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Abstract—Biometric systems are used in our daily life but are
subject to attacks to bypass them as a security solution. Presenta-
tion attacks in digital fingerprints occur when an imposter tries to
use a fake sample at the acquisition step to impersonate another
individual or not to be identified. Providing an explanation for the
operator (who is not an expert in biometrics) could be of great
interest for many applications (border control, physical access
control). In this paper, we propose a fingerprint presentation
attack detection method with explainability feedback that can
be understood by any user. The experiments has been realized
on the Fingerprint Liveness Detection Competition (LivDet)
dataset in 2015 and contains more than 58,000 bona fide and
attack fingerprint images. The proposed method reaches an
accuracy rate of 95.7% on LivDet2015 with feedback that can
be understood by any user.

Index Terms—Biometrics, Presentation attack detection, Digi-
tal fingerprints, Explainability.

I. INTRODUCTION

Biometrics has for objective to automatically identify
an user or verify its identity by using morphological or
behavioral characteristics. Nowadays, digital fingerprint
is used as one of the most secure and reliable biometric
modality for user authentication. Fingerprints tend to replace
passwords in applications requiring user authentication. This
massive use of fingerprints as a security solution has therefore
led to the appearance and multiplication of attacks on such
systems. For example, a Chinese woman expelled from Japan
in 2009 managed to reintroduce herself into the territory by
replacing her left fingerprints with those of the right hand.
The border control system failed when searching the list
of people expelled and prohibited from Japanese territory.
It is therefore important to add a fourth function to any
biometric system that is called Presentation Attack Detection
(PAD) or Anti-Spoofing [1]. The first three functions being
enrollment, authentication and identification as described in
[2]. Presentation attacks occur on the biometric sensor and the
imposter attempts to forge the biometric template of another
person or create a new biometric fingerprint template in order
to access confidential information to which he/she has no right.

Cooperative and non-cooperative methods are the two
ways used by impostors to forge fake fingerprints called
presentation attack instrument (PAI). In cooperative methods,
the impostor collaborates with the individual whose identity
he/she wants to impersonate in order to obtain a perfect mold
of his/her fingerprint (for time attendance as for example).

In non-cooperative methods, the impostor tries to forge
the fingerprint template of an individual without his/her
consent from different sources (latent, cadavers, synthetic).
In both cases, the impostors use gummy materials (Latex,
silicone, playdoh...) to generate the shape of the fingerprint
to impersonate. Hardware and software solutions are the
two ways to counter the presentation attacks proposed in
the literature [3]-[5]. In [6], the authors proposed different
hardware solutions for PAD. These solutions need to integrate
specific components on the sensor to measure the ridges
distortion, elasticity, temperature and body conductivity.
Software solutions are subdivided into two groups: dynamic
and static methods [7]. The dynamic PAD methods use the
fingerprint features that are expected to vary on a video
stream on the sensor. To implement this solution, two or
more images of the fingerprint are acquired between two very
short instants of the capture (from O to 5 seconds) as shown
in [8]. Nowadays, most static PAD methods are based deep
learning such as Convolutional Neural Networks (CNN) or
transformers [9].

An important lack of these black box solutions is the difficulty
to trust the decision result without any understandable feed-
back even performance results are usually very high. The main
contribution of this paper is to propose different solutions to
enhance the explainability in biometric security. It is necessary
to better trust the decision provided by a biometric system
or PAD module and help to identify attacks by non-expert
operators. The paper is organized as follows. In section II, we
present a state of the art on Explainable Artificial Intelligence
(XAJ) in order to provide useful feedback by a PAD. Section
IIT is dedicated to the proposed method. Section IV and V
concern respectively the experimental protocol and results. We
conclude and give some perspectives on section VL.

II. STATE OF THE ART

We focus in this state of the art on XAI solutions that
could be used for PAD systems. Opaque systems are often
untrustworthy [20], even when an explanation is attempted.
Black-box systems decrease user trust, particularly after an
incorrect prediction, as they obscure the system reasoning
process. Educating users does not sufficiently address the lack
of explainability. The adoption of such systems relies on the
ability to translate the model process into a shared language
between the system and the user. Researchers and engineers



TABLE I

MANY INTERESTING XAI SOLUTIONS FOR BIOMETRICS.

Article

Description |

Using of Grad-CAM to detect presentation attack.
[10]

presentation attacks for iris

Embedding deep networks into visual explanations

[11]

Novel Explanation Neural Network (XNN) called Sparse Reconstruction Autoencoder (SRAE).
It maps the output embedding into an explanation space capable of retaining the prediction power
of the original feature embedding.

