
HAL Id: hal-04711311
https://hal.science/hal-04711311v1

Submitted on 26 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced Constellation Emulation and Synthetic
Datasets Generation for Non-Terrestrial Networks

Camilo Rojas, Juan A Fraire, Fabio Patrone, Mario Marchese

To cite this version:
Camilo Rojas, Juan A Fraire, Fabio Patrone, Mario Marchese. Advanced Constellation Emulation and
Synthetic Datasets Generation for Non-Terrestrial Networks. 2024 IEEE International Mediterranean
Conference on Communications and Networking (MeditCom), Jul 2024, Madrid, France. pp.37-43,
�10.1109/MeditCom61057.2024.10621248�. �hal-04711311�

https://hal.science/hal-04711311v1
https://hal.archives-ouvertes.fr

Advanced Constellation Emulation and Synthetic
Datasets Generation for Non-Terrestrial Networks

Camilo Rojas∗, Juan A. Fraire†‡, Fabio Patrone∗, Mario Marchese∗
∗University of Genoa, Genoa, Italy

†Inria, INSA Lyon, CITI, UR3720, 69621 Villeurbanne, France
‡CONICET - Universidad Nacional de Córdoba, Córdoba, Argentina

Abstract—Mega satellite constellations, now realized entities,
encompass thousands of nodes. However, efficient orchestration
of multi-hop paths and distributed processing tasks in Non-
Terrestrial Networks (NTN) remains a considerable challenge.
The integration of NTN systems into 5G cellular networks neces-
sitates innovative adaptations of Software-Defined Networking
(SDN) and Multi-access Edge Computing (MEC) to suit the
dynamic environments of NTN. In this context, we present
MeteorNet, a state-of-the-art emulation tool conceived for satellite
constellations. MeteorNet accurately replicates the behavior of
NTNs by implementing space orbits, Earth rotation calculations,
and Linux network interfaces across diverse network layers.
Coupled with a continuous measurement system founded on
sFlow, MeteorNet compiles critical switch variables in a cen-
tralized database, thus providing a distinctive methodology for
creating realistic synthetic datasets. The pertinence of synthetic
datasets is paramount in NTN, given the scarcity of operative
systems and the inaccessibility of accurate data from the few
existing systems due to proprietary constraints. These datasets
are instrumental for formulating and training intelligent control
algorithms and Machine Learning (ML) models for SDN and
MEC advancements in NTN. To illustrate the efficacy of this
approach, we explore a realistic networking case study with a
ring topology, demonstrating how data models describe intricate
routing and edge computing protocols for NTN.

Index Terms—Satellite Constellation, Software-Defined Net-
works, Multi-access Edge Computing, Synthetic Datasets, Ma-
chine Learning.

I. INTRODUCTION

The emergence of Low Earth Orbit (LEO) satellite constel-
lations marks a significant breakthrough in space technology.
The industry has achieved democratized access by utilizing
Commercial Off-The-Shelf (COTS) components, implement-
ing agile methodologies, and employing standardized launch
infrastructures [1].

Private entities in the space sector have spearheaded the
development of mega-constellations in Low Earth Orbit (LEO).
A recent driving force in the industry has been the integration
of aerial and space segments with terrestrial networks, giving
rise to the concept of Non-Terrestrial Networks (NTN). This
concept has been incorporated into 5G standards since Release
16 [2].

Nevertheless, for the seamless integration of NTNs into 5G
networks, the network must comply with Key Performance
Indicators (KPIs) defined by the 3GPP. These mainly concern
capacity, latency, and service reliability. Software-defined net-
working (SDN) is considered an enabling technology to meet

these KPIs in the context of space. However, adapting SDN
to this emerging context poses substantial challenges.

While an efficient SDN layer is imperative, a high degree
of automation is essential to harness the service potential of
mega satellite constellations fully. Multi-access Edge Comput-
ing (MEC) is a promising solution to address contemporary
computational challenges. MEC has the potential to facili-
tate the efficient allocation and distribution of computational
and memory resources, encompassing both terrestrial and
space-based assets throughout a satellite constellation. Such
a framework could deliver real-time services to terrestrial
users, including Machine Learning (ML) applications that
empower autonomous land, air, and maritime vehicles globally.
However, implementing MEC within satellite constellations is
a non-trivial task that demands the development of intelligent
algorithms to manage these resources effectively [3].

