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Abstract In this study, we present and discuss several original sets of jump interface
conditions for the coupling of multi-dimensional models in fluid-porous systems with
arbitrary flow directions. There are issued from the theoretical derivation carried
out in Angot et al. (2017) using the generalized Darcy-Brinkman equation in the
free flow/porous medium inter-region Ω f p and a suitable asymptotic analysis for the
dimensional reduction to a dividing surface Σ between the free-fluid Ω f and porous
Ωp regions. The macroscale models can be either the Stokes/Darcy or Stokes/Darcy-
Brinkman coupled problems in the fluid-porous systems, so covering the whole range
of porosity 0 < φp < 1 of the permeable medium. All sets of boundary conditions
include jumps of tangential velocity vector and/or stress vector either at the top surface
Σt or at the bottom surface Σb of a transition layer Ω f p . Besides, in all the latter jump
conditions, the inherent tensorial form of the stress jump condition ensures to handle
flows over anisotropic porousmedia. In the present study, all these interface conditions
are validated and calibrated against three benchmark problems including pressure-
driven or shear-driven flows. The reference solution is obtained by the numerical
solution of the single-domain continuum model computed by a second-order finite
volumemethod. This allows us to calibrate the slip velocity αΣ and stress jump friction
βΣ coefficients that must be non negative to ensure the mechanical energy dissipation.
Then, it is proposed for both the Stokes/Darcy-Brinkman and Stokes/Darcy coupled
problems, an optimally accurate stress jump interface condition associated to the
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velocity continuity on a suitable dividing surface Σ = Σb , that minimizes the loss of
flow rate. The comparative performance results clearly indicate that the latter interface
condition on Σb tremendously outperforms all the others. Moreover, all the related
coupled problems are shown to be globally dissipative over the full range of porosity
which ensures their mathematical (at least formally) and physical stability.

Keywords Fluid-porous systems · Multi-dimensional viscous flows · Stokes/Darcy-
Brinkman model · Stokes/Darcy model · Optimal stress jump interface condition ·
Global dissipation of mechanical energy

PACS

Mathematics Subject Classification (2010) 76D07 · 76S05

Article Highlights

• Two sets of jump conditions issued from our recent derivations are investigated and
compared with others from the literature to couple the Stokes/Darcy-Brinkman or
Stokes/Darcy models for the multi-directional fluid-porous flows.
• All the sets applied either at the top or at the bottom surface of the inter-region
are discussed and shown to ensure the global dissipation of mechanical energy for
the three-dimensional flows with no restriction on the size of the data.
• The calibration against three pressure-driven and shear-driven benchmarks shows
that the set of stress jump conditions with velocity continuity is optimal for each
model to minimize the loss of flow rate in the viscous boundary layer.

1 Main objectives and highlights

1.1 Introduction

The issue of accurately describing the mass, momentum transport, flow structure and
transfer phenomena through and over a permeable region is a fundamental transport
problem. Indeed, most of the coupled phenomena (heat transfer, diffusion-dispersion
of a contaminant, mixing and reaction-diffusion) depend in a crucial way on the inter-
region transport. Moreover, this topic has a broad range of applications in many fields
of Physics (colloidal particles), biomechanics systems and microbiological processes
(bone growth, biofilms, cell proliferation), microfluidics and medical applications, in-
dustrial engineering (dendritic solidification of multi-component mixtures, filtration
processes, oil recovery, separation processes, insulation materials, risk assessment for
nuclear waste storage). This is also present in a large variety of Geophysics systems,
environmental situations or water resources systems (surface water-groundwater in-
teractions, hydrology, geothermal energy recovery, sea water intrusion, mid-ocean
ridges, interaction between atmosphere and vegetation canopy, benthic boundary lay-
ers). For example, we refer to Finnigan (2000); Koch and Hill (2001); Nepf (2012);
Monti et al. (2019); Nield and Bejan (2017); Bottaro (2019); Zampogna et al. (2019);
Parasyris et al. (2020) and the references therein for many examples of application.
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However, due to the large difference of the characteristic length scales involved in
these heterogeneous configurations, from the local pore scale size to the macroscale
length, the computation of pore-scale solutions to accurately describe the transfer
phenomena at all scales is not affordable. Indeed, transfer problems in porous media
for real-world applications span a very wide range of physical length scales: from
micrometer up to the km scale, while the time scales vary from seconds to several
months or years. Hence, as made for turbulence modelling, the momentum transport
analysis is often performed at the macroscopic scale using suitable averaging and local
deviations filtering. So, the derivation of such reliable and fully justified macroscale
models is required to tackle fundamental studies at a fluid-porous interface (stability,
boundary layer, multiphase flows, turbulence) and to deal with the large variety of
applications foregoing mentioned. If the macroscale flow models inside porous media
are nowdays well-established, e.g. Dullien (1992); Nield and Bejan (2017), this is not
the case of the jump boundary conditions that should be used to accurately couple the
macroscale fluid-porous models. Indeed, the concept of dividing surface is actually
closely related to the nature of the average representation at the interfacial region.

Fig. 1 Configuration of the single-domain continuum modelling for an arbitrary flow direction: thin
transition porous layer Ω f p of thickness d � L with evolving heterogeneity and continuous inter-region
with both the free-fluid domain Ω f and porous domain Ωp including a zoom of microstructure in a
representative unit cell of size `.
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Therefore, the works related to transport in fluid-porous flows mainly deal with
two approaches: the single-domain (or one-domain) continuum modelling and the
two-domain modelling that are obviously connected to each other. The one-domain
continuum modelling for the fluid-porous viscous flow originates from Brinkman’s
equation (Brinkman 1947a,b) to connect the Stokes equation with Darcy’s law (Darcy
1856), who early introduces the notions of effective viscosity in a porous medium
and viscous boundary layer. He is then followed by many authors. Among them
and following the ideas of Neale and Nader (1974) and Whitaker (1969) with the
volume averaging method, Ross (1983) early introduced the concept of a fluid/porous
medium inter-region Ω f p between the pure fluid domain Ω f and the homogeneous
porous medium one Ωp (see figure 1). He derived the momentum equation governing
the creeping flow insideΩ f p as an alternative to the two-domain approach of Beavers
and Joseph (1967).

Fig. 2 Configuration of the two-domain modelling: thin transition layer Ω f p dimensionally reduced to a
sharp dividing surface Σ = Σξ located at zΣ = −d+ (1− ξ)d with ξ := |zΣ |/d and 0 ≤ ξ ≤ 1. Here, the
usual choice is represented with Σ = Σt located at the top z = 0 of Ω f p .

The two-domain modelling introducing a dividing surface Σ (see figure 2)1 asso-
ciated to suitable jump conditions dates back to Beavers and Joseph (1967) who take
Σ at the top surface of the porous medium considered as tangent to the upper row
of solid inclusions facing the free fluid. They heuristically introduce a velocity-slip
interface condition for the 1-D Poiseuille channel flow parallel to the porous layer of
which the flow is governed by Darcy’s law. Their semi-empirical condition was sup-
ported by experimental results. This condition was later completed by Jones (1973)
symmetrizing the fluid stress by considering the full stress tensor. It was also justified
and simplified by Saffman (1971) neglecting the filtration velocity with respect to the

1 The reader should be careful that the notations of Ω f and Ωp are not obviously consistent between
figure 1 and figure 2, but this is for the practical sake of simplicity and convenience. Indeed, the layerΩ f p is
occupied (or partially occupied) by the pure fluid or the porous medium in the two-domain representations
of figures 2 or 3.
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fluid velocity at the dividing surface, so eliminating the explicit jump in the interface
relation. An investigation of the influence of interface location for Beavers-Joseph’s
condition is made heuristically by several authors, e.g. LeBars and Worster (2006);
Zampogna and Bottaro (2016); see also Nield (1983, 2000, 2009) and Auriault (2010).

Further, Ochoa-Tapia and Whitaker (1995a,b) derived a shear stress jump con-
dition by volume averaging for the same 1-D configuration, but when the flow in
the porous medium is governed by the Darcy-Brinkman equation with an effective
viscosity µ̃ (or µeff) = µ/φp in the porous medium (see also Lundgren (1972); Prieur
du Plessis and Masliyah (1988)), µ being the dynamic viscosity of the fluid, φp the
porosity (or volume fraction of pore). By considering the Taylor brush configuration,
Duman and Shavit (2009) investigated the sensitivity of the shear-stress jump condi-
tion to the dividing surface location. In the same conditions, but without imposing
the continuity of the streamwise velocity made in the previous derivation, Valdés-
Parada et al. (2013) derived two jump boundary conditions for the tangential velocity
and shear stress, respectively. Using phenomenological thermodynamics of mixtures,
Cieszko and Kubik (1999); Kubik and Cieszko (2005) early derived a set of interface
conditions including also the jumps of both tangential velocity and shear stress.

We refer to Angot et al. (2017) which provides a more comprehensive synthesis
of the works for the 1-D non-inertial creeping flow parallel to the porous layer made
by upscaling procedures, two-scale homogenization Hornung (1997); Auriault et al.
(2009) or volume averaging Whitaker (1999), as well as experimental and computa-
tional studies of validation. For the case of inertial laminar flows, we refer to our recent
study Angot et al. (2021) which derives original nonlinear jump interface conditions
for arbitrary flow directions.

1.2 State of the art on interface conditions for fluid-porous flow models

As described in section 1.1 and Angot et al. (2017), most of the interface conditions
related to the two-domain modelling with a dividing surface for the creeping flow
are now well-established for the 1-D channel or shear flow parallel to the porous
bed, either with the Stokes/Darcy model Beavers and Joseph (1967); Saffman (1971);
Jones (1973); LeBars and Worster (2006) or with the Stokes/Darcy-Brinkman model
Ochoa-Tapia and Whitaker (1995a,b); Cieszko and Kubik (1999); Kubik and Cieszko
(2005); Valdés-Parada et al. (2013). Nevertheless, for the needs of calculations of 2-
D/3-D flows to solve real world problems and simulate applications, many authors use
a set of interface conditions that are extended ad hoc from the original ones with no
justification. For example, let us consider the coupling of the Stokes/Darcy problem
(1) below with usual notations that is many times studied in the literature, where Kp

is the permeability of the isotropic and homogeneous porous region Ωp:
∇·v = 0 in Ω f ∪Ωp,

−µ∆v+∇p = ρ f in Ω f ,

µK−1
p v+∇p = ρ f in Ωp .

(1)

Then,with the dividing surfaceΣ = Σt (see figure 2) originally chosen at the top surface
of the transition layerΩ f p , almost all authors use the set of boundary conditions below
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inherited from the original Beavers-Joseph-Jones condition (Beavers and Joseph 1967;
Jones 1973) introducing the dimensionless velocity-slip coefficient αbj at the interface:

[[v · n]]Σ = 0

τ j ·
(
∇v+∇vT

)
Σ
· n =

αbj√
Kp

[[v ·τ j]]Σ, for j = 1,2

n · [[σ(v, p) · n]]Σ = 0

on Σ = Σt . (2)

In (2), the Cauchy stress vector σ(v, p) · n is defined as: σ f (v, p) · n := µ (∇v +
∇vT ) f · n− p f n2 in the free-fluid region and σp(v, p) · n := −ppn in the porous bulk.
The jump quantity [[.]]Σ on Σ is oriented by the unit normal vector n on Σ (directed
arbitrarily outwards of the porous region in figure 2). The couple of vectors (τ1,τ2)
denotes a local basis of tangential vectors on the surface Σ. Then, it should be noticed
that the first condition in (2), justified by the authors as the mass conservation at the
interface for an incompressible flow, is only a first-order approximation in O(d/L)
(d being the thickness of Ω f p , L the macroscale length) as early shown by Ene and
Sanchez-Palencia (1975); Lévy and Sanchez-Palencia (1975) and more recently by
Angot et al. (2017). Indeed, for the dimensional reduction of fractures in porous media
using the asymptotic analysis of thin layers, a higher-order approximation is required
to get an effective flow along the fractures as carried out Angot (2003); Angot et al.
(2005, 2009). More importantly, the last condition in (2) meaning the continuity of the
normal stress and generally justified as the balance of normal forces at the dividing
surface, is problematic. As shown in (Angot et al. 2017, section III.D) by asymptotic
analysis inΩ f p and recalled in (Angot et al. 2021, Eqs (18) using Remark 3), the con-
ditions (2) should be replaced by a generalized set precised later in Section 2.2 using
(Angot et al. 2017, sections III.D.2 & III.D.3) that includes an additional stress-jump
condition. In these generalized velocity and stress jump conditions, a tensor quantity
βΣ is defined with an effective permeability tensor on Σ as the dimensionless friction
tensor at the dividing surface and it is obtained by averaging Darcy’s drag insideΩ f p .
Then it appears, by considering no stress jump at the interface like in (2), that the
effective Darcy friction on Σ should be neglected. However, this amounts to neglect
Darcy’s drag force inside the transition layer or viscous boundary layer that is not
physically relevant since this region is occupied by an heterogeneous porous medium
and the terms have the same order of magnitude as shown in (Angot 2018, Remark
2.2). This is also in agreement with the theoretical derivations of Minale (2014a,b)
for the 1-D shear flow in fluid-porous layers. Moreover, this is also confirmed by
the recent paper Eggenweiler and Rybak (2021), using two-scale homogenization to
generalize the works of Jäger andMikelić (2000, 2009); Carraro et al. (2013, 2015) for
the two-dimensional case with arbitrary flow directions, who obtain a set of interface
conditions similar to ours in Section 2.2. A recent study Lācis et al. (2020), using a
different approach than Eggenweiler and Rybak (2021), also proposes a generalization
of these latter works giving a form of interface conditions similar to our set. Another
obvious drawback of (2) lies in the fact that, the coefficient αbj being a scalar quan-
tity only, Eqs (2) are not adequate to model anisotropic flow configurations. Some

2 The notation := is used in order to specify that the equality is considered as a definition.
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authors nonetheless have tried to consider αbj as a tensorial quantity and to calibrate
its coefficients by fitting with numerical results, but this seems unsatisfactory. Above
all, this is in contradiction with the general derivation of the second equation in (2)
carried out by asymptotic analysis in (Angot et al. 2017, section III.B.2). It clearly
appears indeed that this equation comes from averaging the definition of the stress
vector σ(v, p) · n over Ω f p and that the multiplicative coefficient in front of [[v]]Σ is
only a scalar one, equal for all components, and cannot be a full tensor. Moreover, this
is confirmed by the recent numerical experiments made in Eggenweiler and Rybak
(2020) that conclude that the set of interface conditions (2) is unsuitable to correctly
and accurately represent anisotropic flow configurations.