Bayes-trex: a bayesian sampling approach to model
transparency by example [12]

Display the boundaries between the classes through ambiguous samples by finding in-distribution
examples with specified prediction confidence.

Explaining explanations: An overview of inter-
pretability of machine learning [13]

Textual explanations as part of their training process.

SHapley Additive exPlanation (SHAP) is a game-
theoric approach to explain ML predictions [14].

Features represented as players in a coalition game. The payoff is the Shapley value, an additive
measure of importance.

Class activation maps (CAMs) which are specific to
Convolutional Neural Network CNNs) [15]

Global average pooling applied to the final convolutional feature map, before the output layer.
They are then used as the input features of a fully connected layer and output through a loss
function. We can then, by projecting the weights back to the previous convolutional layer, create
an image with the areas of greater influence over the CNN decisions highlighted per class and
visible through a heatmap representation.

Interpretable Local Surrogates [16]

Method that aims to replace the decision function by a local surrogate model that is structured
in a way that it is self-explanatory (like a linear model).

Occlusion Analysis [17]

Particular type of perturbation analysis where we repeatedly test the effect on the neural network
output, of occluding patches or individual features in the input image. A heatmap can be
generated from the scores.

Integrated Gradients [18]

Integrating the gradient V f(x) along some trajectory in input space connecting some root point
Z to the data point z. It is well-suited to explain functions that have multiple scales. To be
implemented, integrated gradient must be discretized, it is then approximated by a sequence of
data points m(l), ...,z(N%

Layer-Wise Relevance Propagation (LRP) [19]

The layered structure of the neural network is operated in an iterative manner until we reach
the output layer. Then, a reverse propagation is applied, where the output score is redistributed,
layer after layer.

have attempted to deploy biometric systems at scale in real-
world scenarios. Despite efforts to build trust in these systems
and demonstrate their unbiased and accurate behavior, failures
have occurred [21]. A critical step to address this issue is to
provide users with explanations of algorithmic decisions. This
approach can encourage users to trust the results, alert them
to potential attacks, and help identify unexpected behaviors or
biases. Additionally, providing counterexamples and introduc-
ing contrastiveness can help in user understanding.
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Fig. 1. Different approaches for the explainability of decisions given a
biometric system [22].

We can divide the explainability into three smaller subtopics
[22]: pre-models techniques, in-models techniques and post-
model techniques (or post hoc).

e “Pre-model techniques” (or ante-hoc) focuses on data
knowledge and understanding. It is quite relevant to
understand some bias in the data and can increase confi-
dence in the posterior decisions and explanations.

e “in-model techniques” focus on the direct integration
of interpretability into the model through the constraint
applied to the training process.

¢ post-model techniques” (or post hoc) refer to methods
used to interpret and understand the decisions made by
an artificial intelligence model after it has already made
its predictions or decisions.

The high requirement for accuracy and other performance met-
rics justify that the usage of post hoc methods is much more
convenient and popular. Different explanation methods lead
to different qualities of explanation (see Table I). Evaluating
explanations remains a difficult task. Machine learning models
are usually evaluated by the utility of their decision behavior.
Transposed to the domain of explanation, it would require to
define what is the ultimate target and assess by how much the
use of explanation increases its performance on the target task,
compared to not using it. In the next section, we present the
proposed method producing explanations for the PAD system.

III. PROPOSED METHOD

The objective of the proposed method is to build a classical
machine learning workflow for presentation attack detection on
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Fig. 2. Proposed methodology for explaining decisions of a presentation attack detection method of fingerprints.

fingerprints by adding intelligible explanations for an operator.
For this task, we preliminary analyze the reliability of used
features (see Figure 2). In the following, we detail first the
used features and then the machine learning workflow.

A. Feature extraction

We use in this work hand-crafted features that better help to
explain resulting decisions. As we work on digital fingerprints,
minutiae are considered in this study [23]. The minutia
indicates the different discontinuities of a local ridge. There are
two types: the ending minutiae (ridge ending) and bifurcations.
The minutiae representation is stable, robust, unique and has
a non uniform distribution. A minutia m can be described
by  m(x,y,t,0,q,dst1,nb_cry,dsta, nb_cra, dsts, nb_crs)
where z-axes y-axes are coordinates, ¢ its type, 6 its
orientation and then the quality index ¢ associated with the
fingerprint. dst;, nb_cry, represent respectively the distance
which separates the minutia from its nearest neighbor and
the number of ridges which separate them. The indices 2
and 3 represent the same measures with the second and third
neighbors.

