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Dhillon,∗ Robson Ferreira,∗ Daniel Dolfi,§ Mark Goerbig,¶ Bernard Plaçais,∗ and Juliette Mangeney∗∗

(Dated: February 29, 2024)

The sharp Dirac cone of the electronic dispersion confers to graphene a remarkable sensitivity to
strain. It is usually encoded in scalar and pseudo-vector potentials, induced by the modification of
hopping parameters, which have given rise to new phenomena at the nanoscale such as giant pseudo-
magnetic fields and valley polarization. Here, we unveil the effect of these potentials on the quantum
transport across a succession of strain-induced barriers. We use high-mobility, hBN-encapsulated
graphene, transferred over a large (10x10 µm2) crenellated hBN substrate. We show the emergence
of a broad resistance ancillary peak at positive energy that arises from Klein tunneling barriers
induced by the tensile strain at the trench edges. Our theoretical study, in quantitative agreement
with experiment, highlights the balanced contributions of strain-induced scalar and pseudo-vector
potentials on ballistic transport. Our results establish crenellated van der Waals heterostructures
as a promising platform for strain engineering in view of applications and basic physics.

I. INTRODUCTION

Graphene exhibits high mechanical flexibility and remarkable electronic properties, making it an ideal platform for
strain engineering to explore novel fundamental phenomena and to realize straintronic devices [1]. Elastic strain gives
rise to two primary effects in the low-energy band structure of graphene: shifts in the energy of the Dirac point, which
is typically incorporated as a scalar potential and shifts in the momenta of the Dirac cones in opposite directions
for the two valleys, often described by a pseudo-vector potential [2–9]. Strained graphene has been the subject of
a large number of studies, revealing fascinating physical phenomena that depend mainly on whether the strain is
non-uniform or not. Non-uniform strains over typically a few nanometers create in graphene giant pseudo-magnetic
fields that can reach several hundreds of Tesla [10], giving rise to the pseudomagnetic quantum Hall effect [11], and
the proposals of valley splitting topological channels for chiral fermions [12] or the appearance of superconductive
state [13, 14]. Such non-uniform strain has been obtained on localized curved structures such as wrinkles or bubbles
[11, 15, 16] and, recently, on a large scale using twisted multilayers [11] and substrate nanopatterning [12, 17], making
it possible to study the pseudo-magnetic field using magneto-transport measurements [11, 18]. Uniform strain, on
the other hand, creates large scalar potentials that modify the graphene work function [19]. By achieving uniform
strain in mesoscopic graphene devices, strain-induced scalar potentials have been probed using transport experiments
[20, 21]. In spite of intensive work, the investigation of the quantum transport of Dirac fermions through a network
of uniform strained barriers remains elusive in graphene.

Probing the quantum transport of relativistic electrons in graphene through a strained barrier is of considerable
interest as it differs remarkably from transport across an electrostatic barrier, such as a p-n-p junction. For instance,
Dirac fermions undergo Klein tunneling across an electrostatic barrier, and those at normal incidence, constrained to
retain their transverse momentum, k⊥ = 0, and forbidden to scatter directly backwards, penetrate the barrier with
unit probability. In contrast, the pseudo-vector potential in strained graphene, which is absent in electrostatically
defined n-p-n junctions, shifts the transverse momentum, k⊥ → k⊥ − A⊥, of electrons inside the barriers, affecting
the quantum transport of electrons which is sensitive to both energy and momentum conservation. For instance,
partial reflections for carriers normally incident on the strained junction are predicted. This effect, which is specific
to ballistic graphene, is irrelevant in diffusive graphene where momentum recoil is supplied by impurities.

Furthermore, it is worth pointing out that quantum transport of electrons in graphene through a network of uniform
strained barriers is a somewhat unusual situation in which the pseudo-vector potential has a physical significance.
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This would not be the case in systems with a homogeneous strain, in which the global shift k⊥ → k⊥ − A⊥ of the
positions of the Dirac points inside the first Brillouin zone has no physical consequence and could be compensated
by a global gauge choice of the vector potential. Such a global gauge choice is prohibited for a succession of strained
and unstrained graphene regions. On the other hand, pseudo-magnetic fields associated with the curl of the vector
potential are expected to play no essential role in the quantum transport of electrons through a network of uniform
uniaxial strained barriers. Indeed, such pseudo-magnetic fields and the associated Landau quantization require a
broken inversion symmetry between the two graphene sublattices, as it is the case in the particular strain patterns
with a 2π/3-rotation symmetry observed in scanning-tunneling-spectroscopic experiments [10]. Apart perhaps from
few localized impurities, the pseudo-magnetic field therefore has a negligible contribution to quantum transport
across a uniaxial strained graphene barrier, while the pseudo vector-potential contribution, which vanishes in diffusive
graphene, is expected to dominate the ballistic transport. Quantum transport across a uniform strained barrier
can thus serve as a highly sensitive probe of strain-induced pseudo-vector potentials, which have been little studied
compared to pseudo-magnetic fields.