Fig. 3 Configuration of the two-domain modelling: thin transition layer Ω f p dimensionally reduced to a
sharp dividing surface Σ = Σξ located at zΣ = −d+ (1− ξ)d with ξ := |zΣ |/d and 0 ≤ ξ ≤ 1. Here, a new
choice is considered with Σ = Σb located at the bottom z = −d of Ω f p .

That is the reasonwhy a comprehensive set of jump interface conditions parametri-
zed by the location ξ of the dividing surface Σ inside Ω f p (see figures 2 and 3) is
derived in Angot et al. (2017) by asymptotic theory and summarized in (Angot et al.
2021, Eqs (17,18,34) using Remark 3). In the more general case, these conditions
include jumps of both the tangential velocity and stress vectors. It is shown that they
are suitable generalizations, for the multi-dimensional creeping flow with arbitrary
flow directions, of all the known interface conditions developed for the 1-D channel
flow parallel to the porous layer, namely Beavers and Joseph (1967); Ochoa-Tapia and
Whitaker (1995a,b); Valdés-Parada et al. (2013). Besides, they have been developed to
couple both the Stokes/Darcy-Brinkman and Stokes/Darcy problems, just by changing
the definition of the related stress vector σp(v, p) · n in the porous region Ωp . Let us
mention that similar jump interface conditions as those derived in Angot et al. (2017),
the so-called jump embedded boundary conditions (JEBC), are early devised in Angot
(2010, 2011) on the basis of mathematical analysis to generalize for vector problems
the JEBC for scalar interface models of diffusion problems introduced in Angot
(2003, 2005). Moreover in Angot (2018), the coupled Stokes/Darcy-Brinkman and
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Stokes/Darcy unsteady problems endowed with their related set of jump interface
conditions derived in Angot et al. (2017) are both proved to be globally well-posed in
time with no restriction on the size of the data. In particular, this holds true whatever
the size of the velocity-slip coefficientαΣ > 0 for the Stokes/Darcy problem, giving so a
solution to some mathematical issues due to the full Beavers-Joseph jump condition.
Indeed, the traces of weak solutions in the porous region are not generally strong
enough for its tangential component to be well defined.

1.3 Objectives and highlights of the present study

In the present work, it is shown that other sets of jump boundary conditions than
those usually found in the literature can be used to couple the Stokes/Darcy-Brinkman
and Stokes/Darcy problem as a by-product of the derivation made in Angot et al.
(2017) when the interface is chosen at the bottom surface of Ω f p , i.e. Σ = Σb located
at ξ = 1 as shown in figure 3. In particular and thanks to the lower position of the
dividing surface, the coupling conditions reduce to a stress-jump condition with no
jump of velocity for the Stokes/Darcy and Stokes/Darcy-Brinkman problems. Then,
the main objectives is to validate, calibrate and compare the newly proposed sets
of jump interface conditions on Σt or Σb . The coupling of both the Stokes/Darcy
and Stokes/Darcy-Brinkman macroscale models, generally treated separately in the
literature, are here considered within the same unified setting in order to cover the full
porosity range 0 < φp < 1 of the permeable medium. All the jump interface conditions
are shown to fulfill the dissipation of total energy which ensures in particular that the
static equilibrium is always reached with a vanishing velocity whatever the considered
model. Moreover, an original procedure of selection of the best interface conditions
among all possible calibration solutions satisfying αΣ ≥ 0 and βΣ ≥ 0 to ensure the
global dissipation is proposed. The results clearly show that the optimal set of stress
jump conditions with no velocity slip yields the best solution to minimize the loss of
volumic flow rate.

The paper is organized as follows. Section 2 details the general asymptotic interface
model and discusses the particular sets of jump interface conditions obtained when
the dividing surface is chosen at Σt or Σb . The mechanical energy balance is derived
in Section 3 and the dissipation of total energy is studied. In Section 4, the jump
interface conditions are validated, calibrated and compared against the numerical
solutions of the single-domain continuum model for three flow benchmark problems
at a permeable interface. A summary of the best results is supplied in Section 4.5. In
the last Section 5, some concluding remarks and perspectives are drawn.

2 Original jump interface conditions for arbitrary flow directions

For the incompressible creeping viscous flow inside a porous medium, the nonlinear
inertial effects Whitaker (1996) are negligible and the governing equations reduce to
either the Darcy-Brinkman equation or Darcy’s law when the Laplacian term can be
neglected; see Appendix B. For their theoretical derivation, we refer for example to
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Whitaker’s works Whitaker (1969, 1986); Barrère et al. (1992); Whitaker (1999) with
the volume averaging method. The two-scale homogenization method states similar
upscaling equations, e.g. Sanchez-Palencia (1980, 1983); Hornung (1997). Then, the
coupling of macroscale models in fluid-porous systems considers the Stokes/Darcy-
Brinkman problem below:

∇·v = 0 in Ω f ∪Ωp,

−µ∆v+∇p = ρ f in Ω f ,

−
µ

φp
∆v+ µK−1

p ·v+∇p = ρ f in Ωp,

(3)

where µ is the dynamic viscosity of the fluid, ρ its mass density, φp the porosity
(volume fraction of fluid pores), K p the intrinsic permeability tensor of the porous
region Ωp , v denotes the filtration velocity defined as the superficial average and p
the pressure as an intrinsic average. The external force per mass unit f , e.g. gravity
acceleration f = g, is included in the right-hand side. The Darcy number Da is
classically introduced as a dimensionless parameter to characterize the flow in the
porous medium, see Appendix A:

Da :=
Kp

L2 , (4)

where Kp := ‖K p ‖ is a suitable matrix norm (or semi-norm) of the tensor K p . A
practical criterion based on the (dimensionless) Brinkman number Br3:

Br :=
Kp(φp)

L2 φp
=

Da(φp)
φp

, (5)

is proposed in Appendix B to determinewhether or not the Brinkman viscous term can
be neglected with respect to Darcy’s drag. Then it appears in figure 24 that it is fully
justified, i.e. Br� 1, within the porosity range 0 < φp ≤ 0.95 when the macroscale
length L satisfies L & 20` (` being the size of the representative unit cell in the
porous medium in figure 1). In that conditions, the fluid-porous coupling reduces to
the following Stokes/Darcy problem that is mainly studied in the literature:

∇·v = 0 in Ω f ∪Ωp,

−µ∆v+∇p = ρ f in Ω f ,

µK−1
p ·v+∇p = ρ f in Ωp .

(6)

The macroscale problems (3) and (6) must be closed by adding physically rele-
vant, reliable and calibrated interface conditions on a dividing surface Σ, and suitable
boundary conditions as well, to provide well-posed and globally dissipative coupled
problems ready to use for the simulations of applications. The sets of interface con-
ditions should cover the whole porosity range 0 < φp < 1, be valid for arbitrary flow
directions and take account of anisotropic effects. Using asymptotic analysis of the

3 Up to the authors’ knowledge, it seems to be the first time that this number is introduced in the literature,
although Brinkman’s screening length is used.
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thin transition region Ω f p of thickness d, a family of jump interface conditions at the
first order O(d/L) and parametrized by the position ξ := |zΣ |/d with 0 ≤ ξ ≤ 1 of the
dividing surface Σ inside Ω f p are derived theoretically in Angot et al. (2017). These
interface conditions are summarized in the next section after the introduction of some
notations.

2.1 The general asymptotic interface model of Angot et al. (2017)

Let n be a unit normal vector on the dividing surface Σ arbitrarily directed fromΩp to
Ω f and τ be any unit tangential vector on Σ; see figures 2 and 3. The couple of vectors
(τ1,τ2) denotes a local orthonormal basis of tangential vectors on the surface Σ, the
unit vector τ being any of these vectors. For any quantity ψ defined all over Ω, the
restrictions on Ω f or Ωp are respectively denoted by ψ f := ψ |Ω f

and ψp := ψ |Ωp
. For

a function ψ having a jump on Σ, let ψ− and ψ+ be the traces of ψp and ψ f on each
side of Σ, respectively. Following (Angot 2010, 2011), the jump of ψ on Σ oriented
by n and the arithmetic mean of traces of ψ are defined as reduced variables at the
interface by: 

[[ψ]]Σ := ψ+−ψ− =
(
ψ f −ψp

)
Σ
,

ψΣ :=
1
2

(
ψ++ψ−

)
=

1
2

(
ψ f +ψp

)
Σ
.

(7)

We also define the weighted mean ψw
Σ for using a non-centered approximation at a

dividing surface Σ = Σξ located at zΣ := −d + (1− ξ)d in Ω f p with ξ := |zΣ |/d and
0 ≤ ξ = |zΣ |/d ≤ 1:

ψ
w
Σ := ψΣ +

(
1
2
− ξ

)
[[ψ]]Σ =


ψ

f
Σ

if ξ = 0 i.e. Σ = Σt at z = 0

ψΣ if ξ = 1/2 i.e. Σ = Σm at z = −d/2
ψ
p
Σ

if ξ = 1 i.e. Σ = Σb at z = −d.

(8)

Besides, for any quantity k, the arithmetic and harmonic means over the thickness d
of Ω f p are respectively given by:

〈k〉(x) :=
1
d

∫ d/2

−d/2
k(x, z)dz, and 〈k〉h(x) :=

〈
1
k

〉−1
. (9)

The general asymptotic interface model supplies a set of jump interface conditions
for the stress and tangential velocity vectors at a sharp dividing surface Σ inside Ω f p .
They are valid to couple both the Stokes/Darcy-Brinkman or the Stokes/Darcymodels,
just by changing the definition of the stress vector. For a Newtonian fluid, the Cauchy
stress vector σ(v, p) · n on Σ is defined by:

σ(v, p) · n := σv(v) · n− pn where:

σv(v) · n := µ̃
(
∇v+∇vT

)
· n with µ̃ :=

µ

φ
,

and φ = 1 in Ω f , φ = φp in Ωp,

(10)
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where σv(v) · n denotes the viscous stress vector and µ̃= µ/φ is the effective viscosity
in the porous medium from (Whitaker 1999, Chapter 4) or (Valdés-Parada et al.
2007b). Thus, the latter definition holds for the Stokes and Darcy-Brinkman equations
but with the Darcy equation in Ωp , the stress vector reduces to the normal pressure
force with no viscous stress:

σp(v, p) · n := −pp n in Ωp . (11)

Then, the general asymptotic interface model on Σ for the non-inertial regime and
arbitrary flow directions reads up to O(d/L) with a surface force fΣ := d 〈ρ f 〉:

[[v · n]]Σ = 0,

σv(v) · n
w

Σ =
µ√
Kp

αΣ [[v]]Σ,

[[σ(v, p) · n]]Σ =
µ√
Kp

βΣ ·vw
Σ + fΣ

on Σ. (12)

The dimensionless velocity slip scalar coefficient αΣ and friction tensor βΣ of stress
jump at the interface included in (12) are defined as below:

αΣ :=
√

Kp

d φΣ
with φΣ :=

1
〈φ−1〉

βΣ := d
√

Kp K
−1
Σ with K−1

Σ := 〈K−1(φ)〉,

(13)

where φΣ denotes an effective surface porosity on Σ and KΣ is an effective surface
permeability tensor on Σ. Coming from the symmetric permeability tensor K in Ω f p ,
the friction tensor βΣ defined in (13) can be expected to remain symmetric too within
the calibration procedure.

Remark 1 (Contribution of ∇vT in the slip coefficient αΣ.) The derivation in Angot
et al. (2017) is carried out using the pseudo-stress vector: µ̃∇v · n− pn inΩ f p instead
of the full stress one σ(v, p) · n given by (10) that is more suitable for arbitrary flow
directions Jones (1973). Indeed, the contribution of ∇vT in the averaging of the full
stress vector over Ω f p is negligible because it is shown in (Angot et al. 2017, Section
III.B.2) that all the terms with tangential derivatives can be neglected up to O(d/L)
and because we have also [[v · n]]Σ = 0 with (12). This observation is also pointed out
in (Angot et al. 2021, Footnote #4).

Remark 2 (Taking account of additional jumps in the coefficients αΣ or βΣ.) Let us
notice that the coefficients in (13), being defined by integrals overΩ f p , do not depend
on the position ξ of the dividing surface Σξ inside Ω f p . Therefore, the asymptotic
modelling theory cannot predict the dependence of αΣ or βΣ with respect to the
location of the dividing surface Σξ inside Ω f p , but the theory does predict the related
explicit expressions (12) of the jump conditions on Σξ . Moreover, it is important
to recall that the starting point of the asymptotic theory developed in Angot et al.
(2017) by averaging the one-domain mass and momentum transport equations over
Ω f p assumes continuity of both the velocity and stress vectors at the upper and lower
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boundaries of Ω f p . This does not require that the porosity transition function φ or
the permeability K (φ) in Ω f p should be continuous inside or at the latter boundaries
varying from φ f = 1 to φp; see the proof in Angot (1999). In particular, Heaviside
steps are admitted as in the approach of Neale and Nader (1974); Angot (1999),
but obviously, more accurate results can be expected from the one-domain solution
of the full General Transport Equations in Brinkman’s viscous boundary layer; see
Hernandez-Rodriguez et al. (2020, 2022). Therefore, jumps of velocity or stress
existing before the averaging over Ω f p must be taken into account by modifying
the values of αΣ or βΣ given in (13), respectively. This is the case when the two-
domain model considers the coupling of the Stokes/Darcy problem that introduces an
additional stress jump by neglecting the viscous stress vector in the Darcy/Brinkman
model replaced by Darcy’s law inΩp . Therefore, the value of βΣ should be obviously
modified consistently.