This paper examines the integration of SDN and MEC
into satellite constellation typologies. We introduce MeteorNet:
a self-made open-source framework designed for emulating
MEC in non-terrestrial software-defined networks [4]. Meteor-
Net offers a dockerized environment based on Mininet [5] for
deploying and evaluating flight and ground software among
its diverse features. The emulation environment faithfully
replicates communication conditions during operational sce-
narios, uses an SDN controller, and leverages native kernel
and network management code. The constellation emulation
framework includes an sFlow-based data collection and storage
system that logs state variables and historical data sets into
a centralized database. The obtained data sets can be used
for the analysis of orbital scenarios and to train control and
ML models to support the orchestration of future SDN and
MEC solutions in NTN. MeteorNet can feed machine learning
(ML) models with realistic datasets while comparing their
performance to baseline SDN and MEC algorithms.

There are various potential ML management strategies in
space missions, such as resource allocation and task offloading
distribution [6]. Creating synthetic structured datasets derived
from actual constellation scenarios offers several advantages
for designing and deploying learning controllers. In the space
sector, many tools and datasets are bound by proprietary
constraints and closely guarded by satellite operators. A syn-
thetic dataset generator like MeteorNet accelerates progress
and facilitates advancements in this field.

The remainder of the paper is organized as follows. Sec-

tion II overviews fundamental concepts and related research.
Section III explores the MeteorNet. Section IV presents a
detailed case study. Finally, Section V summarizes the con-
clusions drawn from this study and suggests future research
directions.

II. BACKGROUND

A. Software Defined Networks

SDN is an innovative concept adopted by the 5G standard
to facilitate the organization and deployment of flexible and
scalable applications. SDN attempts to separate the network
control and data planes to improve user experience, optimizing
resources depending on the application-specific requirements.
The original design of SDN protocols assumes a central con-
troller that, on the one hand, gathers information from a direct
connection with network switches (data plane) and, on the
other hand, takes decisions involving bandwidth assignment
and path prioritization from application needs. The aforemen-
tioned centralized approach of SDN controllers challenges the
integration of this technology with the dynamic nature of NTN.

Efforts have been undertaken to customize SDN manage-
ment specifically for satellite networks. Miao et al. [7] and
Jiang et al. [8] have examined various research initiatives in
this domain. They view SDN and Network Function Virtualiza-
tion (NFV) as technologies employable to facilitate the integra-
tion of NTN-5G, proposing the deployment of multiple SDN
controllers interconnected through tightly bound interfaces,
particularly in the context of intricate and expansive networks.
In this arrangement, each controller assumes responsibility for
overseeing a distinct sub-network.

B. Multi-access Edge Computing

MEC presents a distributed computing paradigm to bring
storage and processing capabilities close to end-users. The
primary objective is to reduce computational latency and
optimize network bandwidth utilization.

In their work, Wang et al. [9] characterize MEC as an
innovative approach for enabling IoT applications in satellite
networks. Their research proves that space-edge computing
outperforms traditional satellite constellations regarding time
and energy efficiency. Actual implementations of MEC involve
deploying numerous servers across network nodes, each tasked
with providing virtual functions tailored to particular services
with low computation latency requirements. Zhang et al. [10]
introduce MEC to enhance Quality of Service (QoS) and accel-
erate performance within NTNs. They propose task scheduling
models aimed at collaborative computation on MEC servers.
Pfandzelter et al. [11] delves into the distinctive attributes of
LEO MEC and assesses the suitability of three constellations
(SpaceX, Amazon, and Telesat) for implementing distributed
computing.

The literature encompasses a variety of offloading strategies.
For example, Sonmez et al. [12] propose a fuzzy orchestration
approach for MEC offloading, which emulates the decision-
making process of human administrators, resulting in an
automated management system. Cassara et al. [13] conducts

a comparative analysis of task-offloading strategies across
different constellation scenarios, ultimately concluding that
fuzzy strategies deliver superior outcomes when contrasted
with round-robin and full-offloading solutions.

C. Emulation Tools for SDN and MEC in NTNs

Effective resource planning and real-time monitoring are
pivotal in the context of satellite missions. Mission control
teams must constantly adapt scheduling plans in response to
mission modifications or natural events [14] Emulation and
simulation tools play a crucial role during mission planning
and are subsequently enriched with actual mission data to
enhance logistical and operational planning. These tools are
indispensable for the rigorous testing and deployment of
software and algorithms in the context of space missions.

