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Abstract. Modeling harmonic progressions in symbolic music is a com-
plex task that requires generating musically coherent and varied chord
sequences. In this study, we employ a transformer-based architecture
trained on a comprehensive dataset of 48,072 songs, which includes an
augmented set of 4,300 original pieces from the iReal Pro application
transposed across all chromatic keys. We introduce a novel tokeniza-
tion and voicing encoding strategy designed to enhance the musicality
of the generated chord progressions. Our approach not only generates
chord progression suggestions but also provides corresponding voicings
tailored for instruments such as piano and guitar. To evaluate the ef-
fectiveness of our model, we conducted a listening test comparing the
harmonic progressions produced by our approach against those from a
baseline model. The results indicate that our model generates progres-
sions with more fluid voicings, coherent harmonic motion, and plausible
chord suggestions, effectively utilizing repetition and variation to en-
hance musicality.

Keywords: Music Generation · Chord Progressions · The Transformer
Network.

1 Introduction

In the field of music generation using neural network architectures, various ap-
proaches have been proposed to address different dimensions of music creation,
such as melody generation [17], harmony [4], accompaniment [11], rhythmic sec-
tion or beat generation [15,9], orchestration [13,1], chord identification [14], and
even music recording [5]. However, commercial generative music platforms typ-
ically employ machine learning to produce complete compositions that mimic
human-created Western pop music. These platforms leverage vast databases from
unknown sources, enabling them to surpass human production capabilities in
terms of quantity and time efficiency. Consequently, such platforms externalize
the agency of music creation [18] by eliminating the need for musical expertise
on the user’s part.
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In contrast, this project aims to develop tools tailored for musicians, thereby
preserving their creative agency [7]. Specifically, we focus on modeling harmony
by creating an AI assistant designed to outline the structure of potential compo-
sitions. This assistant provides suggestions for completing the next consecutive
chord or sequences of chord progressions, proposes voicings for piano or guitar
arrangements, generates MIDI files based on the suggested chord progressions,
and propose a tokenization strategy that includes all harmonic vocabulary avail-
able. The dataset and code reference can be found in the GitHub repository
https://github.com/Dazzid/chromaflow.

2 Related Work

Neural network methodologies for modeling music information are found in
the literature; perhaps a pioneer work is ChordRipple [10]. It introduced the
Chord2Vec encoder, an adaptation of the Word2Vec model, using datasets de-
rived from Bach’s chorales and the corpus of The Rolling Stone’s Top 200 songs.
Choi et al. [3] used Long Short-Term Memory (LSTM) networks trained on
textual representations of chords, such as ‘C:7 E:min’. They trained both a
character-level model and a word-level model (meaning "E:min" is represented
by five tokens in the first model and only by one in the second). Both models were
trained on 2,486 musical sequences from a collection scraped from Realbooks1
and Fakebooks. In 2020, Wu and Yang [19] introduced the Jazz Transformer,
a generative composition incorporating chords, melodies, and form. This model
was trained on the Weimar Jazz Database [16], which includes 456 jazz standards
spanning various styles such as Swing, Bebop, Cool, Hard Bop, and Fusion, in
MIDI format.

The transformer architecture does not inherently capture the nuances of
chord progressions in symbolic music notation. To address this limitation, re-
search published in 2021 has proposed modifications to the transformer’s posi-
tional embedding layer to better encode musical information. Chen et al. [2]
present an encoder-based transformer model specifically designed to classify
chords and elucidate harmonic progressions within classical music repertoires.
Similarly, Zeng et al. [20] introduce MusicBERT, a model leveraging the BERT
architecture for symbolic music understanding. MusicBERT offers capabilities
such as melody completion, accompaniment suggestion, and style classification
using the Meta MIDI Dataset (MMD) [8]. Li and Sung [12] developed MrBert,
an approach for automated music generation that focuses on melody and rhythm
prior to chord progressions. MrBert utilizes the OpenEWLD dataset and em-
ploys dual transformer encoders for melodies and rhythms. It implements a
sequence-to-sequence (Seq2Seq) process for chord generation, limiting its vo-
cabulary to triads, which constrains harmonic complexity. Additionally, chord
progression modeling using the GPT-2 decoder trained on the iRealPro dataset
is explored in [6].

