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Abstract. Information and opinions come to us daily from a wide range
of actors, including scientists, journalists, and pundits. Some actors may
be biased or malicious, while others rely on physical measurements,
statistics, or in-depth research. Some sources may be signed or edited,
while others are anonymous and unmoderated. Trusting information
from such diverse sources is a serious challenge facing society today.
In this paper, we will describe another domain—the world of machine-
checked logic and mathematics—in which many similar issues can appear
but in which tractable solutions are possible. Many actors (people or soft-
ware systems) assert that certain logical statements are theorems in this
domain. We describe the Distributed Assertion Management Framework
(DAMF) that explicitly manages claims by theorem provers that they
have proved certain theorems from associated contexts. Provers willing
to trust other provers will be able to avoid rechecking proofs.

1 Introduction

Confidence in formal methods to provide significant practical benefits in the con-
struction of digital infrastructure goes back several decades and is illustrated by
the following quote by Cliff Jones in 1987: “Of the many problems presented by
the development of major computer systems, some can be ameliorated using for-
mal methods [24]”. Today’s society is deeply integrated with powerful computer
systems like the World Wide Web and cloud-based computing. While concerns
about faulty implementations persist in the decades since 1987, novel challenges
have emerged. A particularly pressing concern involves the trustworthiness of
information and data that rapidly and fluidly traverses the globe. This paper
considers how formal methods and trust might influence each other.

2 Trust crisis in the digital world

Trust in our understanding of how the world functions has been a long standing
problem. An early chapter in systematically addressing such trust dates back
to Sir Francis Bacon’s introduction of the scientific method—with its focus on
reproducible results—and the creed Nullius in verba (take no one’s word for it):
that is, before trusting something, check it for yourself. In human affairs different



from those involving scientific experimentation and the analysis of data, other
methods of gaining trust involved the inventions of such social institutions as
judges, magistrates, and jury trials. In recent centuries, trust in the world of
politics and foreign affairs is often offered by a limited number of media orga-
nizations acting as gatekeepers of information for which there was an economic
incentive to maintain the trustworthiness of their media products.

In today’s internet-dominated world, information flows freely and without
gatekeepers, but trust is scarce. Our current experience of attempting to trust
information in the internet era is made worse by the existence of various individ-
uals, groups, and governments who deliberately carry out propaganda and mis-
information campaigns. For example, the RAND Corporation described Russian
propaganda tactics used during the 2016 USA presidential election as a “Firehose
of Falsehood” [36]. This technique involves generating a large volume of false or
misleading information and spreading it rapidly and repeatedly across multiple
channels, such as newspapers, social media, and online forums. Often, the goal
of this tactic is not to convince an audience about specific policies but rather to
overwhelm the audience, sow confusion, and make it difficult to distinguish facts
from fiction. There are also perverse financial incentives for media agencies to
fuel misinformation campaigns by prioritizing clicks and revenue over truth.

While Internet technology has enabled the rapid composing and global dis-
tribution of information and misinformation, it has also created another shift in
the media world: almost all media is now in electronic form. This shift makes it
possible to consider the following approach to addressing misinformation.

Agents should cryptographically sign the information sources they pro-
duce. Consumers of information should maintain curated allow-lists of
agents they have explicitly or provisionally chosen to trust.

Of course, the remarkable naivety of this approach will certainly stop people from
considering it seriously. However, history shows that exploring “naive” solutions
can lead to unexpected breakthroughs. Consider the following two seemingly
naive-sounding ideas: both are problems that the digital era has forced society
to consider and for which digital solutions have been proposed.

– Problem: Your mobile phone gives out too much information about you
and your location. Solution: Have your phone lie for you. This approach
is at the heart of differential privacy, which studies how the degree of lying
can affect the utility of the data collected from multiple users [17].

– Problem: The binary file you plan to download could be a security risk on
your computer. Solution: Require that that code is paired with a formal
proof that it is not dangerous. This approach has been studied under the
title proof-carrying code [32].

We now add the following problem and solution pair.

– Problem:Worried that the documents you get are forged, fake, or generated
by an internet bot farm. Solution: Have all documents cryptographically
signed by their authors. This problem and the proposed solution is the start-
ing point for this paper.



It is worth noting that the sign-everything-by-trusted-parties approach is
used in some computer systems. For example, the secure booting of computers
can be accomplished with the UEFI (Unified Extensible Firmware Interface)
framework, which is designed to prevent the loading of unauthorized software
during the boot process of a computer. All code that is eventually loaded into a
machine’s firmware and memory is signed by agents whose public keys are on an
allow-list [34]. Another example is Debian’s SecureApt, which secures the apt

manager in Debian Linux distributions. It uses cryptographic signatures to verify
the integrity and authenticity of packages downloaded from software repositories,
ensuring that what is installed is genuine and unmodified software [14].

3 A shift in scope to trust within theorem proving

We (the authors) have insufficient expertise to address the crisis in trust de-
scribed above. This crisis is vast and multifaceted: if a comprehensive solution
is possible, then expertise beyond computer science will certainly be needed.
However, since our expertise is limited to computer science, we will significantly
narrow the scope of our focus in this paper. In particular, some problems sur-
rounding trust in the digital world reappear in mechanized proof-checking sys-
tems, where we have more expertise. This paper focuses on the following two
goals: (1) to determine how trust within the theorem-proving community can be
addressed, and (2) to explore the costs and benefits of a particular approach to
managing trusting relationships.

The beginning of proof checking can be traced back to at least 1666, when
Leibniz envisioned that there could be a universal symbolic language (character-
istica universalis) for stating propositions and that two people who were arguing
over the veracity of some particular statement could agree on calculemus (“Let
us calculate”). The result of such a calculation would indicate which person was
making the correct statement [40].