For example in the isotropic case, (13) gives analytic expressions of the scalar slip
and friction coefficients at the interface as functions of porosity φp . As made in Angot
et al. (2021), these coefficients can be estimated using the two-point trapezoidal rule
to evaluate the integrals over Ω f p since only the known values in Ω f and Ωp are
involved with φ f = 1 and φp , respectively. In this case, we get with the trapezoidal
quadrature: 

αΣ(φp) '

√
Kp(φp)

2 d(φp)

(
1+

1
φp

)
,

βΣ(φp) '
d(φp)

2
√

Kp(φp)
.

(14)

It is interesting to express the relations (14) with the dimensionless quantities of the
problem: the Darcy number Da(φp) := Kp(φp)/L2 and the dimensionless thickness
of the transition layer δ(φp) := d(φp)/L. That gives:

αΣ(φp) '

√
Da(φp)

2δ(φp)

(
1+

1
φp

)
,

βΣ(φp) '
δ(φp)

2
√

Da(φp)
.

(15)

Although the variation profiles of porosity and permeability are not known a priori for
themicrostructure in the inter-region, the three-point Simpson quadrature formulawith
themid-point of porosity (1+φp)/2 is likely to provide amore accurate approximation.
Indeed, as shown in figure 4, the reasonable porosity transition functions in Ω f p for
the single-domain continuum modelling pass through this mid-point.

The casewhere the dividing surfaceΣ is chosen in themiddle of the transition layer,
i.e. Σ = Σm with ξ = 1/2 is mainly discussed in Angot et al. (2017). Moreover, both the
unsteady Stokes/Darcy-Brinkman and Stokes/Darcy coupled problems supplemented
by the set of jump interface conditions (12) on Σ = Σm with ξ = 1/2 are proved to be
globally well-posed in time, whatever the size of the data, in Angot (2018). The proof
for the corresponding steady cases was carried out in Angot (2011). Therefore in the
present study, we focus on and discuss the two other special cases where either Σ = Σt
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Fig. 4 Porosity transition profiles in an interfacial regionΩ f p for the single-domain continuum modelling
with φp = 0.40, d = ` and different functions: ramp (black dotted), third-order polynomial (magenta),
fifth-order polynomial (green), sigmoid (blue), Gauss error (red), Heaviside step at top surface (black solid
line), Heaviside step at middle surface (yellow).

with ξ = 0 or Σ = Σb with ξ = 1. We show further that the simplifications induced
by the weighted mean (8) reported in (12) supplies more practical jump interface
conditions and a set of optimal ones minimizing the loss of flow rate for both the
Stokes/Darcy-Brinkman and Stokes/Darcy problems.

2.2 Jump interface condition on Σt at z = 0 with ξ = 0

When the dividing surface Σ is chosen at the top of the inter-region, i.e. Σ = Σt with
ξ = 0 as shown in figure 2, then the set of jump interface conditions (12, 8) reduces
to: 

[[v · n]]Σ = 0,

σ f
v (v) · nΣ =

µ√
Kp

αΣ [[v]]Σ,

[[σ(v, p) · n]]Σ =
µ√
Kp

βΣ ·v
f
Σ
+ fΣ

on Σ = Σt . (16)

Compared to (2), the present set of interface conditions (16) gives a theoretical
justification to a far more general form than the ad-hoc extended Beavers-Joseph
conditions (2) assumed up to now in the literature for coupling the multi-dimensional
Stokes/Darcy problemwith a velocity slip conditions at Σt . Indeed, an additional stress
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jump on Σt is required. So, it is fully original up to our knowledge since it appears as a
proper generalization for themulti-dimensional flow of the conditions including jumps
of both tangential velocity and shear stress derived by several methods for the 1-D
channel flow in Cieszko and Kubik (1999); Kubik and Cieszko (2005); Valdés-Parada
et al. (2013). Firstly, the set (16) is directly derived in the case of multi-dimensional
flows and it is thus valid for arbitrary flow directions. Moreover, by including the
tensorial quantity βΣ, the set (16) is inherently well-suited to take into account the
anisotropic effects on the flow due to the microstructure.

Coupling the multi-dimensional Stokes/Darcy-Brinkman problem with the stress
jump condition (19) is also completely new in the literature, and it appears as a
nice generalization for the multi-dimensional flow of the condition of Ochoa-Tapia
and Whitaker (1995a,b), also studied in Goyeau et al. (2003); Valdés-Parada et al.
(2009a). Indeed, the latter condition was derived for the 1-D channel flow parallel
to the porous bed by assuming the tangential velocity continuity [[v ·τ]]Σ = 0 on Σt
at z = 0. However until now, there was no evidence that such an hypothesis holds.
That is the reason why it is derived by Valdés-Parada et al. (2013), for the same flow
configuration, a generalization including also a jump of tangential velocity at some
unknown dividing surface inside the interfacial region Ω f p . In fact, we show in the
next Section 4 that the latter assumption [[v ·τ]]Σ = 0 on Σt at z = 0 is not valid unless
to consider negative values of the shear-stress jump βΣ < 0 on Σt that appears to be
unreasonable for the energy dissipation; see Section 3. Let us also mention that an
interface condition of the type (16) is also predicted in Section 4 for the coupling of
the Stokes/Darcy-Brinkman problem with no shear-stress jump, thus having only a
normal stress jump and a velocity slip on Σ = Σt . Then, it yields with f = 0:



[[v · n]]Σ = 0,

σ f
v (v) · nΣ =

µ√
Kp

αΣ [[v]]Σ,

[[σ(v, p) · n]]Σ =
µ√
Kp

βΣ ·v
f
Σ

with βτ = 0

on Σ = Σt, (17)

where the first diagonal coefficients of βΣ vanishes, i.e. βτ = 0. This is also a quite un-
sual approach to deal with the Stokes/Darcy-Brinkman problem that classically uses
a shear-stress jump condition as derived for the 1-D channel flow in Ochoa-Tapia and
Whitaker (1995a); Valdés-Parada et al. (2013). However for the Stokes/Darcy cou-
pling, even for the 1-D pressure-driven channel flowwith any isotropicmicrostructure,
an interface condition having only a velocity slip with no shear-stress jump seems
impossible to reach and unrealistic. This confirms the foregoing discussion about the
set (2).

2.3 Jump interface condition on Σb at z = −d with ξ = 1

When the dividing surface Σ is chosen at the bottom of the inter-region, i.e. Σ = Σb
with ξ = 1 as shown in figure 3, then the set of jump interface conditions (12, 8)
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reduces to:



[[v · n]]Σ = 0,

σp
v (v) · nΣ =

µ√
Kp

αΣ [[v]]Σ,

[[σ(v, p) · n]]Σ =
µ√
Kp

βΣ ·v
p
Σ
+ fΣ

on Σ = Σb . (18)

Using such a condition (18) on Σb means in practice that the pure fluid region is
extended downwards at the macroscale to include the whole transition layer. In other
words, the two-domain model replaces in that case the interfacial layer Ω f p of the
one-domain model by a free fluid region. As for (16), the set (18) is well-adapted for
arbitrary flow directions and for capturing the anisotropic effects of the microstructure
on the flow by calibrating the friction tensor βΣ.

Moreover, an important simplification of (18) occurs when it is used for the
coupling of the Stokes/Darcy problem. Indeed, the viscous stress vector for Darcy’s
law being zero, i.e. σp

v (v) · nΣ = 0, then since αΣ > 0, we get: [[v]]Σ = 0. Therefore,
this yields the following stress jump interface condition with continuous velocity
v f
Σ
= vp
Σ
= vΣ on Σb for the Stokes/Darcy problem:


[[v]]Σ = 0,

[[σ(v, p) · n]]Σ =
µ√
Kp

βΣ ·vΣ + fΣ
on Σ = Σb . (19)

This set of interface conditions is not found in the literature and completely in rupture
with usual Beavers-Joseph’s concept of velocity slip for the Stokes/Darcy problem or
with its numerous extensions up to now.

Furthermore, we show in the next Section 4 that the set (19) also holds for
the coupling of the Stokes/Darcy-Brinkman problem. Indeed at least for the one-
dimensional flow, there exists a unique optimal interface Σb that can be determined,
where the continuity of velocity is satisfied and such that the stress jump condition (19)
minimizes the loss of volumic flow rate while keeping βΣ ≥ 0, i.e. as a semi-definite
positive matrix to ensure the global dissipation; see Section 3. The generalization of
this result for multi-dimensional flows seems surely valid as well by manipulating
geometry and intersection of surfaces.

Finally, it is important to emphasize that omong all the sets of conditions (16,
17, 18) and (19) investigated in Section 4, only the set (19) provides the optimal
interface conditions that minimize the loss of flow rate while satisfying the energy
dissipation whatever the coupling problem, Stokes/Darcy-Brinkman or Stokes/Darcy,
and for any pressure-driven or shear-driven flow benchmark. Moreover, the inherent
tensorial form of all the latter interface conditions ensures that it should be possible
to handle flows over isotropic, orthotropic and fully anisotropic porous media.
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2.4 Comparison with the volume averaging method for the one-dimensional flow

In this section, the jump boundary conditions derived using the asymptotic model are
compared to those established with the volume averaging method (VAM) (Valdés-
Parada et al. 2013). This comparison is performed by considering the one-dimensional
parallel flow. Let us recall that the jump conditions derived with VAM take the form:

∂(v f ·τ)
∂n |Σ

−αf p
α√
Kp

∂(vp ·τ)
∂n |Σ

=
α√
Kp

(
v f −φpθvp

)
|Σ
·τ (20)

∂(vp ·τ)
∂n |Σ

−ω
∂v f ·τ)
∂n |Σ

=
φpβ√

Kp

(
vp − βf pv f

)
|Σ
·τ (21)

where the six coefficients αf p , α, θ, ω, β and βf p are dependent on the local mi-
crostructure of the inter-region and the location of the dividing surface. Note that to
easily compare the calibration results with usual configurations in the literature, the
upper surface of transition layer is now located at z = 0 and thus the lower surface is
at z = −d. Therefore, for the one-dimensional parallel flow, the velocity and the stress
jump conditions in (12) take respectively the form

∂(v f ·τ)
∂n |Σ

−
ξ

(1− ξ)
∂(vp ·τ)
∂n |Σ

=
1

φΣ d(1− ξ)

(
v f −vp

)
·τ (22)

∂(vp ·τ)
∂n |Σ

−φp
∂(v f ·τ)
∂n |Σ

=
φp d ξ

< K(φ,∇φ) >h

(
vp −

(1− ξ)
ξ

v f

)
·τ (23)

The comparison between (22) and (20) gives

θ =
1
φp

αΣ =

√
Kp

dφΣ(1− ξ)
=

√
Kp(1+φp)

2dφp(1− ξ)

η f p =
φΣdξ
φp
= 2dξ(1+φp)

(24)

Similarly, the comparison between (23) and (21) leads to

ω = φp

βf p =
(1− ξ)
ξ

βΣ =
d ξ

√
Kp

< K(φ,∇φ) >h
=

d ξ

2
√

Kp

(25)

The jump coefficients αΣ and βΣ in (24) and (25), respectively, are similar to the
expressions provided in (14) and (15), the difference being the dependence on the
location of the dividing surface ξ ( 0 ≤ ξ ≤ 1). This illustrates that the volume averaging
method and the asymptotic method lead to the same interfacial modelling.



An optimal stress jump interface condition for the fluid-porous multi-dimensional flow 17

As done in sections 2.2 and 2.3, let us examine the two limiting locations of the
dividing surface. First, we consider the location in Σt where ξ = 0. therefore, (22) and
(23) take the form

∂(v f ·τ)
∂n |Σ

=
1
φΣ d

(
v f −vp

)
·τ =

αbj√
Kp

(
v f −vp

)
·τ (26)

φp
∂(v f ·τ)
∂n |Σ

−
∂(vp ·τ)
∂n |Σ

=
φp d

< K(φ,∇φ) >h
v f ·τ (27)

where (26) represents the slip condition introduced by Beavers and Joseph (1967).
The dimensionless slip coefficient is deduced from (26) to give

αbj =

√
Kp

φΣ d
(28)

Since this analysis is based on the Stokes/Darcy-Brinkman model, and in accordance
with (16), the second interfacial equation (27) represents the shear stress jump condi-
tion.
Keeping ξ = 0, let us nowconsider the Stokes/Darcymodel instead of the Stokes/Darcy-
Brinkman one. In that case, (26) remains unchanged while (27) reduces to

∂(v f ·τ)
∂n |Σ

=
d

< K(φ,∇φ) >h
v f ·τ (29)

Equation (29) is in fact the Safman’s form of the Beavers and Joseph condition where
the velocity in the porous region vp can be neglected since it is small compared to
the velocity in the fluid channel v f . Using the same simplification in (26), leads to the
compatibility condition

d
< K(φ,∇φ) >h

=
1
φΣ d

(30)

giving rise to the following expression for the thickness of the transition layer

d =

√
2Kp

φΣ
(31)

Expression (31) is in good agreement with the scaling obtained in Angot et al. (2017).
Therefore, it is easy to show that

αbj =

√
2
φΣ

(32)

and due to the expression for φΣ in (13),

αbj =

√
1+φp
φp

(33)
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Finally, if we now consider the case where the dividing surface is located at Σb
where ξ = 1 (see section 2.3). In that case, the jump conditions (24) and (25) become:

∂(vp ·τ)
∂n |Σ

=
1
φΣ d

(
v f −vp

)
·τ, (34)

∂(vp ·τ)
∂n |Σ

−φp
∂(v f ·τ)
∂n |Σ

=
φpd

< K(φ,∇φ) >h
vp ·τ. (35)

Unlike to Ochoa-Tapia andWhitaker (1995), the Stokes/Darcy-Brinkman model gives
two jumpboundary conditionswhen the dividing surface is atΣb which is in agreement
with the conclusion of Valdés-Parada et al. (2013). Moreover, if we assume like in
Ochoa-Tapia and Whitaker (1995) the continuity of velocity, then the stress jump
condition (35) becomes:

∂(v f ·τ)
∂n |Σ

=
d

< K(φ,∇φ) >h
v f ·τ. (36)

Therefore, the comparison of (36) with the shear stress condition of Ochoa-Tapia
and Whitaker (1995a) for the Stokes/Darcy-Brinkman model gives the stress jump
coefficient:

βotw =
d

2
√

Kp

. (37)

Finally, if the Stokes/Darcy model is considered as made in section (2.3), the jump
of tangential velocity is zero and therefore we get continuity of velocity at Σb and the
stress jump condition (36) is still valid.