Various research teams and space agencies are currently
employing several emulation tools during all the steps of
mission plan development. The most popular tools for network
simulation are NS3 [15] and Omnet++ [16]. Both frameworks
follow a discrete-time simulation paradigm and support various
fronted APIs in well-known programming languages like C++
and Python. Engineers and researchers must develop compo-
nents interfacing with these tools to support constellations and
satellite links.

Present discrete-time network simulation frameworks neces-
sitate substantial adjustments to mission software and system
architecture due to their abstract representation of computer
networks. This can introduce coding errors in the transition of
development and deployment phases. In addition, these tools
do not emulate network interfaces and operating system ker-
nels, creating a disconnect between simulation and computing
systems.

In this article, we propose the creation of a novel emulation
software addressing these limitations and providing a more
faithful representation of actual system deployment. The final
goal is to be able to generate realistic datasets to support ML
approaches to MEC and SDN in future NTN systems.

D. Synthetic Dataset Collection

The data collected from NTN emulators can create realistic
synthetic datasets representing network conditions, behavior,
and traffic patterns. Among monitoring technologies, sFlow
allows for granular data sampling, providing a more detailed
and accurate representation of network traffic, essential for
creating realistic synthetic datasets [17].

sFlow stands for sampled flow. It is designed to be a scalable
and efficient way to measure network traffic, helping network
administrators to manage and optimize network performance
and bandwidth usage efficiently. sFlow operates by randomly
sampling packets that traverse through a network device like a
switch or a router and sending the sampled packets as sFlow
datagrams to a central collector. The collector then compre-
hensively analyzes the sampled data to view network usage,
traffic patterns, and performance. Because it uses sampling,
sFlow can scale to handle high-volume traffic flows across
complex, high-speed networks without consuming excessive

processing power or bandwidth. sFlow Agent resides on a
network device and is responsible for sampling the packets
and sending the sampled data to the sFlow collector. The sFlow
Collector receives and analyzes the sampled data sent by sFlow
agents. It can give network administrators detailed insights into
network activity, traffic patterns, and potential issues.

As a result, sFlow is a perfect candidate to collect metrics
in NTN emulators to create synthetic datasets.

III. METEORNET

Our Constellation Emulation tool called MeteorNet, is a
continuous-time emulation platform for satellite constellation
networks. MeteorNet can address the aforementioned chal-
lenges. It offers advantages over existing tools by incorpo-
rating network and operating system virtualization, including
native source code from kernel and network systems. While
discrete-time tools excel in repeatability and time acceleration,
continuous-time frameworks provide unparalleled fidelity to
real-world scenarios and facilitate scalable, multi-thread-driven
development.

Built on open-source code and publicly accessible algo-
rithms, it supports all phases of constellation mission plan-
ning, from research and development to operation. The main
software structure is primarily written in Python but leverages
Docker virtualization and kernel network libraries to maintain
flexibility in user software development.

The proposed tool is constructed with a set of integral com-
ponents: (i) An Orbit Propagation module, which is respon-
sible for the management and simulation of satellite motion
within its designated orbit; (ii) A Network Stack and Link
Management system tasked with handling network protocols
and communication links. (iii) An SDN Controller, functioning
as the central hub for the supervision and coordination of net-
work operations; (iv) Containerized Software, which harnesses
Docker for operating system virtualization, thereby facilitating
software isolation; (v) A Network Performance Monitoring
and Storage System designed to gather network performance
metrics defined by configurable sFlow commands [18].

a) SDN Aspect: We include an example of an SDN
controller based in the Ryu library. Ryu implements the
Spanning Tree Protocol (STP) as a default mechanism to
manage network routing and prevent switch loops [19]. The
SDN controller operates parallel with the emulation, permitting
alterations to assess different routing algorithms or optimize
service-specific KPIs. The framework leverages Mininet for
network virtualization.

b) MEC Aspect: We prioritize the practical evaluation of
MEC performance by ensuring that satellite and ground nodes
operate within discrete environments from the perspective of
system resources. Furthermore, it acknowledges and caters
to the unique compilation and operational requirements of
software deployed in satellite and ground architectures, em-
ulating these based on mission stipulations. Utilizing Docker
OS virtualization [20], the framework establishes isolated
containers, enabling the software under scrutiny to function
autonomously from the emulation code. This strategy enhances

the authenticity of the emulations and minimizes the necessary
alterations to implement mission software.