A more modern effort at proof-checking can be found in the work of Gordon,
Milner, & Wadsworth in 1979, where proofs in the logic for computational func-
tions (LCF) were built in a programmable system using an early version of the
ML functional programming language [20]. Since those early days, a great many
interactive theorem-proving systems have been built, a short list of which in-
cludes nqthm (a.k.a. Boyer-Moore theorem prover) [11], Isabelle [33,37], Coq [10],
HOL [21], PVS [35], Abella [7], and Lean [28].

It is now common to hear of large and complex formal proofs being built for
mathematical theorems or computer system properties. Such proofs can involve
many people working over many years. Even in that setting, most of the theo-
rem provers used in such tasks are autarkic: they only trust their proof-checking
kernels. Conversely, some theorem provers in the domain of program verification
have been designed to exploit and explicitly trust specific, special-purpose theo-
rem provers. For example, the Why3 prover relies on external theorem provers,
such as Coq, and SMT solvers, such as CVC4 and Z3, to discharge verification
conditions. Also, the TLA+ Proof System (TLAPS) relies on back-end provers,



such as Isabelle and Zenon, and SMT solvers, such as CVC3, Yices, and Z3. In
general, however, provers are not designed to trust other provers.

The implemented logical framework Dedukti [6] is an interesting compo-
nent in the space of theorem-proving systems. Dedukti provides a simple but
expressive logic and proof system based on a small logical core (dependently
typed λ-calculus with rewriting). Its simplicity makes it relatively easy to imple-
ment a proof checker and trust its correctness; in particular, a skeptic could re-
implement it. This system can provide an independent, secondary proof checker
for other provers that can output significant parts of their proof libraries (e.g.,
HOL, Isabelle, Coq) [15]. Such independent proof checking offers more confidence
in proofs. In practice, however, once a proof is available in a rather explicit and
straightforward format such as that offered by Dedukti, it is not a big step to
formally print Dedukti proofs into a range of other proof formats. Thus, if prover
A wants to use a proof by prover B, the latter prover outputs its proof to De-
dukti, which can then print that proof in a format that prover A can check. As
a result of this role of Dedukti, prover A does not need to trust either Dedukti
or prover B. Thus, Dedukti can be used to maintain the autarkic environment of
provers. The framework we describe in this paper is orthogonal to systems like
Dedukti since we may wish to trust a theorem prover even if no formal proof
certificate is made available.

4 “Trust requires proof” vs “Proof requires trust”

Fig. 1. The semantic web stack

We are all familiar with the implica-
tion that the existence of proofs can
instill trust in the veracity of state-
ments. This “trust requires proof”
perspective has been a part of mathe-
matics since at least the times of Eu-
clid. This perspective has also been
promulgated in the design of the se-
mantic web stack [9], which is dis-
played in Figure 1. In that stack,
cryptography provides some notion of
trust (via digital signatures, for exam-
ple) while proofs of logical statements
based on taxonomies and database
queries provide the bulk of trust. Pre-
sumably, the proofs involved in the se-
mantic web will be significantly more

shallow than those involved in modern mathematics and program verification.

In the rest of this paper, we shall, however, explore the converse perspective,
namely, that “proof requires trust”. This perspective arises from the following
two facts.



1. Formal proofs are generally large and detailed objects; they can only be
checked by computer programs.

2. Computer programs and their executions can be wrong.

Indeed, carefully designed and constructed proof checkers have been found to
have errors, usually leading to proofs of false. We must speak explicitly about
trusting proof checkers.

5 Establishing a design in a distributed context

In this section, we reiterate over the analogy made in Section 3, between problems
surrounding trust in the digital world and in the world of mechanized proof-
checking systems. We illustrate how they should be considered similarly in a
distributed and heterogeneous setting, and then set the stepping stone for our
investigation.

The following example illustrates a typical approach to using a proof as-
sistant. Consider that one wants to build a formal and machine-checked proof
that the number ζ(3) =

∑∞
i=1

1
i3 is irrational. (A three-page proof outline was

published in 1978 by Apéry [5] and a more complete proof was eventually de-
veloped by others; see [39] for a description of that development). The process
of developing a formal proof of this result is described in [29]. As documented
there, a particular prover is chosen (in this case, Coq), along with a specific set
of definitions and theorems already verified within Coq (in this case, the Math-
ematical Components libraries). While the authors utilized additional computer
tools like Maple to help organize the Coq proof; these tools were not relied upon
for verification. In the end, all computation and deduction steps were achieved
within Coq, and, as a result, only Coq needed to be trusted for the verification
of Apéry’s Theorem.

5.1 Considerations for distribution and heterogeneity

As exemplified by the scenario above, the traditional approach to mechanized
theorem proving in mathematics is autarkic. In today’s world, alternatives to cen-
tralized systems and authorities are desirable and achievable using existing and
well-understood technologies. We briefly describe three reasons why heterogene-
ity and distribution are worth considering in the mechanized theorem-proving
context.

1. Logic and proof serve diverse purposes, ranging from their uses in program-
ming, type systems, model checking, SAT and UNSAT solving, and mechanized
theorem proving. Expecting a single proof-checking kernel to handle all of these
uses equally seems undesirable since the computational demands of checking
proofs in these various domains can vary greatly. For example, type checking
generally requires unification, while checking UNSAT proofs often requires opti-
mizing memory storage. Expecting one checker to provide good performance on
both of these dimensions while also being simple enough to inspect for a lack of
errors seems unreasonable.



2. Generally, people already trust several agents in a passive sense. For in-
stance, users within the Coq community that use the Coq standard libraries do
not believe or claim that the theorems developed by the Isabelle community,
curated in the Isabelle standard libraries, are wrong. We propose extending this
trust paradigm to an active form, enabling users to reference and depend ex-
plicitly on externally proved theorems. Such enabling leads to distributed trust,
where multiple entities, not just a single one, contribute to the trust foundation
of a formal development.