For a fingerprint I, we consider each of the properties of a
minutia, except coordinates (z,y), as variables that can be
used for PAD. Therefore, we calculate the four statistical
estimators we described above (Z, E(X), S and K) for the
set of minutiae of I. For example, ¢ indicates the overall local
quality level of the minutiae detected on the fingerprint, and
then E(q) determines the deviation of the individual quality
indices of each minutia compared to the central tendency g.
On fake fingerprints, E(gq) seems to be small because the
fingerprint image has a strong homogeneity and low variations
unlike live fingerprints for which the values are more random.
The same observations are made on the variable 6 which
indicates the local variation of the directions of the minutiae
and demonstrates the homogeneity on the fake fingerprints
unlike the real ones. The statistical estimators that we use,
explore the minutiae variations and we build 36 features from

this local fingerprint expertise.

We believe that the quality of a fingerprint is a crucial
element for presentation attack detection. Whatever the effort
made by an impostor, the homogeneous nature of the ridges
introduced in a fake fingerprint constitutes a failure compared
to a live fingerprint. For this reason, we use the quality map
of fingerprint. The map indicates for each area of the image
the associated quality value. The overall quality of the live
fingerprint is better than the one of a fake fingerprint. In
addition, the values being between 0 and 5 (5 for the highest
quality), we use this map to build the 7 following features ;
the global quality measures (Total sum); as well as the relative
frequencies of each local quality value of the image from
0 to 5. Likewise, manufacturing faults in a fake fingerprint
and sometimes the difficulty of putting it uniformly on the
sensor leads to the appearance of small holes (blank area) in
the image of the fingerprint. And so, a fake fingerprint image
has more blank areas than a live fingerprint image. The hole
frequencies are extracted from the Low Flow Map and allows
to identify blank areas. As we explained, fake fingerprints
usually have a high homogeneity; so, we use the Direction
Map to locate globally on the image the change of frequency
direction as well as the errors occurred by the extractor. The
areas of high curvature of the fingerprint are identified with
the extractor from the High curvature Map. This indicates the
singular points of fingerprint know as delta, loop, arch, core.
Thus, there are limited number of singular points for a live
fingerprint and a little more in the fake. In total, we build 49
new features based on the specific fingerprint expertise. These
features are frequency estimators and statistical descriptors
resulting from the fingerprint analysis. We therefore propose
the extraction of these features which we concatenate with
the static texture features proposed in the state of the art in
order to build a more robust representation. We have chosen
to combine the semantic features with LB P ones related to
texture analysis.
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Fig. 3. Workflow for the presentation attack detection method with Orange Data Mining.

B. Machine learning workflow

The machine learning workflow is described in Figure 3.
It has been generated with the Orange Data Mining software
allowing to define workflows in data science [24]. In this work,
we used 6 machine learning models among Adaboost, SVM
(RBF), K nearest neighbors, random forest, naive Bayes and
neural network. A meta model is generated from previous
ones. For the training and testing, we adopt a cross validation
process with 5 folds.

IV. EXPERIMENTAL PROTOCOL

A. Dataset

The most used databases for PAD evaluation are LivDet.
Since 2009, the LivDet competition started and many contes-
tants proposed their PAD model solutions for this benchmark.
All solutions are evaluated and the benchmark of PAD models
are provided at the end of the competition. We use in this work
the LivDetl5 dataset [25] in reference to the competition in
2015. Figure 4 shows the tree structure of the LivDet2015
database. In this tree structure, the terms Alive, Spoof and
spoof_MaterialName should be noted, which respectively
mean alive fingerprint, fake fingerprint and then fake finger-
print with the material used for its manufacture. Biometrika,
Green Bit, Digital persona and Crossmatch sensors are used
for fingerprint acquisition. The dataset is composed of 58583
samples (30471 bona fide, 28112 attacks).

B. Evaluation metrics

Indeed, after building the PAD model, we need to define
evaluation metrics. In the case of presentation attack detection
performance measurement, we consider three metrics:

LivDet2015
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Alve

spoof spoof

v

[ opesona  |[ Bomewika || crossMarch  |[Greensit |
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Fig. 4. LivDet2015 database tree [25].

APCER (Attack presentation classification error rate):
The percentage ratio at which presentation attack exam-
ples are misidentified as a bona fide example. A higher
value indicates higher security vulnerability.

BPCER (Bona fide presentation classification error rate):
The percentage ratio at which bona fide examples are
misidentified as a presentation attack example. A higher
value indicates higher user friction.

