
HAL Id: hal-04711334
https://hal.science/hal-04711334v1

Submitted on 26 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Continuous Time Emulation for Software-Defined
Non-Terrestrial Edge Computing Networks

Camilo Rojas, Juan A Fraire, Fabio Patrone, Alberto Gotta, Mario Marchese

To cite this version:
Camilo Rojas, Juan A Fraire, Fabio Patrone, Alberto Gotta, Mario Marchese. Continuous Time
Emulation for Software-Defined Non-Terrestrial Edge Computing Networks. European Wireless 2023;
28th European Wireless Conference, Oct 2023, Rome, France. �hal-04711334�

https://hal.science/hal-04711334v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Continuous Time Emulation for Software-Defined
Non-Terrestrial Edge Computing Networks

Camilo Rojas∗, Juan A. Fraire†‡, Fabio Patrone∗, Alberto Gotta§, Mario Marchese∗
∗University of Genoa, Genoa, Italy

†Univ Lyon, Inria, INSA Lyon, CITI, F-69621 Villeurbanne, France
‡CONICET - Universidad Nacional de Córdoba, Córdoba, Argentina
§Institute of Information Science and Technologies (ISTI), CNR, Pisa

Abstract—As satellite constellations for communications rise
in importance in both academic and industrial circles, we face
the challenge of adapting Software-Defined Networks (SDN)
and Multi-access Edge Computing (MEC), initially designed
for static terrestrial networks, for the dynamic nature of Non-
Terrestrial Networks (NTN). This paper presents MeteorNet,
a continuous time emulation framework grounded in realistic
orbital propagators, Mininet, and Docker virtualization, designed
to develop and test space mission software. Our solution adapts
link characteristics according to constellation orbits and Earth
dynamics using Linux network interfaces. We provide the results
of a tested networking scenario detailing how network usage mea-
surements and output data analysis can be used to examine the
behavior of routing protocols within the framework. This work
underscores the necessity for appropriate network management
and transport protocol adaptations for effective communication
in emerging satellite constellations.

Index Terms—Satellite Constellation, Software-Defined Net-
works, Multi-access Edge Computing.

I. INTRODUCTION

The emergence of Low Earth Orbit (LEO) satellite constel-
lations is among the major developments within the space in-
dustry. Through the use of Commercial Off-The-Shelf (COTS)
components, agile methodologies, and standardized launch fa-
cilities (including P-POD containers), the industry has opened
to new participants with limited budgets, enabling them to
conduct intricate space missions previously restricted to space
agencies and large telecommunication companies.

The advent of private entities in the space industry has
paved the way for establishing mega-constellations in LEO,
encompassing hundreds or even thousands of interconnected
satellites through Inter-Satellite Links (ISL). Their objective is
to enhance global Internet access [1], supplementing terrestrial
networks to reach areas where expanding cellular networks is
impractical or uneconomical [2]. This integration of airborne
and space segments with terrestrial networks leads to the
inception of the Non-Terrestrial Network (NTN) concept,
incorporated into 5G standards from Release 16 onwards [3].

However, to incorporate NTNs effectively into 5G networks,
they must meet the Key Performance Indexes (KPIs) estab-
lished by the 3GPP concerning capacity, delay, and service
availability. Software-Defined Networks (SDN) are a critical
enabling technology adopted to meet 5G KPIs in the space
context. Consequently, numerous research works, such as
those by Kodheli et al. [4] and Guidotti et al. [5], have been

undertaken to integrate NTN into 5G. Despite its potential,
SDN poses several challenges. Current frameworks were pri-
marily constructed for stable internet topologies, not dynamic
and ever-evolving satellite topologies. Therefore, successfully
adapting SDN for this new context presents a considerable
obstacle to overcome.