3. Having advocated for enabling a common context that incorporates diverse
expression forms, verification procedures, and interacting agents, it naturally
leads us to consider an alternative approach for constructing libraries of formal
developments. In this new paradigm, structures become emergent and intercon-
nected rather than hierarchical and isolated. Provers, previously packaged with
their own libraries, transition to the edge, acting as tools for certifying results.
Consequently, curation processes no longer inherently depend on specific provers.
Instead, the fact that a theorem within a curation has been formally certified,
whether by a single agent or a combination of agents and tools, becomes simply
another piece of information to be conveyed.

5.2 Off-the-shelf, enabling technologies used by DAMF

After establishing why we are addressing the non-autarkic approach to theorem
proving in a distributed and heterogeneous context, we proceed by asking two
simple questions: How can we allow a user of one theorem prover to be able
to reuse and refer to a theorem proved in another theorem prover by another
agent? How can such a scenario keep track of dependencies and multiple agents
in a clear, verifiable, reproducible, and, thus, trustable manner?

We now describe our system, the Distributed Assertion Management Frame-
work (DAMF) [4], which provides structures that track who and what is being
trusted. As its name implies, DAMF centers around the concept of assertions.
When an agent produces a result or makes a claim, that agent generates an asser-
tion to allow others to do one of the following. Reuse the information with trust :
this option involves trusting the agent and accepting the information without
further verification. Simply reference the information: users can refer to the in-
formation without necessarily trusting the agent. An assertion acts like a stamp
attached to the information, signifying the agent’s statement: “You can trust me
if you want to use this information without further verification.” Technically, an
assertion is a signed claim. DAMF employs various readily available technologies,
the most important of which are described next.

Public-key cryptography Assertions link two pieces of information: who
makes a claim, and what is claimed. In DAMF, the who is called an agent,
and an agent is identified by a public-private key pair. The private key is used
to sign the content of the claim, and the public key is used to validate that sig-
nature. Public-key cryptography is used in DAMF because it is tamper-resistant



and associates the signature with a globally identifiable signer. As such, asser-
tions are independent information units that do not need to be tracked back
to their source for verification. Typical examples of agents are human users or
automated proof-checking services provided by a cloud computing platform. Dif-
ferent users using the same tool are naturally considered distinct agents. On the
other hand, a single user using different tools may be associated with multiple
keys, considered as multiple agents.

Content-addressable, distributed storage: IPFS Sharing information in
a distributed setting traditionally relies on the internet, particularly the web,
where resources are referenced by URLs pointing to their location on specific
servers. However, this use of the web is problematic for at least a couple of rea-
sons: the content of a URL can be altered, compromising the trustworthiness
of any links pointing to it, and server outages can render information inacces-
sible. Content-addressed storage offers a solution to those shortcomings since
it identifies information using a cryptographic hash, essentially a unique digital
fingerprint. This use of hashes separates information from its physical location,
eliminating the issues associated with location-based addressing. This decou-
pling also aligns well with the considerations of DAMF, as will be elaborated
in subsequent sections. These sections will define specific objects, each uniquely
identified by its content and equally retrievable from multiple locations. Issues
arising from potential name conflicts (for instance, two different objects being
given the same name by two agents unaware of each other) and with circular
dependencies are naturally avoided.

The InterPlanetary File System (IPFS) [8] provides the necessary infrastruc-
ture to interact with and leverage a content-addressed protocol within our DAMF
implementation. The next section showcases an example of an assertion object
in IPFS, identified by its Content Identifier (cid) and represented as JSON:1

// cid: bafyreiek2t75whn7gi6ygrymegguescqi4iudjj56ui ..

{ "format": "assertion",

"agent": "-----BEGIN PUBLIC KEY -----\nMFIwEA . . . ",
"signature": "3040021 e10db76a6606d7a813747849028c79e . . . "
"claim": {"/": "bafyreibvtxzqhvht5rfxpw3rkgx . . . " } }

Notice the "claim" attribute: its value represents an IPLD Link2 to another
object stored in IPFS. The above assertion object represents a DAG with nodes
that can be traversed from the root object or accessed separately by their cid:
adding /claim to the mentioned link in the footnote returns the referenced claim
object, and so on. This use of linked data proves to be an essential enabling
mechanism in the implementation of DAMF. For instance, presenting the claim
as a separate, independent object linked from the assertion structure instead of
being included directly within it allows a clear, transparent representation of
multiple agents asserting the same claim.

1 Can be accessed through this link.
2 InterPlanetary Linked Data; a way to represent linked data in IPFS

https://explore.ipld.io/?utm_source=bifrost&utm_medium=ipfsio&utm_campaign=error_pages#/explore/bafyreiek2t75whn7gi6ygrymegguescqi4iudjj56uitnij775u2e2j3nu


6 Designing DAMF: structures and main concepts

We mentioned in Section 5 that assertions are the principal concept in DAMF.
The main kind of assertions addressed in our current development is meant
to denote asserting whether a formula is a proved theorem, a conjecture, or a
theorem that depends on some lemma, where that lemma is also a formula. We
thus need a clear representation of a formula object, which we describe first.

6.1 Languages, contexts, and formulas

To be as general as possible, we represent the formulas used in assertions as
strings, i.e., in a format suitable as an input to a parser of the source proof
system. In order to determine that the input is well-formed, the source proof
system may need further information about the features—symbols, predicates,
functions, types, notations, hints, etc.—used in the formula. Such additional
information is the context of the formula, which we represent as a document
fragment in the language of the source proof system.

For example, take the following theorem written in Coq 8.16.1:

1 Definition lincomb (n j k : nat) := exists x y, n = x * j + y * k.

2 Theorem ex_coq : forall n:nat, 8 <= n -> lincomb n 3 5.

The formula corresponding to the theorem ex_coq is the literal string "forall

n:nat, · · · lincomb n 3 5". The symbols 8, <=, etc. are part of the standard pre-
lude of this language, and the symbol lincomb is defined in line 1, so a sufficient
context necessary for Coq 8.16.1 to parse and type-check the theorem statement
is the text of line 1, which is also written in the Coq 8.16.1 language.