c) Workflow: The proposed framework requires, as input,
the satellite Two-Line Element (TLE), the initial coordinates of
ground nodes, and the overall emulation duration necessary for
network instantiation. Once initiated, the framework executes
the following operations: (A) it propagates the orbits of satellite
nodes; (B) computes satellite-terrestrial contact tables; (C)
routinely modifies network link parameters and status based
on the data within the computed contact tables; (D) executes
dockerized containers; and (E) concurrently measures and
records output performance regarding network usage and task
computation delay. In the succeeding subsections, we delve
into the specifics of these operational steps.

A. Orbit Propagation

We utilize the Simplified General Perturbations Model 4
(SGP4) [21] to propagate the orbits of satellite nodes. SGP4,
a standard defined by NORAD and NASA, uses a streamlined
perturbation model to determine orbital state vectors based on
initial conditions provided in a TLE object. The model yields
each satellite’s coordinates, Xs(t)← (xs(t), ys(t), zs(t)), at a
given time t, which are expressed in the True Equator Mean
Equinox (TEME) coordinate system. For ground nodes, we
convert the initial latitude, longitude, and altitude values into
TEME coordinates, Xg(0) ← (xg(0), yg(0), zg(0)), and sub-
sequently use Earth’s rotational angular velocity and average
radius to ascertain the node’s coordinates, Xg(t), at time t.

Using the coordinates Xs(t) and Xg(t) at each time step
t throughout the simulation, we can determine the elevation
angle θgs(t) and distance dgs(t) between each ground node
g and satellite s. Subsequently, we can estimate the line of
sight LoS gs(t) using the elevation angle. We define a minimum
elevation angle θC = 30◦ to consider the satellite within the
line of sight, making the link accessible. Links with angles
less than θc will be deemed as having no connection.

The communication channel’s availability, delay Tgs(t), and
capacity C(t) is computed using Equations (1), (2), and (3).

LoS (t) =

{
true, if θgs(t) ≥ θc

false, if θgs(t) < θc
(1)

Tgs(t) = dgs(t)/c+ δ0 (2)

C (t) =

200 Mb/s, 0 < d(t) ≤ 500 km
80 Mb/s, 500 < d(t) ≤ 1000 km
60 Mb/s, 1000 < d(t) ≤ 2000 km
20 Mb/s, 2000 < d(t) ≤ 3000 km
10 Mb/s, 3000 < d(t) ≤ 4000 km
∅ d(t) > 4000 km

(3)

where c = 300, 000km/s is the speed of light in vacuum
and δ0 is an additional delay per link to account for switch
computation time.

Table I
EXAMPLE OF A GROUND NODE’S (gn) CONTACT TABLE

time st10 st9 st8
0 1672 3405 0

100 2188 2808 0
200 2769 2246 0
300 3376 1759 0
400 0 1431 0
500 0 1385 0
600 0 1644 3660
700 0 2096 3072
800 0 2639 2516
900 0 3225 2023

1000 0 0 1660

B. Contact Table Computation and Utilization

MeteorNet employs Mininet [5] to emulate a realistic vir-
tual network, incorporating a genuine Linux network kernel,
switch, and application code [22]. Mininet allows for the
dynamic deployment and modification of custom virtual net-
works, thereby closely mirroring real-world communication
networks by utilizing technologies and code from production
environments. Ground stations can be configured for single
or multiple connections with satellite nodes. In the single-
link mode, the ground node establishes and maintains the
connection with the nearest available satellite until it exits
the line of sight (LoS). In the multiple-link mode, multi-
path communications are created and preserved with all nodes
within LoS. Link states for all communication nodes through-
out the simulation are encapsulated in structures known as
Contact Tables. Each node in the network has a corresponding
contact table, which outlines the connections between that
node and all destination nodes. Each row within a contact
table corresponds to a time step, enabling or disabling links
and adjusting their properties (delay and capacity) based on
the predefined equations. Contact Tables, which can be pre-
calculated and reused across various simulations, significantly
enhance computational efficiency, especially in numerous node
scenarios. By functioning as cache structures, they improve
simulation performance and eliminate the need for repetitive
computations. In this way, MeteorNet captures the dynamics of
communication nodes in a satellite constellation and produces
a network with continually evolving link parameters.