Here, we report on a mechanically-robust strained graphene mesoscopic device made of a crenellated Van der Waals
hBN-graphene heterostructure. Our approach relies on transferring a high-quality graphene layer protected by a thin
hBN layer, on a crenellated hBN substrate to create a periodic network of strained and unstrained regions. The
strained regions act as barriers for ballistic electrons and thus, in the device, electrons propagate through a succession
of strain barriers. We probe the Klein tunneling properties of ballistic electrons across the strain-induced barriers
using low-temperature transport measurements, and model them by combining elasticity and tight-binding theories
with Dirac fermion optics and Landauer-Buttiker scattering approaches. We unveil a signature of tensile strain in the
form of a large and broad ancillary resistance peak at a positive energy. We show that peak amplitude and shape
result from balanced contributions of scalar and pseudo-vector potentials in the Klein tunneling strained barriers.

II. MESOSCOPIC TRANSPORT ACROSS A CRENELLATED HBN-GRAPHENE
HETEROSTRUCTURE

The device (Fig.1a) is made of a (LxW=12x8 µm) exfoliated monolayer graphene protected by a thin hBN layer and
transferred onto a 62 nm-thick hBN layer nanopatterned in periodic trenches of 35 nm depth, resting on a silicon sub-
strate with 500 nm oxide (SiO2) used as a back gate dielectric (see Fig.1b and Methods for fabrication process). Due
to strong Van der Waals interactions, the hBN/graphene heterostructure adheres to the crenellated hBN substrate
at the top and bottom of the slot, as shown in the AFM image (Fig. 1c). This anchors minimally strained regions
concentrating the tensile strain in the suspended graphene region connecting the two anchored regions; its length is
determined by the balance between the out-of-plane component of the tension and the hBN adhesion force. Thus,
our approach yields 300 nm long regions of unstrained graphene on top and 400 nm long regions in the bottom, and
typically 150 nm-long regions of tensile strained graphene along the trenches. From basic geometrical considerations,
we can estimate the strain in our device to be a few percent. We infer high electronic mobility in the graphene on
the top of the crenellation as the hBN/graphene heterostructure is anchored to pristine hBN[22] and in the tensile
strained region because the graphene is suspended [23]. In contrast, in the bottom of the crenellation, the quality
of the graphene is degraded by the roughness of the hBN following the etching step, which suppresses high carrier
mobility. Quantum transport across a N-crenellated device can thus be regarded as the sum N-diffusive sections and
2N strained-junctions in series. Raman spectroscopy in Fig.1d confirms the relatively high quality of the graphene as
the average intensity of the 2D peak, I2D, is 2.5 times higher than that of the G peak, IG, and the average intensity
of the D peak, ID, remains 3 times lower than that of the G peak [24]. Note that the I2D/IG ratio, which can be
considered as a measure of graphene quality, follows the same periodicity as the crenellation with high ratio bands
at the top regions and low ratio bands at the bottom regions. This behavior supports our assumption of a high
quality graphene on the top of the crenellation where the hBN has only been exfoliated and a low quality graphene
on the bottom of the crenellation where the hBN has been etched prior to graphene transfer. In addition, positions
of peaks 2D and G over the crenellated device are clearly linearly correlated (see Fig.1d), the slope of the linear
regression is 2.46 which is typical of presence of strain in graphene [25, 26] confirming the presence of strained regions
in crenellated hBN-encapsulated graphene. The whole device includes N=10 periodic crenellations (period l=1 µm
length, see Fig.1e) contributing additively to the total resistance. They are separated from the source and drain “edge
contacts” by 2 unstrained graphene regions of 1 µm length, which add a diffusive contribution to the total resistance
[27]. The large thickness of the SiO2 oxyde with regards to the hBN trench depth results in a modest variation of
the gate capacitance within the whole structure, between Cbottom=6.3×10−9 F.cm−2 and Ctop=5.9×10−9 F.cm−2,
i.e. <7 percent. Therefore, the modulation of the carrier density by the global back gate is relatively uniform over
the entire device.
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FIG. 1. Crenellated hBN/graphene heterostructure: Optical image (a) and schematic drawing (b) of the crenelated
hBN/encapsulated graphene transistor. c) Atomic force microscopy image showing that the hBN/graphene heterostructure
sticks to the crenellated hBN substrate at the top and bottom of the slot (upper). Line-cut profile displaying that the amplitude
of the trenches depths is typically 35 nm (lower). d) In green, positions of 2D peaks as a function of positions of G peaks
overall the corrugated area demonstrating clear correlation. Linear regression, in black, indicates a slope of 2.46 typical of the
presence of strain in graphene. Inset : typical Raman spectrum of our device, blue line, experimental data, red dashed line,
fit with 5 Lorentzians that are characteristic of graphene - peaks D, G, D + D’, 2D - and of hBN - peak hBN. e) Schematic
drawing of 1 crenelation that includes a two 150 nm long regions of high-quality unstrained graphene on top and one 400nm
long region in the bottom and two ∼ 150nm-long regions of tensile strained graphene along the trenches,