Abstractly, a formula object in DAMF is a triple (L,Σ, F ) where L denotes
a language, Σ denotes a context, and F denotes a formula, all of which may
conceptually be thought of as strings. We will use the schematic variable N
to range over such formula objects. The language L is a canonical identifier
(specifically, the cid of a DAMF language object) which may optionally represent
information about a suitable loader for the language that will make sense of the
strings Σ and F ; DAMF compares languages just by their identifiers. Moreover,
L is interpreted as defining all the globally available features; for instance, the
symbol nat is part of the standard prelude of this version of Coq and should
therefore be understood as being defined in the language Coq 8.16.1. The context
Σ introduces any user-defined features such as the definition lincomb above that
is not part of Coq’s standard prelude.

Note that DAMF formula objects are considered to be closed, i.e., every sym-
bol used in the formula is defined in the language or the context. From the
perspective of DAMF, a formula object is an atomic entity. Additionally, DAMF
does not need to be aware of any reasoning principles of the language or context
components. For instance, no mechanism in DAMF would allow the substitution
of a declared symbol in the context with a concrete definition. The purpose of
differentiating a formula object into three parts is purely pragmatic: the lan-
guage part will in most cases be a well known object used by many agents, and



the context part may potentially be shared between multiple assertions. DAMF
consumers may be able to use this sharing of information to consolidate tasks
such as context-processing.

6.2 Sequents, productions, and assertions

A sequent in DAMF is abstractly of the form N1, . . . , Nk ⊢ N0 where each of the
Ni is a DAMF formula object defined in the previous subsection. We will use
the schematic variable Γ to range over ordered lists of formula objects, and S
to range over sequents. In a sequent Γ ⊢ N , we say that N is the conclusion
and Γ are the dependencies. Such sequent objects may be produced whenever a
formal proof has been checked in a proof checker: the conclusion represents the
statement of the theorem, and the dependencies are external lemmas that were
used during that proof.

A sequent is a purely mathematical object: if a reader knows the languages
the formulas in the sequent are built from, they can understand the meaning of
the sequent. Most sequents will be produced by particular agents and using par-
ticular tools. Thus, DAMF has the concept of a production object that enriches
an underlying DAMF sequent with the metadata necessary to reliably determine
how the sequent was produced. This is known in DAMF as a mode, which can
be one of the following:

– null, which denotes the absence of any mode information. If an agent signs
such a production, then they assume direct and full responsibility for its
correctness.

– a tag such as "axiom" or "conjecture", which is like null except that the
intended purpose of the sequent is made clear. For instance, a "conjecture"
tagged production would mean that any agent who signs that assertion does
not assert its truth directly.

– a tool link, which would generally be a link to a DAMF tool object that we
do not elaborate further in this paper. Suffice it to say that any well known
system would have a similarly well known DAMF tool object.

We write DAMF productions abstractly as Γ ⊢M B where Γ ⊢ B is an abstract
DAMF sequent and M denotes the mode.

The mere fact that a production is tagged with a tool mode does not guar-
antee that the tool indeed was used to produce the sequent in the first place. In
DAMF, the only entities that can make such guarantees are agents. Abstractly,
an agent is a globally unique name; we use the schematic variable K to range
over agents. Agents will be implemented as public-private key pairs.

We define a simple multi-sorted first-order logic where agents and sequents
are primitive sorts and where the infix predicate says is the sole predicate; the
atomic formula K says P , where K is an agent and P a production, is an asser-
tion. The says predicate is implemented in DAMF using public-key cryptography.
In a DAMF-aware proof system, the assertion K says (N1, . . . , Nk ⊢M N0) is in-
terpreted as follows:



– The pair (K,M) of the agent and the mode is treated as trusted. If the agent
cannot be trusted for some reason, such as if K occurs in a deny list, then
the assertion is unusable. Likewise, if M cannot be trusted in isolation, such
as if M denotes a version of a tool known to be unsound, then the assertion
is unusable. Separating agents and modes allows consumers of assertions
to tailor their trust parameters to particular agents; for example, they can
trust all modes for a reliable agent, or they can restrict a given agent to only
those modes that they are reliable with. Note that the agent signs the entire
production, including the mode, to prevent tampering of the assertions by
third parties.

– The conclusion of the assertion, N0, contains the formula representing the
lemma to be used in the DAMF-aware proof system. Note, in particular, that
the dependencies N1, . . . , Nk are not relevant when using this assertion as
an external dependency.

In the remainder of this paper, we will omit the modes unless relevant to simplify
the presentation.

6.3 Adapters

Because every formula object packages the formula together with its context and
language identifier, every formula object is independent of every other formula
object. Thus, in a sequent N1 ⊢ N0, there is no requirement that the conclusion
N0 and the dependency N1 be in the same language or have a common context.
When working within a single autarkic system (e.g., a proof checker using a single
logic), the sequents that are generated for every theorem will probably place the
conclusion and dependencies in the same language and context; however, in the
wider non-autarkic world, we can use multilingual sequents as first class entities
that are documented and tracked the same way as any other kind of sequent.

An important class of multilingual sequents comes from adapters. In order
for a theorem written in the Coq 8.16.1 language to be used by a different
system with a different language, say Abella 2.0.9, we will need to transform
the formula objects in the former language to those in the latter language. This
kind of translation is an example of a language adapter, which falls into the
general class of adapters, and which creates a sequent by translating between
languages or modifying the logical context by standard logical operations such
as weakening (adding extra symbols), instantiation (replacing a symbol by a
term), or unfolding (replacing a defined symbol by its definition).

As an example, the Coq 8.16.1 example above can be translated to the
Abella 2.0.9 language as follows, where the function symbols + and * are re-
placed by relations in Abella.

1 Import "nats". % some natural numbers library

2 Define lincomb : nat -> nat -> nat -> prop by

3 lincomb N J K := exists X Y U V,

4 times X J U /\ times Y K V /\ plus U V N.

