRTF DTN Research Group, April, 2007.

[3] S. Burleigh, K. Fall, and E. J. Birrane, “Bundle Protocol Version 7,”
RFC 9171, Jan. 2022. [Online]. Available: https://www.rfc-editor.org/
info/rfc9171

[4] CCSDS, “Schedule-aware bundle routing,” Consultative Committee for
Space Data Systems, 2019.

[5] S. Burleigh, “Contact graph routing,” http://tools.ietf.org/html/draft-
burleigh-dtnrg-cgr-00, 2009. [Online]. Available: http://tools.ietf.org/
html/draft-burleigh-dtnrg-cgr-00

[6] S. Burleigh, “Interplanetary overlay network: An implementation of the
dtn bundle protocol,” 2007.

[7] A. W. Brander, M. C. Sinclair et al., “A comparative study of k-
shortest path algorithms,” in Proc. of 11th UK Performance Engineering
Workshop. Springer, 1995, pp. 370–379.

[8] G. Wang, S. C. Burleigh, R. Wang, L. Shi, and Y. Qian, “Scoping
contact graph-routing scalability: Investigating the system’s usability
in space-vehicle communication networks,” IEEE Vehicular Technology
Magazine, vol. 11, no. 4, pp. 46–52, 2016.

[9] F. Walter, “Prediction-enhanced Routing in Disruption-tolerant Satellite
Networks,” Doctoral Dissertation, Technische Universität Dresden,
2020. [Online]. Available: https://nbn-resolving.org/urn:nbn:de:bsz:
14-qucosa2-721622

[10] O. De Jonckère and J. A. Fraire, “A shortest-path tree approach for
routing in space networks,” China Communications, vol. 17, no. 7, pp.
52–66, 2020.

[11] O. De Jonckère, J. Fraire, and S. C. Burleigh, “Enhanced pathfinding and
scalability with Shortest-Path tree routing for space networks,” in 2023
IEEE International Conference on Communications (ICC): SAC Satellite
and Space Communications Track (IEEE ICC’23 - SAC-05 SSC Track),
Rome, Italy, May 2023.

[12] M. Moy, R. Kassouf-Short, N. Kortas, J. Cleveland, B. Tomko, D. Con-
ricode, Y. Kirkpatrick, R. Cardona, B. Heller, and J. Curry, “Contact
multigraph routing: Overview and implementation,” in 2023 IEEE
Aerospace Conference, 2023, pp. 1–9.

[13] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
management Science, vol. 17, no. 11, pp. 712–716, 1971.

[14] E. L. Lawler, “A procedure for computing the k best solutions to discrete
optimization problems and its application to the shortest path problem,”
Management science, vol. 18, no. 7, pp. 401–405, 1972.

[15] O. De Jonckère and J. A. Fraire, “A shortest-path tree approach for
routing in space networks,” China Communications, vol. 17, no. 7, pp.
52–66, 2020.

[16] J. A. Fraire, P. G. Madoery, A. Charif, and J. M. Finochietto, “On route
table computation strategies in delay-tolerant satellite networks,” Ad Hoc
Networks, vol. 80, pp. 31–40, 2018.

[17] C. Krupiarz, C. Belleme, D. Gherardi, and E. Birrane, “Using smallsats
and dtn for communication in developing countries,” in Proc. Interna-
tional Astronautical Congress (IAC-08. B4. 1.8), 2008.

[18] M. Feldmann, J. A. Fraire, F. Walter, and S. C. Burleigh, “Ring road
networks: Access for anyone,” IEEE Communications Magazine, vol. 60,
no. 4, pp. 38–44, 2022.

[19] S. C. Burleigh, “Bundle-in-Bundle Encapsulation,” Internet Engineering
Task Force, Internet-Draft draft-ietf-dtn-bibect-03, Feb. 2020,
work in Progress. [Online]. Available: https://datatracker.ietf.org/
doc/draft-ietf-dtn-bibect/03/

https://www.ioag.org/Public%20Documents/MBC%20architecture%20report%20final%20version%20PDF.pdf
https://www.ioag.org/Public%20Documents/MBC%20architecture%20report%20final%20version%20PDF.pdf
https://www.rfc-editor.org/info/rfc9171
https://www.rfc-editor.org/info/rfc9171
http://tools.ietf.org/html/draft-burleigh-dtnrg-cgr-00
http://tools.ietf.org/html/draft-burleigh-dtnrg-cgr-00
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-721622
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-721622
https://datatracker.ietf.org/doc/draft-ietf-dtn-bibect/03/
https://datatracker.ietf.org/doc/draft-ietf-dtn-bibect/03/

	Introduction
	State-of-the-art
	Yen's Algorithm
	Contact Graph Routing
	Yen's Algorithm in CGR
	Determinism and Predictability

	Analysis
	Graph structure
	Distance calculation
	Yen's algorithm unpredictability
	Security threats

	Evaluation
	Algorithms and Scenarios
	Results
	Analysis

	Conclusion
	References