While an efficient SDN layer is crucial, a high degree of au-
tomation is required to maximize the service potential of mega
satellite constellations. Multi-access Edge Computing (MEC)
is a promising solution for addressing current computational
challenges [?]. It potentially facilitates the efficient allocation
and distribution of computational and memory resources, both
terrestrial and space-based, across a satellite constellation.
Such a framework could provide real-time services to terres-
trial users, including machine learning applications to enable
autonomous land, air, and maritime vehicles on a global scale.
Nonetheless, implementing MEC in satellite constellations is
non-trivial and necessitates the development of intelligent al-
gorithms to manage these resources effectively [6]. Addressing
these real-time scheduling problems involving SDN and MEC
can become increasingly complex with larger constellations.

This paper explores the incorporation of SDN and MEC
into current and upcoming mega-constellations. We introduce
a unique open-source1 multi-access edge computing emulation
framework for non-terrestrial software-defined networks: Me-
teorNet. Among other features, MeteorNet provides a dock-
erized environment for deploying and assessing flight and
ground code. This environment replicates the communication
conditions during operations, controlled via SDN techniques
and keeping native kernel and network management source
code, allowing for exploring realistic MEC use cases.

The remainder of the paper is structured as follows: Sec-
tion II reviews basic concepts and related works, Section III
delves into MeteorNet, Section IV presents a case study, and
Section V outlines conclusions and future research directions.

II. BACKGROUND

A. Basic Concepts

a) Software Defined Networking: SDN is a network
management strategy segregating the data from the control
plane. In SDN architectures, the control plane consists of one

1Repository URL will be provided in the camera-ready version of the paper.



or more controllers that possess the capacity to adapt routing
based on service requirements [7]. This centralized control
paradigm allows the controller to manage the network, where
the governed nodes, referred to as SDN switches, are linked
to the central processing unit, where all decision-making
processes are executed and relayed to the switches.

Attempts have been made to tailor SDN management for
satellite networks. Miao et al. [8] and Jiang et al. [9] have re-
viewed some of these research endeavours. They perceive SDN
and Network Function Virtualization (NFV) as catalysts for
integrating NTN-5G, suggesting the deployment of multiple
SDN controllers, interconnected through bound interfaces, for
complex and expansive networks. In this configuration, each
controller would be accountable for managing a sub-network.
This methodology underpins a two-tiered structure that could
segregate segments with independent SDN controller place-
ment.

b) Multi-access Edge Computing: MEC is a distributed
computing model designed to bring storage and computing re-
sources closer to the user. The goal is to reduce computational
delays and conserve network bandwidth. Wang et al. [10]
define MEC as a novel paradigm for accessing IoT applica-
tions within satellite networks. Their findings demonstrate that
space-edge computing consumes less time and energy than
conventional satellite constellations. MEC requires deploying
multiple servers in network hosts that deliver virtual functions
catering to specific services with low computation delay re-
quirements.

Zhang et al. [11] introduce MEC to improve QoS and
speed performance within NTNs, proposing task scheduling
models to facilitate cooperative computation in MEC servers.
Pfandzelter et al. [12] discuss the unique characteristics of
LEO MEC and evaluate the appropriateness of three con-
stellations (SpaceX, Amazon, and Telesat) for implementing
distributed computing MEC. Numerous offloading strategies
exist in current literature. For instance, Sonmez et al. [13]
propose a fuzzy orchestration for MEC offloading that mimics
the intuition of real-world administrators, resulting in an
automated management system. Cassara et al. [14] compares
task-offloading strategies across different constellation scenar-
ios, concluding that fuzzy strategies yield superior outcomes
compared to round-robin and full-offloading solutions.

B. Emulation Tools

Planning and monitoring resources are essential for satellite
missions, requiring mission control to continuously update
scheduling plans to respond to mission changes or natural
phenomena [16]. Emulation and simulation tools are used
throughout mission planning stages, and actual mission data
is later incorporated into these models to improve logistic and
operational planning. These are indispensable tools for testing
and deploying software and algorithms in space missions.