5 Theorem ex_ab : forall n, nat n -> le 8 n -> lincomb n 3 5.



Lines 1–4 determine the context Σex_ab for the formula ex_ab on line 5. The
sequent that represents this translation therefore has the form(

Coq 8.16.1, Σex_coq, ex_coq
)
⊢ (Abella 2.0.9, Σex_ab, ex_ab).

Suppose agent K1 signs this translation and that agent K2 signs the sequent
⊢
(
Coq 8.16.1, Σex_coq, ex_coq

)
. As long as K1 and K2 are trusted by the user

of Abella 2.0.9, then the formula object (Abella 2.0.9, Σex_ab, ex_ab) can also
be treated as a theorem by that user thanks to composition, discussed next.

6.4 Composing assertions, trust

Assertions will be composed by means of a single rule of inference that imple-
ments a cut-like rule for sequents, Compose.

K says (Γ1 ⊢ M) K says (M,Γ2 ⊢ N)

K says (Γ1, Γ2 ⊢ N)
Compose

The effect of this rule means that the says predicate does not correspond one-
to-one with cryptographic signatures. The conclusion of the Compose rule may
not be a sequent explicitly signed by agent K even if both premises are. Instead,
the rule states that whenever K can be said to reliably claim, either by a cryp-
tographic signature or by a Compose-derivation tree, that both Γ1 ⊢ M and
M,Γ2 ⊢ N , then K must also reliably claim Γ1, Γ2 ⊢ N .

There are many variations to access control logic in the literature. For exam-
ple, some such logics use inference rules such as:

Γ ⊢ N
K says (Γ ⊢ N)

or
K says (Γ ⊢ N)

K says (K says (Γ ⊢ N))
.

Such rules are neither syntactically well-formed nor desirable for our purposes.
We use here a very weak access control logic (see [1] for a survey of such logics).
Instead, checking the validity of a given derivation using Compose is compu-
tationally trivial: each instance of it must eliminate exactly the leftmost depen-
dency in the second premise, which is a DAMF formula object that is compared
by cid.

Observe that the agent K does not participate in a meaningful way in a
derivation that is built with the Compose rule. Thus, for a given end sequent
of the form K says (⊢ N), a Compose derivation can be seen as a proof outline
for the desired theorem N , with the leaves of the derivation being the assertions
that need to be sourced from an assertion database (such as the DAMF global
store). We say that an assertion (K says S) is published if it can be retrieved
from such a database. The inference system is then enlarged with the following
rule that can be used to complete the open leaves of the Compose derivation
using assertions made by different agents.

(K1 says S) is published

K2 says S
Trust [K1 7→ K2]



This rule is parameterized by a pair of agents, K1 and K2, and is understood
to be applicable only when K1 is in the user-specified allow list of K2 (i.e., K1

speaks for K2, which we write as [K1 7→ K2]).
We do not assume that agents have any additional closure properties beyond

Compose and Trust. For example, suppose NA, NA→B , and NB are the for-
mula objects that correspond to the formulas A, A → B, and B respectively in
some language. We do not assume that the following rule is admissible:

K says (Γ ⊢ NA→B) K says (Γ ⊢ NA)

K says (Γ ⊢ NB)
mp.

That is, we do not assume that the formulas asserted by agentK are closed under
modus ponens. Similarly, we do not assume that what agents assert are closed
by substitution or instantiation of any symbols that are defined in the contexts
of the formula objects. While a particular agent may not be closed under modus
ponens, substitution, or instantiation, it is possible to employ other agents that
can look for opportunities to apply such inference rules on the results of trusted
agents. In particular, if we want the query engine to be able to use the mp rule,
then the engine must construct an agent Kmp whose sole function is to generate
assertions such as Kmp says (NA→B , NA ⊢ NB) that correspond to applications
of the mp rule. Of course, Kmp will need to be in the allow list for any agent
wanting to use this agent.

7 Experiment: a heterogeneous verification using Abella,
Coq, and λProlog

This section presents a complete example of proving the following theorem in
Abella [7] by trusting external lemmas from Coq and λProlog [30]:

For n ∈ N, fib(n) = n2 if and only if n ∈ {0, 1, 12} where fib(n) denotes
the nth Fibonacci number.

The purpose of this example is to illustrate the communication with DAMF and
the various edge provers, so the theorem itself is not particularly challenging.
Nevertheless, a complete proof of this theorem inside Abella would currently
require formalizing a sizable amount of integer arithmetic, not to mention auto-
mated tactics for reasoning about arithmetic. Since Coq has these components
already, we will use Coq to prove the following theorem by making heavy use of
its linear arithmetic solvers:

For n ∈ N, if n ≥ 13 then fib(n) > n2.

On the other hand, we will use λProlog to find all the pairs ⟨n,m⟩ where
fib(n) = m and n ∈ {0, 1, . . . , 12}. We could of course have used Coq to perform
these computations as well, but it is pedagogically useful to see an example that
combines both functional and relational programming.



Our DAMF implementation’s architecture consists of a global layer stored in
IPFS. This layer stores DAMF global objects, such as formulas and sequents,
that any participating agent can create, publish, and access. Instead of requiring
provers to interact directly with IPFS, we have implemented Dispatch, an op-
tional intermediary tool. Dispatch acts as a bridge between edge provers/tools
and the global layer. It provides standardized input and output formats corre-
sponding to specific DAMF objects, simplifying system interaction. A DAMF-
aware prover must only build and parse specific JSON objects into and from
theory files. Dispatch is designed for human and tool use and currently imple-
ments the publishing and retrieval of DAMF objects to and from the global
store. It also implements a lookup facility that can enumerate paths that yield
some theorem starting from a given set of assertions and report the pairs (agent,
mode) corresponding to assertions along each path, along with any remaining
dependencies. Both DAMF global objects and the dispatch tool are designed to
be adaptable and expandable.