1 https://en.wikipedia.org/wiki/Real_Book

https://github.com/Dazzid/chromaflow
https://en.wikipedia.org/wiki/Real_Book
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3 The Dataset

A dataset of original 4,300 songs from iReal Pro across various styles was pro-
cessed using a custom parser, extracting chords and structural data from mu-
sicXML files and metadata (style, time signature, tonality, composer, title). Song
information comprises bars (measures), chords (root notes, qualities, extensions,
slash chords, duration), and form (repeat bars, sectional jumps, codas). A data
augmentation algorithm transposes songs to all chromatic notes, seeking optimal
annotation. To address music21 library’s enharmonic errors, a custom transpo-
sition method using lines of fifths (LOF) as interval reference was implemented.
This method checks each chord relation backward in the LOF, ensuring the
tonal center is correctly aligned with its corresponding functional relatives, cor-
recting enharmonic dualities or misrepresentations and fifth-tonic relations. For
instance, correcting errors like ‘G#7’ resolving to ‘Dbmaj7’ by confirming LOF
distance and swapping to ‘G#7’ to ‘C#maj7’ when necessary. As a proof of
concept of the process, Figure 1 shows a "Giant Steps" fragment.

Line of Fifth (LOF)
Fb Cb Gb Db Ab Eb Bb F C G D A E B F# C# G# D# A# E# B#

-1 -3 -1 -3 8
-1 -3 -1 -3 8

Chromatic Distance (CD)
Eb E F F# G Ab A Bb B C C# D
5 5 3 8 3
C C# D D# E F F# G Ab A A# B

input sequence in Eb major: || Bmaj7 D7 | Gmaj7 Bb7 | Ebmaj7 | Am7 D7 | Gmaj7 Bb7 | Ebmaj7 F#7| Bmaj7 |…

output sequence in C major: || Abmaj7 B7 | Emaj7 G7 | Cmaj7 | F#m7 B7 | Emaj7 G7 | Cmaj7 Eb7 | Abmaj7 |… 

Steps 1 2 3 4 5
Scale Coordinates

(LOF, CD ) Tonality (8, 8) (-3, 3) (-1, 5) (-3, 3) (-1, 5)
From Eb B D G Bb Eb

To C Ab B E G C

Fig. 1. Visualizing the transposition process. In this case, we transpose Eb major to
C major. The example is a fragment of "Giant Steps". The time steps of each chord
transposed are shown on a blue scale, from light blue to dark blue. A tuple distance
coordinate is used to transpose; the first one is the "line of fifth" (LOF) distance,
and the second is the distance in the chromatic scale (CD). The LOF is useful when
checking tonality relations, e.g., if the distance of a dominant chord is 13 in the LOF,
the chord is corrected to its enharmonic distance -1.

The dataset comprises 48,072 songs with a sequence of 1024 elements. A
<pad> token was added for songs that do not complete the required length se-
quence. The train and test dataset is subdivided into 90% and 10%, respec-
tively. We first extracted the percentage and then applied data augmentation
separately.
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4 Models

In this paper, we compare two approaches: Model 1, a previous model [6] that
produced static chord blocks when suggesting chord progressions (CP), and
Model 2, which includes the new voicing method, tokenization strategy, MIDI
exporter, and data preparation.

We propose a strategy to optimize the training process by organizing the
chord vocabulary range into its textual representation with well-defined tokens.

The Tokenization: The token sequence comprises a context token (<style>),
tonality token (<tonality>), and chord progression enclosed by <start> and
<end> tokens. Chord units are decomposed into discrete subsections without re-
ducing vocabulary diversity. This is an important aspect of the proposed model,
as we do not reduce chord vocabulary. Each chord element starts with a dot
(.’), followed by a duration token, root, quality, and extensions. For exam-
ple, Cmaj7 add 9 is tokenized as ‘.’, ‘4.0’, ‘C’, ‘maj7’, ‘add 9’. Slash
chords like Cmaj7 / E become ‘.’, ‘4.0’, ‘C’, ‘maj7’, ‘/’, ‘E’, with the
secondary root as the principal reference. This approach results in 125 chord to-
kens, 22 form tokens, and 51 style tokens, totaling 198 tokens in the vocabulary.

For instance, the quality tokens are defined as follows:
‘maj’, ‘maj6’, ‘maj7’, ‘m’, ‘m6’, ‘m7’, ‘m_maj7’, ‘dom7’, ‘sus’, ‘sus2’,
‘sus7’, ‘sus4’, ‘o7’, ‘o’, ‘ø7’, ‘power’, ‘aug’, ‘o_maj7’.

