
HAL Id: hal-04711322
https://hal.science/hal-04711322v1

Submitted on 26 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Network Storage Analysis via Semiring Geometry
William Bernardoni, Robert Kassouf-Short, Robert Cardona, Brian Heller,

Justin Curry, David Spivak, Juan A Fraire

To cite this version:
William Bernardoni, Robert Kassouf-Short, Robert Cardona, Brian Heller, Justin Curry, et al.. Net-
work Storage Analysis via Semiring Geometry. 2024 IEEE Aerospace Conference, Mar 2024, Big Sky,
France. pp.1-19, �10.1109/AERO58975.2024.10521207�. �hal-04711322�

https://hal.science/hal-04711322v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Network Storage Analysis via Semiring Geometry
William Bernardoni

Case Western Reserve University
wrb37@case.edu

Robert Kassouf-Short
NASA Glenn Research Center

robert.s.short@nasa.gov
Robert Cardona, Brian Heller, and Justin Curry

University at Albany, State University of New York
{rlcardona, bheller, jmcurry}@albany.edu

David Spivak
Topos Institute

dspivak@gmail.com

Juan A. Fraire
Inria Lyon - CONICET

juan.fraire@inria.fr

Abstract—The long-term goal of space networking studies is to
provide the foundation needed to support a Solar System Inter-
net (SSI). We anticipate that such an SSI would be composed
of science and exploration satellites, ground stations, routing
satellites, and ultimately humans and robots on the surfaces of
different planets throughout our solar system. Interplanetary
communications networks will need to handle the delays, dis-
ruptions, and disconnections inherent to space communications.
The architecture of Delay Tolerant Networking (DTN) provides
protocols and strategies to support these communications plans.
At its core, DTN relies on a store-carry-forward approach to
provide robust communications in the presence of delays and
disruptions.

In the past, routing models in DTN have focused on the forward-
ing aspects of store-carry-forward. Methods such as Contact
Graph Routing, Contact Multigraph Routing, and Probabilistic
Routing Protocol using the History of Encounters and Transi-
tivity (PRoPHET) provide solutions for how to choose where to
forward bundles through a network. However, these routing
models often function bundle-by-bundle allowing them to set
aside storage needs for each node. In order to bring our vision
of a SSI to reality, we will need to be able to predict and
incorporate storage needs that satellites and rovers will require.
Modeling and predicting storage needs is the first step to being
able to optimize storage needs and also optimize communication
footprints on the size, mass, and power needs of future satellites.

In this paper, we introduce a novel semiring model for contact-
based routing protocols that includes a means of determining
storage needs. Through proper analysis of the semiring struc-
ture, we show how to determine optimal storage structures in
satellite networks. In addition, we run our analysis on simulated
satellite networks to demonstrate the potential for working with
these semiring models in a computational framework. We
conclude by indicating future directions for semiring analysis is
space communications.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. BACKGROUND: ROUTING IN DTN 2
3. BACKGROUND: SEMIRINGS . 4
4. BACKGROUND: THE ALGEBRAIC PATH PROB-

LEM . 5
5. SEMIRING MODELLING OF COMMUNICATION

WINDOWS . 6
6. SEMIRING MODELLING OF TRANSMISSION

DURATIONS UNDER LIMITED STORAGE 9
7. EXPERIMENTAL SETUP . 15
8. RESULTS . 15
9. CONCLUSION . 16
10. FUTURE WORK . 17

U.S. Government work not protected by U.S. copyright

REFERENCES . 17

1. INTRODUCTION
At its core, Delay Tolerant Networking (DTN) rests on a
Store-and-Forward method of transmitting packets [1]. Much
has been written on the ‘Forward’ piece of this puzzle,
specifically on methods for routing in networks using DTN.
Routing methods include Contact Graph Routing (CGR)[2],
[3], Contact Multigraph Routing (CMR) [4], [5], Probabilis-
tic Routing Protocol using the History of Encounters and
Transitivity (PRoPHET) [6], [7], and even several methods
using machine-learning models [8], [9], [10], [11]. However,
the ‘Storage’ piece of the puzzle has been left for others to
determine. In particular, many routing papers begin with
the assumption that technical specifications for the satellites
involved – such as planned orbits or computing power – will
be predetermined by trade studies and mission requirements
decided by whoever constructs the satellites.

Our goal in this paper is to introduce a means of computing
storage requirements for networks using DTN. The key in-
sight that we build upon is that the core mathematical struc-
ture governing path problems in networks is the idempotent
semiring. As seen in [12], the solutions to path problems in
networking can often be algebraized using semirings.

As encoding scheme can vary the bandwidth of a satellite
link, we approach the problem of storage and throughput in
the time domain. Storage, in our sense, can be thought of
as the sum total of “layovers” taken between contacts. This
perspective has the advantage of being unbound to specific
systems – while our chief focus in this paper is on satellite
networking, the techniques introduced in this paper can also
be applied to other problems such as job scheduling or freight
routing.

As seen in [12] and [13], many routing problems can be ex-
pressed using the language of semirings as matrix equations
over varying number systems. By finding the solutions to
these matrix equations, a problem known as the algebraic path
problem, optimal routing strategies can be determined. This
transforms a variety of combinatorial problems into linear
algebra problems over the correct number system.

In this paper we introduce semirings which allow delay toler-
ant networking to be modeled by the algebraic path problem.
These semirings have a miriad of potential applications and
uses, as they give an algebraic and equational language to
DTN. In this paper we will demonstrate an additional use
– by analyzing the inherent geometry of these semirings
we can derive a closed form method of determining the
maximum transmission durations and corresponding storage
requirements in a delay tolerant network.

All methods introduced in this paper are easily computable.
C++ code implementing these theorems and methods can
be found at the GitHub repository, wrbernardoni/Semiring-
Geometry. Python code implementing these theorems
and methods can be found at the GitHub repository
https://github.com/TheaMAS/sat-parser.

After establishing the problem of routing in delay tolerant
networks and demonstrating the value of semirings in ad-
dressing these problems, our first major contribution is The-
orem 5.6 where we demonstrate that the Nevada construction
requires five numbers to uniquely define each object. Then,
we modify our semiring to incorporate storage considera-
tions. In this next portion, we present Theorem 6.10 which
yields a strict bound on the storage required to achieve a
given transmission duration, alongside Theorem 6.11 which
describes a means of determining how the storage must be
distributed within the network. We then end the paper by
setting up a fifteen node Earth-Moon simulated system and
demonstrating how to apply our analysis methods to this
system.

A reader versed in routing in DTN may skip section 2.

A reader versed in semirings may skip section 3, and 4, noting
only that in this paper we will deal exclusively with additively
idempotent semirings.

2. BACKGROUND: ROUTING IN DTN
Transferring data between DTN nodes necessitates a rout-
ing framework that adeptly manages space communication’s
inherent delays and disruptions. Unlike routing in static
and mobile Internet networks, which are characterized by
persistent and close-to-zero latency end-to-end paths, rout-
ing in DTNs demands algorithm adaptations, time-dynamic
scheduling, and specific graph models.

Non-Determinisitc Routing Procedures—In DTNs with un-
certain connectivity, routing strategies can adopt various
approaches based on the network’s characteristics and re-
quirements. Simple methods like ”flooding” might be uti-
lized, which involve indiscriminately sending messages to all
neighboring nodes. Alternatively, more controlled strategies
like ”epidemic” routing can be employed, which selectively
share messages with nodes during encounters to reduce re-
dundancy [14]. Another method in this category includes
”Spray and Wait” [15], which involves a controlled repli-
cation of messages to specific nodes. In scenarios where
connectivity patterns can be inferred, probabilistic inference
methods such as PRoPHET [6], [7] and MaxProp [16] might
be leveraged. These methods utilize historical data and prob-
abilistic metrics to predict future encounters and interactions
among nodes, aiding in making informed routing decisions
amidst the network’s uncertainties.

Contacts and Contact Plans— In space, routing for DTN
utilizes a “contact plan,” a predictive model of future con-
nectivity opportunities, or “contacts” between nodes, derived
from precise orbital propagators and communication system
models [17]. This contact plan, which outlines the expected
resources and connectivity windows available for data trans-
port, becomes the backbone for routing decisions in space
systems.

Routing Phases—The routing process in space DTN is typ-
ically delineated into three interconnected stages: planning,

Figure 1: Example space network represented by a) a Contact
plan table, and b) a static graph of the topology.

routing, and forwarding. During the planning phase, a
centralized entity, such as mission control, generates the
contact plan, either distributed to the space DTN nodes for
distributed routing computation or retained for centralized
routing calculation. Subsequently, in the routing phase, the
contact plan is utilized as input for the CGR algorithm, which
computes optimal paths to network destinations, considering
the next hop and the optimal data delivery time, route volume
limit, and valid transmission interval. Finally, the forwarding
phase selects the best route from the computed route tables,
considers real-time local conditions, and manages the data
(or “bundle”) transmission or storage until the next viable
contact.

Topology Model: Contacts and Routes

Contact— A contact can be formally represented as
(Cs,e

snd,rcp, r, ω), where it is defined as a time interval (s; e)
during which data is anticipated to be transmitted by DTN
node snd (the sender) at rate r, ensuring reception by node
rcp (the recipient) with a latency of ω. The time values,
s and e, can be articulated either in absolute units, such
as Gregorian Coordinated Universal Time (UTCG), or in
relative time, measured from a reference epoch.

In Fig. 1 (adapted from [3]), a table enumerates each contact,
identified by a number (#1...16). Contacts C0,60

A,B , C0,60
B,C ,

and C0,60
A,C exemplify permanent links, such as those between

mission control and ground stations interconnected through
the Internet. Meanwhile, contacts C0,30

C,D and C10,20
A,E represent

episodic Ground to Space Links (GSLs), and contacts C0,10
D,E ,

C30,40
D,E , and C50,60

D,E identify episodic Inter-Satellite Links
(ISLs).

Note that contacts in space communications are defined as
unidirectional due to the prevalence of one-way transmis-
sion in this context. Therefore, two unidirectional contacts
are paired to represent bidirectional communication within
a contact plan. Additionally, owing to the one-way light
time (owlt, or ω), the start time of a contact typically does
not synchronize with the reverse channel in a bidirectional
link [3].