In conclusion, this comparison shows that the volume averaging method and
the asymptotic method lead to the same interfacial momentum modelling for the
one-dimensional flow. From the general point of view, this analysis based on the
Stokes/Darcy-Brinkman model confirms that both velocity and stress jump conditions
must be imposed at a dividing surface whose location strongly impacts their forms. For
the Stokes/Darcy model, the velocity slip condition proposed by Beavers and Joseph
is recovered at Σt . On the other hand, assuming continuity of velocity gives the stress
jump condition derived by Ochoa-Tapia andWhitaker for the Stokes/Darcy-Brinkman
model.

3 The mechanical energy balance and global dissipation

The dissipation of mechanical energy inside the whole fluid-porous system is an
important issue that is very rarely tackled in the literature. Here, the energy balance of
the resulting macroscale coupled models (3) or (6) in the domain Ω := Ω f ∪Σ∪Ωp ,
i.e. the Stokes and Darcy-Brinkman or Darcy equations in Ω f and Ωp , respectively,
supplemented by the interface conditions (16) on Σt (figure 2) or (19) on Σb (figure
3). This will show that these coupled models actually satisfy the energy theorem in
mechanics at the macroscopic scale and that the conservation of energy holds.

Without loss of generality, we assume null boundary conditions v f

|Γ
= 0 and vp

|Γ
= 0

(for the Darcy-Brinkman law in (3) in Ωp) or vp · n |Γ = 0 (for the Darcy law in (6) in
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Ωp) at the external boundary Γ of Ω. The motion governing equations (3) or (6) can
be written in the conservative form using the Cauchy stress tensor defined in (10) or
(11). Then, with µ and φp being constant, we use the fact that: ∇· (∇vT ) = 0 since
∇·v = 0. By taking the L2-scalar products with v of the motion equations in (3) inΩ f

and Ωp , respectively, we use formally standard integrations by parts for sufficiently
regular solutions to give a sense to the integrals over the interface Σ. So, all the
boundary integrals on Γ will vanish with the homogeneous boundary conditions, as
well as the integrals with divergence-free velocity terms. The interface conditions are
incorporated as in Angot (2010, 2011) in the integrals over Σ, the rigourous analysis
being carried out in Angot (2018). Then, it yields the following mechanical energy
balance:∫

Ω f

µ |∇v f |2 dx+
∫
Ωp

µ

φp
|∇vp |2 dx+

∫
Ωp

µ (K−1
p ·vp) ·vp dx

+ IΣ =
∫
Ω

ρ f ·vdx−
∫
Σ

fΣ ·vΣ ds,
(38)

where the energy quantity IΣ gathers all the contributions of the interface conditions,
either (16) on Σt or (19) on Σb . Following (Angot 2010, Eqs. (10,11)) or Angot (2011),
the interface term IΣ reads:

IΣ =
∫
Σ

(
σ f (v, p) · n

)
·v f ds−

∫
Σ

(σp(v, p) · n) ·vp ds

=

∫
Σ

σ(v, p) · nΣ · [[v]]Σ ds+
∫
Σ

[[σ(v, p) · n]]Σ ·vΣ ds.
(39)

The right-hand side in Eq. (38) is equal to the total work of all external forces in the
fluid-porous system. Moreover, the second term in the left-hand side of (38) must be
discarded when the Stokes/Darcy model (6) is considered since the viscous stress is
then neglected in the porous medium Ωp .

3.1 Energy balance for the fluid-porous flow with interface conditions (16) on Σt

Using the definitions (7), we have:

σ(v, p) · nΣ = σ f (v, p) · nΣ −[[σ(v, p) · n]]Σ
which included in Eq. (39) gives:

IΣ =
∫
Σ

σ f (v, p) · nΣ · [[v]]Σ ds+
∫
Σ

[[σ(v, p) · n]]Σ · (vΣ −[[v]]Σ) ds

=

∫
Σ

σ f (v, p) · nΣ · [[v]]Σ ds+
∫
Σ

[[σ(v, p) · n]]Σ ·v
p
Σ

ds.
(40)

By incorporating now in (40) the jump interface conditions (16) on Σt and noticing
that the contribution of the normal component in the scalar product vanishes with
[[v · n]]Σ = 0, it yields:

IΣt =
µ√
Kp

2∑
j=1

∫
Σt

αΣ [[v ·τ j]]
2
Σ ds+

µ√
Kp

∫
Σt

(βΣ ·v
f
Σ
) ·vp
Σ

ds, (41)
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where (τ1,τ2) denotes a local orthonormal basis of tangential vectors on Σ. Then,
the mechanical energy balance in the fluid-porous system coupled with (16) on Σt
is finally given by Eq. (38) with (41). Since the intrinsic permeability tensor K p is
positive definite (and symmetric), all the terms in the first line of Eq. (38) are non
negative. Then, considering that v f ·vp ≥ 0 always holds on any interface Σ, the result
below is proved.

Theorem 1 (Global dissipation of the fluid-porous models coupled on Σt .) The
Stokes/Darcy-Brinkman (3) and Stokes/Darcy (6) models coupled with the jump inter-
face conditions (16) on Σt are both globally dissipative whatever the slip coefficient
αΣ ≥ 0 and the positive semi-definite friction tensor βΣ ≥ 0, and the energy balance
is given by Eq. (38) with (41).

3.2 Energy balance for the fluid-porous flow with interface conditions (19) on Σb

Using (19) on Σb that involves no velocity jump at the interface with v f
Σ
= vp
Σ
= vΣ,

the term IΣ in Eq. (39) reduces to:

IΣb =
µ√
Kp

∫
Σb

(βΣ ·vΣ) ·vΣ ds. (42)

Here, the mechanical energy balance in the fluid-porous system coupled with (19) on
Σb is finally given by Eq. (38) with (42). Then, similarly to section 3.1 for Theorem
1, the following result is proved.

Theorem 2 (Global dissipation of the fluid-porous models coupled on Σb .) The
Stokes/Darcy-Brinkman (3) and Stokes/Darcy (6) models coupled with the jump in-
terface conditions (19) on Σb are both globally dissipative whatever the positive
semi-definite friction tensor βΣ ≥ 0, and the energy balance is given by Eq. (38) with
(42).

The theorems 1 and 2 ensure the dissipation of the total energy inside the whole
fluid-porous system. This has important consequences in terms of physical stability
of the system. This also implies the mathematical stability, at least formally, i.e. if the
solution is sufficiently regular to give a sense to the integrals over the interface; see
Angot (2018) for a rigorous analysis. In particular, when no external force is applied
to the system and thus when the right-hand side in (38) is zero, the static equilibrium
state is exactly reached and stable only with a vanishing velocity. On the contrary,
if αΣ ≥ 0 or βΣ ≥ 0 (in the sense of positive semi-definite matrix) does not hold,
then there exists counterexamples such that this state can be associated to a non-zero
velocity field. Therefore, the cases where αΣ < 04 or with a negative definite tensor
βΣ are not physically admissible. Moreover, since the governing equations (3) and (6)
are linear for the non-inertial flows, it is an easy matter to show the uniqueness of any
solution with Eq. (38) and (41) or (42) by considering the difference of two possible
solutions.

4 The case with αΣ < 0 in the jump interface conditions (16) on Σt would imply |vp
Σ
·τ | > |v f

Σ
·τ | that

is obviously not physically meaningful.
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4 Validation and calibration for flow benchmark problems

Each set of interface conditions (16) and (19) is investigated on three benchmark flow
problems at a permeable surface: the pressure-driven open channel flow (with a free
boundary condition at the upper fluid surface), the Poiseuille pressure-driven channel
flow (with a no-slip boundary condition at the upper fluid wall) and the Couette shear-
driven plane channel flow (with no pressure gradient). For each of the latter problems, a
reference solution is computed using our own numerical codes developed for the finite
volume solution of the generalized Darcy-Brinkman problem (with variable porosity
and permeability) over the whole fluid-porous channel. Hence, this reference solution
represents the single-domain continuum model. Then, this enables us to validate the
interface conditions and calibrate the related velocity slip coefficients and stress-jump
friction coefficients for both the Stokes/Darcy-Brinkman and Stokes/Darcy coupled
macroscale models. The calibration is performed using only the slip velocity defined
as the fluid velocity of the reference solution on the top surface Σt of the inter-region
located at z = 0 (figure 2). Next, by choosing the relative loss of flow rate inside the
viscous boundary layer or over the whole channel as the criterion to minimize, optimal
sets of jump interface conditions are obtained either on Σt at z = 0 or on the bottom
surface Σb at z = −d (figure 3) of the transition layer.

The case of the pressure-driven open channel flow is extensively studied in section
4.2. Hence, only some results are given for the pressure-driven Poiseuille flow in
section 4.3 and for the shear-driven Couette flow in section 4.4 and they are shown
to be very similar to those of the open channel flow. The corresponding analytical
solutions are provided in Appendix C and D, respectively.

4.1 Reference solution of the single-domain continuum model

The one-domain continuum model in figure 1 is based on the volume averaged Stokes
equation inside an heterogeneous porous medium, that is here the interfacial transition
regionΩ f p with evolving heterogeneities of porosity and permeability in the context of
fluid-porous flow. The derivation of this upscaled equation with the volume averaging
method, first carried out completely by Ochoa-Tapia and Whitaker (1995a) after Ross
(1983), is detailed in Whitaker’s book (1999) (Whitaker 1999, Chapter 4) on the
volume averaging method. A more recent derivation can be found in Valdés-Parada
et al. (2007a) which also includes the local closure problem to predict the spatial
variations of permeability. In the present study, we use the conservative form of this
equation introduced for the purpose of the asymptotic modelling developed in (Angot
et al. 2017, Eq. (7)), which is also more suitable for the numerical solution by finite
volumemethods. Indeed, these numericalmethods easily ensure some highly desirable
properties: local consistency of the fluxes and local conservativity at each finite
volume. Hence, we consider the following generalized Darcy-Brinkman equation:

∇·v = 0

−∇·
(
µ

φ
∇v

)
+ µK−1(φ) ·v+∇p = ρ f

in Ω f p, (43)
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where v denotes the filtration velocity defined as the superficial average, φ is the
porosity and K the intrinsic permeability tensor. This equation is obviously extended
in the homogeneous porous mediumΩp with a constant porosity φp and permeability
K p = K (φp). Besides, it can be also extended in the pure fluid region Ω f with a
porosity φ f = 1 and an infinite permeability to recover the Stokes equation. Then, it is
proved by Angot (1999) that this fictitious domain approach ensures the continuity of
both velocity and stress vectors at the inter-region boundaries requiring no regularity
assumptions on the porosity φ or permeabilityK (φ) profiles in the interfacial transition
regionΩ f p . In particular, it is considered Heaviside steps of porosity and permeability
between the fluid and porous regions in Angot (1999); Angot et al. (1999); Khadra
et al. (2000).

Therefore, we use Eqs. (43) in the whole fluid-porous plane channel shown in
figure 8 for the further numerical experiments. For example, let us introduce the
setting to make the quantities dimensionless in the case of a 1-D pressure-driven
flow with no external force f = 0 and an isotropic homogeneous porous medium.
The fluid-porous upper interface Σt is located at z = 0 as shown in figure 2 and we
choose the height H of the fluid layer, where the streamwise velocity u(z = H) = um
is maximum for the open channel flow, as the reference macroscopic length scale. To
simulate numerically a semi-infinite porous layer, the heigth Hp of the porous layer
should be larger than the thickness of Brinkman’s viscous boundary layer. In practice,
choosing Hp = 20` is sufficient where ` is the size of the representative unit cell. We
also take the characteristic velocity V based on the pressure gradient and defined by:

V := −
H2

µ

dp
dx

> 0. (44)

This choice allows us to solve the pressure-driven flowswithin the same unifiedmanner
and to compare more easily the results of the open channel flow (with a Neuman free
boundary condition at the upper fluid surface) and the Poiseuille channel flow (with
a no-slip condition at the upper wall). Indeed, the Poiseuille flow in section 4.3 gives
very similar results as the open channel flow by choosing 2H for the height of the
fluid layer, the maximum velocity being here close to the middle of this layer. Let us
consider the dimensionless quantities below to normalize the governing equations:

Z :=
z
H
, `∗ :=

`

H
, δ :=

d
H
, U :=

u
V
, UD :=

uD

V
= Da, (45)

` being the size of the unit representative volume of the microstructure5 and Da the
Darcy number:

Da :=
Kp

H2 , D̃a(φ) :=
K(φ)
H2 , (46)

where uD is theDarcy filtration velocity in the porous layer. The present dimensionless
setting (44-46) also implies that the Darcy filtration velocity UD equals the Darcy
number Da. For the 1-D fully developed channel flow, the inertial term vanishes
and the Navier-Stokes equations simply reduce to the Stokes equation whatever the

5 The quantity `∗ is often denoted by ε in two-scale homogenization works.
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Reynolds number. Then, the dimensionless generalized Darcy-Brinkman equation
(43) reads:

−
d

dZ

(
1
φ

dU
dZ

)
+

1
D̃a(φ)

U = 1, −Hp/H ≤ Z ≤ 1, (47)

endowed with the boundary conditions below:
dU
dZ
(Z = 1) = 0,

U(Z = −Hp/H) =UD where UD = Da.
(48)

All the results presented here are simulated for the flow across a 2-D array of
in-line parallel circular cylinders using the K(φ) correlation (91) of Happel (1959).
The dimensionless thickness δB of Brinkman’s viscous boundary layer (or Brinkman’s
screening length) is estimated by the criterion below:

U(Z = −δB)−UD

UD
≤ 10−3. (49)

Then, δB is taken large enough to verify (49) over the full range of porosity 0 < φp < 1.
In practice, we have found 5`∗ ≤ δB ≤ 7`∗ depending on H. More accurate estimations
of δB are computed in Hernandez-Rodriguez et al. (2020) using pore-scale resolved
numerical results for different microstructures and the corresponding correlations of
dB/

√
Kp versus porosity φp are provided. The velocity solution inside the viscous

boundary layer is also theoretically calculated by Angot et al. (2016) with WKB
expansions of which the convergence is rigorously proved. Different transition profiles
of porosity from φp to φ f = 1 are investigated over the viscous boundary layer, as
shown in figure 4 while figure 5 supplies the corresponding transition profiles of
permeability.