The signature of strain on transport is displayed in Fig.2a, which reports the low-bias differential resistance Rds

of the device as a function of gate voltage Vg for different temperatures ranging from 4.2 K to 100 K. The Rds-Vg

transport-characteristics reveal a broad and large ancillary resistance peak at positive energy (chemical potential
µpeak=+163 meV for Vg= 62 V) in addition to the usual sharp charge neutrality peak (at Vg=2 V). The Dirac
peak (illustrated by the dashed blue curve in Fig.2a) corresponds to the charge neutrality point of the unstrained
graphene region and its position close to 0 V confirms the high quality of the graphene layer. The broad ancillary peak
(illustrated by dashed red curve in Fig.2a), which does not exist in flat graphene, has an amplitude comparable to that
of the Dirac peak and a high energy position, suggesting the presence of large potential barriers ( µpeak) induced by the
tensile strains in the device. We notice that the ancillary peak shape is in itself a signature of strain as it significantly
differs from standard Dirac peaks [28] or Dirac Fermion reflector plateaus[29, 30]. Moreover, we observe modulations,
more visible in the gate voltage range around to the ancillary peak, that are unexpected in flat graphene transistors.
These modulations can be considered as hints of ballistic transport, as they are reminiscent of the electronic Fabry-
Perot oscillations observed in electrostatic barriers [31]. Their characteristic energy separation is ∆E ≈10 meV
corresponding to an effective cavity length Lcavity = 2πℏvF /∆E = 360 nm [32]. This length is consistent with the
geometric length of the unstrained high-quality graphene at the top (∼300 nm) of the crenellation. We therefore
attribute the observed oscillations to Fabry-Perot interferences between two strain-induced barriers (the regions of
tilted graphene), with the top flat graphene regions being considered as cavities for high-mobility carriers and strain
junctions as efficient barriers. We can exclude Fabry-Perot oscilations within the barrier due to the length mismatch
and the robustness of oscillations at the ancillary peak.

The quantum nature of resistance oscillations is corroborated by the temperature effect, which shows strong os-
cillation damping as the temperature increases. Blurring of interferences resulting from quantum transport by the
thermal broadening of the electrons impinging on the barriers is expected to follow an exponential suppression given
by exp(−4π2kBT/∆E) with kB the Boltzmann constant and T the temperature [33]. Considering our characteristic
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energy separation, a 95% drop in interference visibility corresponds to a thermal energy of kBT=3 meV, i.e. T=35K,
which is in excellent agreement with our data. This observation confirms that the observed conductance oscillations
arise from quantum interferences of electrons propagating ballistically between strain barriers.