Route—A route, denoted as Rdst
src, where a bundle has node

src as its current location and node dst as its destination, is
defined as a sequence of contacts, also referred to as hops,
within a contact plan. This definition adheres to the following
conditions: a) src is the sending node for the initial contact,
b) dst is the receiving node for the final contact, c) The
receiving node for contact i becomes the sending node for
contact i + 1, and d) The end time for contact i + 1 is not

https://github.com/wrbernardoni/Semiring-Geometry
https://github.com/wrbernardoni/Semiring-Geometry
https://github.com/TheaMAS/sat-parser/blob/dev/cgr_sl_sr.py

3

Figure 2: Contact graph CGE
A with routes RE

A for the
topology in Fig. 1.

earlier than the start time for contact i [18].

Consider the example provided in Figs. 1, where one
of the quickest routes, namely route (1) RE

A =

{C0,60
A,C , C0,30

C,D , C0,10
D,E}, is emphasized. An alternative route,

route (2) RE
A = {C0,60

A,C , C0,30
C,D , C30,40

D,E }, can be derived
using the same nodes but with a different final contact. As
mentioned, DTN does not assume consistent end-to-end con-
nectivity. Consequently, a route may necessitate temporary
storage at intermediary nodes (for instance, at node D until
time 30 in route (2)). Moreover, contact propagation delays
(ω) are cumulatively added to storage times to compute the
best delivery time (BDT) for each route. For instance,
route (1) demonstrates a BDT = 3, even with immediate
transmission at each node, due to the ω = 1 in each of
its three constitutive contacts. On the other hand, route (2)
provides a BDT = 31 since node D will store the data until
time 30. Storage and propagation times within a route are
calculated during the routing procedure.

A routing procedure refers to the method through which
a sequence of contacts is calculated based on a specified
contact plan. The Contact Graph Routing (CGR) [2], [3]
variants are among the most developed and considered below.
However, alternatives such as Contact Multigraph Routing
(CMR) [4], [5] and Shortest-Path Tree Approach for Routing
in Space Networks (SPSN) [19] have been proposed as viable
methodologies. In general, these procedures can be executed
in a distributed manner on the DTN node, thereby utilizing
the most recent traffic and topological information. Alterna-
tively, the computations might be conducted centrally, within
a ground-based mission operations and control center [20].

Contact Graph—Contact graphs, depicted in Fig. 2 (adapted
from [3]), offer a structured approach to model the con-
nectivity and routes in space DTN. A contact graph, when
considering a destination node dst from a source node src, is
conceptualized as a directed acyclic graph CGsrc

src = (V,E),
where the vertices V represent contacts Cs,e

snd,rcp within the

contact plan. The edges E in a contact graph symbolize
episodes of data retention at a node i, spanning the time
between the end of a preceding contact and the start of the
subsequent one. A CG is constructed by assigning a vertex to
each contact in the contact plan, representing a transmission
from src node to dst node, directly or indirectly through other
contacts. Subsequently, edges are added between contacts
with corresponding destination and source nodes. Finally,
notional contacts from node src to itself and from node dst
to itself (a.k.a. root and terminal contacts) are included in the
CG. Fig. 2 illustrates CGE

A and RE
A , based on the contact

plan example shown in Fig. 1.

Note that each pair of src and dst nodes utilizes a unique
CG data structure. While this may appear a disadvantage,
it aligns well with its distributed nature on flight computers
with limited computing power. Computing on-demand routes
to a single destination is often more pertinent than to all or
multiple destinations.

Pathfinding—The primary benefit of utilizing CG data struc-
tures lies in their compatibility with conventional shortest-
path algorithms. Specifically, Dijkstra’s shortest path algo-
rithm can be modified to identify the optimal path from a
source to a destination node [21]. The detailed adaptation
of the modified Dijkstra’s algorithm is provided in [3]. The
time complexity of the CGR Dijkstra call is O(|C|log(|C|))
(with min-priority queues and Fibonacci Heaps), where |C|
is the size of the contact plan. The computed path can then
be employed in one of two ways: it can dictate the next hop
in a distributed routing scenario, such as in the Interplanetary
Overlay Network (ION) [22], or it can define the entire route
path in source or centralized routing approaches [23]. This
flexibility and adaptability of contact graph data structures
facilitate efficient and effective routing in diverse network
configurations.

Route Table—A single path is insufficient in practice since (i)
routes have an expiration, (ii) routes possess limited volume,
(iii) routes can be overbooked for specific priority classes,
and (iv) routes may not be feasible due to uncertainties or
failures. Therefore, a list of routes is needed. To this end, a
series of route table management methods have been explored
in [24]. The accurate method for constructing the route table
involves utilizing Lawler’s modification of Yen’s algorithm
[25]. This approach, implemented in ION v3.7 and persisting
through to the current version at the time of writing (v4.0),
employs Yen’s algorithm to execute a Dijkstra search within
a nested loop. This delivers a set of the K optimal routes
(len([RD

S]) = K), with K being supplied as an argument.

Despite the noteworthy progress in deterministic routing for
DTNs through CGR, storage utilization has, to the best of
the author’s knowledge, yet to be thoroughly integrated as a
variable or constraint within the overarching routing process.
In its core functionality, routing delivers calculated sequences
of contacts to allow efficient data transmission across the
network. Moving forward in this work, we delve into the
development of storage models, employing semiring geome-
try to render route selection aware of storage considerations.
The following sections will unfold these models in detail,
exploring their potential to seamlessly intertwine storage con-
siderations with the established routing mechanisms, thereby
paving the way toward a more integrated and efficient DTN
management.

3. BACKGROUND: SEMIRINGS
Definition 3.1. A semiring is a tuple (S,⊕,⊗, 0S , 1S), con-
sisting of a set S, two binary operations on S, ⊕,⊗ : S×S →
S, and two distinguished elements 0S , 1S ∈ S such that:

1. (S,⊕, 0S) is a unital commutative monoid, i.e. for all
a, b, c ∈ S:

(a) ⊕ is associative: (a⊕ b)⊕ c = a⊕ (b⊕ c)

(b) ⊕ is commutative: a⊕ b = b⊕ a

(c) 0S is the unit of ⊕: a⊕ 0S = a = 0S ⊕ a

2. (S,⊗, 1S) is a (potentially noncommutative) monoid, i.e.
for all a, b, c ∈ S:

(a) ⊗ is associative: (a⊗ b)⊗ c = a⊗ (b⊗ c)

(b) 1S is the unit of ⊗: a⊗ 1S = a = 1S ⊗ a

3. S satisfies the distributive laws:

(a) a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

(b) (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

4. Multiplication by 0S annihilates:

0S ⊗ a = 0S = a⊗ 0S

Remark 3.2. Semirings are sometimes referred to as Rigs as
they are rings without the negatives.

All rings are semirings, but we will be concerned instead with
an orthogonal class of semirings - idempotent semirings.

Definition 3.3. A semiring S is idempotent if for all a ∈ S

a+ a = a

Remark 3.4. Idempotent semirings are, in a sense, as far from
rings as a semiring can be. The only semiring which is both
idempotent and a ring is the zero semiring {0}.

There are many examples of idempotent semirings.

Example 3.5. The boolean semiring, denoted B, is the set
{0, 1} equipped with operations:

a⊕ b = a OR b

a⊗ b = a AND b

and units:
0B = 0 1B = 1

The boolean semiring appears critically and frequently in
computer science.

Example 3.6. The tropical min-plus semiring, denoted T,
is the set R ∪ {∞} equipped with operations

a⊕ b = min(a, b)

a⊗ b = a+ b

and units
0T = ∞ 1T = 0

The geometry associated with the tropical semiring is a
rich field of study. It has created many powerful tools to
address both abstract problems: such as the classification of
isotopy classes of real curves of degree seven [26]; as well
as practical applications such as enabling statistical methods
in the field of phylogeny [27], train scheduling, hyperplane
arrangements, and many other problems which may be read
about in [28] [29][30].

Example 3.7. A closely related idempotent semiring is the
max-min semiring. The max-min semiring is the set [0,∞]
equipped with operations

a⊕ b = max(a, b)

a⊗ b = min(a, b)

and units
0[0,∞] = 0 1[0,∞] = ∞

In this paper we will deal with idempotent semirings which
satisfy a somewhat strict condition, being closed under ar-
bitrary infinite sums. Here the orthogonality with rings
becomes apparent. Most rings that appear in practical appli-
cations are not closed under arbitrary infinite sums, however
many idempotent semirings are.

Definition 3.8. A semiring is complete if it has infinite sums
and satisfies infinite distributivity. That is, for any index set
I , there is an infinitary sum operation

∑
I

, such that:

a⊗

(∑
i∈I

ai

)
=
∑
i∈I

(a⊗ ai)(∑
i∈I

ai

)
⊗ a =

∑
i∈I

(ai ⊗ a)

Example 3.9. The tropical semiring, the max-min semiring,
and the boolean semiring are all complete semirings.

Definition 3.10. Let (S,⊗,⊕, 0S , 1S) be a complete semir-
ing and X a set. We say that the matrix semiring over
X with coefficients in S, denoted MX(S,⊗,⊕, 0S , 1S) –
sometimes shortened to MX(S)– is the set of functions:

X ×X → S

with addition defined pointwise:

(f ⊕ g)(a, b) = f(a, b)⊕ g(a, b)

and multiplication:

(f ⊗ g)(a, b) =
⊕
c∈X

f(a, c)⊗ g(c, b)

The additive unit is the function:

0MX(S,⊗,⊕,0S ,1S)(a, b) = 0S

And the multiplicative unit is the function:

1MX(S,⊗,⊕,0S ,1S)(a, b) =

{
1S a = b
0S a ̸= b

5Any function f ∈ MX(S) can be represented in a |X|-
dimensional matrix with entries in S. For this reason, we may
often use matrix notation to represent elements of MX(S).
For example, if A ∈ MX(S), we will denote A(i, j) as Ai,j
for i, j ∈ X .
Remark 3.11. If X is a finite set then we do not need to
require that S is a complete semiring however in Section
5 and Section 6 when we introduce semirings to model
delay tolerant networking we will primarily be working with
semirings of the form MR(S), and so we will primarily work
over complete semirings.