The finite volume method with second-order accuracy in space (in the L2 norm)
is implemented with Scilab Computing Software to solve numerically the single-
domain continuummodel (47-48). A non-uniformmesh is used being uniform in each
representative subdomains: the fluid layer, the viscous boundary layer and the extra
porous bulk with a number of cells as large as 1024 in each part to assess the mesh
numerical convergence. An example of streamwise velocity profiles in the viscous
boundary layer is given in figures 6 and 7 (interfacial zoom) for the open channel flow
with H = 20`, δB = 7`∗, φp = 0.75 and Da = 5.01310−5. This shows that the solutions
for Heaviside step porosity transitions are far from that with smoother transitions. In
particular, this is the case of the solution (in solid black line) corresponding to the
pioneering approach of Neale and Nader (1974). For smoother porosity transitions,
the differences on the slip velocity Us :=U(Z = 0) remain noticeable: the mean value
of Us is 2.6310−2 with a standard deviation of 4.0510−3 with the data of figure 6.
For the maximum velocity Um :=U(Z = 1) in the fluid layer, the mean value is 0.526
with the same standard deviation of 4.0510−3. In the further calibration study, we
assume a fifth-order polynomial porosity transition inside Brinkman’s boundary layer
to define the reference velocity profile Ure f with Um = 0.529 and Us = 2.9810−2 still
for the same data. All the set of interface conditions are then calibrated using only
the slip velocity value Us of the reference solution Ure f . For the mono-dimensional
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Fig. 5 Profiles of normalized inverse permeability `2/K using Eq. (91) forK(φ) correlation corresponding
to the porosity transition profiles in an interfacial region Ω f p shown in figure 4 (same caption).

flow, this is sufficient to get a unique solution for the Stokes/Darcy problems. For
the Stokes/Darcy-Brinkman problems, there exist many possible solutions if only a
single velocity value Us is chosen to parametrize the velocity profiles. However, it
is interesting to select the best solution, that is the solution which makes minimum
the relative loss of volumic flow rate per unit width in the pure fluid region or in the
viscous boundary layer:

er f =

∫ 1
0 |U

re f (z)−U(z)| dz∫ 1
0 Ure f (z)dz

, erbl =

∫ 0
−δB
|Ure f (z)−U(z)| dz∫ 0
−δB

Ure f (z)dz
. (50)

The maximum relative error in the free fluid is measured by:

er fm =
Ure f (Z = 1)−U(Z = 1)

Ure f (Z = 1)
. (51)

The error outside the interfacial region being negligible, generally er fm ' 0.092%
and er f ' 0.067%, the main loss of flow rate lies in the Brinkman viscous boundary
layer and erbl is thus the screening criterion. However, a special attention must be
paid in this optimization procedure in order to satisfy the constraint requiring that the
coefficients αΣ and βΣ must be non negative to ensure the global dissipation of the
resulting coupled macroscale problem as shown in Section 3.
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Fig. 6 Streamwise velocity solutions of the single-domain continuum model (47-48) for different porosity
transition profiles (same caption as in Fig. 4) with: H = 20`, δB = 7`∗, φp = 0.75 and Da = 5.01310−5.

4.2 Analytical solution of the pressure-driven open channel flow

Let us consider the 1-D pressure-driven plane channel flow through a fluid layer
of height H superposed to a semi-infinite layer of an isotropic and homogeneous
porous medium of constant porosity φp and permeability Kp . The open channel flow
is characterized by a Neumann free boundary condition at the upper surface of the
fluid layer. Due to the latter condition of symmetry, this problem is equivalent to a
Poiseuille flow in a pure fluid layer inserted between two horizontal porous layers. We
detail below the analytical solutions of the Stokes/Darcy and Stokes/Darcy-Brinkman
problems both associated with either interface conditions (16) on the top surface Σt
of the transition layer at Z = 0 or (19) on the bottom surface Σb at Z = −δ where δ
has to be determined.

4.2.1 Two solutions of the Stokes/Darcy problem

Jump interface condition (16) at Σt . Using (45–46), the dimensionless Stokes and
Darcy governing equations read:


d2U f

dZ2 = −1, 0 ≤ Z ≤ 1,

Up(Z) =UD = Da, Z ≤ 0,
(52)
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Fig. 7 Streamwise velocity solutions (interfacial zoom) of the single-domain continuum model (47-48) for
different porosity transition profiles (same caption as in Fig. 4) with: H = 20`, δB = 7`∗, φp = 0.75 and
Da = 5.01310−5.

endowed with the free-boundary or "non-friction boundary" condition at Z = 1:

dU f

dZ
(Z = 1) = 0, where U f (Z = 1) =Um, (53)

and the interface condition (16) applied on Σt at Z = 0 which reduces for the 1-D flow
to the usual Beavers-Joseph slip condition:

dU f

dZ
(Z = 0) = 1 =

αΣ
√

Da
(Us −UD), on Σ = Σt at Z = 0. (54)

Since the maximum velocity Um (at Z = 1) or the slip velocity Us := U f (Z = 0),
i.e. the line-averaged interfacial velocity on Σt , can be measured or computed in the
fluid layer by relatively accurate experiments, one of these quantities can be used to
parametrize the velocity profile. The solution to Eqs (52–53) yields:

U f (Z) = −
Z2

2
+ Z +Us 0 ≤ Z ≤ 1, with Us =Um−

1
2
. (55)

Thus we get with (54) the calibration of αΣ for the Stokes/Darcy problem once Us is
known from experimental or numerical data:

αΣ =

√
Da

Us −UD
=

√
Da

Um−UD −
1
2
, on Σ = Σt at Z = 0. (56)
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Jump interface condition (19) at Σb . Using (45–46), the dimensionless governing equa-
tions become by extending the free-fluid layer:

d2U f

dZ2 = −1, −δ ≤ Z ≤ 1,

Up(Z) =UD = Da, Z ≤ −δ,
(57)

now endowed with the interface conditions of velocity continuity and shear stress
jump (19) on Σb at Z = −δ:

U f (Z = −δ) =Up(Z = −δ) :=UΣ =UD

dU f

dZ
(Z = −δ) =

βΣ
√

Da
UΣ = βΣUD

on Σ = Σb at Z = −δ, (58)

where δ > 0 and βΣ ≥ 0 must be determined by the calibration procedure. Then, the
solution to Eqs (57–53) yields:

U f (Z) = −
Z2

2
+ Z +Us, −δ ≤ Z ≤ 1, with Us =Um−

1
2
. (59)

The first condition in (58) reads:

δ2+2δ−2(Us −UD) = 0, (60)

which has a unique positive root δ∗ > 0:

δ∗ = −1+
√

1+2(Us −UD) = −1+
√

2(Um−UD). (61)

In such a channel flow when Da� 1, it is clear that UD � Um. Thus, we have most
often:

δ∗ '
√

2Um−1 when UD �Um, i.e. Da� 1. (62)
Another good approximation of δ∗ holds when δ∗ � 2 since the equation δ (2+ δ) =
2(Us −UD) from (60) gives:

δ∗ ' (Us −UD) =Um−UD −
1
2

when δ∗ � 2. (63)

When Saffman’s approximation holds, i.e. UD �Us (Saffman 1971) when H is large
enough, Eq. (63) shows that: δ∗ 'Us (within the present dimensionless setting).

Then, the second condition in (58) yields with UD = Da the calibration of βΣ for
the Stokes/Darcy problem once Us is known from experimental or numerical data:

βΣ =
1+ δ∗
√

Da
=

√
2(Um−UD)
√

Da
, on Σ = Σb at Z = −δ∗. (64)

In many flow configurations when H is large enough, we have δ∗ � 1, which also
means in that case Um & 1/2 with (62) or (63) such that δ∗ 'Um−1/2 when Da� 1.
It is then justified to consider the approximation below of βΣ:

βaΣ =
1
√

Da
, on Σ = Σb at Z = −δ∗ when δ∗ � 1. (65)
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It is remarkable to observe that the approximate friction coefficient βa
Σ
in (65) on Σb is

only dependent of the microstructure of the porous medium through its permeability
and of the macroscale H with the Darcy number. Both (64) and (65) are also coherent
with the asymptotics: βΣ→ 0whenDa→+∞ and βΣ→+∞whenDa→ 0.Moreover,
the thickness δ∗ is also very few dependent on the flow configurations using (62) and
Um ' 1/2 and the relative error between (64) and (65) is:

βΣ − β
a
Σ

βa
Σ

= δ∗, on Σ = Σb at Z = −δ∗. (66)

Hence, the error should be below 1% when the hypothesis δ∗� 1 is valid, i.e. d� H,
that is the basic assumption to derive the asymptotic interface models in Angot et al.
(2017) and in the present study.

By the way, using the fact that Us −UD = δ
∗ (1+ δ∗/2) from (60) supplies a new

expression of the slip coefficient αΣ in (56):

αΣ =

√
Da

Us −UD
=

√
Da

δ∗
(
1+ δ∗

2
) , on Σ = Σt at Z = 0. (67)

Besides when δ∗ � 2, we get with (67) the approximation below of αΣ:

αa
Σ =

√
Da
δ∗

, on Σ = Σt at Z = 0 when δ∗ � 2. (68)

That gives an unusual analytical expression of the slip coefficient which shows that αΣ
is largely dependent of the flow configurations since small variations of δ∗ ' (Us−UD)

induce significant variations on the inverse of αΣ. This confirms, in a quantitative way,
a common observation made by many authors, e.g. Larson and Higdon (1986, 1987);
Sahraoui and Kaviany (1992); Alazmi and Vafai (2001); Nield (2009); Yang et al.
(2017), and discussed, e.g. in Nield (2009); Jamet and Chandesris (2009); Zhang and
Prosperetti (2009); Auriault (2010). In particular, the choice of Σt either as the tangent
surface to the upper row of solid inclusions as originally suggested by Beavers and
Joseph (1967) or a little bit higher in the fluid layer appears to be crucial for the
calibration of Beavers-Joseph’s slip coefficient αbj.

The two macroscale solutions (55, 56) and (59, 61, 64) are compared in figures 8
and 9 against the reference solutionUre f computed with the single-domain continuum
model (47, 48). In all the cases, the errors in the free fluid layer remain very small:
er fm = 0.092% and er f = 0.067%. But the relative loss of flow rate in the interfacial
region erbl exhibits a drastic reduction of more than 55% using the optimal stress
jump condition at Σb giving (59, 61, 64) instead of Beavers-Joseph’s slip condition at
Σt (55, 56): erbl is reduced from 97.7% to 39.8% for φp = 0.75 and from 92.6% to
39.0% for φp = 0.95.

In figure 10, the calibrated slip coefficient αΣ (56) or (67) and its approximate
value (68) is plotted over the full porosity range 0 < φp < 1 for different height H
of the fluid layer. The re-scaled coefficient αΣ is also plotted using (67) by changing
δ∗ into (δ∗ − `∗/2) for a better comparison with usual Beavers-Joseph’s coefficient
αbj. Indeed, the present calibration using the reference solution of the single-domain
model requires to locate the top surface Σt of the transition layer at a distance `/2
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Fig. 8 Comparison of streamwise velocity solutions for the Stokes/Darcy model in the open channel flow
with H = 20`, δB = 7`∗, φp = 0.95 and Da = 1.99010−4: general view withUm = 0.532,UD = Da and
all solutions superposed in the fluid layer (same caption as in figure 9).

above the tangent surface of the inclusions facing the free fluid to get a porosity
equal to 1 in any representative unit volume of the microstructure. The reduced slip
coefficient αΣ/

√
Da is shown in figure 11 and the re-scaled value αbj/

√
Da is plotted

in figure 12.
In figure 13, the calibrated friction coefficient βΣ (64) and its approximate value

(65) is plotted over the full porosity range 0 < φp < 1 for different height H of the
fluid layer. The reduced friction coefficient βΣ

√
Da is shown in figure 14.

4.2.2 Solutions of the Stokes/Darcy-Brinkman problem

It is convenient to introduce the Brinkman number Br as the ratio of the orders of
magnitude of Brinkman’s viscous term over Darcy’s drag, as defined in (5).