Table I shows an example of the dynamics and contact table,
respectively, of a ground node (gn11) in a single-link mode
that changes the established connection with three satellites
(st10, st9, and st8) over time. We can observe that the table
defines the contact state at each moment with all the other
nodes. The value of each cell is zero when the link is not
available, e.g., when there is no LoS or when θgs < θC ;
otherwise, the distance is logged in the cell when available. In
this example, gn11 has available links with st10 and st9 at
t = 0s, and it is connected to st10 since it is the closest. Then,
it loses connection with st10 and connects to st9 at t = 400s,
and finally loses connection with st9 and connects to st8 at
t = 1000s.

C. Network Management and SDN Controller

In MeteorNet, each satellite is treated as a switch, establish-
ing variable connections (none, one, or multiple) with ground
nodes over time. Satellites are also interconnected through
intra-plane and inter-plane ISLs. Multiple switch connections
could potentially lead to network loop errors due to the
creation of loops and multiple paths. To circumvent this, the
framework incorporates a Ryu SDN controller and utilizes a
straightforward Spanning Tree Protocol (STP) [23] to regulate
switch routing and avoid loops. Ryu comes with several
routing algorithms [19] and offers software components and an
API for custom control application development. Nonetheless,
alternate SDN controller libraries can be employed, provided
they are compatible with the OpenFlow switch protocol. The
Ryu controller monitors the network topology and dynamically
configures the satellite nodes by capitalizing on the SDN
paradigm.

The control messages within Ryu are processed in an out-
of-band mode, meaning they are transmitted through a separate
channel distinct from the one used for data messages. While
data is transmitted through ground-satellite and inter-satellite
links, control packets utilize the Docker internal network, as-
suming a direct connection between network switches and the
central controller. While this assumption may not be entirely
realistic for dynamic nodes within a satellite constellation, it
serves as an initial approach for testing SDN controllers within
satellite nodes avoiding extra complexities in initial scenarios.

D. Containerized Applications

MeteorNet employs Docker to create isolated environments
for satellites and ground nodes. Each Node class has a host
method that encapsulates a Docker process using a pre-built
Linux image with the necessary test software. This arrange-
ment allows each Docker image to be allocated its network
interface, CPU virtualization, and memory stack, managed by
the OS kernel. Docker isolation ensures consistency when tran-
sitioning the software to the production environment, reducing
potential code alterations and debugging during deployment.
In conjunction with Mininet, MeteorNet simulates network in-
terfaces, routing-switching behavior, and computer resources,
enabling upward simulation from the second layer of the OSI
model. The physical layer remains the sole layer not directly
simulated but is instead approximated by using Equations (1),
(3), and (2). The test software can encapsulate any code or
algorithm operating in satellites or ground nodes, such as
flight software, platform control algorithms, mission control
software, payload modules, and ML tasks, to name a few.

E. Network Analytics

The emulation framework incorporates sFlow commands
for real-time network usage measurements. As an industry-
standard network and resource monitoring tool, sFlow provides
a flexible framework for periodic evaluations and computa-
tions.

For instance, a sFlow query like ipsource, ipdestination,
link:inputifindex can be configured on each switch to measure

Table II
NETWORK MEASUREMENT DATA STRUCTURE

Id Destination IP Source IP Interface Value(bps)
10.0.0.2 10.0.0.11 st1-st2 1091

traffic between two IPs across every link interface. Upon
completing a simulation, we can freely communicate between
nodes and automatically gather the resulting measurements
in a centralized database. Table II shows an example of the
data structure collected from the sFlow command configured
above. Another example is illustrated in Table III, depicting
the data structure returned when employing the ipdestination
and ethernetprotocol sFlow keys. In this particular instance,
the Ethernet protocol ID 2048 corresponds to TCP.