Various research teams and space agencies are currently
developing and maintaining several simulation and emulation
tools, as summarized in Table I. OS3 [?], SNS3 [?], and

SCNE [?] base their network emulation on well-known frame-
works such as OmNet++ (C++) and NS3 (C++, Python), which
are powerful discrete-time network simulation libraries that
allow users to define various properties from the physical to the
application layer. In contrast, SatEdgeSim [15] represents the
only MEC framework for satellite networks to test offloading
algorithms. It is built on the EdgeSim library (written in Java)
and utilizes Java messaging to simulate networks. Regarding
orbital propagation, OS3 and SCNE employ custom-made al-
gorithms, while SCNE utilizes the proprietary software System
Tool Kit (STK). A common feature of these tools is their use
of a discrete-time simulation paradigm to emulate constellation
networks.

Current discrete-time simulation frameworks, while helpful,
require significant adaptation of mission software and system
architecture due to their abstract representation of computer
networks. This can lead to potential coding errors during
deployment. These tools also lack the capability to emulate
network interfaces and OS kernels, creating a gap between
simulation and real computing systems. We propose develop-
ing a new emulation framework to bridge this gap and more
accurately reflect actual system deployment.

III. METEORNET

To address the aforementioned challenges, we present Mete-
orNet, a continuous-time emulation platform for satellite con-
stellation networks. MeteorNet offers a significant advantage
over existing tools by incorporating network and operating sys-
tem virtualization, including kernel and network management
native source code. While discrete-time tools boast replica-
bility and time acceleration, continuous-time frameworks like
MeteorNet offer unparalleled fidelity to real-world scenarios
and facilitate scalable, multi-thread-driven development.

a) Overview: MeteorNet utilizes Docker for OS virtu-
alization, ensuring flexibility in the choice of programming
languages and compilation architectures for the software un-
der test. Built on open-source code and publicly accessible
algorithms, it supports all phases of constellation mission plan-
ning, from research and development to operation. MeteorNet
enables the testing of offloading and routing strategies. The
software itself is primarily written in Python. MeteorNet is
characterized by the following key components: (i) an Orbit
Propagation module, managing and simulating satellite motion
within its orbit; (ii) a Network Stack and Link Management
system, handling network protocols and communication links;
(iii) an SDN Controller, centralizing and overseeing network
operations; (iv) Containerized Software, utilizing Docker for
OS virtualization to enable software instantiation and isolation;
and (v) Network Performance Monitoring, collecting network
performance metrics for further analysis and optimization.

b) SDN Aspect: In the proposed framework, we include
Ryu as an example of an SDN controller and utilize the
Spanning Tree Protocol (STP) as a default mechanism to man-
age network routing and prevent switch loops [?]. The SDN
controller operates in parallel with the emulation, permitting
alterations to assess different routing algorithms or optimize



Table I: Comparison among available satellite simulation and emulation tools

OS3 [?] SNS3 [?] SCNE [?] SatEdgeSim [15] MeteorNet (our contribution)
Language C++ C++,Python C++, Python Java Python
Libraries OMNet++ NS3 STK, NS3 EdgeSim SGP4, Mininet, Docker
Time Discrete Discrete Discrete Discrete Continuous
Network Virtualization No No No No Yes
OS Virtualization No No No No Yes
Open Source Yes Yes No Yes Yes

service-specific KPIs. The framework leverages Mininet for
network virtualization.

c) MEC Aspect: In our proposed framework, we priori-
tize the effective evaluation of MEC performance by ensuring
that satellite and ground nodes operate within discrete environ-
ments from the perspective of system resources. Furthermore,
it acknowledges and caters to the unique compilation and
operational requirements of software deployed in satellite and
ground architectures, emulating these based on mission stipu-
lations. Utilizing Docker OS virtualization [17], the framework
establishes isolated containers, enabling the software under
scrutiny to function autonomously from the emulation code.
This strategy enhances the authenticity of the emulations and
minimizes the necessary alterations to implement mission
software.