To get deeper insight in the transport of ballistic electrons through strained graphene barriers, we measure the
evolution of the Rds-Vg characteristics for different bias Vds -from 0 mV to 120 mV- at low temperature (4.4 K).
With increasing bias, we observe in Fig.2b that Rds decreases and the Fabry-Perot oscillations vanish and cancel above
30 mV. Comparatively, the behavior of Rds with temperature and bias are thus very similar. More quantitatively, we
report on Fig.2c, Rds as a function of the bias drop per micrometer (black symbols) and of the thermal energy (red
symbols) close to Dirac point (Vg=2V) and at the ancillary peak (Vg=62 V). The very good overlap between the two
trends indicates that the device can be considered as 1 µm-long elements associated in series and thus supports our
interpretation of the voltage drop in terms of N crenellations that contribute additively to the mesoscopic transport in
our device. The differential resistance map as a function of Vg and Vds is presented in Fig.2d. This 2D plot highlights
the strength and robustness of the ancillary peak, attributed to propagation of ballistic electrons through the multiple
strained graphene barriers.
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FIG. 2. Low bias transport measurements a) Low-bias resistance Rds measured at Vds=10mV for different temperatures
(T = 4.4 K, 10 K, 20 K, 30 K, 40 K, 50 K, 60 K, 70 K, 80 K, 90 K, 100 K). We observe the emergence of a broad ancillary
resistance peak at high Vg (illustrated by the dashed green curve) in addition to the usual Dirac peak (illustrated by the dashed
blue curve ). b) Evolution of Rds-Vg characteristics at T = 4.4 K for different bias (Vds = 0 mV, 10 mV, 20 mV, 40 mV, 60
mV, 80 mV, 100 mV and 120 mV). c) Rds as a function of the bias drop per micrometer (black symbols) and of the thermal
energy (red symbols) close to Dirac point (Vg=2V) and at the ancillary peak (Vg=62 V). d) Map of differential resistance Rds

in function of the gate voltage Vg and of the bias voltage Vds at T = 4.4 K.
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III. THEORETICAL DESCRIPTION OF ELECTRONIC TRANSPORT ACROSS A STRAINED
GRAPHENE BARRIER

In the following we develop a theoretical description of quantum transport in this crenellated geometry combining
elasticity and tight-binding theories, with Dirac fermion optics and Landauer-Buttiker scattering approaches. More
specifically, we calculate the transmission and conductance through a single strained graphene barrier surrounded by
unstrained graphene regions (more details in Supplementary). Let us start by calculating the electronic properties
of strained graphene. We assume that stress is uniaxial and colinear with the direction of electronic transport. We
introduce the uniaxial strain tensor in the graphene lattice coordinates, ¯̄ε (ε, θ), with ε the longitudinal deformation
and θ the angle between the strain direction and the zigzag crystallographic direction of the graphene sheet. A first
effect of uniaxial strain on the graphene band structure is a shift in energy, independent of the valley, which arises
from changes in the next-nearest-neighbor hopping parameter [34–36]. This effect can be described by an effective
scalar potential, ∆Vstrain = gstrainε(1− σ), where gstrain ≈ 3 eV [37–39] and σ=0.165 is the Poisson’s ratio [7, 40]).
In addition, the uniaxial strain modifies the inter-atom distances between nearest neighbor, δ′i, and as a consequence,

the hopping amplitudes among neighboring sites change as t = t0 exp(−β(|
−−−−−→
δ′i(ε, θ)|/a−1), with β=3.37 [8], t0=2.7 eV

and a=0.24 nm the lattice constant. Figure 3a shows the calculated low-energy dispersion and Fermi circle around
Dirac point for valley K and K’ in strained graphene with ε = 2% and a typical θ=0°. Each Dirac cone of strained
graphene, Ki, shifts away from its unstrained high-symmetry position by a wave vector ∆qKi(ε, θ). Note that the 3
couples of cones go through a different displacement but only one of them belongs to the first Brillouin zone and then
takes part in electronic transport to be considered here. Formally, the strain-induced momentum displacements of
Dirac cones have the same effect as the application of a pseudo-vector potential, AK/K′, which shifts the Dirac cones
away from the K and K’ points in opposite directions in the reciprocal space (η = + for the K valley and η = − for
the K’ valley). The low-energy Hamiltonian at each Dirac cone can thus be written as:

H = vFσ
(
p+ eAK/K′

)
+∆Vstrain with AK/K′ =

−ηℏ∆qK/K′(ε, θ)

e
(1)

and vF the Fermi velocity in graphene, σ the pseudo-spin operator and p = ℏk the momentum operator. Note that
we disregard changes in the magnitude and isotropy of the Fermi velocity, which is a fair approximation at moderate
strain [7]. We conclude that the effect of strain on graphene leads to both a scalar potential ∆Vstrain and a vector
potential AK/K′, which turn out to be equally important in the analysis of our transport measurements.