The command provided in the example utilizes three sFlow
keys: ’ipsource’, ’ipdestination’, and ’inputifindex’ to con-
figure network switches for data measurement. By selecting
these specific keys, the nodes will continuously monitor the
utilization of links that correspond to the same source and
destination IP addresses. Various statistics, such as averages,
minimums, maximums, or percentiles, can be incorporated
into the query to measure the desired metrics. The modifier
link:inputifindex preceding the inputifindex key is a function
that instructs the command to return the link name instead of
the default, which is an identifier. An illustrative sFlow query
can be composed using the following parameters:

{Command Atribute : Example}
command =
{name: pair,
keys: ipsource,ipdestination,
value: bytes, values: frames,
filter: ipsource=10.0.0.1}

More complex examples of sflow commands for data acquisi-
tion would be:

c1 = {keys: link:inputifindex,direction,
link:outputifindex,vlansource
value: frames
filter: ipdestination=10.0.0.11}
c2 = {keys: outputdiscardreason,
link:inputifindex
value: rate:bytes}

Query c1 will generate a data structure similar to the firt
structure in Table IV, displaying the number of frames per
link interface, filtered by ipdestination=10.0.0.11. Meanwhile,
query c2 will produce a data structure resembling the second
structure, showing the rate (in bytes per second) of discarded
packets on each link interface. For a comprehensive list of
sFlow keys, functions, and filters, please refer to the standard
documentation [18].

Table III
FRAMES DATA

Id Source IP Ethernet Protocol Value (bps)
10.0.0.1 2048 (TCP) 1010

IV. CASE STUDY

A. Scenario

We show a case study with a constellation of ten satellites
(from st1 to st10) in the same orbital plane (Orbital Inclina-
tion: 90◦, Right Ascension of the Ascending Node (RAAN):
144◦, eccentricity: 0) and two ground stations (gs11 and gs12),
configured in single-link mode. We use a laptop computer with
an Intel core i7 processor (4 cores, 8 threads) and 16 GB of
RAM to run the emulation. We consider two test applications
for the network analysis.

(i) A conventional ping application via ICMP packets from
ground nodes g11 and g12 to satellite st2. In such a case,
we measure the ping times and compare them with the
related theoretical values;

(ii) Two task generators, i.e., an application located on g11
and gn12 generate and offload a task via TCP connections
to a MEC server on st2. The generators compute and
return the required outputs. Both ground stations produce
dummy task requests equivalent to 200 devices according
to a Poisson distribution - around two tasks per minute
per device. The MEC server then queues the task and
serves with parallel workers the task on demand that
takes approximately 250ms of processing time on one
core of the server. We measure the task computation
time as the time elapsed from when the ground station
sends the task until it receives the result. Given that TCP
confirms packets and Ryu establishes valid SDN paths,
we anticipate discrepancies between the theoretical and
measured task computation times.

We also monitored the network usage across each interface link
on the routing path between ground stations, satellite links, and
inter-satellite links.

B. Analysis

a) Initial State: At the emulation’s start time (t = 0
seconds), gn12 and gn11 are connected to the network through
st7 and st9, respectively, and every satellite is connected to
the two nearest satellite neighbors. Tasks transmitted from
gn11 traverse the path st7-st6. . . -st2, five hops, 23,000 km
end-to-end path length. Instead, tasks transmitted from gs12
traverse the path st9-st8. . .−st2, seven hops, 32,200 km end-
to-end path length. Both paths are selected by the STP protocol
coded in the Ryu SDN controller. Utilizing Equation (2)
and assuming a per-link packet switch computation time of
δ0 = 4ms , we can compute the minimum ping time for gs11
as Σ5

12 · δi = 2 · (23000/C + 5 · 4)ms ≈ 172.72ms . Based
on the measured results in Figure 2, the ping time at t = 0 is
approximately 193ms.

Table IV
C1 AND C2 DATA STRUCTURES

Id Link Input Interface Direction Link Output Interface Virtual Lan Source Value (Frames)
gn11-st7 ingress st7-st5 0 30

Figure 1. Network Case Scenario at start time (t = 0). The MEC server is
placed on the far side of the ring constellation in st2.

b) Subsequent states: In the time interval when a ground
station is connected to the same satellite, computation times
experience minor increments due to the increasing distance
between the ground station and the linked satellite. Nonethe-
less, the mean values recorded during contact periods closely
correspond with the analytical predictions. We can calculate a
gap with the delay computed analytically by analyzing task
computation results. In the ideal case for gs11, the mean
task computation time should be the sum of the theoretical
task propagation delay and the task computation time, fixed
to 250 ms, which is approximately 423 ms. Nonetheless, in
Figure 2, we see an average computing time of about 1,000
seconds, a difference that increases with the number of hops in
the network path. The difference can be associated with TCP
reliability, which comes with the cost of waiting for the packet
acknowledgment before the task processing can occur.