Jump interface condition (16) at Σt . Using (45–46), the dimensionless Stokes/Darcy-
Brinkman coupled problem reads:


d2U f

dZ2 = −1, 0 ≤ Z ≤ 1,

1
φp

d2Up

dZ2 −
Up

Da
= −1, Z ≤ 0,

(69)
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Fig. 9 Comparison of streamwise velocity solutions for the Stokes/Darcy model in the open channel flow
with H = 20`, δB = 7`∗, φp = 0.95 and Da = 1.99010−4: interfacial region withUD =Da = 1.99010−4

andUs = 3.2410−2.

endowed with the boundary conditions:
dU f

dZ
(Z = 1) = 0, where U f (Z = 1) =Um,

U(Z→−∞) =UD where UD = Da,
(70)

and the interface condition (16) applied on Σt at Z = 0 which reduces for the 1-D
channel flow to the set:

dU f

dZ
(Z = 0) =

αΣ
√

Da
(Us −Up(Z = 0)),(

dU f

dZ
−

1
φp

dUp

dZ

)
(Z = 0) =

βΣ
√

Da
Us

on Σ = Σt at Z = 0. (71)

The solution U f of (69, 70) in the free fluid region 0 ≤ Z ≤ 1 is still given by (55)
while the general solution Up in the porous medium verifies:

Up(Z) = A exp(Z/
√

Br)+UD, Z ≤ 0, (72)

where A > 0 is an adjustable constant which remains to be determined with the
interface conditions (71). As expected, the Darcy filtration velocity UD is recovered
in (72) when Br→ 0. Let us define the slip velocity Up

s at the porous side of the
dividing surface Σt by:

Up
s :=Up(Z = 0) = A+UD . (73)
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Fig. 10 Velocity slip coefficient αΣ of the Stokes/Darcy coupled problem for the pressure-driven open
channel flow with different height H of the fluid layer: H = 10` (red), H = 20` (magenta) and H = 50`
(blue) – Rescaled Beavers-Joseph’s values obtained replacing δ∗ by (δ∗ −`∗/2) in Eq. (67).

Next, the physically relevance needs the non-negativity of the jump coefficients αΣ ≥ 0
and βΣ ≥ 0 in (71) in order to satisfy the energy dissipation in the global system. We
refer to Section 3.1 where the mechanical energy balance is carried out. It needs to
get the velocity jump non-negative too:

[[v ·τ]]Σ = (Us −Up
s ) ≥ 0, (74)

since, if not, this would amount to a related negative value of αΣ considering the first
equation in (71). With (73), this requires:

0 < A ≤ (Us −UD), (75)

the case A = 0 corresponding to the Stokes/Darcy problem studied in the previous
Section 4.2.1. Considering now the constraint βΣ ≥ 0 with the second equation in
(71), this is equivalent to the inequality below:

A ≤
√
φp Da. (76)

It appears that the limit case of (75), i.e. A = Us −UD gives Up
s = Us and thus

[[v ·τ]]Σ = 0 and velocity continuity on Σt whatever φp but produces βΣ < 0 (using
the value of Us issued from Ure f ). More generally, we deduce that any A such that√
φp Da ≤ A ≤ Us −UD produces βΣ ≤ 0. The limit case in (76) being A =

√
φp Da

yields βΣ = 0, i.e. no jump of shear-stress τ · [[σ(v, p) · n]]Σ = 0 on Σt . Nevertheless, if
only one point valueUs issued from the reference solutionUre f is used to parametrize
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Fig. 11 Reduced slip coefficient αΣ/
√

Da of the Stokes/Darcy coupled problem for the pressure-driven
open channel flow with different height H of the fluid layer: H = 10` (red), H = 20` (magenta) and
H = 50` (blue) – Exact values (solid lines) and approximate values (dashed lines).

the solution, there still existsmany solutionsUp (72) satisfying the interface conditions
(71) and the most strict constraint (76). Then, it is desirable to select among these
solutions, the optimal one that minimizes the loss of volumic flow rate (per unit
width) erbl in the viscous boundary layer defined in (50). It is clear that this optimal
is reached when A is maximum which also means that Up

s is maximun. Hence the
optimal solution with the interface conditions (71) on Σt is given by:

U f (Z) = −
Z2

2
+ Z +Us 0 ≤ Z ≤ 1, with Us =Um−

1
2

Up(Z) = A exp(Z/
√

Br)+UD Z ≤ 0,
(77)

with:
A =

√
φp Da,

[[U]]Σ =Us −Up
s , Up

s =
√
φp Da+UD

αΣ =

√
Da

Us −UD −
√
φp Da

, βΣ = 0

on Σ = Σt at Z = 0. (78)

Without further investigations for two- or three-dimensional flows with anisotropic
microstructures (out the scope of the present study), it is not clear whether the property
τ · [[σ(v, p) · n]]Σ = 0 of this optimal solution on Σt may be conserved or not. It is
probable that such a property can be preserved among the different solutions satisfying
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Fig. 12 Reduced Beavers-Joseph’s slip coefficient αbj/
√

Da of the Stokes/Darcy coupled problem for the
pressure-driven open channel flow with different height H of the fluid layer: H = 10` (red), H = 20`
(magenta) and H = 50` (blue) – Rescaled Beavers-Joseph’s values obtained replacing δ∗ by (δ∗ − `∗/2)
in Eq. (67).

a positive tensor βΣ ≥ 0 on Σt . Indeed, the anisotropic effects close to the interface
should be captured by the tensorial form of βΣ and the anisotropic intrinsic tensor of
permeability K p of the porous medium inΩp in the Stokes/Darcy-Brinkman problem
(3).

Stress jump interface condition (19) at Σb . In that case, any solution satisfies now:
U f (Z) = −

Z2

2
+ Z +Us − δ ≤ Z ≤ 1, with Us =Um−

1
2

Up(Z) = A exp(Z/
√

Br)+UD Z ≤ −δ,
(79)

where both δ > 0 and A > 0 have now to be determined with the interface conditions
(19) at Σb which reduce to:

U f (Z = −δ) =Up(Z = −δ) :=UΣ(
dU f

dZ
−

1
φp

dUp

dZ

)
(Z = −δ) =

βΣ
√

Da
UΣ

on Σ = Σb at Z = −δ, (80)

and the constraint βΣ ≥ 0 to ensure the energy dissipation; see Section 3.2. Using (79)
and (80), the condition βΣ ≥ 0 is equivalent to:{

A exp(−δ/
√

Br) = (Us −UD)− δ− δ
2/2

A exp(−δ/
√

Br) ≤ (1+ δ)
√
φp Da.

(81)
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Fig. 13 Stress jump coefficient βΣ of the Stokes/Darcy coupled problem for the pressure-driven open
channel flow with different height H of the fluid layer: H = 10`, H = 20` and H = 50`.

Fig. 14 Reduced friction coefficient βΣ
√

Da of the Stokes/Darcy coupled problem for the pressure-driven
open channel flow with different height H of the fluid layer: H = 10`, H = 20` and H = 50`.
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We now proceed as in the previous case on Σt . The limit case corresponding to
βΣ = 0 (related to the inflexion point in the velocity profile) in the inequality of (81)
corresponds to the optimal solution minimizing the loss of flow rate erbl since it
makes the coefficient A maximum. Then, taking account of the first equation in (81),
δ is the positive solution of the second-order equation below:

δ2+2δ (1+
√
φp Da)+2

√
φp Da−2(Us −UD) = 0. (82)

Then, as soon asUs is known from experimental or numerical data, the unique optimal
solution in this case is defined by (79) with:

δ? = −(1+
√
φp Da)+

√
1+φp Da+2(Us −UD),

A? = (1+ δ?)
√
φp Da exp(δ?/

√
Br),

β?Σ = 0

on Σ = Σ?b at Z = −δ?. (83)

Therefore, δ? is the minimum positive value of δ > 0 which ensures that the interface
condition (80) is satisfied with βΣ ≥ 0. Moreover, by comparing (82) and (60), we get:

δ?(2+ δ?) = δ∗(2+ δ∗)−2(1+ δ?)φp
√

Br. (84)

This shows that 0< δ? < δ∗ and that δ?→ δ∗whenBr→ 0, i.e.when the Stokes/Darcy-
Brinkman problem reduces to the Stokes/Darcy model, that brings coherency in the
present calibration approach.

Let us give another possible solution of (81) with βΣ > 0 associated to the solution
defined by (78) on Σt and verifying Up(Z = −δ) = Up

s given in (78). Then, δ is the
positive solution of the second-order equation below:

δ2+2δ+2
√
φp Da−2(Us −UD) = 0. (85)

Hence, we get the solution defined by (79) with:
δ = −1+

√
1+2(Us −UD −

√
φp Da),

A =
√
φp Da exp(δ/

√
Br),

βΣ =
δ√

φp +
√

Da
=

δ√
φp (1+

√
Br)

on Σ = Σb at Z = −δ. (86)

The solution defined by (79, 86) satisfies βΣ > 0 with δ ' δ? such that 0 < δ? < δ < δ∗
because we have now instead of (84):

δ (2+ δ) = δ∗(2+ δ∗)−2φp
√

Br. (87)

Hence, this solution proves to be very close to the optimal one defined by (79,
83) comparing (85) with (82) and it is nearly optimal. As in Section 4.2.1 for the
Stokes/Darcy problem, considering the solution (79, 86) with (85) allows us to give
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the related analytical expression below of the slip coefficient αΣ in (78) for the
Stokes/Darcy-Brinkman problem:

αΣ =

√
Da

Us −UD −
√
φp Da

=

√
Da

δ
(
1+ δ

2
) , on Σ = Σt at Z = 0, (88)

where δ is now given in (86). It is remarkable that the expression (88) is exactly
identical to (67), although the value of δ is not the same and has to be calibrated. This
is a new result since the Stokes/Darcy-Brinkman problem is generally not associated
with a velocity slip interface condition. Moreover, this relation is in good agreement
with the theoretical prediction ofαΣ given in (15). Let us also notice that the theoretical
prediction of βΣ in (15) is also in good agreementwith that in (86) for the Stokes/Darcy-
Brinkman model. However, it is important to point out that the asymptotic theory is
not adapted to predict the optimal selection of solutions versus the loss of flow rate
performed here for the Stokes/Darcy-Brinkman model. Most probably, our theory
only provides an average coefficient βΣ corresponding to all possible solutions of the
problem that satisfy βΣ ≥ 0.

Fig. 15 Comparison of streamwise velocity solutions in the interfacial region for the Stokes/Darcy and
Stokes/Darcy-Brinkmanmodels in the open channel flowwithH = 20`, δB = 7`∗ and porosity φp = 0.25:
UD = Da = 0.76410−6,Us = 2.7910−2 andUm = 0.527.

4.2.3 Comparison and discussion

In figures 15, 16, 17 and 18, the three macroscale solutions of the Stokes/Darcy-
Brinkman model (77, 78), the optimal one (79, 83) and the quasi-optimal one (79, 86)
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Fig. 16 Comparison of streamwise velocity solutions in the interfacial region for the Stokes/Darcy and
Stokes/Darcy-Brinkmanmodels in the open channel flowwithH = 20`, δB = 7`∗ and porosity φp = 0.50:
UD = Da = 9.26610−6,Us = 2.8610−2 andUm = 0.528.

are compared for different porosities φp with the solutions of the Stokes/Darcy model
against the reference solution Ure f computed with the single-domain continuum
model (47, 48). In all the cases, the errors in the free fluid layer remain very small:
er fm = 0.092% and er f = 0.067%. However, the relative loss of flow rate in the
interfacial region erbl given in tables 1 and 2 exhibits a drastic reduction using the
optimal stress jump condition at Σb leading to (83) instead of the slip condition at
Σt verifying (78). Moreover, new expressions of the slip coefficient αΣ are provided
in Eqs. (67, 88) with respect to the thickness δ and they proved be identical for the
Stokes/Darcy problem in (67) and the Stokes/Darcy-Brinkman problem in (88). This
also suggests to consider the reduced coefficient αΣ/

√
Da, as plotted in figures 11

and 12. The range [0.1−2.4] of Beavers-Joseph’s slip coefficient αbj plotted in figure
10 within the full porosity range and for H as large as 50` is in agreement with the
values generally calibrated in the literature using experimental or numerical results.
A new general expression (64) of the friction coefficient βΣ, plotted in figure 13, is
also derived for the coupling of the Stokes/Darcy model with the stress jump interface
condition (19) onΣb . This suggests to consider the reduced coefficient βΣ

√
Da= 1+δ∗,

as plotted in figure 14 within the full range of porosity and for different macroscale
lengths H/`.

As a conclusion, the results shown in figures 15-18 and the related values of flow-
rate’s loss erbl in tables 1 or 2 clearly indicate that the newly proposed stress jump
interface condition (19) associated with velocity continuity on Σb greatly outperforms
all others (16) or (17) on Σt for both the Stokes/Darcy-Brinkman and the Stokes/Darcy
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Fig. 17 Comparison of streamwise velocity solutions in the interfacial region for the Stokes/Darcy and
Stokes/Darcy-Brinkmanmodels in the open channel flowwithH = 20`, δB = 7`∗ and porosity φp = 0.75:
UD = Da = 50.1310−6,Us = 2.9810−2 andUm = 0.529.

models. In the case of the Stokes/Darcy model, it is remarkable that the stress jump
interface condition (19) on Σb is also far better than the conditions (16) or (17) on Σt
adjunct to the more accurate Stokes/Darcy-Brinkman model.

φp &UD = Da (10−6) Us (10−2) SD at Σt SD at Σb SDB at Σt SDB at Σb SDB at Σ?
b

0.25 & 0.764 2.79 99.9 38.7 98.3 38.003 38.001
0.50 & 9.266 2.86 99.5 39.4 96.8 37.838 37.820
0.75 & 50.13 2.98 97.7 39.8 89.9 35.044 35.005
0.95 & 199.0 3.24 92.6 39.1 71.0 27.483 27.461

Table 1 Comparative performance of the relative loss of flow rate erbl (%) for the open channel flow
and the different sets of interface conditions with Stokes/Darcy (SD) and Stokes/Darcy-Brinkman (SDB)
models coupled with (16) at Σt or (19) at Σb : H = 20` and δB = 7`∗ – er fm = 0.092% and er f = 0.067%.

4.3 Analytical solution of the pressure-driven Poiseuille channel flow

For the Poiseuille channel flow, all the analytical solutions of the Stokes/Darcy and
Stokes/Darcy-Brinkman models coupled, either with the set of jump interface condi-
tions (16) at Σt or with (19) at Σb , are supplied in Appendix C. As shown in figures
20 or 21 and in table 3, the comparative results with the reference solution of the
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Fig. 18 Comparison of streamwise velocity solutions in the interfacial region for the Stokes/Darcy and
Stokes/Darcy-Brinkmanmodels in the open channel flowwithH = 20`, δB = 7`∗ and porosity φp = 0.95:
UD = Da = 199.010−6,Us = 3.2410−2 andUm = 0.532.