CA (Classification Accuracy): It measures the correct
recognition of bona fide and attack examples.

V. EXPERIMENTAL RESULTS

A. Performance results

First, we present the performance of the machine learning
workflow with the proposed hand-crafted features. Figure 5
shows the classification accuracy for each model. The stacking
model achieves a high performance with a CA value of 95.7%.
Figure 6 presents the confusion matrix associated to this result.



In this case, we obtain a similar APCER and BPCER values
of 2.1% showing the benefit of the proposed method.

Model AUC CA F1 PI:;C Recall MCC
SVM 0.580 0.541 0.530 0.554 0.541 0.101
Naive Bayes 0.688 0.630 0.629 0.629 0.630 0.258
AdaBoost 0.829 0.830 0.830 0.830 0.830 0.659
kNN 0914 0.867 0.867 0.867 0.867 0.734
Random Forest 0.967 0.906 0.905 0.906 0.906 0.811
Neural Network 0.987 0.947 0.947 0.947 0.947 0.893
Stack 0.991 0.957 0.957 0.957 0.957 0914

Fig. 5. PAD performance results for each learning model.

Predicted
0 1 )3
E 0 29246 1225 30471
E 1 1286 26826 28112
b3 30532 28051 58583

Fig. 6. Confusion matrix for the presentation attack detection method (0:
bona fide, 1: attack).

B. Explainability

We showed in the previous section that the proposed
method achieves a very good efficiency. Even if APCER
et BPCER values are low, errors can occur. In sensitive
applications such as border control, we might be interested
to give an understandable explanation to the operator. As
illustration, we used a specific sample corresponding to an
attack (presentation attack instrument) in Figure 7.

We propose different explanations or feedback to the operator:
« Single feature analysis: Before deploying the PAD sys-
tem, a preliminary step can be done to identify reliable
features. We can plot the distribution of the values of
each feature for all classes (bona fide and attacks).
Figure 8 shows an illustration of these distributions (one
LBP feature). We can estimate given the feature value
(represented by a dark line) the conditional probability

Fig. 7. Attack sample used for illustration

value the sample corresponds to an attack. In the example
of Figure 8, we can see clearly that the higher is the
feature the more confidence the sample is bona fide.

s
N

Priy of "t

s

Fig. 8. Conditional probability for a specific feature.

o Multi-features analysis: For the most informative features,
we can plot all samples in the training dataset given
their values. Figure 9 shows an example for an unknown
sample represented in black. In this case, it is quite clear
that the sample corresponds to an attack (as it is part of
the red area associated to attacks). This is visual indicator
easy to understand.

Fig. 9. Projection on the subspace of the most 3 reliable features of an
unknown sample represented as a black dot (red points correspond to attack
samples, blue to bona fide).

e Models confidence: Any machine learning model can
return a probability value for each class. For a PAD
system, it is useful to compute a confidence measure by
considering this value or when different models are used
the strengh of the consensus between us. Figure 10 shows
the output of each model on the sample in Figure 7. All
agree that this sample is an attack. We can easily compute
a confidence value by averaging the probability values (by
weighting or not the efficiency of each model). Another
possible feedback is the number of models agreeing on
the output (in this case, 7/7).

o PAI recognition: In case of attack, the presentation attack
instrument (PAI) can be identified and given as feedback
to the operator. Figure 11 presents the performance of
recognition. The meta model (stack) provides the best
result with an accuracy of 98.8% , using a neural network
achieves alone an accuracy 98.7%.
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Model AUC CA F1  Prec Recall MCC
AdaBoost 0.952 0.952 0.952 0.953 0.952 0.904
SVM 0.584 0.529 0.517 0.548 0.529 0.084
Stack 0.999 0.988 0.988 0.988 0.988 0.976
kNN 0.965 0.959 0.959 0.959 0.959 0.917
Naive Bayes 0.698 0.629 0.627 0.644 0.629 0.276
Neural Network 0.998 0.987 0.987 0.987 0.987 0.973
Random Forest 0.996 0.975 0.974 0.975 0.975 0.949

Fig. 11. PAI recognition results.

VI. CONCLUSION AND PERSPECTIVES

We showed in this work that we can propose a very efficient
PAD system (less efficient than deep PAD systems such as [26]
with a CA value of 99.5%) but providing useful and easy to
understand feedback to an operator to explain the decision.

We

intend as perspective to use CNN as feature extraction to

enhance results and generate other explanations (attention map
as for example).
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