d) Workflow: In our proposed framework, the requisite
inputs are satellite Two-Line Element (TLE) files, the initial
coordinates of ground nodes, and the overall emulation du-
ration necessary for network instantiation. Once initiated, the
framework executes the following operations: (A) it propagates
the orbits of satellite nodes; (B) computes satellite-terrestrial
contact tables; (C) routinely modifies network link parameters
and status based on the data within the computed contact
tables; (D) executes dockerized containers; and (E) concur-
rently measures and records output performance regarding
network usage and task computation delay. In the succeeding
subsections, we delve into the specifics of these operational
steps.

A. Orbit Propagation

In our approach, we utilize the Simplified General Pertur-
bations Model 4 (SGP4) to propagate the orbits of satellite
nodes. SGP4, a standard defined by NORAD and NASA,
uses a streamlined perturbation model to determine orbital
state vectors based on initial conditions provided in a TLE
object. The model yields each satellite’s coordinates, Xs(t)←
(xs(t), ys(t), zs(t)), at a given time t, which are expressed in
the True Equator Mean Equinox (TEME) coordinate system.
For ground nodes, we convert the initial latitude, longi-
tude, and altitude values into TEME coordinates, Xg(0) ←
(xg(0), yg(0), zg(0)), and subsequently use Earth’s rotational
angular velocity and average radius to ascertain the node’s
coordinates, Xg(t), at time t.

Using the coordinates Xs(t) and Xg(t) at each time step
t throughout the simulation, we can determine the elevation
angle θgs(t) and distance dgs(t) between each ground node g
and satellite s. Subsequently, we can estimate the line of sight
LoS gs(t) using the elevation angle. We define a minimum

elevation angle θC = 30◦ to consider the satellite within the
line of sight, making the link accessible. Links with angles
less than θc will be deemed as having no connection.

The communication channel’s availability, delay Tgs(t), and
capacity C(t) can be estimated using Equations (1), (2), and
(3).

LoS (t) =

{
true, if θgs(t) ≥ θc

false, if θgs(t) < θc
(1)

Tgs(t) = dgs(t)/c+ δ0 (2)

C (t) =



200 Mb/s, 0 < d(t) ≤ 500 km
80 Mb/s, 500 < d(t) ≤ 1000 km
60 Mb/s, 1000 < d(t) ≤ 2000 km
20 Mb/s, 2000 < d(t) ≤ 3000 km
10 Mb/s, 3000 < d(t) ≤ 4000 km
∅ d(t) > 4000 km

(3)

where c = 300, 000km/s is the speed of light in vacuum
and δ0 is an additional delay per link to account for switch
computation time.

B. Contact Table Computation and Utilization

MeteorNet employs Mininet to emulate a realistic vir-
tual network, incorporating a genuine Linux network kernel,
switch, and application code [18]. Mininet allows for the
dynamic deployment and modification of custom virtual net-
works, thereby closely mirroring real-world communication
networks by utilizing technologies and code from production
environments. Ground stations can be configured for single
or multiple connections with satellite nodes. In the single-
link mode, the ground node establishes and maintains the
connection with the nearest available satellite until it exits
the line of sight (LoS). In the multiple-link mode, multi-
path communications are created and preserved with all nodes
within LoS. Link states for all communication nodes through-
out the simulation are encapsulated in structures known as
Contact Tables. Each node in the network has a corresponding
contact table, which outlines the connections between that
node and all destination nodes. Each row within a contact
table corresponds to a time step, enabling or disabling links
and adjusting their properties (delay and capacity) based on
the predefined equations. Contact Tables, which can be pre-
calculated and reused across various simulations, significantly
enhance computational efficiency, especially in numerous node



Table II: Example of a ground node’s (gn) contact table

time st10 st9 st8
0 1672 3405 0

100 2188 2808 0
200 2769 2246 0
300 3376 1759 0
400 0 1431 0
500 0 1385 0
600 0 1644 3660
700 0 2096 3072
800 0 2639 2516
900 0 3225 2023