We now compute the transmission probability of an electron through a strained graphene barrier, as illustrated
in Fig. 3b, by continuity of the electronic wave functions at the strained-unstrained interfaces [8, 41]. Figure 3c
shows the calculated transmission probability T(E, ϕ) through a 150 nm long strained barrier for ε = 2% and θ=0° as
function of the electron’s energy E and its incidence angle ϕ upon the barrier. Note that the momentum displacement
parallel to the direction of transport in strained graphene, ∆q∥, generates only an unimportant global phase on the
wave functions. By contrast, the transverse component ∆q⊥, encoding the vector potential A⊥ and involved in the
momentum conservation at the strained-unstrained interfaces, directly affects the Fresnel coefficients of electronic
transport. To cross the barrier, the incident angle of the electron has to obey the modified Snell-Descartes law (see
Supplementary material):

evFA
⊥
K/K′

|E|
+

|E −∆Vstrain|
|E|

≥ sinϕ ≥
evFA

⊥
K/K′

|E|
− |E −∆Vstrain|

|E|
(2)

Equation 2 highlights the respective roles of ∆Vstrain and A⊥
K/K′ in the angular limits of the total internal reflection.

In particular, the angular transmission window is pinched for E=Vstrain at a finite angle entirely prescribed by
evFA

⊥
K/K′/∆Vstrain. This strain-induced lifting of valley degeneracy exists in principle but gives rise to non-local

effects which are lost in our two-terminal experiment. In general, one can distinguish from equation 2, two limit-
ing cases: i) the vector-potential dominated case (|evFA⊥

K/K′/∆Vstrain| ≫ 1), where tunneling across the barrier

is cancelled, and graphene becomes insulating in a broad range of energy, making it an effective on/off transistor
[42]; ii) the scalar potential dominated case (|evFA⊥

K/K′/∆Vstrain| ≪ 1), which is reminiscent of a conventional p-n

junction [43, 44]. An asset of our device is that it lies in the intermediate regime where both effects contribute
constructively. It is important to point out that, in this intermediate regime, quantum transport across strained
barriers differs significantly from that through an electrostatic barrier, with notably a non-zero reflection for carriers
normally incident (ϕ = 0) on strained barriers due to the pseudo-vector potential in the strained region (see Fig. 3c).
Also, the resonance condition in the barrier depends not only on the barrier length and the scalar potential Vstrain

similarly to the case of an electrostatic barrier, but also on the vector potential AK/K′, which is given by ϵ and θ and
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FIG. 3. Transport across a barrier of strain graphene a) Low-energy electronic dispersions for valley K and K’ for a
uniaxial strain ε = 2% applied in direction θ = 0◦ (the angle between the strain direction and the zigzag crystallographic
direction of the graphene sheet). When compared to unstrained graphene, Dirac cones are shifted by ∆qK/K′ in opposite
directions for valleys K and K’. b) Schematic of a barrier of strained graphene - presence of an effective scalar potential
∆Vstrain and of an effective vectorial pseudo potential AK/K′ of opposite direction according to electron valley. c) Transmission

probability (T = |t|2) through a 150 nm long strain barrier with uniaxial strain ε = 2% in direction θ = 0◦ as a function of
E, the electron energy and φ, its incidence angle on the barrier. The effective pseudo potential induces changes in momentum
conservation. Red lines correspond to the limits of authorized incident angles for valley K and the orange ones for valley K’.
d) The ballistic conductance G for the same barrier with 8µm width in function of the electron energy. There are two minima,
the first one at E = 0 is due to the zero electronic density of undoped graphene and the second one at E = ∆Vstrain is due to
the decrease of authorized angles at this energy.

on the valley, making it very different from that of an electrostatic barrier.

Finally, we calculate the conductance G of electrons in graphene propagating across a strained graphene barrier
at zero bias and low temperature from electron transmission probability using Landauer-Buttiker formalism (see
Supplementary). Figure 3d reports the conductance of a single strained graphene barrier of 8 µm large and 150 nm
long with ε = 2% and a θ=0°. G presents the expected minimum at the charge neutrality point (E=0) as well as
a second minimum at E=∆Vstrain due to few incident angles allowed for crossing the strain barrier around this energy.