φp &UD = Da (10−6) Us (10−2) SD at Σt SD at Σb SDB at Σt SDB at Σb SDB at Σ?
b

0.25 & 0.122 1.07 100 36.7 98.5 36.058 36.057
0.50 & 1.482 1.10 99.8 37.4 97.0 35.794 35.786
0.75 & 8.020 1.15 99.1 38.3 90.5 33.123 33.106
0.95 & 31.84 1.25 97.1 39.3 72.4 26.257 26.248

Table 2 Comparative performance of the relative loss of flow rate erbl (%) for the open channel flow
and the different sets of interface conditions with Stokes/Darcy (SD) and Stokes/Darcy-Brinkman (SDB)
models coupled with (16) at Σt or (19) at Σb : H = 50` and δB = 6`∗ – er fm = 0.096% and er f = 0.071%.

single-domain generalized Darcy-Brinkman model are very similar to those obtained
for the open channel flow in Section 4.2. Therefore, the conclusions are the same as
in Section 4.2.3.

φp &UD = Da (10−6) Us (10−2) SD at Σt SD at Σb SDB at Σt SDB at Σb SDB at Σ?
b

0.25 & 0.764 2.75 99.9 38.7 98.3 37.999 37.997
0.50 & 9.266 2.82 99.5 39.4 96.8 37.837 37.819
0.75 & 50.13 2.94 97.6 39.8 89.8 35.042 35.002
0.95 & 199.0 3.19 92.5 39.0 71.0 27.468 27.446

Table 3 Comparative performance of the relative loss of flow rate erbl (%) for the Poiseuille channel
flow and the different sets of interface conditions with Stokes/Darcy (SD) and Stokes/Darcy-Brinkman
(SDB) models coupled with (16) at Σt or (19) at Σb : H = 20` and δB = 7`∗ – er fm = 0.09710−6 and
er f = 0.02710−11.
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Fig. 19 Dimensionless thickness for the optimal stress jump interface conditions on Σb with different
height H of the fluid layer: δ∗ (dotted lines) for Stokes/Darcy model and δ? (solid lines) for Stokes/Darcy-
Brinkman model – H = 10` (red), H = 20` (magenta) and H = 50` (blue) – Maximum porosity limit
φmax = 0.95 (black) for validity of Darcy’s law with H & 20`.

4.4 Analytical solution of the shear-driven Couette plane channel flow

For the Couette channel flow, all the analytical solutions of the Stokes/Darcy and
Stokes/Darcy-Brinkman models coupled, either with the set of jump interface condi-
tions (16) at Σt or with (19) at Σb , are supplied in Appendix D. As shown in figures
22 or 23 and in table 4, the comparative results with the reference solution of the
single-domain generalized Darcy-Brinkman model are very similar to those obtained
for the open channel flow in Section 4.2. Therefore, the conclusions are the same as
in Section 4.2.3.

φp & Da (10−6) Us (10−2) SD at Σt SD at Σb SDB at Σt SDB at Σ?
b

0.25 & 0.764 2.38 100 33.7 99.8 33.24
0.50 & 9.266 2.45 100 34.7 98.1 32.93
0.75 & 50.13 2.57 100 36.1 90.9 30.07
0.95 & 199.0 2.83 100 38.7 71.1 23.21

Table 4 Comparative performance of the relative loss of flow rate erbl (%) for the Couette channel flow
and the different sets of interface conditions with Stokes/Darcy (SD) and Stokes/Darcy-Brinkman (SDB)
models coupled with (16) at Σt or (19) at Σb : H = 20` and δB = 4`∗ withUD = 0 – er f = 9.0010−14.
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Fig. 20 Comparison of streamwise velocity solutions for the Stokes/Darcy model in the Poiseuille channel
flowwithH = 20`, δB = 7`∗,φp = 0.95 andDa= 1.99010−4: general viewwithUm = 0.516, Zm = 0.985,
UD = Da and all solutions superposed in the fluid layer (same caption as in figure 21).

4.5 Summary of the results and discussion

In the one-dimensional flows, we have shown in section 2.4 that the volume averaging
and the asymptotic modelling methods produce the same interfacial model based
on jump boundary conditions both for the velocity and shear stress. These jump
conditions written at Σt or Σb show a good agreement with the analysis of the
analytical solutions. Besides, the values of the coefficients αΣ and βΣ are correctly
predicted by the asymptotic modelling theory in (14) or (15), except for βΣ with the
Stokes/Darcy model only. We refer to Remark 2 for a detailed explanation. In section
3, we have also shown the importance of keeping the coefficients αΣ ≥ 0 and βΣ ≥ 0
(as a positive semi-definite tensor) to get physically admissible solutions with respect
to the dissipation of the mechanical energy. With our recent study Angot et al. (2021),
this is the first time that these considerations are introduced and taken into account in
the literature of fluid-porous flows.

Moreover, the main conclusions of the present calibration study are the following:

1. The sets of jump interface conditions (16) at Σt and (19) at Σb used for the
coupling of both the Stokes/Darcy and Stokes/Darcy-Brinkman models share
very similar results for all the three flow benchmarks: pressure-driven open or
Poiseuille channel flow and shear-driven Couette channel flow.

2. The proposed set (19) atΣb for the coupling of either Stokes/Darcy or Stokes/Darcy-
Brinkman problems is clearly far better to minimize the loss of flow rate than any
suitable multi-dimensional extension (16) of Beavers-Joseph’s condition on Σt .
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Fig. 21 Comparison of streamwise velocity solutions for the Stokes/Darcy and Stokes/Darcy-Brinkman
models in the Poiseuille channel flowwithH = 20`, δB = 7`∗, φp = 0.95 and Da = 1.99010−4: interfacial
region withUD = Da = 1.99010−4 andUs = 3.1910−2, δ∗ = 3.1710−2, δ? = 1.8010−2.

This property is already true for 1-D flows and this should be conserved for
multi-dimensional flows whatever direction.

3. The optimal thickness δ∗ for Stokes/Darcy problems satisfies δ∗ & `∗/2. Moreover
in the present dimensionless setting, we have: δ∗ ' Us when H is large enough,
and thus Us appears to be a good approximate value of the required thickness δ∗
in many cases; see Eqs (63), (100, 101) or (122).

4. The optimal thickness δ? for Stokes/Darcy-Brinkman problems satisfies whatever
φp: 0 < δ? < δ∗ and δ?→ δ∗ when Br→ 0, i.e.when the Stokes/Darcy-Brinkman
problem reduces to the Stokes/Darcy model; see (84) and figure 19. Moreover,
figure 19 shows that δ? → 0 when φp → 1 and then, the set (19) reduces to
continuity of velocity and stress vectors. These results show the coherency of
the unified interface model proposed for the coupling of the Stokes/Darcy and
Stokes/Darcy-Brinkman problems covering the whole porosity range 0 < φp < 1
of the permeable medium.

5. The original expressions of the stress jump friction coefficient βΣ derived for
the pressure-driven flows, i.e. (64) for the open channel flow and (102) for the
Poiseuille flow, are very similar. Besides in many cases when H is large enough,
they can be accurately approximated by the same value 1/

√
Da independent of the

thickness δ∗, as observed in (65) and (103); see also figures 13 and 14.

Finally, an interesting practical result can be drawn from this study for the simu-
lation of applications at large macroscales H. In that case, the Stokes/Darcy model is
the physically relevant one as indicated by figure 24. Then as shown in figures 14 and
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Fig. 22 Comparison of streamwise velocity solutions for the Stokes/Darcy model in the Couette channel
flow with H = 20`, δB = 4`∗, φp = 0.95 and Da = 1.99010−4: general view withUm = 1,UD = 0 and
all solutions superposed in the fluid layer (same caption as in figure 23).

19, using the stress jump interface condition (19) on Σb with βΣ ' 1/
√

Da provides
a very good approximation (all the more accurate than H is large since δ∗ is all the
smaller), at least for the isotropic case; see (65, 66) for the open channel flow or (103)
for the Poiseuille channel flow.

5 Summary and concluding remarks

The present study provides original advances on the two-domain modelling of the
viscous creeping flow in fluid-porous systems. Using the single-domain continuum
modelling obtained by the volume averaging method and the asymptotic analysis
derived in Angot et al. (2017), two original sets of jump interface conditions at a
permeable surface are proposed for arbitrary flow directions in a unified setting: the
set (16) (or (17)) applied at Σt and the set (19) at Σb . They are shown to be valid and
calibrated for the coupling of both the Stokes/Darcy and the Stokes/Darcy-Brinkman
models, that cover the whole range of porosity 0 < φp < 1 of the permeable medium.
The comparative calibration carried out against three pressure-driven or shear-driven
flow benchmarks clearly shows that the set (19), i.e. velocity continuity and stress jump
interface conditions at Σb , tremendously outperforms all the others to reduce the loss
of flow rate. Moreover, the proposed procedure of optimal calibration associated with
the intrinsic tensorial form of (16) or (19), while ensuring the global dissipation with
αΣ ≥ 0 and a positive semi-definite tensor βΣ (possibly symmetric), can be generalized
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Fig. 23 Comparison of streamwise velocity solutions for the Stokes/Darcy and Stokes/Darcy-Brinkman
models in the Couette channel flow with H = 20`, δB = 4`∗, φp = 0.95 and Da = 1.99010−4: interfacial
region withUD = 0 andUs = 2.8310−2, δ∗ = 2.9110−2, δ? = 1.5310−2.

for multi-dimensional flows including anisotropic effects of the microstructure. This
deserves a further study for multi-dimensional configurations with arbitrary flow
directions. It is important to emphasize that the practical methodology proposed in
the present study to obtain the jump boundary coefficients and the corresponding
position of the dividing surface could be used with more precise expression of fluid
volume fraction and permeability transition in Brinkman’s viscous boundary layer
Hernandez-Rodriguez et al. (2020, 2022). Finally, the set (19) is simpler to handle
with numerical methods than (16) since it only involves a jump of the stress vector
with no velocity jump at the interface.
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A Usual K – φ correlations for the normalized permeability

– Correlation of Kozeny-Carman Kozeny (1927), later modified by Carman (1937, 1939) and fitted to
many experimental data by MacDonald et al. (1979) over a large variety of ordered or disordered
media, also confirmed by MacDonald et al. (1991); Valdés-Parada et al. (2009b) for the absolute
permeability of granular media composed of random packed beds of spherical particles:

K(φ) '
d2
p φ

3

180 (1−φ)2
, (89)

where dp := 6Vp/Ap is the Sauter mean diameter of particles with Vp being the volume and Ap

the surface area of the solid grains. It is defined as the diameter of a sphere that has the same
volume/surface area ratio as a particle of interest. Using 3-D Lattice Boltzmann numerical simulations
with Reynolds numbers Re < 120 defined by Re := ρ |v | dp/µ, (Dye et al. 2013, table I, figure 6)
investigate the broadest accessible range of porosity 0.30 ≤ φ ≤ 0.60 for log-normal sphere packs.
Although the Kozeny-Carman relation is known to slightly underestimate the lower porosity values
φ ≤ 0.42 Dullien (1992), they show in their figure 6 that (89) fits reasonably well the simulated data.

– Correlation of Happel-Langmuir Happel (1959) (from Langmuir 1942), also reported and compared
in (Jackson and James 1986, Eq. (1)) over a wide variety of experimental data for the flow parallel to
a square array of parallel cylindrical rods:

K(φ) '
d2
f

16 (1−φ)

(
− ln(1−φ)−

3
2
+2 (1−φ)−

(1−φ)2

2

)
, (90)

where d f is the mean diameter of fibers.
– Correlation of Happel (1959) for the transverse flow across a 2-D square array of parallel circular

cylinders:

K(φ) '
d2
f

32 (1−φ)

(
− ln(1−φ)−

1−(1−φ)2

1+ (1−φ)2

)
, (91)

where d f is the mean diameter of fibers.
For ordered porous media, it is convenient to bypass the effects of the geometrical properties inside a
representative unit cell in the porous medium of size ` by normalizing the permeability as K(φ)/`2 with:

1−φ =
π

6

(
dp

`

)3
for packed spherical grains,

1−φ =
π

4

(
d f

`

)2
for square arrays of circular cylinders.

(92)

The corresponding Darcy number Da is defined with the macroscale length L by:

Da :=
K(φ)

L2 =
K(φ)

`2
`2

L2 . (93)

B Brinkman number Br: ratio of Brinkman’s viscous term over Darcy’s drag

In order to justify related approximations according to the range of porosity, it is important to consider
the ratio Br of the orders of magnitude between Brinkman’s viscous term ∇ · µ̃ (∇v+ ∇vT ) and Darcy’s
drag term µK−1 ·v in Eq. (43). With the effective viscosity µ̃ = µ/φ (from (Whitaker 1999, Chapter 4)
or Valdés-Parada et al. (2007b)) and denoting V as a characteristic scale of velocity, the former term is
of order O(µ̃V/L2) whereas the latter is O(µV/K(φ)). Hence, we get the so-called Brinkman number
Br as defined in (5). The graph of Br versus porosity φ is plotted in figure 24 for different correlations
K(φ) and macroscopic length scales L/`. Considering that Br is the ratio of orders of magnitude only,
the maximum ratio allowing us to neglect Brinkman’s viscous term in front of Darcy’s drag is chosen to
10−3 instead of the threshold of 10−2 more usual in Physics. Then it appears that already for a macroscale
length L & O(20`), it is fully justified to neglect the Brinkman viscous term within the porosity range
0 < φp ≤ 0.95 in the Darcy-Brinkman equation (3) in Ωp which becomes the usual Darcy’s law (6) for
the creeping flow in Ωp .
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Fig. 24 Brinkman number Br as the ratio of Brinkman’s viscous term over Darcy’s drag (5) for different
correlations K(φ) and scalings L/`: Kozeny-Carman Eq. (89) (solid line) or Happel-Langmuir Eq. (90)
(dashed line) for L = 10` (red), L = 20` (green), L = 100` (blue) – Maximum ratio to neglect Brinkman’s
viscous force (magenta) – Maximum porosity limit φmax = 0.95 (black) for validity of Darcy’s law.