1000 0 0 1660
1100 0 0 1524

scenarios. By functioning as cache structures, they improve
simulation performance and eliminate the need for repetitive
computations. In this way, MeteorNet captures the dynamics of
communication nodes in a satellite constellation and produces
a network with continually evolving link parameters.

a) Example: Table II shows an example of the dynamics
and contact table, respectively, of a ground node (gn11) in a
single-link mode that changes the established connection with
three satellites (st10, st9, and st8) over time. We can observe
that the table defines the contact state at each moment of time
with all the other nodes. The value of each cell is zero when
the link is not available, e.g., when there is no LoS or when
θgs < θC ; otherwise the distance is logged in the cell when
available. In this example, gn11 has available links with st10
and st9 at t = 0s and it is connected to st10 since it is the
closest. Then, it loses connection with st10 and connects to
st9 at t = 400s, and finally loses connection with st9 and
connects to st8 at t = 1000s.

C. Network Management and SDN Controller

In MeteorNet, each satellite is treated as a switch, establish-
ing variable connections (none, one, or multiple) with ground
nodes over time. Satellites are also interconnected through
intra-plane and inter-plane ISLs. Multiple switch connections
could potentially lead to network loop errors due to the
creation of loops and multiple paths. To circumvent this,
MeteorNet incorporates the Ryu SDN controller and utilizes a
straightforward Spanning Tree Protocol (STP) [?] to regulate
switch routing and avoid loops. Ryu comes with several
routing algorithms [?] and offers software components and an
API for custom control application development. Nonetheless,
alternate SDN controller libraries can be employed, provided
they are compatible with the OpenFlow switch protocol. In
MeteorNet, the Ryu controller continuously monitors the cur-
rent network topology and dynamically configures the satellite
nodes by capitalizing on the SDN paradigm.

D. Containerized Applications

MeteorNet employs Docker to create isolated environments
for satellites and ground nodes. Each Node class is equipped
with a host method that encapsulates a Docker process, using
a pre-built Linux image with the necessary test software.
This arrangement allows each Docker image to be allocated

its own network interface, CPU virtualization, and memory
stack, managed by the OS kernel. Docker’s use of isolation
ensures consistency when transitioning the software to the pro-
duction environment, reducing potential code alterations and
debugging during deployment. In conjunction with Mininet,
MeteorNet simulates network interfaces, routing-switching be-
havior, and computer resources, enabling simulation from the
second layer of the OSI model upwards. The physical layer
remains the sole layer not directly simulated but is instead
approximated using Eqs. (1), (3), and (2). The test software
can encapsulate any code or algorithm operating in satellites
or ground nodes, such as flight software, platform control
algorithms, mission control software, payload modules, and
machine learning tasks, to name a few. The key requirement
is that the code must be compatible with a Docker image and
use network protocols that align with the Linux network.

E. Network Analytics

MeteorNet incorporates sFlow commands for real-time net-
work usage measurements. As an industry-standard tool for
network and resource monitoring, sFlow provides a flexi-
ble framework for periodic evaluations and computations.
For instance, an sFlow query like ipsource, ipdestination,
link:inputifindex can be configured on each switch to measure
traffic between two IPs across every link interface. Upon
completion of a simulation, this allows us to ping between
nodes and gather the resulting measurements.