IV. ORIGIN OF THE ANCILLARY RESISTANCE PEAK

Finally, for direct comparison with experimental data, we compute the resistance of the whole strained graphene
device by calculating the resistance of a single crenellation which consists in two strained barriers and multiplying this
resistance by a factor N=10 for additive contribution of the N crenellations in series. Note that we incorporate the
unhomogeneous doping of the corrugation induced by its topography. Also, we add the diffusive contribution in un-
strained graphene regions, calculated from fits of the charge neutrality point peak according to R = Rc+L/(W |n|eµ),
with Rc the contact resistance, n the charge density of the graphene and µ the electron mobility over the entire
structure, which includes the high-mobility regions on top of the crenellations and on suspended tensile graphene as
evidenced by the observation of Fabry-Perot oscillations in the Rds-Vg characteristic and the low-mobility regions on
bottom of the crenellations(see Methods) [45].

In Fig. 4a, we compare the measured resistance with the calculated resistance, taking ε, θ and Lbarrier (the
length of the strain barriers) as adjustable parameters. From the position of the ancillary resistance peak, we deduce
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FIG. 4. Quantitative comparison between experiment and theory a) Comparison between measured Rds (blue symbols)
and calculated Rds (black line) in function of Vg at zero bias and T =4.4 K. Quantitative agreement is found for ε = 6, 5%,
Lstrain = 62 nm, the length of the barrier and θ = 9.4◦, the angle between the transport direction and the zigzag crystallographic
direction of the graphene. b) Measured Rds (blue symbols) and calculated Rds (solid lines) in function of Vg at zero bias and
T =4.4 K for ε ranging from de 6 to 8% and Lstrain ranging from 50 nm to 67 nm.

∆Vstrain=163 meV corresponding to a longitudinal deformation ε=6 %, consistent with geometrical considerations.
From the magnitude of the ancillary peak, we extract θ=9.4° and Lbarrier=62 nm. The quantitative agreement
between theory and experiment demonstrates a near-equal contribution of both scalar and pseudo-vectorial potentials
with evFA⊥=-126 meV. We deduce at E=∆Vstrain an authorized transmission angle of 57° for valley K and -57° for
K’ valley, which highlights a strong valley separation. However, we observe that the calculated ancillary resistance
peak is narrower than experimental data. We attribute this broadening to the strain heterogeneity along a single
barrier and the dispersion among the N crenellations in series, which are both incipient to our fabrication method.
Nevertheless, the dispersion of strain remains modest as a strain heterogeneity ε=6—9 % is sufficient to account
for the broadening of the ancillary peak for θ=9.4° as observed in Fig. 4b. This theoretical analysis provides a
quantitative description of strain-barrier effects in the transmission of ballistic electrons and fully elucidates the origin
of the ancillary resistance peak reported here.

We now discuss additional contributions to the observed phenomena. As we have already mentioned in the in-
troduction, strain in the present geometry can be described within a pseudo vector potential. However, because of
the uniaxial character of the strain field, which preserves the equivalence between the two triangular sublattices of
graphene, there is no curl expected to arise that could give rise to Landau-level quantization. The latter has indeed
been shown to be relevant in the case of a triangular strain field that breaks the sublattice symmetry [10]. In the
present device, similar localized strain fields could be present in the case of some localized disorder. However, unless
this disorder breaks time-reversal symmetry, it is not expected to yield significant deviations of the electrons from
their trajectories. Indeed, a possible deviation of an electron’s trajectory in a particular valley should be compensated
by that of an electron in the other valley, as a consequence of time-reversal symmetry. Finally, strain effects in the
low-energy band structure of graphene also change the magnitude and isotropy of the Fermi velocity and thus in the
density of states. However, the anisotropic renormalization of the Fermi velocity due to strain remains a second order
effect, neglected in this work [36]. At last, the electrostatic barrier effect due to distinct capacitances between the
graphene regions on the top and bottom of the crenelation, which is otherwise included in our model, is too weak
(<7 percent) to be responsible on its own for a ∆Vstrain of 163 meV [46, 47]. In the course of paper preparation, we
became aware of a recent work addressing similar strained junction physics (arXiv:2312.00177).