Model Architecture: Both Models are based on the architecture of GPT-
2.2 Audio samples of both models can be found in the GitHub repository https:
//dazzid.github.io/chromaflow/

The first difference is in the size of the token embedding, 192 for Model 1
and 256 for Model 2. The token embedding is combined with a learned positional
embedding and a MIDI embedding.

The sequence length for Model 1 is 512 and for Model 2 is 1024. Model 2 was
trained with 120 Epochs, embedding: 512, heads: 4, layers: 4, batch_size: 128,
learning_rate: 3e-5, workers: 4, midi_vocabulary: 128.

Model 2 implements the voicing method, which aims to overcome the chord
rigidity observed in the previous version. The voicing is intended as a twofold
strategy: infer better musical representations into the positional embedding layer
of the transformer network and, from the suggested CP, export MIDI files with
the proposed voicing using a plausible configuration commonly used in guitar or
piano.

Our method for suggesting chord voicing leverages a structured compilation
of dictionaries, each outlining potential voicing dispositions per all chord quali-
ties. For instance, as illustrated in Table 1, the maj7 quality is represented by
semitone intervals distances from the root note. The MIDI mapping configura-
tion starts with root tokens, specified as follows: C = 48, C# = 49, D♭ = 49,
2 Our codebase follows Karpathy’s implementation: https://github.com/karpathy/
minGPT

https://dazzid.github.io/chromaflow/
https://dazzid.github.io/chromaflow/
https://github.com/karpathy/minGPT
https://github.com/karpathy/minGPT
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D = 50, D# = 51, E♭ = 51, E = 52, F♭ = 52, and continues in this sequence
for the rest of the list. Subsequently, each element of the voicing is appended to
its corresponding root note.

The Voicing Embedding (VE): The voicing algorithm adapts the distri-
bution of the chord notes, ensuring that each note contributes meaningfully to
the harmonic motion. It designates the 3rd and 7th notes of the chord as guide
tones while also recognizing the 9th as a pivot extension to smooth transitions.

VE is confined within a two-octave range during both training and genera-
tion. In tandem with token inputs, VE provides information pertinent only to
the current time step of the training sequence. The MIDI array is defined by a
first token clarifying the root; it updates when the chord’s quality appears in the
sequence with associated notes defined by the voicing method. Subsequently, we
extend it with extensions, sequentially enriching the VE with data until the fi-
nal time-step of the chord tuple, effectively preventing information leakage. The
MIDI array has eight values. The longer chord is formed out of seven notes; thus,
the eighth value, 127, is reserved for the slash chord as an identifier. The MIDI
vocabulary size is, by default, 128.

Voicing Interval Structure

v0 0 (r), 4 (3rd), 7 (5th), 11 (7th)
v1 0 (r), 7 (5th), 11 (7th), 16 (3rd)
v2 0 (r), 11 (7th), 16 (3rd), 19 (5th)
v3 0 (r), 11 (7th), 14 (9th), 16 (3rd)
v4 0 (r), 11 (7th), 14 (9th), 16 (3rd), 19 (5th)

Table 1. Major 7th chord voicing in chromatic distances and their alongside note
intervals. v_0 is the closed disposition, and the rest are open. The 9th note allows for
smooth transitions.

Positional Embedding: Positional embedding is added with input embed-
ding before the transformer encoder intake. This layer empowers the model to
discern and learn specific patterns by spatially distributing information in mul-
tiple dimensions. VE transposes MIDI data into an embedding tensor, then it is
reshaped to match the required architectural format and it is summed with the
standard positional encoding layer as shown in Fig. 2. The Embedding Tensor
(voicing_emb) is expressed as follows:

voicing_emb = W · Emb(midi_vocab, dm)(m) + b (1)

Emb(midi_vocab, dm)(m) The embedding function mapping the input MIDI
data m to its embeddings in RB×S×dm .

W The weight matrix of the linear layer with dimensions nembd × dm.
b The bias vector of the linear layer with dimension nembd.

– Embedding Layer (Emb): Transforms MIDI events into dense vectors.
– Linear Transformation (W,b): Projects the embeddings into a new space

with dimensionality nembd.
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Midi Emb. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 50 60 65 69 0 0 0 0 50 60 65 69 76 0 0 0

Pos. Emb. P. M4.0 PD Pm7 Padd9

Tok. Emb. W. M4.0 WD Wm7 Wadd9

Input . 4.0 D m7 add 9 |

Pred. . 4.0 Bb 7 add #11 |

Input Sequence

Generated Sequence

MIDI
Positional Encoding+

Transformer Decoder

~

Fig. 2. Representation of the sum of Tokens, Positional, and MIDI embedding in each
time-step. The token and position embedding follow the standard GPT-2 static sinusoid
embedding, and we add the MIDI positional embedding following the formula explained
before (Equation 1). The MIDI information is split per each time-step of the chord
formation. After the dot identifier, the chord starts to accumulate information in the
MIDI array sequentially until the chord is finished.