IV. CASE STUDY

A. Scenario

We demonstrate a case study involving a constellation of
ten satellites (from st1 to st10) in the same orbital plane and
a single ground station (gs11), configured in single-link mode.
To run the former simulation, we use a laptop computer with
an Intel core i7 processor (4 cores, 8 threads) and 16 GB of
RAM. We consider two test applications:

(i) A conventional ping application via ICMP packets from
ground node g11 and a satellite st6. In such a case, we
measure the ping times and compare them with the related
theoretical values;

(ii) A task generator, i.e., an application on g11 that generates
and offloads a task via a TCP connection to a MEC
server on st6, which computes and returns the result.
g11 produces - according to a Poisson distribution -
around two tasks per minute, which take approximately
250ms of processing time on MEC. We measure the task
computation time as the time elapsed from when g11
sends the task until it receives the result. Given that TCP
involves acknowledgements, we anticipate discrepancies
between the theoretical and actual measured task compu-
tation times. We also monitored the network usage across
each interface link on the routing path between g11 and
st6 throughout the 60-minute simulation.



Figure 1: Network configuration and task routing path.

B. Analysis

At the simulation’s commencement (t = 0 seconds), gn11 is
connected to st10 and each satellite within the constellation is
connected to its two nearest neighbors within the same orbital
plane. Tasks transmitted from gn11 to st6 must traverse a
path of 19, 908 kilometers through g11-st10-st9-st8-st7-st6,
which represents the path selected by the STP, as depicted in
Figure 1.

Utilizing Equation (2) and assuming a per-link packet switch
computation time of δ0 = 4ms , we can compute the ping
time as Σ4

i=02 · δi = 2 · (19, 908/C + 5 · 4ms) ≈ 172.72ms .
Based on the measured results presented in Figure 3, the
ping time at t = 0 is approximately 180ms , which aligns
closely with the analytical estimation. At t = 330s, when the
ground link transitions from st10 to st9, the st10-st9 link,
which covers approximately 4559 kilometers, is eliminated,
leading to a decrease in the measured propagation time of
∆δ = 2 · (4, 559/C+4ms) ≈ 38.39ms . This results in a total
theoretical delay of 134.33ms , which is consistent with the
measured value. During the time frame between one ground
link change and the subsequent one, measured ping times
exhibit slight increases due to the growing distance between
g11 and the associated satellite. However, the average values
during contact closely align with the analytical estimations.

Analyzing task computation results we can calculate a gap
with ICMP results. In the ideal case, mean computation time of
tasks should be ICMP delay sum with base task computation
time (250 ms), nonetheless, in Figure 3 we see an overhead of
approximately 100 ms, that increases per hop in the network
path. The difference can be associated to TCP reliability, that
comes with a cost for waiting the acknoledgement of packets
before process tasks.

Further results are shown in Figure 2 in terms of the links’
network usage by sFlow measurements, which illustrates the
data collected from a 60-minute simulation. By analyzing such
results, we can identify the path chosen by the STP protocol
during each contact window. Until minute 6, the chosen path is

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
Simulation Time [Min]

st10-gn11
st4-gn11
st5-gn11
st6-gn11
st7-gn11
st8-gn11
st9-gn11
st1-st10

st1-st2
st2-st3
st3-st4
st4-st5
st5-st6
st6-st7
st7-st8
st8-st9

st9-st10

0

250

500

750

1000

1250

1500

1750
Network Usage [bps]

Figure 2: Per-interface network usage.

gn11 → st10 → st9 → st8 → st7 → st6. Between minutes
6 and 8, we observe a period of network configuration, during
which various interfaces operate in flood mode (a state where
they broadcast packets they receive to every other network
segment). Due to a change in the ground-satellite contact from
g11-st10 to g11-st9, the path changes to gn11 → st9 →
st8→ st7→ st6.

From minutes 8 to 16, the network usage remains stable
until the ground-satellite link switches again, this time from
g11-st9 to g11-st8. Similar patterns are observed with other
link changes until minute 38 when g11 is directly connected to
st6. In this case, the time is minimal since no ISL is involved
in the communication. However, from minute 48 onwards, the
time begins to increase again as direct connectivity is lost and
a new path incorporating an ISL link (st5-st6) is selected.