Proposition 3.12.

If S is a complete semiring, then MX(S) is complete.

If S is an idempotent semiring, then MX(S) is idempotent.

We encourage readers interested in learning more about idem-
potent semirings, ordered semirings, and non-ring semirings
in general to read the texts [13] and [31].

4. BACKGROUND: THE ALGEBRAIC PATH
PROBLEM

With an appropriate choice of semiring, finding the weights
of shortest paths in a network turns into solving a particular
matrix equation.

Definition 4.1. Let G be a directed (multi)graph with vertex
set V , equipped with a weight function

w : E → S

where S is some semiring. We can associate with this graph a
matrix in MV (S), that we will call the weighted adjacency
matrix, denoted A, where

Aij =
∑

(ij)∈E

w(ij)

That is, the (i, j)-th element of our matrix is the sum of the
weights of the edges from node i to node j.

Definition 4.2. Let p be a path in our graph. The weight of
p is the product of the weights of the edges in p, that is, if
p = (a1b1)(a2b2)...(anbn):

w(p) =

n∏
i=1

w(aibi)

Proposition 4.3. Let Pn
ij be the set of paths of length exactly

n in G from node i to node j.

The (i, j)th entry of the nth power of A is the sum of the
weights of all paths of length exactly n between node i and
node j. That is,

An
ij =

∑
p∈Pn

ij

w(p)

In the context of an idempotent semiring this takes on an
additional meaning. Idempotent semirings carry a natural

order, and we can use this An matrices to find paths of
minimal weight.

Definition 4.4. Let S be an idempotent semiring. The
canonical ordering of S is given by:

a ≤ b ⇐⇒ a⊕ b = a

Remark 4.5. This ordering is given in analogy with the min-
plus tropical semiring where

a⊕ b = min(a, b)

Here we get that a = a⊕ b ⇐⇒ a ≤ b.

Some authors present the reverse ordering as the canonical
ordering.
Remark 4.6. Under this ordering we get that for any finite set
X (and if S is complete, any infinite set)

inf(X) =
∑
x∈X

x

Corollary 4.7. If G is a graph weighted in an idempotent
semiring, then

An
ij = inf

p∈Pn
ij

w(p)

We would like to find the least weight between two nodes
over any path. That is:

inf
n∈N

inf
p∈Pn

ij

w(p)

Remark 4.6 gives us a method to find this minimal weight.

Definition 4.8. The Kleene star of a matrix A, denoted A∗

is:

A∗ = I +A+A2 +A3 + ... =

∞∑
n=0

An

Corollary 4.9. The infinum over all weights of paths between
nodes i and j is the i, jth entry of the Kleene star A, that is,
if Pij is the set of all paths between nodes i and j, we get:

A∗
ij = inf

p∈Pij

w(p)

Remark 4.10. When the canonical ordering on S is not
totally ordered this does not exactly correlate to the “minimal
weighted path”, instead A∗

ij should be thought of as the
minimal weight achievable by a sum of paths.

We will develop a semiring in the next section that encodes
contact windows—times in which nodes can communicate.
The entry A∗

ij will then give us all possible times that the
nodes i and j can communicate, possibly using several paths.
Our contact window semiring will not be totally ordered, so
there may not be a single path p such that w(p) = A∗

ij .
Instead one should think of A∗

ij as the weight achievable if
one has the option of traversing any path in the graph.

In order to calculate A∗ we may potentially need to calculate
an infinite sum. While there are many possible conditions
to impose which can force the sum needed to compute A∗

will converge in a finite number of steps (see [12] for further
details), in general we will compute the finite sums which
converge towards A∗, we call these the cumulants of A.

Definition 4.11. We say that the nth cumulant of a matrix A
is the matrix:

A(n) = I +A+A2 + ...+An−1 +An =

n∑
i=0

Ai

When dealing with idempotent semirings there is a useful
computational identity one can use to quickly calculate the
cumulants of a matrix.

Proposition 4.12.

A(n) = (I +A)n

Definition 4.13. We say that a matrix A stabilizes in n steps
if

A∗ = A(n)

The task of finding A∗ from a matrix A is called the algebraic
path problem. Many problems in computer science can be
reduced to an instance of the algebraic path problem. A good
introductory text on computational methods and applications
of solving the algebraic path problem is the text [12]. A more
theoretical view into the connection between graph problems
and semirings is the text [13].

We will spend the rest of this paper developing semirings
and methods from those semirings to apply this algebraic
framework to delay tolerant networking.

5. SEMIRING MODELLING OF
COMMUNICATION WINDOWS

In this section we will develop a semiring which answers
the question “When can two nodes talk in a delay tolerant
network?” We will then use this semiring as a basis to analyze
the amount of storage necessary in a network to enable a
desired transmission duration.

Any model that seeks to capture the behavior of a delay
tolerant network needs to be able to describe:

1. Contact windows: As nodes move, obstructions and
downtime may appear. As a result nodes have certain win-
dows in which they can communicate.
2. Delays: Our primary application is in the analysis of
communications for deep space networks. At a solar system
scale large delays begin to appear. For instance, it can take
between three and twenty three minutes for a message sent
from Earth travelling at the speed of light to reach Mars.
As we expand deeper into space we need our methods and
models to be able to handle increasing communication delays.
3. Store and Forward behavior: Satellites may not act
exclusively as relays. They are capable of storing messages
to bridge gaps in communications.

There are models which can handle contact windows, such
as the TVG model introduced in [32]; and there are models
to handle contact windows with delays, such as the bent pipe
semiring (aka the “propagation delay semiring” in [32]).

In this section we will introduce a computable semiring which
can be used to model all three necessary behaviors of a
delay tolerant network. The composite behaviors possible
in networks that allow for store and forward behavior arise

as multiplicative words in this semiring. In this model, our
question of ‘When can two nodes talk in a delay tolerant
network?” reduces to solving a matrix equation over this
semiring. This approach gives us an algebraic toolkit to
analyze these delay tolerant networks.

Definition 5.1. The Universal Contact Semiring, which
was first introduced using a different formulation in [32],
is the subsemiring of MR(B) consisting of upper triangular
matrices. That is, matrices over the boolean semiring where
Aij = 0 if i > j.

Remark 5.2. As we will see, the universal contact semiring
presented here focuses on arrival times of messages, whereas
the version in [32] focuses on delays. These perspectives are
isomorphic, but the multiplication rule presented in [32] is
significantly more complicated than the matrix multiplication
used here. This reformulation is significant enough to moti-
vate the separate and novel presentation given here.
Remark 5.3. The canonical order of the universal contact
semiring can be understood as follows:

Let A and B be two matrices in the universal contact semir-
ing. The statement that A ≤ B with respect to the canonical
ordering on the universal contact semiring, is the statement
that: “If I can send a message at time i and have it arrive
at time j using the path represented by B, then I can send a
message at time i and have it arrive at time j using the path
represented by A.”

That is, if A ≤ B then A has a larger “contact window”.
This follows from considering Remark 4.5 and recalling that
addition in the Boolean semiring is a logical OR.

If we have a matrix with entries in the universal contact
semiring, then computing the Kleene star of that matrix is
the problem of finding all possible send and recieve times in
the corresponding contact graph.

The universal contact semiring is too vast to allow every
element to be represented in a computer. Indeed if one
looks at upper triangular matrices where the support (non-
zero entries) encodes the picture of a fractal or some other
endlessly detailed pattern of 0’s and 1’s, then there is no
hope to also perform operations on these, such as addition
and multiplication. However, we note (1) for most practical
applications, arbitrarily complex elements of the UCS can
be approximated in finite space up to any desired precision
and (2) the subsemirings encountered when modelling delay
tolerant networks do not require approximation and admit
simple closed form algebraic representations.

To (1)’s point, the paper [33] provides algorithms and the-
oretical guarantees on fidelity for representing an R × R
matrix (with Boolean entries) using a “pixelated” version—
thus motivating the notion of a pixel array. The paper
[33] goes onto provide robust and efficient algorithms for
multiplying finite collections of pixelated R× R matrices.

This paper will be primarily concerned with embracing strat-
egy (2), whose goal is to find computable subsemirings that
encapsulate the behaviors specific modelling DTN. To that
end, we identify certain “building block” R×R matrices that
capture the behavior of contact graph routing. We will then
see that we can describe these building blocks, as well as all
compositions of these building blocks in simple to compute
closed forms without needing approximation.

As we now describe, these building block matrices are built to

7model contact windows—a boolean encapsulation of when
messages can be sent between two nodes, without regard to
data rate—and storage–the ability for a node to bridge gaps
between contact windows.

In Section 6 these building blocks are then generalized to
model transmission duration and other, more realistic, de-
mands of DTN architectures.

In our first, most elementary treatment, a contact window
should be regarded as an interval of time where a message
can be sent, along with a fixed delay associated with sending
the message. We denote a contact window in the form:
([s, e] : ω) where s is the start of the interval in which a
message can be sent, e is the end of that interval, and ω is the
fixed time delay associated with that contact.

In the universal contact semiring, we may associate to a
contact window ([s, e] : ω) a matrix X of the form:

Xij =

{
1 j = i+ ω, i ∈ [s, e]
0 otherwise

An example is depicted below in Figure 3.

Figure 3: The boolean matrix associated with a contact,
([s, e] : ω)

Notation 1. We will refer to matrix associated to a contact
window by the contact window itself. So we will say ([s, e] :
ω)ij to refer to the i, jth element of the matrix associated with
the contact window ([s, e] : ω), i.e.,

([s, e] : ω)ij = Xij

([s, e] : ω)ij is 1 if and only if we can send a message along
our contact window at time i and receive it at time j.

Unlimited storage can be modelled via the upper triangular
matrix:

Sij =

{
1 j ≥ i
0 j < i

An example is depicted below in Figure 4.

This encoding reflects the observation that with infinite stor-
age and uninterrupted connectivity, a message at any time in
the past can be sent to any time in the future.

Using contact windows and storage matrices we can build an
algebraic object that we can use to analyze contact graphs.

Figure 4: The storage matrix, S

Now that we have defined the matrices associated to contact
windows and storage, we can examine their compositions.
For instance the times in which we can utilize a contact and
then store are given by multiplying the corresponding contact
window and storage matrices.