Further details on this example can be found through the distributed asser-
tions website.3

7.1 Setup in Abella

Abella has no built in notion of natural numbers. We therefore begin an Abella
development (in a .thm file) by declaring the nat type together with its con-
structors z and s to obtain a unary representation for natural numbers. The
Abella type system is only used for syntactic checks and yields no induction
principles for logical reasoning, so we have to define an auxiliary inductively
defined relation, also called nat, that is used for inductive reasoning. In Abella,
the namespaces of types and predicates are separate, so the same name nat can
be used both for type names and for predicate names. Finally, because Abella
uses only λ-equivalence as its equational theory of simply-typed λ-terms, we will
have to capture recursive computations in the form of relations; thus, operations
such as addition and multiplication, and relations such as ≤, are defined using
inductively defined relations. Even the Fibonacci function will be encoded using
a binary relation. Thus, our Abella development begins as follows.

1 %% FibExample.thm

2 Kind nat type.

3 Type z nat.

4 Type s nat -> nat.

5 % nat X ≡ X is a natural number

6 Define nat : nat -> prop by nat z ; nat (s X) := nat X.

7 % le X Y ≡ X ≤ Y

8 Define le : nat -> nat -> prop by le z X ; le (s X) (s Y) := le X Y.

9 % lt X Y ≡ X < Y

10 Define lt : nat -> nat -> prop by · · ·
11 % plus X Y Z ≡ Z = X + Y

3 https://doi.org/10.5281/zenodo.11163505.

https://doi.org/10.5281/zenodo.11163505


12 Define plus : nat -> nat -> nat -> prop by · · ·
13 % times X Y Z ≡ Z = X × Y

14 Define times : nat -> nat -> nat -> prop by · · ·

The nth Fibonacci number is defined in Abella relationally as well:

15 Define fib : nat -> nat -> prop by

16 ; fib z z ; fib (s z) (s z)

17 ; fib (s (s X)) N := exists L M, fib X L /\ fib (s X) M /\ plus L M N.

7.2 Using λProlog to compute ground instances

While Abella has a logic programming engine, which implements a fragment of
λProlog, as part of its search tactic, it is inefficient and cumbersome to use. We
could improve this implementation in Abella, but we could also use a trusted
external λProlog engine such as Teyjus [41] or ELPI [16]. In λProlog, we can
define the nat type and the predicates plus and fib analogously to the Abella
formulation above.

1 %% fib.sig: type, term, and predicate constants

2 sig fib.

3 kind nat type. type z nat. type s nat -> nat.

4 type plus nat -> nat -> nat -> o.

5 type fib nat -> nat -> o.

1 %% fib.mod: program clauses for predicates

2 module fib.

3 plus z X X.

4 plus (s X) Y (s Z) :- plus X Y Z.

5 fib z z. fib (s z) (s z).

6 fib (s (s X)) N :- fib X L, fib (s X) M, plus L M N.

With this definition, we can ask a λProlog engine to solve fib goals where
the first argument is ground. We can also, of course, check that a given ground
predicate is indeed derivable. We have instrumented a variant of the Teyjus
implementation of λProlog to produce a Dispatch assertion (i.e., in the input
language of Dispatch) for such checks. For example, the above check will be
written as the following JSON object.

1 { "format": "assertion", "agent": "exampleAgent",

2 "claim": {

3 "format": "annotated-production",

4 "annotation": {"name": "fib5"},

5 "production": {

6 "mode": "damf:bafyreic3. . .",
7 "sequent": { "conclusion": "fib5", "dependencies": [] } } },

8 "formulas": {

9 "fib5": {

10 "language": "damf:bafyreibv. . .",
11 "content": "fib (s (s (s (s (s z))))) . . .",



12 "context": ["fib"] } },

13 "contexts": {

14 "fib": {

15 "language": "damf:bafyreibv. . .",
16 "content": [

17 – contents of fib.sig as a string – ,

18 – contents of fib.mod as a string –
19 ] } } }

The "language" values in lines 10 and 15 are understood to be canonical
references to a DAMF object referencing the language of λProlog. Similarly, the
"mode" value in line 6 is a canonical reference to a DAMF object describing the
Teyjus implementation. The "agent" value in line 1 is the name of some agent
profile created by running dispatch create-agent; Dispatch uses the private key
of this agent profile to sign the assertion when publishing it to DAMF. This JSON
object claims that a specific version of the Teyjus implementation of λProlog has
computed the fifth Fibonacci number to be 5.

7.3 Proving arithmetic facts in Coq

The lemma we are ultimately interested in depends on fairly significant arith-
metic reasoning. We will use Coq’s linear integer arithmetic solver lia to write
fairly straightforward proofs of the lemma. However, in Coq we will define fib not
as a binary relation but as a recursively defined fixed point with one argument.
The Coq v. 8.16.1 development is shown below, with proofs elided.

1 Fixpoint fib (n : nat) :=

2 match n with 0 => 0 | S j =>

3 match j with 0 => 1 | S k => fib j + fib k end end.

4 Theorem fib_square_lemma : forall n, 2 * n + 27 <= fib (n + 12). · · ·
5 Theorem fib_square_above : forall n, 13 <= n -> n ^ 2 < fib n. · · ·

These proofs are built using the linear integer arithmetic solver lia in the proofs
that is distributed with Coq.

7.4 Adapting λProlog and Coq sequents for Abella

Taking stock, we have ground facts built in the higher-order logic programming
language λProlog using the tool Teyjus, and a lemma about the rate of growth
of the Fibonacci function written in the calculus of inductive constructions using
the tool Coq. Obviously, neither of these languages correspond to the language
G that forms the basis of the Abella theorem prover. Thus, we need adapters for
translating these external dependencies to Abella’s language.

These adapters can, in principle, be quite sophisticated; for instance, they
can be written using Dedukti. For illustration purposes in the present paper, we
adapt the sequents by hand by asserting in Abella the intended translation at the
point of importing the assertion. Imagine, for instance, that the fib5 assertion
shown in Section 7.2 is given the cid: bafyreifu. . .. Here is how we would import
it in Abella:



18 %% FibExample.thm continuing...