C Analytical solution of the pressure-driven Poiseuille channel flow

The analytical velocity solutions of the Poiseuille channel flow over and through a permeable wall, i.e.with
a no-slip condition at the top wall of the channel, are calculated using the same notations and dimensionless
framework as in sections 4.1 and 4.2. The only difference with the case of the open channel flow is that the
height of the fluid layer is here chosen to 2H . Indeed, the maximum velocity is now located near below the
middle of the channel and the solutions can be henceforth more easily compared; see Fig. 20.

C.1 Two solutions of the Stokes/Darcy problem

Jump interface condition (16) at Σt . The dimensionless analytical solution satisfying the no-slip
conditionU f (Z = 2) = 0 at the upper wall of the channel reads:

U f (Z) = −
Z2

2
+

(
1−

Us

2

)
Z +Us 0 ≤ Z ≤ 2, with Us =U

f (Z = 0)

Up (Z) =UD = Da Z ≤ 0.
(94)

The maximum velocityUm is located at Zm = 1−Us/2 < 1 and given by:

Um :=U f (Zm) =
1
2

(
1+

Us

2

)2
at Zm = 1−

Us

2
. (95)

The interface condition (16) applied on Σt at Z = 0 reduces for the 1-D flow to the usual Beavers-Joseph
slip condition:

dU f

dZ
(Z = 0) = 1−

Us

2
=

αΣ
√

Da
(Us −UD ), on Σ = Σt at Z = 0. (96)



48 Philippe Angot et al.

Thus we get with (96) the calibration of αΣ for the Stokes/Darcy problem once Us is known from
experimental or numerical data:

αΣ =

(
1− Us

2

)√
Da

Us −UD
on Σ = Σt at Z = 0, (97)

that is very similar to (56).

Jump interface condition (19) at Σb . Here, the dimensionless analytical solution reads:


U f (Z) = −

Z2

2
+

(
1−

Us

2

)
Z +Us −δ ≤ Z ≤ 2, with Us =U

f (Z = 0)

Up (Z) =UD = Da Z ≤ −δ,

(98)

now endowed with the interface conditions of velocity continuity and shear stress jump (19) on Σb at
Z = −δ: 

U f (Z = −δ) =Up (Z = −δ) :=UΣ =UD

dU f

dZ
(Z = −δ) =

βΣ
√

Da
UΣ = βΣUD

on Σ = Σb at Z = −δ, (99)

where δ > 0 and βΣ ≥ 0 must be determined by the calibration procedure. The first condition in (99) gives
δ∗ as the positive root of the equation below:

δ2 +2
(
1−

Us

2

)
δ−2(Us −UD ) = 0, (100)

that is :

δ∗ = −

(
1−

Us

2

)
+

√(
1−

Us

2

)2
+2(Us −UD ) = −

(
1−

Us

2

)
+

√
2(Um −UD ). (101)

Then, the second condition in (99) yields:

βΣ =
1− Us

2 + δ
∗

√
Da

=

√
2(Um −UD )
√

Da
, on Σ = Σb at Z = −δ∗. (102)

It is clear that the two expressions of βΣ in (64) and (102) are very similar and we get also a similar reliable
approximation:

βa
Σ
=

1
√

Da
, on Σ = Σb at Z = −δ∗ when

����δ∗ −Us

2

���� � 1. (103)

Therefore, using (100) with (97), we get a new relation for αΣ:

αΣ =

√
Da

δ∗
(
1+ δ

2−Us

) on Σ = Σt at Z = 0, (104)

still reliably approximated by:

αa
Σ
=

√
Da
δ∗

when
δ

2−Us
� 1. (105)
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C.2 Solutions of the Stokes/Darcy-Brinkman problem

Jump interface condition (16) at Σt . All the streamwise velocity solutions satisfy:


U f (Z) = −

Z2

2
+

(
1−

Us

2

)
Z +Us 0 ≤ Z ≤ 2, with Us =U

f (Z = 0)

Up (Z) = A exp(Z/
√

Br)+UD Z ≤ 0,
(106)

endowed with the interface condition (16) applied on Σt at Z = 0:
dU f

dZ
(Z = 0) =

αΣ
√

Da
(Us −U

p
s ), U

p
s :=Up (Z = 0)(

dU f

dZ
−

1
φp

dUp

dZ

)
(Z = 0) =

βΣ
√

Da
Us

on Σ = Σt at Z = 0. (107)

The parameters A> 0,Up
s such thatUD ≤U

p
s ≤Us , αΣ ≥ 0 and βΣ ≥ 0 are determined to minimize the

loss of flow rate. Therefore, we get for the optimal solution satisfying βΣ = 0:

A=

(
1−

Us

2

) √
φp Da

[[U]]Σ =Us −U
p
s , U

p
s =UD +

(
1−

Us

2

) √
φp Da

αΣ =

(
1− Us

2

)√
Da

Us −UD −

(
1− Us

2

) √
φp Da

, βΣ = 0

on Σ = Σt at Z = 0. (108)

Stress jump interface condition (19) at Σb . All the streamwise velocity solutions now satisfy:


U f (Z) = −

Z2

2
+

(
1−

Us

2

)
Z +Us −δ ≤ Z ≤ 2, with Us =U

f (Z = 0)

Up (Z) = A exp(Z/
√

Br)+UD Z ≤ −δ,

(109)

endowed with the interface condition (19) applied on Σb at Z = −δ:
U f (Z = −δ) =Up (Z = −δ) :=UΣ(
dU f

dZ
−

1
φp

dUp

dZ

)
(Z = −δ) =

βΣ
√

Da
UΣ

on Σ = Σb at Z = −δ. (110)

The parameters A > 0, δ > 0 and βΣ ≥ 0 are determined to minimize the loss of flow rate. Therefore, δ?
is the minimum positive value of δ > 0 which ensures that the interface condition (110) is satisfied with
βΣ ≥ 0. Then, δ? is the positive solution of the equation below:

δ2 +2δ
(
1−

Us

2
+

√
φp Da

)
+2

(
1−

Us

2

) √
φp Da−2(Us −UD ) = 0. (111)

This yields the unique optimal solution defined by (109, 110) associated to βΣ = 0 with:


δ? = −

(
1−

Us

2
+

√
φp Da

)
+

√(
1−

Us

2

)2
+φp Da+2(Us −UD )

A? =

(
1−

Us

2
+ δ?

) √
φp Da exp(δ?/

√
Br)

β?
Σ
= 0

on Σ = Σ?b at Z =−δ?. (112)



50 Philippe Angot et al.

Let us give a nearly optimal solution of (109, 110) with βΣ > 0 associated to the solution defined
by (108) on Σt and verifying Up (Z = −δ) =U

p
s given in (108). Then, δ is the positive solution of the

second-order equation below:

δ2 +2
(
1−

Us

2

)
δ+2

(
1−

Us

2

) √
φp Da−2(Us −UD ) = 0. (113)

Hence, we get the solution defined by (109) with:

δ = −

(
1−

Us

2

)
+

√(
1−

Us

2

)2
−2

(
1−

Us

2

) √
φp Da+2(Us −UD )

A=

(
1−

Us

2

) √
φp Da exp(δ/

√
Br)

βΣ =
δ(

1− Us
2

) √
φp +

√
Da
=

δ√
φp

(
1− Us

2 +
√

Br
)

on Σ = Σb at Z =−δ. (114)

As for the open channel flow in section 4.2, the solution defined by (109, 114) satisfies βΣ > 0 with δ ' δ?
such that 0 < δ? < δ < δ∗ and we get that δ? → δ∗ when Br→ 0. Moreover, this allows us to give
the related analytical expression below of the slip coefficient αΣ in (108) for the Stokes/Darcy-Brinkman
problem:

αΣ =

(
1− Us

2

)√
Da

Us −UD −

(
1− Us

2

) √
φp Da

=

√
Da

δ

(
1+ δ

2
(
1−Us

2

) ) on Σ = Σt at Z = 0, (115)

where δ is given in (114).

D Analytical solution of the shear-driven Couette plane channel flow

The shear-driven Couette plane channel flow is considered here through a fluid layer of heightH superposed
to a semi-infinite layer of an isotropic and homogeneous porous medium of constant porosity φp and
permeability Kp . The fluid-porous dividing surface Σt is still located at z = 0 and we choose the height
H of the fluid layer where the streamwise velocity u(z = H) =Vs is given and maximum as the reference
macroscopic length scale. We also take the shear velocity Vs as the reference velocity. Then, we have the
dimensionless quantities below to normalize the governing equations:

Da :=
Kp

H2 , Z :=
z

H
, `∗ :=

`

H
, δ :=

d

H
, U :=

u

Vs
, (116)

where d is the thickness of the inter-region Ω f p . The Darcy filtration velocity vanishes here, i.e.UD = 0,
for the pure Couette shear-driven flow with no pressure gradient; see Fig. 22.

D.1 Two solutions of the Stokes/Darcy problem

Jump interface condition (16) at Σt . The solution of the Stokes/Darcy problem verifies:{
U f (Z) = (1−Us )Z +Us 0 ≤ Z ≤ 1, with U f (Z = 0) :=Us, U

f (Z = 1) :=Um = 1
Up (Z) =UD = 0 Z ≤ 0.

(117)

The jump interface condition (16) on Σt reduces to the velocity slip:

dU f

dZ
(Z = 0) =

αΣ
√

Da
(Us −UD ) =

αΣ
√

Da
Us on Σ = Σt at Z = 0, (118)

which provides the slip coefficient:

αΣ =
1−Us

Us

√
Da on Σ = Σt at Z = 0. (119)
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Jump interface condition (19) at Σb . The solution of the Stokes/Darcy problem now verifies:{
U f (Z) = (1−Us )Z +Us − δ ≤ Z ≤ 1, U f (Z = 0) :=Us, U

f (Z = 1) :=Um = 1
Up (Z) =UD = 0 Z ≤ −δ.

(120)

The jump interface condition (19) on Σb reads:


U f (Z = −δ) =Up (Z = −δ) =UD = 0

dU f

dZ
(Z = −δ) =

βΣ
√

Da
UD = 0

on Σ = Σb at Z = −δ∗. (121)

With the first equation in (121), we get:

δ∗ =
Us

1−Us
, (122)

whereas the second one shows that βΣ should take an infinite value on Σb since the shear stress in the fluid
equals (1−Us ) , 0, that confirms that a single unknown is required for the calibration in 1-D, here δ∗.
This allows us to give another new form of the slip coefficient using (119, 122):

αΣ =
1−Us

Us

√
Da =

√
Da
δ∗

on Σ = Σt at Z = 0. (123)

D.2 Solutions of the Stokes/Darcy-Brinkman problem

Jump interface condition (16) at Σt . All the solutions of the Stokes/Darcy-Brinkman problem
verify:{

U f (Z) = (1−Us )Z +Us 0 ≤ Z ≤ 1, with U f (Z = 0) :=Us, U
f (Z = 1) :=Um = 1

Up (Z) = A exp(Z/
√

Br) Z ≤ 0,
(124)

supplemented with the interface condition (16) applied on Σt at Z = 0:


dU f

dZ
(Z = 0) =

αΣ
√

Da
(Us −U

p
s ), U

p
s :=Up (Z = 0)(

dU f

dZ
−

1
φp

dUp

dZ

)
(Z = 0) =

βΣ
√

Da
Us

on Σ = Σt at Z = 0. (125)

The parameters A> 0,Up
s such that 0 =UD ≤U

p
s ≤Us , αΣ ≥ 0 and βΣ ≥ 0 are determined to minimize

the loss of flow rate. Therefore, we get for the optimal solution satisfying βΣ = 0:


A= (1−Us )

√
φp Da

[[U]]Σ =Us −U
p
s , U

p
s = (1−Us )

√
φp Da

αΣ =
(1−Us )

√
Da

Us −(1−Us )
√
φp Da

, βΣ = 0

on Σ = Σt at Z = 0. (126)

Jump interface condition (19) at Σb . All the solutions of the Stokes/Darcy-Brinkman problem
now verify:{

U f (Z) = (1−Us )Z +Us − δ ≤ Z ≤ 1, U f (Z = 0) :=Us, U
f (Z = 1) :=Um = 1

Up (Z) = A exp(Z/
√

Br) Z ≤ −δ,
(127)
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supplemented with the interface condition (19) applied on Σb at Z = −δ:
U f (Z = −δ) =Up (Z = −δ) :=UΣ(

dU f

dZ
−

1
φp

dUp

dZ

)
(Z = −δ) =

βΣ
√

Da
UΣ

on Σ = Σb at Z = −δ. (128)

Here, the parameters A> 0, δ > 0 and βΣ ≥ 0 are determined to minimize the loss of flow rate. Therefore,
we get the optimal solution defined by (127, 128) associated to βΣ = 0 with:

δ? =
Us −(1−Us )

√
φp Da

1−Us

A? = (1−Us )
√
φp Da exp(δ?/

√
Br)

β?
Σ
= 0

on Σ = Σ?b at Z = −δ?. (129)

This solution can be directly related to the optimal solution defined by (126) on Σt at Z = 0 since we have:
Up (Z = −δ?) =U

p
s given in (126). Hence, this provides the related expression of the slip coefficient αΣ

in (126):

αΣ =
(1−Us )

√
Da

Us −(1−Us )
√
φp Da

=

√
Da
δ?

on Σ = Σt at Z = 0. (130)

Moreover, we have: 0< δ? < δ∗ where δ∗ is given in (122) for the Stokes/Darcy problem and the coherency
is respected since δ?→ δ∗ when Br→ 0.
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