(a) A contact window right
multiplied by the storage matrix

(b) A contact window left
multiplied by the storage matrix

(c) A contact window left and
right multiplied by the storage

matrix

Figure 5: Various combinations of contact windows and
storage matrices

Any semiring which contains these two behaviors then gives
us a method in which we can find the possible windows that
we may communicate across a delay tolerant network.

We examine the smallest semiring which contains both con-
tacts and the storage matrix.

Definition 5.4. The Store-and-Forward Semiring is the
subsemiring of the universal contact semiring consisting of
finite sums and products of contacts, ([s, e] : ω), and the
storage matrix S.

Remark 5.5. Given a set of contacts C = {Cs,e
AB} with an

associated time delay function ω : C → [0,∞), we can build
a matrix, X , over the store-and-forward semiring where the
AB entry of X is the sum of the contact windows for contacts

between nodes A and B in our network, i.e.

XAB =
∑

Cs,e
AB∈C

([s, e] : ω (Cs,e
AB))

If a node A has storage capabilities then we add

XAA = S

The matrix X gives us a method of analyzing the communi-
cations possible in our contact graph. The AB entry of Xn

will be a R × R boolean matrix with a 1 at entry i, j if there
is a route in n contact or storage steps from node A to node
B that allows one to send a message at time i and receive at
time j.

The AB entry of the Kleene star of X , X∗
AB tells us all pairs

of send and receive times that can be attained over any path
from node A to node B in our network.

In order to compute Xn or X∗ we need to know how to com-
pute finite additions and multiplications of contact windows
and the storage matrix. Adding two of these matrices is just
taking the union of their support. We will see that all of
the basic shapes that can occur in these matrices are simple
polygons, and so their union can be computed efficiently. We
will show that in this semiring we can also quickly compute
the multiplication of elements.

The Store-and-Forward semiring has a surprisingly simple
algebraic structure. Multiplicative sentences in this semiring
can be computed quickly, and easily, and can be summarized
with just five pieces of information.

Theorem 5.6. Every element of the Store-and-Forward
semiring can be written as a finite sum of elements in either
the form of a contact

([s, e] : ω)

or a nevada

([s1, e1] : ω1)S([s2, e2] : ω2)

Remark 5.7. We call elements of the form

([s1, e1] : ω1)S([s2, e2] : ω2)

nevadas, as their general form is in the shape of the state of
Nevada. We indicate these elements as nevadas with a lower
case n to avoid any confusion with the state of Nevada.

Proof. We note that the product of two contact windows is a
contact window:

([s1, e1] : ω1) ∗ ([s2, e2] : ω2) =

([s1, e1] ∩ [s2 − ω1, e2 − ω1] : ω1 + ω2)

The storage matrix is multiplicatively idempotent:

S ∗ S = S

The identity matrix can be written as the contact window

((−∞,∞) : 0)

Figure 6: The general form of an element of the store-and-
forward semiring of the form ([s1, e1] : ω1)S([s2, e2] : ω2)
is the shape carved out by five hyperplanes: y = s1, y =
e1, x = s2 + ω2, x = e2 + ω2, and x = y + ω1 + ω2

and that the following S-conjugation formula holds

S ∗ ([s, e] : ω) ∗ S = ((−∞, e] : 0)S([s,∞) : ω)

From these three facts we can reduce any multiplicative
strings of contact windows and storages into either a single
contact window, or a nevada.

Remark 5.8. We can uniquely determine a nevada with five
numbers, as each nevada can be written a the canonical form:

A nevada of the form

([s1, e1] : ω1)S([s2, e2] : ω2)

is equal to the nevada

([s1,min(e1, e2−ω1)] : 0)S([max(s1, s2−ω1), e2−ω1] : ω1+ω2)

From this we note that each nevada admits a unique form

([s1, e1] : 0)S([s2, e2] : ω)

with s2 ≥ s1 and e1 ≤ e2.

This tells us that the communication window of any path
through a contact network, no matter how complicated, can
be described in at most five numbers.

Example 5.9. Consider the product:

([0, 10] : 5)SS([3, 6] : 2)S([1, 8] : 1)([0, 8] : 2)

We can rewrite this

([0, 10] : 5)SS([3, 6] : 2)S([1, 8] : 1)([0, 8] : 2)

= ([0, 10] : 5)SS([3, 6] : 2)S([1, 7] : 3)

= ([0, 10] : 5)S([3, 6] : 2)S([1, 7] : 3)

= ([0, 10] : 5)((−∞, 6] : 0)S([3,∞) : 2)([1, 7] : 3)

= ([0, 1] : 5)S([3, 5] : 5)

These formulas give us a quick computational tool to de-
termine all possible communication times within a contact
graph.

96. SEMIRING MODELLING OF TRANSMISSION
DURATIONS UNDER LIMITED STORAGE

As we build satellite networks, an important problem is
that of finding the minimal amount of storage necessary to
give us a certain amount of data throughput in our network.
Hard drives take weight, and excess weight is anathema to
satellites.

In this section we will make one simplifying assumption.
We will assume that the bandwidth across each link in our
network is identical, or very nearly so. In a satellite network
this is not an unreasonable assumption, and the method build
in this paper can be expanded to apply to networks with non-
constant or non-identical bandwidths - however quite a bit
of bulk must be added to the theorems to handle the loss
of this assumption: rather than the simple formula we will
derive by the end of this section, the storage requirements and
throughput possible become solutions of tropical polynomial
equations of potentially high degree.

Assuming identical bandwidth, it then is enough to model
transmission duration. We will introduce a semiring which
models both limited storage capabilities as well as limited
transmission durations, and then use the properties of that
semiring to determine the minimal amount of storage neces-
sary in our network in order to obtain maximal transmission
durations.
Remark 6.1. All of our units in this section will be units of
time.

We call transmission duration the amount of time we can
contiguously stream a message along a path in our contact
network and we call storage the total amount of time that
a message must buffer at each node. Our notion of storage
can be thought of as the “layover time” that a message
experiences along a route.

Assuming a constant bandwidth we can use these numbers to
determine the amount of data transmit-able in bits (bandwidth
times transmission duration), and the amount of storage in
bits necessary at each node (the maximum of bandwidth times
the temporal storage and the data transferred).

While the constructions introduced may be technical, the
result of this technical analysis will be that we can summarize
these transmission duration enhanced contact matrices and
their multiplication with seven numbers, as we will see in
remark 6.15. This results in a simple and computable method
for modeling and analysing the transmission durations possi-
ble in a delay tolerant network.

Throughout this section we will build the tools needed to
analyze an arbitrary path through a contact network. We will
take as an input an ordered list of contact windows, {([si, ei] :
ωi)} given by a path through a contact graph, and associate
with it a transmission duration enhanced nevada. From this
nevada we will derive the optimal transmission duration and
storage requirements along that path. The method used
to produce these paths can be any routing algorithm, or it
can be generated by the semiring itself by using the matrix
construction given in remark 5.5.
Notation 2. We will use the following conventions:

• si will be used to denote the start time of the ith contact
window along a path

• ei denotes the end time of the ith contact window along a

path

• ωi denotes the delay associated with the ith contact along
a path, i.e. a message sent along this contact at time t will
arrive at time t+ ωi

• Ωi is the i-cumulant delay, that is:

Ωi =

i∑
n=1

ωi

• αi represents the storage capability, measured in units of
time, associated with the ith node in a path.

• Ai is the i-cumulant storage, that is:

Ai =

i∑
n=1

αi

We also define A0 = 0

• We use ŝi and êi to represent the times that a message
would need to be initially sent to achieve the start or end time
of a given contact window, that is:

ŝi = si − Ωi−1 êi = ei − Ωi−1

Definition 6.2. The Transmission Duration Enhanced,
Storage Limited Store-and-Forward Semiring is the sub-
semiring of MR([0,∞],max,min,∞, 0) generated by matri-
ces of the form of contact windows:

([s, e] : ω)ij =

{
e− i j = i+ ω, i ∈ [s, e]
0 otherwise

for s ∈ [−∞,∞), e ∈ (−∞,∞], ω ∈ [0,∞). As well as
matrices representing potentially limited storage:

(Sα)ij =

{
∞ i ≤ j ≤ i+ α
0 otherwise

where α ∈ [0,∞]

Figure 7: The support of the matrix Sα

Remark 6.3. Given an element X in this semiring. Xij is the
maximal duration of time we can stream a message such that
we send the first bit at time i and it is received at time j.

Given two elements X and Y . (X + Y)ij is the maximum
duration between Xij and Yij , and (X ∗ Y) is the maximum
duration of a message allowed if we compose the links
described by X and Y , first taking the links in X and then
in Y .

We will now analyze the composite behavior that appears in
this storage limited setting, analyzing what happens as we
vary the amount of storage allocated in the network, and use
that to determine the minimal amount of storage necessary to
attain the maximum transmission duration.

We begin by analyzing the behavior that comes from storing
first, and then sending a message along a contact.

Proposition 6.4.

(Sα([s, e] : ω))ij = e− j + ω

When

j − ω ∈ [s, e]

i ≤ j − ω ≤ i+ α

and 0 elsewhere.

Figure 8: The support of the matrix Sα([s, e] : ω)

From Proposition 6.4, we can then find the behavior that
occurs in a “simple nevada”.

Proposition 6.5.

(([s1, e1] : ω1)Sα([s2, e2] : ω2))ij = min(e1−i, e2−j+ω2)

When

i ∈ [s1, e1] ∩ [s2 − ω1 − α, e2 − ω1]

j − ω2 ∈ [s2, e2] ∩ [s1 + ω1, e1 + ω1 + α]

i+ ω1 + ω2 ≤ j ≤ i+ ω1 + ω2 + α

and 0 elsewhere.

We may now induct on Proposition 6.5 to find a general case.