c) Interface utilization data: Further results are shown
in Figure 3 regarding the links’ network usage by sFlow
measurements. The plot illustrates the data collected from
around 30 minutes of emulation time. By analyzing such
results, we can identify the path chosen by the STP protocol
during each contact window and create synthetic data sets to,
e.g., train interface utilization prediction algorithms.

d) Multi-Path Data: The only inter-satellite link not used
at the beginning of the emulation is st9-st10. This means that
the STP protocol blocks this hop to avoid a cycle within the
network. From a delay optimization perspective, it would be
better to block st2-st3, which leaves 5 hops for gn11 and 3

hops for gn12. The STP protocol leverages link capacity as
a cost metric when constructing the network tree. As such, it
does not optimize the delay along network paths but rather
optimizes the path capacity and prevents loops by blocking
interfaces that would cause multiple paths. When two inter-
faces of the same capacity exist, STP randomly selects which
path to maintain and which to block. This can occasionally
result in choosing paths with long delays. Given that delay is
a critical KPI for NTN-5G and beyond, our findings indicate
that the STP routing protocol is not ideally suited for satellite
constellation networks. Modifications should be made to the
routing protocol to optimize the delay. These hop selection
choices are properly recorded using sFlow commands and can
be leveraged as synthetic datasets.

V. CONCLUSIONS

Given the increased complexity of space missions, there is a
growing interest in designing and developing emulation tools
to assist in mission planning for satellite operations.

To address this challenge, we have constructed Meteor-
Net, a flexible constellation emulation framework based on
a continuous-time paradigm. This framework accurately emu-
lates the complete protocol stack in Non-Terrestrial Network
(NTN) scenarios. MeteorNet incorporates a central database
and configurable sFlow queries, allowing for the definition of
automatic measurements to be stored during various scenarios.
As the user can customize the emulation tool to gather relevant
network data, it can be valuable for generating synthetic
datasets and testing Machine Learning (ML)-based solutions.

By utilizing a specific case study scenario and selecting STP
and TCP as network and communication protocols, we demon-
strate that these standards would require significant adaptations
to effectively apply in an NTN constellation. STP, for instance,
should prioritize latency for specific use cases instead of focus-
ing solely on optimizing channel capacity. In contrast, TCP’s
excessive use of acknowledgment requests leads to increased
computational latency when employed as a Multi-Access Edge
Computing (MEC) communication protocol. Whichever the
case, MeteorNet can generate representative datasets to assess
the behavior of NTN constellations.

Future work involves developing and testing dynamic ML-
based routing and task distribution techniques to optimize
task computing delays within the considered Software-Defined
Networking (SDN) and MEC satellite scenario.

ACKNOWLEDGEMENT

This work was supported by the European Union under
the Italian National Recovery and Resilience Plan (NRRP)
of NextGenerationEU, partnership on “Telecommunications of
the Future” (PE00000001 - program “RESTART”).

0 250 500 750 1000 1250 1500 1750 2000
Emulation Time [Seconds]

0.5

1.0

1.5

2.0

2.5
Co

m
pu

ta
tio

n
Ti

m
e

[S
ec

on
ds

]
Task Computation Times, 12376 Total Tasks

Tasks generated in gn11: 6183 = 0.902, = 0.126
Tasks generated in gn12: 6193 = 1.136, = 0.117
ICMP from gn11 to st2 (1750 Secons)
ICMP from gn12 to st2 (500 Seconds)

Figure 2. Total task computation times of the test applications.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334
Simulation Time [Min]

st4-gn11
st5-gn11
st6-gn11
st6-gn12
st7-gn11
st7-gn12
st8-gn12
st9-gn12
st1-st10

st1-st2
st2-st3
st3-st4
st4-st5
st5-st6
st6-st7
st7-st8
st8-st9

st9-st10

0

2500

5000

7500

10000

12500

15000

17500

Network Usage [bps]

Figure 3. Per-interface network usage.

REFERENCES

[1] S. Lee, A. Hutputanasin, A. Toorian, W. Lan, R. Munakata, J. Carnahan,
D. Pignatelli, and A. Mehrparvar, “Cubesat design specification rev. 13.”

[2] 3GPP, “Solutions for NR to support non-terrestrial networks (NTN),”
Technical Report 38.821, pp. 1–28, 2019.