19 Import "damf:bafyreifu. . ." as

20 Theorem fib5: fib (s (s (s (s (s z))))) (s (s (s (s (s z))))).

From the perspective of Abella, this looks just like an ordinary Theorem statement,
except there is no proof that follows. Instead, Abella would generate the following
adapter sequent (which it could then publish using Dispatch):

1 { "format": "assertion", "agent": "exampleAgent",

2 "claim": {

3 "format": "annotated-production",

4 "annotation": {"name": "fib5"},

5 "production": { "mode": null,

6 "sequent": {

7 "conclusion": "fib5",

8 "dependencies": [

9 "damf:bafyreifu. . ./claim/sequent/conclusion" ] } } },

10 "formulas": {

11 "fib5": {

12 "language": "damf:bafyreiga. . .",
13 "content": "fib (s (s (s (s (s z))))) . . .",
14 "context": ["fib5!context"] } },

15 "contexts": {

16 "fib5!context": {

17 "language": "damf:bafyreiga. . .",
18 "content": [

19 "Kind nat type.", "Type z nat.", "Type s nat -> nat.",

20 "Define fib : nat -> nat -> prop by . . .." ] } } }

Lines 12 and 17 above are references to a DAMF object describing the Abella
language. In line 5, the "mode" field is left as null to indicate that this assertion
was not created by any tool; in other words, the agent "exampleAgent" is solely
responsible for the assertion. If a tool had been used instead, this field would
refer to the DAMF description of that tool. Finally, in line 9, the dependency that
is included is the cid of the conclusion of the assertion object that was produced
by λProlog, and in turn imported by Abella in line 19 of FibExample.thm. The
dependencies in a sequent are formula objects, not assertions; the same formula
object can have several different proofs of it asserted by a variety of agents, and
the use of the formula as a lemma should not be seen as privileging any particular
assertion above others. From Abella’s perspective, then, the name fib5 denotes
just the formula on line 20 of FibExample.thm.

The Coq lemma fib_square_above is imported into Abella in a similar fashion.
The only difference is that the Abella translation of the Coq theorem needs to be
sensitive to the fact that the type nat of Abella is not inductively defined as in
Coq, and arithmetic operations are defined relationally. A conservative treatment
is as follows:

21 %% FibExample.thm continuing...

22 Import "damf:bafyreibr. . ." as

23 Theorem fib_square_above : forall n, nat n -> le (s13 z) n ->



24 forall u, times n n u -> forall v, fib n v -> lt u v.

The cid damf:bafyreibr. . . on line 22 is that of the assertion corresponding
to the theorem fib_square_above in Coq. The imported assertion is rewritten as
shown in lines 23–24. As before with λProlog, the assertion corresponding to this
translation, with the "mode" of production set to null, can be easily generated
and published by Abella.

Given these external lemmas from λProlog and Coq, the final desired theorem
is fairly straightforward to assemble. The interested reader can find the full
details in the online walk-through [3].

8 A DAMF-aware prover: Costs and Benefits

We list three potential costs of adopting DAMF within the theorem-proving
community and comment on why they are relatively inexpensive.

1. New standards and processes must be adopted. Any exercise in communicat-
ing between different software systems must rely on some standards that
define the structure of the data communicated. Here, we have focused on
keeping those standards close to a minimum, keeping close to generic require-
ments for a range of theorem provers. The actual communicated artifacts use
a standardized structure (here, JSON).

2. New software is needed. Adding a new feature to a theorem prover requires
new code. Our implementation of DAMF factors that new software into two
parts: (1) the Dispatch tool that is written in easily deployable JavaScript
using off-the-shelf technology and (2) new code located in the printing and
parsing subsystem of individual provers. As illustrated in Section 7, the
logical kernel of provers does not need to be touched to employ DAMF.

3. Agents must manage public and private keys and allow lists. While this is a
new feature for the theorem-proving community, it is standard technology
used by online service providers, ranging from banking to cloud computing.

Next, we highlight the possible benefits a framework such as DAMF could
have for the general proof-checking community and also for an individual prover.

8.1 Potential benefits for the community

One benefit of using a framework that explicitly addresses trust within the proof-
checking community is that it helps to document the possible roles of special-
purpose theorem provers within general-purpose proof-checkers. Most proof as-
sistants, such as Coq and Isabelle, are general-purpose in the sense that they can
be used in a wide array of areas in mathematics and computer verification. Many
other formal method tools, such as SAT solvers, work in very restricted domains:
as a result, proof checkers in those more narrow domains can be significantly op-
timized for modern operating systems and computer hardware to improve their
usage of time and memory. If we are committed to being autarkic, the proof cer-
tificate generated by UNSAT (using, for example, the DRUP format [22]) would



need to be rechecked by the one proof checker we trust. While such rechecking
can be done in practice [13], a general purpose kernel is not likely to be able to
recheck successfully the large proof certificates that have been generated recently
for open mathematical problems. For example, DRUP-based proof certificates
that the Erdös discrepancy conjecture is true when its parameter is set to 2 has
been reported as being 1.88 gigabytes in size [26], while a DRUP-based proof
certificate answering the Schur Number Five problem is much larger, weighing
in at 2 petabytes [23]. If these results were to be needed in conventional and
general-purpose proof assistants, it is unlikely that their kernel rechecks them:
the only other options would be to explicitly trust another, specialized proof
checker or to find another, presumably smaller proof. Using DAMF, of course,
we would not require this rechecking to be done; instead, that framework would
track the explicit trusting of such a specialized prover.

As we have described in Section 6.3, adapters are used to translate theorems
and their context in one language to theorems and contexts in another language.
In essence, adapters are a pairing of a parser for one language and a printer for
another language. Given that the correctness of both printing and parsing is a
significant problem in the setting of theorem provers (see, for example, [25,38]),
our use of adapters explicitly elevates this pairing to be a named tool that one
can choose to trust or not. The considerable work that has gone into representing
logics and proof systems in generic ways, such as Dedukti [6] and MMT [42], can
be used to construct high-quality and broadly applicable adapters.