The STP protocol leverages link capacity as a cost metric
when constructing the network tree. As such, it does not
optimize for delay along network paths, but rather optimizes
for path capacity and prevents loops by blocking interfaces that
would cause multiple paths. When two interfaces of the same
capacity exist, STP randomly selects which path to maintain
and which to block. This can occasionally result in paths with
long delays being chosen.

Given that delay is a critical KPI for NTN-5G and beyond,
our findings indicate that the STP routing protocol is not
ideally suited for satellite constellation networks. To optimize
for the delay, modifications should be made to the routing
protocol used.

V. CONCLUSIONS

In response to the growing scale and complexity of satellite
missions, we’ve developed a continuous-time constellation
framework, leveraging network and operating system virtu-
alization. This flexible simulation framework allows for di-
rect implementation and real-time testing of SDN and MEC
protocols. Through a case scenario utilizing STP and TCP,
we found these technologies need adaptations for effective
use in constellation environments. STP should prioritize delay
for certain use cases rather than solely optimizing channel
capacity. TCP’s overuse of acknowledgment requests increases
computing delay when used as a MEC communication proto-
col. Our findings underscore the need for research and mod-



0 5 10 15 20 25 30 35 40 45 50 55 60
Simulation Time [Min]

0

100

200

300

400

500

600

700

800

900

De
la

y 
[m

s]

Ping delay: gs11-st6
Task computation time
Transition from st10 to st9
Transition from st9 to st8
Transition from st8 to st7
Transition from st7 to st6
Transition from st6 to st5
Transition from st5 to st4
Base computing time (250ms)

Figure 3: Task propagation and total task computation times of the test applications.

ification of networking protocols for satellite constellations.
This will ensure these networks can deliver global, reliable,
and efficient communication. Future work includes developing
dynamic routing techniques and optimizing task computing
delays within the SDN and MEC frameworks.

ACKNOWLEDGEMENT

This research has received support from the European
Union’s Horizon 2020 R&D program under the Marie
Skłodowska-Curie grant agreement No 101008233 (MISSION
project), the French National Research Agency (ANR) un-
der the project ANR-22-CE25-0014-01, and the Italian Na-
tional Recovery and Resilience Plan (NRRP) of NextGener-
ationEU, partnership on “Telecommunications of the Future”
(PE00000001 - program “RESTART”).

REFERENCES

[1] I. Del Portillo, B. G. Cameron, and E. F. Crawley, “A technical
comparison of three low earth orbit satellite constellation systems to
provide global broadband,” Acta astronautica, vol. 159, pp. 123–135,
2019.

[2] I. del Portillo, S. Eiskowitz, E. F. Crawley, and B. G. Cameron,
“Connecting the other half: Exploring options for the 50% of the
population unconnected to the internet,” Telecommunications Policy,
vol. 45, no. 3, p. 102092, 2021.

[3] 3GPP, “Solutions for NR to support non-terrestrial networks (NTN)”,
TR 38.821 v0.6.0, 2019.

[4] O. Kodheli, A. Guidotti, and A. Vanelli-Coralli, “Integration of satellites
in 5g through LEO constellations,” in GLOBECOM 2017 - 2017
IEEE Global Communications Conference. IEEE, pp. 1–6. [Online].
Available: http://ieeexplore.ieee.org/document/8255103/

[5] A. Guidotti, A. Vanelli-Coralli, M. Conti, S. Andrenacci, S. Chatzinotas,
N. Maturo, B. Evans, A. Awoseyila, A. Ugolini, T. Foggi, L. Gaudio,
N. Alagha, and S. Cioni, “Architectures and key technical challenges
for 5g systems incorporating satellites,” vol. 68, no. 3, pp. 2624–2639.
[Online]. Available: https://ieeexplore.ieee.org/document/8626457/

[6] Z. Zheng, J. Guo, and E. Gill, “Swarm satellite mission scheduling
& planning using hybrid dynamic mutation genetic algorithm,” Acta
Astronautica, vol. 137, pp. 243–253, 2017.