[3] Z. Zheng, J. Guo, and E. Gill, “Swarm satellite mission scheduling
& planning using hybrid dynamic mutation genetic algorithm,” Acta
Astronautica, vol. 137, pp. 243–253, 2017.

[4] “Meteornet.” [Online]. Available: https://gitlab.com/camilo.rojas/
satellite constellation.git

[5] “Mininet.” [Online]. Available: http://mininet.org/
[6] F. Fourati and M.-S. Alouini, “Artificial intelligence for satellite commu-

nication: A review,” Intelligent and Converged Networks, vol. 2, no. 3,
pp. 213–243, 2021.

[7] Y. Miao, Z. Cheng, W. Li, H. Ma, X. Liu, and Z. Cui, “Software defined
integrated satellite-terrestrial network: A survey,” in Space Information
Networks. Springer, 2017, pp. 16–25.

[8] W. Jiang, “Software defined satellite networks: A survey,” Digital
Communications and Networks, 2023.

[9] Y. Wang, J. Yang, X. Guo, and Z. Qu, “Satellite Edge Computing for
the Internet of Things in Aerospace,” MDPI Sensors, vol. 19, no. 20,
2019.

[10] Z. Zhang, W. Zhang, and F.-H. Tseng, “Satellite Mobile Edge Comput-
ing: Improving QoS of High-Speed Satellite-Terrestrial Networks Using
Edge Computing Techniques,” IEEE Network, vol. 33, no. 1, pp. 70–76,
2019.

[11] T. Pfandzelter, J. Hasenburg, and D. Bermbach, “Towards a computing
platform for the LEO edge,” in International Workshop on Edge Systems,
Analytics and Networking, 2021-04-26, pp. 43–48.

[12] C. Sonmez, A. Ozgovde, and C. Ersoy, “Fuzzy Workload Orchestration
for Edge Computing,” IEEE Transactions on Network and Service
Management, vol. 16, no. 2, pp. 769–782, 2019.

[13] P. Cassara, A. Gotta, M. Marchese, and F. Patrone, “Orbital Edge
Offloading on Mega-LEO Satellite Constellations for Equal Access to
Computing,” IEEE Communications Magazine, vol. 60, no. 4, pp. 32–36,
2022.

[14] D. Paikowsky, “What is New Space? The Changing Ecosystem of Global
Space Activity,” New Space, vol. 5, no. 2, pp. 84–88, 2017.

[15] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010, pp. 15–34.

[16] A. Varga, “Omnet++,” in Modeling and tools for network simulation.
Springer, 2010, pp. 35–59.

[17] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining openflow and sflow for an effective and scal-
able anomaly detection and mitigation mechanism on sdn environments,”
Computer Networks, vol. 62, pp. 122–136, 2014.

[18] “sFlow.” [Online]. Available: https://sflow.org/
[19] R. P. Team et al., RYU SDN Framework-English Edition. RYU project

team, 2014.
[20] S. Singh and N. Singh, “Containers & docker: Emerging roles &

future of cloud technology,” in International Conference on Applied
and Theoretical Computing and Communication Technology (iCATccT),
2016, pp. 804–807.

[21] D. Vallado, P. Crawford, R. Hujsak, and T. Kelso, “Revisiting space-
track report #3,” in AIAA/AAS Astrodynamics Specialist Conference and
Exhibit. American Institute of Aeronautics and Astronautics, 2006.

[22] L. Yan and N. McKeown, “Learning Networking by Reproducing
Research Results,” ACM Computer Communication Review, vol. 47,
no. 2, 2017.

[23] IEEE, “Standard for local and metropolitan area networks: Media access
control (MAC) bridges,” IEEE Std 802.1D-2004 (Revision of IEEE Std
802.1D-1998), pp. 1–281, 2004.

https://gitlab.com/camilo.rojas/satellite_constellation.git
https://gitlab.com/camilo.rojas/satellite_constellation.git
http://mininet.org/
https://sflow.org/

	Introduction
	Background
	Software Defined Networks
	Multi-access Edge Computing
	Emulation Tools for SDN and MEC in NTNs
	Synthetic Dataset Collection

	MeteorNet
	Orbit Propagation
	Contact Table Computation and Utilization
	Network Management and SDN Controller
	Containerized Applications
	Network Analytics

	Case Study
	Scenario
	Analysis

	Conclusions
	References