The HITS@k metric: We used the top k 1, 3, and 5, as defined in [20],
to evaluate the accuracy of predictions in both models. HITS@k measures the
fraction of correct answers within the top-k candidates, where k represents the
rank threshold. Specifically, for each k (k = 1, 3, 5), HITS@k determines the
number of correct predictions that appear within the first k positions of the
ranked list of candidates. The calculation is as follows:

HITS@k =
1

n

n∑
i=1

I(ranki ≤ k) (2)

– HITS@k: Represents the HITS metric evaluated at the kth position.
– n: The total number of instances or items under evaluation.
–

∑n
i=1: Sum across all evaluated instances.

– I(ranki ≤ k): An indicator function that returns 1 if the rank of the ith

instance is less than or equal to k, and 0 otherwise.

5 Results

We now present the findings from our evaluation using standard natural language
processing metrics alongside the results from a listening questionnaire designed
for human evaluation. The following Table 2 compares the HITS@K reports of
Models 1 and 2.
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Fig. 3. Pairwise 2D scatter plot of participants’ answers for ‘Voicing’, ‘Harmony’, and
‘Repetition’ questionnaire.

Table 2. Metrics

Train Loss Val. Loss HITS@1 HITS@3 HITS@5

Model 1 0.04982 0.03645 0.9138 0.9707 0.984
Model 2 0.1612 0.2428 0.9738 0.9946 0.9967

We performed a listening test with 25 responses. The average age of the
users is 40.88 ± 14.96. We asked participants to provide their ages and to rate
their expertise in understanding harmony on a scale from 1 to 5 and performed
a check by asking them to identify a four-chord functional progression from a
randomized audio sample, with five different chord progressions: a) ii, V, I, vi,
b) I, IV, V, vi, c) vi, ii, V, I, d) iii, IV, V, IV e) IV, V, VI, ii.

The listening test comprised 10 examples, with five CP generated by Model 1
and five by Model 2. Asking the participants to rate three different aspects on a
scale from 1 to 10: Voice leading: How cohesive and fluid do you find the voic-
ing? Harmony: How coherent do you find the harmonic motion? Repetition
and variation: To what degree do you find the progressions feature repetition
and variation? The reported evaluation is shown in Table 3:

The Pairwise Figure (Fig. 3) shows the distribution of answers comparing
both models. Evaluation from a previous publication [6] approximates the same
results by the scores obtained in Model 1.
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Table 3. Statistical Measures

Model 1 Model 2

Median Std Median Std

Voicing 5.723 2.184 8.058 2.030
Harmony 5.063 2.336 7.868 2.174
Repetition 5.347 2.386 7.300 1.892

6 Discussion and Conclusion

Regarding differences in reported metrics in Table 2, Model 1 notifies a train-
ing and validation loss considerably smaller than those reported by Model 2.
The main argument supporting this phenomenon is that Model 1 contains less
information in their chord sequences. This issue was resolved in Model 2 by
expanding the form. This modification has enriched the samples with a more
precise structure, reducing the occurrence of padding tokens.

Model 2 generated improved CP, now incorporating form sections. When
provided with a predefined chord progression sequence, Model 2 utilizes it as
recursive material to generate new progressions. HITS@K metrics for Model 2
also indicated superior performance in predicting ‘K’ elements within the tree
of ranked candidates.

As highlighted in [19] and evidenced by the outputs of Model 1, the GPT-2
decoder proves inadequate for encoding music information through symbolic
notation alone. It can predict a coherent test sequence, but musical quality
remains ambiguous. Given that voicing is not explicitly represented in sym-
bols, it relies on the musician’s expertise; there is still room for several modi-
fications to explore and test better dataset representations, perhaps adding an
encoder-decoder translator from symbolic to expert voicing configurations. Fu-
ture modifications could explore enhanced dataset representations, incorporat-
ing an encoder-decoder translator from symbolic to expert voicing configurations
alongside architectural refinements. For the next iteration, we aim to develop a
web application or Ableton Live extension with an interface featuring form and
structure visualizations, enhancing user comprehension of the proposed format.
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