[7] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, “Software-
defined networking (SDN): a survey,” vol. 9, no. 18, pp. 5803–
5833, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1737.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.
1737

[8] Y. Miao, Z. Cheng, W. Li, H. Ma, X. Liu, and Z. Cui, “Software defined
integrated satellite-terrestrial network: A survey,” in Space Information
Networks, Q. Yu, Ed. Springer Singapore, pp. 16–25.

[9] W. Jiang, “Software defined satellite networks: A survey,” p.
S2352864823000299. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S2352864823000299

[10] Y. Wang, J. Yang, X. Guo, and Z. Qu, “Satellite edge computing for the
internet of things in aerospace,” Sensors, vol. 19, no. 20, p. 4375, 2019.

[11] Z. Zhang, W. Zhang, and F.-H. Tseng, “Satellite mobile edge
computing: Improving QoS of high-speed satellite-terrestrial networks
using edge computing techniques,” vol. 33, no. 1, pp. 70–76. [Online].
Available: https://ieeexplore.ieee.org/document/8610431/

[12] T. Pfandzelter, J. Hasenburg, and D. Bermbach, “Towards a computing
platform for the LEO edge,” in Proceedings of the 4th International
Workshop on Edge Systems, Analytics and Networking. ACM,
pp. 43–48. [Online]. Available: https://dl.acm.org/doi/10.1145/3434770.
3459736

[13] C. Sonmez, A. Ozgovde, and C. Ersoy, “Fuzzy workload orchestration
for edge computing,” vol. 16, no. 2, pp. 769–782. [Online]. Available:
https://ieeexplore.ieee.org/document/8651335/

[14] P. Cassara, A. Gotta, M. Marchese, and F. Patrone, “Orbital edge
offloading on mega-LEO satellite constellations for equal access
to computing,” vol. 60, no. 4, pp. 32–36. [Online]. Available:
https://ieeexplore.ieee.org/document/9755271/

[15] J. Wei, S. Cao, S. Pan, J. Han, L. Yan, and L. Zhang, “SatEdgeSim:
A toolkit for modeling and simulation of performance evaluation
in satellite edge computing environments,” in ICCSN 2020 12th
International Conference on Communication Software and Networks.
[Online]. Available: https://ieeexplore.ieee.org/document/9139057

[16] D. Paikowsky, “What is new space? the changing ecosystem of
global space activity,” vol. 5, no. 2, pp. 84–88. [Online]. Available:
https://www.liebertpub.com/doi/10.1089/space.2016.0027

[17] S. Singh and N. Singh, “Containers & docker: Emerging roles & future
of cloud technology,” in 2016 2nd International Conference on Applied
and Theoretical Computing and Communication Technology (iCATccT),
pp. 804–807.

[18] L. Yan and N. McKeown, “Learning networking by reproducing research
results,” ACM SIGCOMM Computer Communication Review, vol. 47,
no. 2, pp. 19–26, 2017.

http://ieeexplore.ieee.org/document/8255103/
https://ieeexplore.ieee.org/document/8626457/
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737
https://linkinghub.elsevier.com/retrieve/pii/S2352864823000299
https://linkinghub.elsevier.com/retrieve/pii/S2352864823000299
https://ieeexplore.ieee.org/document/8610431/
https://dl.acm.org/doi/10.1145/3434770.3459736
https://dl.acm.org/doi/10.1145/3434770.3459736
https://ieeexplore.ieee.org/document/8651335/
https://ieeexplore.ieee.org/document/9755271/
https://ieeexplore.ieee.org/document/9139057
https://www.liebertpub.com/doi/10.1089/space.2016.0027

	Introduction
	Background
	Basic Concepts
	Emulation Tools

	MeteorNet
	Orbit Propagation
	Contact Table Computation and Utilization
	Network Management and SDN Controller
	Containerized Applications
	Network Analytics

	Case Study
	Scenario
	Analysis

	Conclusions
	References