Theorem 6.6. Let n ≥ 2,(
([s1, e1] : ω1)Sα1([s2, e2] : ω2)Sα2 ...Sαn−1([sn, en] : ωn)

)
ij

Figure 9: The support of the matrix ([s1, e1] :
ω1)Sα([s2, e2] : ω2), where Ω = ω1 + ω2

is the minimum of the four quantities

n−1
min
ℓ=1

(
eℓ −

ℓ−1∑
k=1

ωk

)
− i

n−1
min
ℓ=2

eℓ −max
k≤ℓ

sk +

ℓ−1∑
f=k

ωf

n

min
ℓ=2

(
eℓ +

n∑
k=ℓ

ωk +

n−1∑
k=ℓ

αk

)
− j

n−2
min
ℓ=2

eℓ +

n−1∑
k=ℓ

ωk +

n−2∑
k=ℓ

αk − n−1
max
k=1

sk +

n−1∑
f=k

ωf

For

i ∈
n⋂

ℓ=1

[sℓ −
ℓ−1∑
k=1

(ωk + αk), eℓ −
ℓ−1∑
k=1

ωk]

j − ωn ∈
n⋂

ℓ=1

[sℓ +

n−1∑
k=ℓ

ωk, eℓ +

n−1∑
k=ℓ

(ωk + αk)]

i+
n∑

ℓ=1

ωℓ ≤ j ≤ i+

n∑
ℓ=1

ωℓ +

n−1∑
ℓ=1

αℓ

and 0 elsewhere.

Proof. Note that we get the n = 2 case from Proposition 6.5.

We can then induct by multiplying the above form by an
element of the form Sαn([sn+1, en+1] : ωn+1), whose co-
efficients we know from Proposition 6.4

Remark 6.7. We can rewrite this in a simpler form.

First note that the fourth minimand is always greater than the

third, as j ≥ n
max
ℓ=1

sℓ +

n∑
k=ℓ

ωℓ, so we may omit the fourth

minimand.

11Rewritten using notation 2 the three relevant minimands
become:

n−1
min
ℓ=1

(êi)− i

n−1
min
ℓ=2

(
êℓ −max

k≤ℓ
ŝk

)
n

min
ℓ=2

(êℓ +Ωn +An−1 −Aℓ−1)− j

Our bounds on i and j can be written:

i ∈
n⋂

ℓ=1

[ŝℓ −Aℓ−1, êℓ]

j ∈
n⋂

ℓ=1

[ŝℓ +Ωn, êℓ +Ωn +An−1 −Aℓ−1]

i+Ωn ≤ j ≤ i+Ωn +An−1

These three minimands give us a nice lemma to lower bound
other coordinates of our matrix once we know one.
Lemma 6.8. Let(

([s1, e1] : ω1)Sα1
...Sαn−1

([sn, en] : ωn)
)
ij
≥ X

If Y ≥ 0 then for i′ = i+ Y and j′ = j + Y we get:(
([s1, e1] : ω1)Sα1

...Sαn−1
([sn, en] : ωn)

)
i′j′

≥ X − Y

To find the maximum possible transmission duration, we can
take the nevada associated to a path(

([s1, e1] : ω1)Sα1
...Sαn−1

([sn, en] : ωn)
)

and let our storage become unbounded. The maximum entry
in the corresponding matrix is then the maximum possible
transmission duration.
Theorem 6.9. Let ([s1, e1] : ω1), ([s2, e2] : ω2), ..., ([sn, en] :
ωn) be an ordered list of contact windows.

In a non-storage constrained setting, the maximum transmis-
sion duration through the composite of these contact windows
is

n
min
ℓ=1

(
êℓ −max

k≤ℓ
(ŝk)

)

Proof. Let αi → ∞ for each i, our three minimands become

n−1
min
ℓ=1

(êℓ)− i

n−1
min
ℓ=2

(
êℓ −max

k≤ℓ
(ŝk)

)
ên +Ωn − j

To maximize this we only need to consider the minimum
possible values of i and j:

i ≥ s1

j ≥ n
max
ℓ=1

ŝℓ +Ωn

Put together this gives us our maximum possible transmission
duration.

Our question then becomes what is the minimal An−1 such
that there exists an i, j where(
([s1, e1] : ω1)Sα1

([s2, e2] : ω2)Sα2
...Sαn−1

([sn, en] : ωn)
)
ij

is equal to the maximal transmission duration

n
min
ℓ=1

(
êℓ −max

k≤ℓ
(ŝk)

)
i.e. what is the minimal required storage necessary to attain
maximal transmission duration.

Theorem 6.10. Let an ordered series of contact windows
([s1, e1] : ω1), ([s2, e2] : ω2), ..., ([sn, en] : ωn) be given.

Fix some τ such that 0 ≤ τ ≤
n

min
ℓ=1

(
êℓ −max

k≤ℓ
(ŝk)

)
Let:

ν = max(0, τ − (
n−1
min
ℓ=1

êℓ −
n

max
k=1

ŝk))

There is an assignment of storage, α1, ..., αn−1 such that it
is possible to stream a message through the series of contact
windows for a length of time τ if and only if

An−1 ≥ ν

Proof. Let α1, ..., αn be such that there exists an i, j where

(([s1, e1] : ω1)α1...αn−1([sn, en] : ωn))ij = τ

This tells us

n−1
min
ℓ=1

êℓ − i ≥ τ

n
min
k=2

(êk +Ωn +An−1 −Ak−1)− j ≥ τ

We note that i ≥ j − Ωn −An−1 and j ≥ n
max
k=1

ŝk +Ωn and

so our equation
n−1
min
ℓ=1

êℓ − i ≥ τ

tells us
n−1
min
ℓ=1

êℓ −
n

max
k=1

ŝk +An−1 ≥ τ

or

An−1 ≥ τ −
(

n−1
max
ℓ=1

êℓ −
n

max
k=1

ŝk

)
= ν

Thus if α1, ..., αn−1 are such that we may attain a stream of
length τ then An−1 ≥ ν

Let An−1 ≥ ν we will show there is an assignment of
α1, ..., αn and an i such that for

j =
n

max
ℓ=1

(ŝℓ +Ωn)

attains a transmission duration at least τ , i.e

(([s1, e1] : ω1)Sα1
...Sαn−1

([sn, en] : ωn))ij ≥ τ

We can see that this holds for n = 2, with

i = min(
n

min
ℓ=1

êℓ − τ,
n

max
ℓ=1

ŝℓ)

as our bound is A1 ≥ ν, and for any A1 = α1 ≥ ν we get

(([s1, e1] : ω1)Sα1
([s2, e2] : ω2))ij ≥ τ

We can then induct on n to show that the above i and j work
in general.

Let the above hold for n− 1, and let An−1 ≥ ν.

Let

j =
n

max
ℓ=1

(ŝℓ +Ωn)

τ̄max =
n−1
min
ℓ=1

(êℓ −max
k≤ℓ

ŝk)

τ̄ = min(τ̄max, τ + δ)

ν̄ = max(0, τ̄ − (
n−2
min
ℓ=1

êℓ −
n−1
max
k=1

ŝk))

δ =
n

max
ℓ=1

ŝℓ −
n−1
max
ℓ=1

ŝℓ

t = τ̄ − τ

αn−1 = max(0, τ + δ − τ̄max)

We note that τ̄ ≤ τ̄max, and so for any An−2 ≥ ν̄ by
our inductive hypothesis there is an assignment of storage
α1, ..., αn−2 and an i such that for k =

n−1
max
ℓ=1

ŝℓ + Ωn−1 we
get

(([s1, e1] : ω1)Sα1
...Sαn−2

([sn−1, en−1] : ωn−1))ik ≥ τ̄

We will show we can use this assignment and extend it with
αn−1 to create the proper storage assignment and message
length for An−1.

To do so we first show

An−1 − αn−1 ≥ ν̄

Let τ + δ ≥ τ̄max = τ̄ , then αn−1 = τ + δ − τ̄max

An−1 − αn−1 ≥ ν − αn−1

= max(−αn−1, τ̄max −
n−1
min
ℓ=1

êℓ +
n−1
max
k=1

ŝk)

= max(−αn−1, τ̄ −
n−1
min
ℓ=1

êℓ +
n−1
max
k=1

ŝk)

= ν̄

We note

τ̄max −
n−1
min
ℓ=1

êℓ +
n−1
max
k=1

ŝk ≥ 0

as τ̄max ≥
n−1
min
ℓ=1

êℓ −
n−1
max
k=1

ŝk by definition.

We also note

τ̄max −
n−1
min
ℓ=1

êℓ +
n−1
max
k=1

ŝk ≥ τ̄max −
n−2
min
ℓ=1

êℓ +
n−1
max
k=1

ŝk

and so

τ̄max−
n−1
min
ℓ=1

êℓ+
n−1
max
k=1

ŝk ≥ max(0, τ̄max−
n−2
min
ℓ=1

êℓ+
n−1
max
k=1

ŝk) = ν̄

Thus An−1 − αn−1 ≥ ν̄.

Let τ̄ = τ + δ < τ̄max, then αn−1 = 0. We need to show that
in this case An−1 ≥ ν̄

An−1 ≥ ν

= max(0, τ −
n−1
min
ℓ=1

êℓ +
n

max
k=1

ŝk)

= max(0, τ + δ +
n−1
max
k=1

ŝk −
n−1
min
ℓ=1

êℓ

= max(0, τ̄ +
n−1
max
k=1

ŝk −
n−1
min
ℓ=1

êℓ)

= ν̄

As τ̄ ≥ τ we may apply lemma 6.8, and we get that for ī =
i+ t and k̄ = k + t we have

(([s1, e1] : ω1)Sα1 ...Sαn−2([sn−1, en−1] : ωn−1))īk̄ ≥ τ

We will now show

Sαn−1
([sn, en] : ωn)k̄j ≥ τ

once we do so our proof is complete, as then the product

(([s1, e1] : ω1)Sα1 ...Sαn−1([sn, en] : ωn−1))īj ≥ τ

We examine Proposition 6.4 to show this last detail.

We note

en − j + ωn = ên − n
max
ℓ=1

(ŝℓ +Ωn) ≥ τ

So it remains to show that k̄ and j are in the proper bounds.

The only nontrivial bound is:

k̄ ≤ j − ωn ≤ k̄ + αn−1

We note as τ̄max ≥ τ

k̄ + ωn =
n−1
max
ℓ=1

ŝℓ +Ωn + τ̄ − τ ≤ n−1
max
ℓ=1

ŝℓ +Ωn + δ = j

13For the upper bound we note that t + αn−1 = δ and that
k + δ = j, and we see

k̄ + ωn + αn−1 = k + t+ ωn + αn−1

= k + ωn + δ

= j

And so there is an assignment of storage for every An−1 ≥ ν
which attains message length τ .