In contrast, many modern theorem provers come with a central repository
containing a structured library of theories: see, for example, libraries associated
to Lean [43] and Coq [31]. Given that the underlying file structure of DAMF
is based on IPFS, there is no a priori hierarchy imposed on the structure of
theories (i.e., collections of definitions, lemmas, and theorems). As a result, the
theorems that appear in the DAMF global store or information layer can be
curated into any number of collections to suit different needs. For example, a
textbook in one area of mathematics might organize its collection of theorems
differently than those used by software developers attempting to prove correct
some safety-critical computer components.

A final benefit for the proof checking community is the “let a thousand flowers
bloom” principle: efforts to prove theorems in many different domains with many
different methods should be encouraged. If these efforts yield results that can
be trusted, their results should be available directly to any other prover willing
to, at least, tentatively trust them. Specialized proof languages for specialized
settings could then be incorporated into the community activity of establishing
proofs: examples of such systems are the geometrically-based prover GeoGebra
[18] and a graphic presentation of commuting diagrams [27].

8.2 Potential benefits for an individual theorem prover

While the structure of DAMF has been motivated around issues involved with
a community of different theorem provers, there are several reasons that an
individual theorem prover might adopt elements of DAMF for internal reasons.



Version control tracking yields an immediate and natural use of DAMF. If a
theorem has been checked by version n of a prover, can we trust that theorem in
version n+ 1 or insist that it be rechecked by version n+ 1? Certain features of
the newer proof checker may have stayed the same, and, as a result, one might
be willing to accept certain theorems checked by the earlier version of the prover.

Since deploying a framework like DAMF removes the emphasis on rechecking
proofs, it removes the need for kernel implementations to chase performance by
means of complicated techniques whose correctness conditions may be unclear.
As a result of avoiding such optimizations, the kernel can be simpler and, hence,
more accessible to inspect, maintain, and trust.

Adapters can provide features and logical expressiveness without incorpo-
rating them into the kernel’s logical core. For example, the logic behind both
λProlog and Abella is based on Church’s Simple Theory of Types [12]. While this
logic allows for quantification at all simple types, it does not allow for type vari-
ables and type instantiation, i.e., polymorphism. Some form of polymorphism
is however immensely useful and it is therefore demanded by users of these two
systems. One approach to providing polymorphism can be to extend the foun-
dations of Church’s logic to include type variables (for example, by moving to
a much more expressive logic like System F [19]). Enriching the logic in this
way can make the kernels of these systems much more involved (especially since
the kernels of both λProlog and Abella involve unification of λ-terms). Another
approach that does not involve any changes to the kernel would be to write
an adapter that takes as input definitions and theorems that mention a generic
type constant, say a, and then outputs versions of those definitions and theo-
rems in which a is instantiated with different types. For example, the Abella file
in Figure 2 defines the append relation on lists of simple type list a. As far
as Abella’s kernel is concerned, the type a is basic type, and this file checks in
the (unmodified) kernel. A rather simple adapter can be written that specializes
the type a to arbitrary types, such as nat or bool, and then create specialized
versions of the append predicate and associated theorems. The adapter must of
course be trusted to perform this specialization correctly, but the kernel does
not need to be touched.

Finally, web browsers are emerging as possible interfaces for theorem provers;
for example, a version of Abella is available as a client-side JavaScript pro-
gram [2]. Because web browsers in a browser context usually run in a sandbox,
there is the problem of having a persistent store (such as a file system). IPFS
and DAMF readily solve this problem by persisting developments to the global
cloud. Note that because of its content-addressed nature, unless some other node
in the network accesses these files by their cids, they will not propagate; thus,
private developments will remain private as long as the cids are not published.

9 Conclusion

We have focused on describing a framework that explicitly tracks the trust that
one must have when using multiple proof checkers. The Distributed Assertion



1 Kind list type -> type.

2 Kind a type.

3 Type empty list a.

4 Type cons a -> list a -> list a.

5

6 Define append : list a -> list a -> list a -> prop by

7 append empty L L ;

8 append (cons X L) K (cons X M) := append L K M.

9

10 Theorem append_associative : forall A B C AB ABC,

11 append A B AB -> append AB C ABC ->

12 exists BC, append B C BC /\ append A BC ABC.

13 induction on 1. intros. case H1.

14 search.

15 case H2. apply IH to H3 H4. search.

Fig. 2. An example of accommodating type instantiation.

Management Framework (DAMF) uses the InterPlanetary FileSystem to dis-
tribute proof-checking assertions using public key cryptography. DAMF provides
for declaring and managing the kinds of dependencies that occur within theo-
rem provers without an explicit reference to a centralized library structure. This
approach can be implemented in provers with minimal modifications using the
Dispatch tool. We have illustrated how the Abella theorem prover benefits from
including DAMF features, and we have argued that other provers might expect
similar benefits. Lifting the DAMF framework to handle other domains, such as
journalism and experimental science, will require the treatment of new dimen-
sions of trust and mistrust, such as observational data and computations based
on such data. Whether or not such a lifting is possible is still open.

References

1. Abadi, M.: Variations in access control logic. In: van der Meyden, R., van der Torre,
L.W.N. (eds.) Deontic Logic in Computer Science (DEON 2008). LNCS, vol. 5076,
pp. 96–109. Springer (2008). https://doi.org/10.1007/978-3-540-70525-3_9

2. Abella in your browser (2015), https://abella-prover.org/tutorial/try
3. Al Wardani, F., Chaudhuri, K., Miller, D.: The distributed assertions website, May

2024 archived version, https://doi.org/10.5281/zenodo.11163505
4. Al Wardani, F., Chaudhuri, K., Miller, D.: Formal reasoning using distributed

assertions. In: Sattler, U., Suda, M. (eds.) FroCoS 2023. LNAI, vol. 14279, pp.
176–194 (2023). https://doi.org/10.1007/978-3-031-43369-6_10
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