V. CONCLUSION

In conclusion, using transport measurements at low temperature and microscopic modeling, we have investigated
the Klein tunneling transport of ballistic electrons across a series of strain-induced barriers. We have shown the
existence of a large and broad ancillary resistance peak at a positive energy that originates from nearly equivalent
contribution of strain-induced scalar and pseudo-vector potentials in strained barriers. Our study also reveals the

http://arxiv.org/abs/2312.00177
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quantum interferences of ballistic electrons between strained graphene barriers. Our platform based on crenellated
hBN-graphene heterostructures paves the way toward the realization of graphene quantum strain devices. It comprises
the realization of high on/off transistors driven by a simple gate voltage resulting from the quantum nature of the
transport without the need of a bandgap, and the implementation of valleytronics (filters and polarizers) as electrons
belonging to each valley in our strained device are collimated by strained barriers in different directions [48]. Moreover,
in our hBN-graphene crenellated heterostructure, the charge carriers undergo a sub-micron periodic angular motion,
which should lead to the emission of electromagnetic radiation in the THz spectral range, paving the way towards the
development of integrated synchrotron-like THz emitters based on 2D materials. For basic science, this platform gives
new opportunities to develop strain engineering in a wide variety of 2D materials and Van der Waals heterostructures
such as in twisted bilayer graphene or in transition metal dichalcogenides [49] with the aim to manipulate their
electronic and optical properties and explore new physical phenomena.
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Appendix A: Device fabrication

To fabricate the crenellated hBN-graphene heterostructure, we transferred a 62 nm-thick exfoliated hBN flake on
a silicon substrate with 500 nm oxide by using the polymer-based dry pick-up and transfer technique. We etched
trenches in the hBN flake of 35 nm deep by using e-beam lithography and reactive ion etching. We used also the
polymer-based dry pick-up and transfer technique to assemble a thin hBN flake (8 nm) and exfoliated graphene and
to transfer them onto the patterned hBN. Afterwards, we contacted the crenellated graphene with 1D “edge contacts”
to design source and drain electrodes by using e-beam lithography, reactive ion etching and the deposit of 5/50 nm
of Cr/Au. To access the silicon that is used as a back gate, we patterned an electrical access through SiO2 by using
laser lithography, reactive ion etching and the deposit of 5/180 nm of Cr/Au. At the end, the crenellated graphene
transistor is L=12 µm long and W=8 µm large and consists of 10 crenellations of length l=1 µm (i.e. with a 1
µm-periodicity) and of 2 unstrained graphene region of 1 µm length at the ends.

Appendix B: Measurements

AFM measurements were performed in air using silicon cantilevers operated in tapping mode. The Raman spec-
troscopy measurements were performed with a Renishaw inVia Raman microscope with a 100× objective lens and
at an excitation wavelength of 532 nm. For transport measurements, the sample was cooled down in a variable-
temperature (4-300 K) liquid 4He cryostat. An AC voltage of 1mV amplitude at a frequency f = 77 Hz and a DC
voltage Vds were applied between the source and drain electrodes whereas a DC voltage Vg was applied to the gate.
The AC current signal was measured with a lock-in amplifier.

Appendix C: Diffusive contribution modeling

To model the diffusive contribution to the resistance of our device, we used a capacitance calculated with the average

distance to the gate, Cav=6.1x10−9 F.cm−2. The charge carrier density n is then given by: |n| =
√(

C(Vg−V0)
e

)2

+ n2
0,

where V0 is a shift of the charge neutrality point due to intrinsic doping of the sample, n0, a residual charge carrier
density and C the gate capacitance. The diffusive contribution in unstrained graphene regions was calculated from
fits of the charge neutrality point peak according to R = Rc + L/(W |n|eµ), with Rc the contact resistance, µ the
the electron mobility over the entire structure, including unstained areas where mobility is assumed to be high, as
evidenced by the observation of Fabry-Perot oscillations in the Rds-Vg characteristic, and strained barriers, and n
the charge density of the graphene. We found Rcontact = 4288 Ω, and n0 = 4.5 · 1011 cm−2 which is the order of
magnitude expected for such graphene flake. The overall electronic mobility is 3604 cm−2.V−1.s−1 if we consider the
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total length of the device (i.e 12 µm). It should be pointed out that the electron mobility value includes, in addition
to the presumed high-mobility unconstrained regions, 10 strained barriers of similar length that strongly disrupt
carrier transport.
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