And so by induction our converse holds.

The inductive step in the converse can be used as a recursive
algorithm to find the specific storage allocation necessary to
attain a given transmission duration.

The previous theorem gives us the minimal total storage
requirement, but in many applications it is important to know
where the storage is needed.

We can find bounds on not only An−1, but each αi.

Theorem 6.11. Let an ordered series of contact windows
([s1, e1] : ω1), ([s2, e2] : ω2), ..., ([sn, en] : ωn) be given.

Fix some τ such that 0 ≤ τ ≤
n

min
ℓ=1

(
êℓ −max

k≤ℓ
(ŝk)

)
Let:

γ1 = max(0, τ −
(

n−1
min
ℓ=1

(êℓ)−max(ŝ1, ŝ2)

)
γi = max

(
0, τ −

(
n−1
min
ℓ=1

êℓ −
i+1
max
j=1

ŝj

))
+min

(
0, τ −

(
n−1
min
j=i

êj −
n

max
ℓ=1

ŝℓ

))

For any assignment of storage such that we may stream a
message for time τ we know

αi ≥ max(0, τ − γi)

For i ≥ 2 and
α1 ≥ γ1

Proof. Let α1, ..., αn be such that there exists an i, j where

(([s1, e1] : ω1)α1...αn−1([sn, en] : ωn))ij = τ

This tells us

n−1
min
ℓ=1

êℓ − i ≥ τ

n
min
k=2

(êk +Ωn +An−1 −Ak−1)− j ≥ τ

We know that i ≥ n
max
k=1

ŝk −Ak−1 which tells us

n−1
min
ℓ=1

êℓ −
n

max
k=1

(ŝk −Ak−1) ≥ τ

As this holds for the maximum value, it holds for all k, and
we get

n−1
min
ℓ=1

êℓ − ŝk +Ak−1 ≥ τ

or

Ak−1 ≥ τ − (
n−1
min
ℓ=1

êℓ − ŝk)

As each αi is nonnegative we get Ak−1 ≥ 0, and so

Ak−1 ≥ max

(
0, τ − (

n−1
min
ℓ=1

êℓ − ŝk)

)
For each j ≤ k we get Aj−1 ≤ Ak−1 which allows us to
refine this inequality further

Ak−1 ≥ max

(
0, τ − (

n−1
min
ℓ=1

êℓ −
k

max
j=1

ŝj)

)

As α1 = A1 we get

α1 ≥ max

(
0, τ − (

n−1
min
ℓ=1

êℓ −max(ŝ1, ŝ2))

)
= γ1

Similarly we note that j ≥ n
max
k=1

ŝk +Ωn and so we get

n
min
k=2

(êk +Ωn +An−1 −Ak−1)− (
n

max
ℓ=1

ŝℓ +Ωn) ≥ τ

As this is true for minimal k we get

(êk +Ωn +An−1 −Ak−1)− (
n

max
ℓ=1

ŝℓ +Ωn) ≥ τ

for 2 ≤ k ̸= n. We can rewrite this

Ak−1 ≤ An−1 + êk − n
max
ℓ=1

ŝℓ − τ

We also note that if j ≥ k then Ak−1 ≤ Aj−1, which allows
us to refine this inequality even further

Ak−1 ≤ An−1 +
n−1
min
j=k

êj −
n

max
ℓ=1

ŝℓ − τ

We also know that Ak−1 ≤ An−1 so we may write

Ak−1 ≤ min(An−1, An−1 +
n−1
min
j=k

êj −
n

max
ℓ=1

ŝℓ − τ)

Ak−1 ≤ An−1 +min(0,
n−1
min
j=k

êj −
n

max
ℓ=1

ŝℓ − τ)

Ak−1 ≤ An−1 −max

(
0, τ −

(
n−1
min
j=k

êj −
n

max
ℓ=1

ŝℓ

))

For k ≥ 2 we know that αk = Ak − Ak−1, from the above
inequalities we get:

αk ≥max

(
0, τ −

(
n−1
min
ℓ=1

êℓ −
k+1
max
j=1

ŝj

))
+max

(
0, τ −

(
n−1
min
j=k

êk − n
max
ℓ=1

ŝℓ

))
−An−1

or
αk ≥ γk −An−1

We also know that αk ≥ 0, so we get

αk ≥ max(0, γk −An−1)

Example 6.12. Consider the path

([0, 3] : 0)Sα1
([3, 4] : 0)Sα2

([2, 7] : 0)

Our maximum transmission duration is τ = 1

For τ = 1, we get ν = max(0, 1− 3 + 3) = 1

We get

γ1 = max(0, 1− 3 + 3) = 1

γ2 = max(0, 1− 3 + 2) + max(0, 1− 4 + 3) = 0

And so we know

A2 ≥ 1

α1 ≥ 1

α2 ≥ max(0,−A2) = 0

Example 6.13. Consider

([0, 3] : 0)Sα1([3, 7] : 0)Sα2([2, 4] : 0)Sα3([8, 11] : 0)

Here we get a maximum τ of 1, and for that τ , ν = 1−3+8 =
6 and

γ1 = max(0, 1− 3 + 3) = 1

γ2 = max(0, 1− 3 + 3) + max(0, 1− 4 + 8) = 6

γ3 = max(0, 1− 3 + 8) + max(0, 1− 4 + 8) = 11

Which tells us

A3 ≥ 6

α1 ≥ 1

α2 ≥ 0

α3 ≥ 5

And so we can see that for minimal storage we allocate 1 unit
of storage to α1 and 5 to α3.

Example 6.14. Consider

([0, 1] : 0)Sα1([1, 3] : 0)Sα2([1, 3] : 0)Sα3([2, 3] : 0)

Here we get a maximum τ of 1, and for that τ we have

ν = max(0, 1− 1 + 2) = 2

γ1 = max(0, 1− 1 + 1) = 1

γ2 = max(0, 1− 1 + 1) + max(0, 1− 3 + 2) = 1

γ3 = max(0, 1− 1 + 2) + max(0, 1− 3 + 2) = 2

From here we get

A3 ≥ 2

α1 ≥ 1

α2 ≥ 0

α3 ≥ 0

We note that our bounds here do not tell us where the second
unit of storage is allocated, but if we examine our path we
can note that the allocation is ambiguous – we may set
either α1 ≥ 2 or α2 ≥ 1 in order to attain our maximum
transmission duration.

In a non-storage limited setting we do not need to remember
the whole list of contacts to compute these transmission
duration enhanced nevadas, instead we only need to keep
track of seven numbers to determine all of the information
held within the nevada.
Remark 6.15. Let A and B be ordered sequences of contact
windows,

A = ([sAi , e
A
i] : ω

A
i) B = ([sBi , e

B
i] : ω

B
i)

In a non-storage constrained setting can determine the ma-
trices associated with A and B, as well as the maximal
throughput and minimal storage requirement by just keeping
track of the following seven numbers.

Let τX be the maximum possible throughput of sequence X ,
i.e.

τX =
n

min
ℓ=1

(
êXℓ −max

k≤ℓ
ŝXk

)
Let νX be the corresponding storage requirement

νX = max

(
0, τX −

n−1
min
ℓ=1

êXℓ +
n

max
k=1

ŝXk

)
Let EX be the minimum time adjusted end point of all but the
very final contact window in X

EX =
n−1
min
ℓ=1

êXℓ

Let SX be the maximum start time of a contact window in X

SX =
n

max
ℓ=1

ŝXℓ

Let ϵX be the time adjusted end time of the final contact
window in X

ϵX = êXn
Let σX be the time adjusted start time of the first contact
window in X

σX = sX1
Let ΩX be the total delay in X

ΩX =

n∑
ℓ=1

ωX
ℓ

From these seven numbers we can recover the entire structure
of the corresponding matrix. The support of a sequence of
contact windows X is the nevada

([σX ,min(EX , ϵX)] : 0)S([SX , ϵx] : ΩX)

15The value at the i, j coordinate, when within the above
nevada, is

min(τX , EX − i, ϵX − j)

And the storage required to obtain a transmission duration t,
(0 ≤ t ≤ τX) is

max(0, νX − τX + t)

We can find these values for the multiplication of two such
matrices as well

τAB = min(τA, τB ,min(EB , ϵB)− ΩA − SA)

EAB = min(EA, ϵA, EB − ΩA)

SAB = max(SA, SB − ΩA)

ϵAB = ϵB − ΩA

σAB = σA

ΩAB = ΩA +ΩB

νAB = max(0, τAB − EAB + SAB)

Thus in a non-storage constrained setting, we only need to
track the above seven numbers in order to fully recreate the
throughput enhanced storage matrices.

7. EXPERIMENTAL SETUP
To demonstrate our method, we constructed a scenario based
upon the proposed LunaNet communications architecture.
The basis for this architecture is derived from the LunaNet In-
teroperability Specification [34], the Interagency Operations
Advisory Group Future Lunar Communications Architecture
study [35], and ephemeris data from the Lunar Gateway Near-
Rectilinear Halo Orbit computations [36]. Each satellite in
the scenario is pulled from either of these resources, produc-
ing a total of 6 satellites. The scenario was constructed in
Satellite Orbital Analysis Program (SOAP), and the contact
plan data and distance information can be made available
upon request.

On Earth, we identified 6 ground stations as assets. In the
Deep Space Network (DSN), there are 3 ground stations
in Goldstone, Madrid, and Canberra. As the DSN is a
planned part of LunaNet communications, we included these
three locations here. In addition to the DSN, we identified
3 potential ground sites for the Lunar Exploration Ground
Stations (LEGS) antenna network. We identified locations at
White Sands, Wallops, and Dongara as potential LEGS sites.
Each ground station is connected to each other ground station
with a 22ms internet connection at all times.

On the Lunar surface, we constructed 3 representative ground
stations. The first is located near the South Pole of the moon,
representing an estimate for a potential Lunar Base location.
The other two are located on the far side of the moon, and
each represents a Lunar Rover located inside a crater.

The input data to our algorithm comes in the form of contacts
and distances between objects in the contact which is then
translated to a one-way light time. Using SOAP, we extract
the start and end times of line-of-sight availability between
any pair of assets. These start and end times are used as the
start and end of each contact interval between said assets.
Similarly, we use SOAP to compute the distances between
assets every 30 seconds. Then, the first entry for each distance

that falls within the contact interval is used to build a one-way
light time that is then assumed constant for the remainder of
the contact.

These final assumptions lead us to some caveats that are
needed to frame our experiment. Each contact represents
a potentially used contact between two assets, and does
not necessarily represent an actual connection made. The
advantage to this strategy is that we may analyze all potential
paths that the data could potentially take through the scenario.
In practice however certain paths are exclusionary. In order
to make use of certain contact windows satellites may need
to be realigned, removing the availability of other contact
windows.

In addition, we assumed constant one-way light time values
to determine the delays for each contact window. Over the
day long window that we examined, the change in light time
between any two assets was minimal, however in longer rang-
ing simulations contact windows may need to be subdivided
to better represent moving assets.

Our assumption of constant data rate dramatically simplifies
the problem. Due to the difference in data rates arising from
different modulation and coding schemes, even a constant
one-way light time can represent different amounts of data
to different assets. While this is easy to analyze for a
single contact, transmissions over multiple hops where each
hop may use a different data rate requires more care. The
semiring analysis technique can be adapted to incorporate
data rate information, but we use the simplifying assumption
of constant data rate in order to ensure a closed algebraic form
to our construction, and to give an analysis not reliant on a
specific modulation or coding scheme.

8. RESULTS
C++ code implementing these theorems and methods can
be found at the GitHub repository, wrbernardoni/Semiring-
Geometry. Both semirings described in section 5 and 6 are
implemented as the CGRSemiring.

Python code implementing these theorems and methods can
be found at the GitHub repository
https://github.com/TheaMAS/sat-parser.

The code used to process this 15× 15 contact matrix was ran
on an old and ailing 2019 Lenovo Yoga C930 with a 4 GHz i7
processor. The contact graph consisted of 288 contacts, and
the contact matrix stabilized at the 7th cumulant. The time
necessary to compute the Kleene star of this contact matrix
using the provided C++ code was 22.013 seconds.

As an example, we will analyse the communication link
between IOAGSouth2 satellite and LunarRoverNear rover.

The maximum possible transmission duration from IOAG-
South2 to LunarRoverNear is about 15.8 hours long, and
requires 6.15 hours worth of storage.

At a high bitrate 6.15 hours of storage may be a physically
unfeasable amount of storage in our network, however with
no storage it is possible to send a message with a transmission
duration of 10.32 hours between our lunar satellite and our
lunar rover along a separate path through our contact network.

This network configuration is not symmetric however.

https://github.com/wrbernardoni/Semiring-Geometry
https://github.com/wrbernardoni/Semiring-Geometry
https://github.com/TheaMAS/sat-parser/blob/dev/cgr_sl_sr.py

(a) A three by three slice of the
first cumulant A(1).

(b) A three by three slice of the
second cumulant A(2).

(c) A three by three slice of the
third cumulant A(3).

(d) A three by three slice of the
fourth cumulant A(4).

Figure 10: Three by three submatrices of the first four
cumulants of the store and forward matrix A (see remark 5.5)
in our experimental set up. Each colored region represents
the window in time that a choice of path in our contact graph
can be used.

The maximum possible transmission duration from Lunar-
RoverNear to IAOGSouth2 is 10.32 hours long, this maximal
transmission duration requires zero storage to attain. While
we can increase the transmission duration from IOAGSouth2
to LunarRoverNear by adding storage into our network, we
get no such benefit in the reverse direction.

Being able to detect this asymmetry is a powerful feature
of the Store-and-Forward semiring. While the contacts that
were used to generate the matrix were symmetric – a contact
being available from node A to B meant that the same contact
was available from B to A – the behavior of both delays and
message forwarding allow us to see and analyse asymmetries
present within the temporal behavior of the graph.

9. CONCLUSION
By analyzing the geometric structure of novel semiring mod-
els of delay tolerant networking, we were able to develop
tools capable of analyzing both communication availability as
well as the minimal storage requirements for a delay tolerant
network.

The semirings introduced in sections 5 and 6 allow us to
create both visualization tools for delay tolerant networks
(see figures 10 and 11), as well as analyze potential storage
requirements for the creation of the network (see figures 12
and 13).

There is far more that can be done with these semirings.
The algorithms found in [12] can be used to make routing
decisions for delay tolerant networks using these semirings,

Figure 11: A three by three submatrix of the Kleene star of
the store and forward matrices in our experimental set up.
We can see that this network obtains coverage for almost
the entire day, however certain pairs of nodes have far more
“fragmented” coverage and require more paths available to
maintain coverage.

Figure 12: Maximum transmission duration (in blue) and
required storage (in red) in hours versus the hop limit of a
three node subset of the network.

and we believe that further analysis using this model of delay
tolerant networking will give rise to future algorithms and
approaches, such as in identifying network substructures and
optimal decompositions.

We would also like to stress that while we introduced these
methods in the context of satellite networks they are in no
way specific to satellite networks. Any structure that has the
core behaviors outlined at the beginning of Section 5 lends
itself to analysis using the semirings introduced in this paper.
In addition, as noted in [32], the Universal Contact Semiring
encapsulates the behavior of many semirings commonly used
in routing. As a result the framework used in this paper is
well suited to modelling other network modalities, and even
fused networks – our example scenario for instance is a fused
satellite/internet topology.

17

Figure 13: Transmission duration vs required storage in
hours for a three node subset of our network. Each colored
area represents a different path through the contact graph. We
can see that even if a large amount of storage is needed for
optimal transmission duration, even with little to no storage
available we obtain high possible transmission durations

10. FUTURE WORK
We believe that there are many directions that this algebraic
and semiring geometric perspective on delay tolerant routing
may be further developed.

On practical grounds we believe that these methods could
also be utilized to develop planning and analysis methods for
tasks such as the shipping of livestock or spoilable material,
as well as for manpower scheduling tasks such as the timing
of experiments on the ISS. In addition, optimizations to the
algorithm may enable storage considerations to be incorpo-
rated into DTN routing algorithms improving efficiency and
reliability of selected routes.

Mathematically there are many avenues these methods can be
expanded as well.

The representation of delay tolerant networks as matrices
over particular semirings naturally leads to the question of
whether these matrices have eigenvectors and eigenvalues and
the implications of those eigenvectors and eigenvalues on the
corresponding contact graphs, such as “Could we use the
linear algebra of these semirings to create a ’Delay Tolerant
Katz centrality’?”

The connection with the pixel array work in [33] suggests
that there are further categorical constructions that can be
explored over these and related structures.

The task of computing the Kleene star of a matrix A, and
solving the associated routing problems can also be phrased
as solving the semiring matrix equation

X = AX + I.

While there is much developed theory in solving such linear
equations over semirings, there is not a well developed sense
of an algebraic geometry over semirings such as the ones
in this paper. This leads to interesting theoretical questions
and also practical ones. Optimizing the design of deep space
satellite topologies can be expressed as parameter spaces and
polynomial equations over these semirings, understanding the

structure of such spaces and how to solve such polynomial
equations can be used to build further tools in the analysis
and deployment of delay tolerant networks.

REFERENCES
[1] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson,

R. Durst, K. Scott, K. Fall, and H. Weiss, “RFC
4838, Delay-Tolerant Networking Architecture,” IETF
Network Working Group, 2007. [Online]. Available:
https://tools.ietf.org/html/rfc4838

[2] G. Araniti, N. Bezirgiannidis, E. Birrane, I. Bisio,
S. Burleigh, C. Caini, M. Feldmann, M. Marchese,
J. Segui, and K. Suzuki, “Contact graph routing in
dtn space networks: overview, enhancements and per-
formance,” IEEE Communications Magazine, vol. 53,
no. 3, pp. 38–46, March 2015.

[3] J. A. Fraire, O. De Jonckère, and S. C. Burleigh, “Rout-
ing in the space internet: A contact graph routing tuto-
rial,” Journal of Network and Computer Applications,
vol. 174, p. 102884, 2021.

[4] M. Moy, R. Kassouf-Short, N. Kortas, J. Cleveland,
B. Tomko, D. Conricode, Y. Kirkpatrick, R. Cardona,
B. Heller, and J. Curry, “Contact multigraph rout-
ing: Overview and implementation,” in 2023 IEEE
Aerospace Conference, 2023, pp. 1–9.

[5] A. Hylton, M. Moy, R. Kassouf-Short, and J. Cleveland,
“Multigraph-based routing in delay tolerant networks:
An alternative to contact graph routing,” in 2023 32nd
International Conference on Computer Communica-
tions and Networks (ICCCN), 2023, pp. 1–7.

[6] A. Lindgren, A. Doria, E. Davies, and S. Grasic,
“RFC 6693: Probabilistic Routing Protocol for
Intermittently Connected Networks,” IETF Network
Working Group, 2012. [Online]. Available: https:
//tools.ietf.org/html/rfc6693

[7] S. Grasic, E. Davies, A. Lindgren, and A. Doria, “The
evolution of a dtn routing protocol - prophetv2,” in
Proceedings of the 6th ACM Workshop on Challenged
Networks, ser. CHANTS ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 27–30.
[Online]. Available: https://doi.org/10.1145/2030652.
2030661

[8] R. Lent, “Implementing a cognitive routing method
for high-rate delay tolerant networking,” in 2023 IEEE
Cognitive Communications for Aerospace Applications
Workshop, 2023, pp. 1–6.

[9] M. Moore, R. Bull, S. Burleigh, J. Cook,
J. Waszkiewicz, D. Cook, and J. Seif, “Reactive
routing: Harnessing advanced software modems,” in
2023 IEEE Cognitive Communications for Aerospace
Applications Workshop, 2023, pp. 1–5.

[10] A. Mody, B. Crompton, D. Tran, D. Giger, D. Simpson,
D. Gormley, A. Smith, M. Kappes, D. Redelings, and
T. Melodia, “Claire: Enabling heterogeneous commu-
nication network optimization for robust and resilient
operations,” in 2023 IEEE Cognitive Communications
for Aerospace Applications Workshop, 2023, pp. 1–6.

[11] D. Ta, R. Memon, J. Taggart, A. Tettamanti, S. Feaser,
P. Torrado, and J. Smith, “Roaming dtn: Integrating un-
scheduled nodes into contact plan based dtn networks,”
in 2023 IEEE Cognitive Communications for Aerospace
Applications Workshop, 2023, pp. 1–9.

https://tools.ietf.org/html/rfc4838
https://tools.ietf.org/html/rfc6693
https://tools.ietf.org/html/rfc6693
https://doi.org/10.1145/2030652.2030661
https://doi.org/10.1145/2030652.2030661

[12] J. S. Baras and G. Theodorakopoulos, “Path problems
in networks,” Synthesis Lectures on Communication
Networks, vol. 3, 2010.

[13] M. Gondran and M. Minoux, Graphs, Dioids and
Semirings: New Models and Algorithms, ser. Oper-
ations Research/Computer Science Interfaces Series.
Springer US, 2008.

[14] Y. Wu, S. Deng, and H. Huang, “Performance
analysis of epidemic routing in dtns with limited
forwarding times and selfish nodes,” Int. J. Ad
Hoc Ubiquitous Comput., vol. 13, no. 3/4, pp.
254–263, July 2013. [Online]. Available: http:
//dx.doi.org/10.1504/IJAHUC.2013.055474

[15] T. Spyropoulos, K. Psounis, and C. S. Raghavendra,
“Spray and wait: An efficient routing scheme
for intermittently connected mobile networks,” in
Proceedings of the 2005 ACM SIGCOMM Workshop
on Delay-tolerant Networking, ser. WDTN ’05.
New York, NY, USA: ACM, 2005, pp. 252–
259. [Online]. Available: http://doi.acm.org/10.1145/
1080139.1080143

[16] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine,
“Maxprop: Routing for vehicle-based disruption-
tolerant networks,” in Proceedings IEEE INFOCOM
2006. 25TH IEEE International Conference on Com-
puter Communications, April 2006, pp. 1–11.

[17] J. A. Fraire and J. M. Finochietto, “Design challenges in
contact plans for disruption-tolerant satellite networks,”
IEEE Communications Magazine, vol. 53, no. 5, pp.
163–169, 2015.

[18] Consultative Committee for Space Data Systems
(CCSDS), “Schedule-aware bundle routing (SABR)
(blue book, recommended standard CCSDS 734.3-B-1,”
https://public.ccsds.org/Pubs/734x3b1.pdf, July 2019.

[19] O. De Jonckère and J. A. Fraire, “A shortest-path tree
approach for routing in space networks,” China Com-
munications, vol. 17, no. 7, pp. 52–66, 2020.

[20] J. A. Fraire and E. L. Gasparini, “Centralized and decen-
tralized routing solutions for present and future space
information networks,” IEEE Network, vol. 35, no. 4,
pp. 110–117, 2021.

[21] J. Segui, E. Jennings, and S. Burleigh, “Enhancing con-
tact graph routing for delay tolerant space networking,”
in Global Telecommunications Conference (GLOBE-
COM 2011), 2011 IEEE, December 2011, pp. 1–6.

[22] S. Burleigh, “Interplanetary overlay network: An im-
plementation of the dtn bundle protocol,” 2007.

[23] E. Birrane, S. Burleigh, and N. Kasch, “Analysis of the
contact graph routing algorithm: Bounding interplane-
tary paths,” Acta Astronautica, vol. 75, pp. 108 – 119,
2012.

[24] J. A. Fraire, P. G. Madoery, A. Charif, and J. M. Finochi-
etto, “On route table computation strategies in delay-
tolerant satellite networks,” Ad Hoc Networks, vol. 80,
pp. 31–40, 2018.

[25] E. L. Lawler, “A procedure for computing the k best
solutions to discrete optimization problems and its ap-
plication to the shortest path problem,” Management
science, vol. 18, no. 7, pp. 401–405, 1972.

[26] O. Viro, “Patchworking real algebraic varieties,” 2006.

[27] A. Monod, B. Lin, R. Yoshida, and Q. Kang, “Tropical

geometry of phylogenetic tree space: A statistical per-
spective,” 2022.

[28] B. Heidergott, G. J. Olsder, and J. van der Woude,
Max Plus at Work: Modeling and Analysis of
Synchronized Systems: A Course on Max-Plus Algebra
and Its Applications. Princeton University Press,
2006. [Online]. Available: http://www.jstor.org/stable/j.
ctt7zv8k3

[29] D. Maclagan and B. Sturmfels, Introduction to Trop-
ical Geometry, ser. Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2015,
vol. 161.

[30] I. Itenberg, I. Itenberg, G. Mikhalkin, and E. Shustin,
Tropical Algebraic Geometry, ser. Oberwolfach Semi-
nars Series. Birkhäuser, 2007.

[31] J. Golan, Semirings and their Applications. Springer
Netherlands, 1999.

[32] W. Bernardoni, R. Cardona, J. Cleveland, J. Curry,
R. Green, B. Heller, A. Hylton, T. Lam, and R. Kassouf-
Short, “Algebraic and geometric models for space net-
working,” 2023.

[33] D. I. Spivak, M. R. C. Dobson, S. Kumari, and L. Wu,
“Pixel arrays: A fast and elementary method for solving
nonlinear systems,” 2017.

[34] D. Israel and N. Babu, “Draft lunanet interoperability
specification,” July 2022. [Online]. Available: https:
//ntrs.nasa.gov/citations/20220010998

[35] M. Cosby, W. Tai, M. Hose, F. D’Amico, J.-L. Issler,
P. Jin, P. Kazakoff, M. Picard, N. Lii, M. Lanucara,
A. Grop, D. Rovelli, A. R. Srinivas, H. Itoh, Y. Kaneko,
D.-J. Park, D. Israel, J. Shier, and G. Iv, “The future
lunar communications architecture,” Interagency Oper-
ations Advisory Group Lunar Communications Archi-
tecture Working Group, Tech. Rep., January 2022.

[36] D. Lee, “White paper: Gateway destination orbit
model: A continuous 15 year nrho reference trajectory,”
Aug 2019. [Online]. Available: https://ntrs.nasa.gov/
citations/20190030294

William Bernardoni is a PhD candi-
date at Case Western Reserve University.
His focus is on the algebraic geometry
of idempotent semirings. Prior to his
PhD he studied computer science, and
did research in statistical machine trans-
lation. His current research centers on
extending ideas and theory from tropical
and real algebraic geometry to work over
combinatorial domains via the language
of idempotent semirings.

Robert Kassouf-Short earned his PhD
in mathematics from Lehigh University
in 2018. He worked as a Visiting As-
sistant Professor of Mathematics at John
Carroll University until he joined the Se-
cure Networks, System Integration and
Test Branch at NASA Glenn Research
Center in 2020. His research interests
lie in the intersection of abstract mathe-
matics and real world applications. Cur-
rently, his focus is on the foundations of

networking theory and how to efficiently route data through a
network using local information.

http://dx.doi.org/10.1504/IJAHUC.2013.055474
http://dx.doi.org/10.1504/IJAHUC.2013.055474
http://doi.acm.org/10.1145/1080139.1080143
http://doi.acm.org/10.1145/1080139.1080143
https://public.ccsds.org/Pubs/734x3b1.pdf
http://www.jstor.org/stable/j.ctt7zv8k3
http://www.jstor.org/stable/j.ctt7zv8k3
https://ntrs.nasa.gov/citations/20220010998
https://ntrs.nasa.gov/citations/20220010998
https://ntrs.nasa.gov/citations/20190030294
https://ntrs.nasa.gov/citations/20190030294

19Robert Cardona is a PhD student in
applied topology. He studied computer
engineering and mathematics before go-
ing on to work as a software developer.
He then obtained a masters at Freie Uni-
versität Berlin and continued on to study
applied topology at Albany.

Brian Heller is a PhD student study-
ing mathematics at University of Albany.
Previously he worked as a software en-
gineer and as an advisor in digital and
emerging technologies. His research in-
terests include category theory, mathe-
matical logic, and algebraic geometry.

Justin Curry is an Associate Professor
of Mathematics and Statistics at the Uni-
versity at Albany, SUNY. Before arriv-
ing at Albany in 2017, he was a Visiting
Assistant Professor at Duke. Profes-
sor Curry earned his PhD in mathemat-
ics from the University of Pennsylvania
in 2014, under the direction of Robert
Ghrist. His research interests include
the use of category theory in applied
mathematics, with particular emphasis

on applied sheaf theory, and inverse problems in topological
data analysis (TDA).

David Spivak received a PhD in math-
ematics from UC Berkeley in 2007; his
thesis was in algebraic topology. Notic-
ing category theory’s impressive ability
to organize and layer abstractions and
to interconnect widely different disci-
plines, he set out to show that mathemat-
ics’ most abstract field was also its most
applicable. After spending ten years at
MIT, funded in part by NASA, the US
departments of defense and commerce,

and private companies, he co-founded Topos Institute, an
independent non-profit research institute that works to shape
technology for the public benefit by applying the language
of category theory. David’s work ranges from database inte-
gration to knowledge representation, from materials science
to dynamical systems, all with a focus on compositionality,
interoperability, and collective intelligence. He has written
three books on applications of category theory.

Juan Fraire is a researcher and profes-
sor at INRIA (France) and CONICET-
UNC (Argentina) and a guest professor
at Saarland University (Germany). Core
topics of his interest are near-Earth and
deep-space networking and informatics,
adding up to more than 100 published
papers in international journals and lead-
ing conferences. Juan is the co-founder
and chair of the Space-Terrestrial Inter-
networking Workshop (STINT) and par-

ticipates in diverse joint projects with space agencies (e.g.,
NASA, ESA, CONAE) and companies in the space sector
(e.g., D3TN, Skyloom).

	Introduction
	Background: Routing in DTN
	Background: Semirings
	Background: The Algebraic Path Problem
	Semiring Modelling of Communication Windows
	Semiring Modelling of Transmission Durations under Limited Storage
	Experimental Setup
	Results
	Conclusion
	Future Work
	References

