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DeepMIP-Eocene-p1: multi-model 
dataset and interactive web 
application for Eocene climate 
research
Sebastian Steinig   1 ✉, Ayako Abe-Ouchi   2, Agatha M. de Boer3, Wing-Le Chan2, 
Yannick Donnadieu4, David K. Hutchinson   3,5, Gregor Knorr6, Jean-Baptiste Ladant   7,  
Polina Morozova8, Igor Niezgodzki6,9, Christopher J. Poulsen10, Evgeny M. Volodin11, 
Zhongshi Zhang   12,13, Jiang Zhu14, David Evans15, Gordon N. Inglis15, A. Nele Meckler   16 & 
Daniel J. Lunt   1

Paleoclimate model simulations provide reference data to help interpret the geological record and 
offer a unique opportunity to evaluate the performance of current models under diverse boundary 
conditions. Here, we present a dataset of 35 climate model simulations of the warm early Eocene 
Climatic Optimum (EECO; ~ 50 million years ago) and corresponding preindustrial reference 
experiments. To streamline the use of the data, we apply standardised naming conventions and quality 
checks across eight modelling groups that have carried out coordinated simulations as part of the Deep-
Time Model Intercomparison Project (DeepMIP). Gridded model fields can be downloaded from an 
online repository or accessed through a new web application that provides interactive data exploration. 
Local model data can be extracted in CSV format or visualised online for streamlined model-data 
comparisons. Additionally, processing and visualisation code templates may serve as a starting point 
for advanced analysis. The dataset and online platform aim to simplify accessing and handling complex 
data, prevent common processing issues, and facilitate the sharing of climate model data across 
disciplines.

Background & Summary
Past climate changes provide an opportunity to better understand how key components of the climate system 
might change under anthropogenic greenhouse gas emissions and thus help constrain future climate change1. 
Comparisons with paleoclimate data allow us to evaluate climate models under atmospheric CO2 scenarios 
similar to those possible in the near future. Furthermore, these paleoclimate model simulations provide global, 
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physically consistent reference data to support the interpretation of paleoclimatic data across a wide range of 
disciplines, e.g. in geology, biology, and geochemistry.

One of the most well-studied deep-time intervals with respect to model-data comparison is the early Eocene 
Climatic Optimum (EECO; ~53.3 to 49.1 million years ago2) as it provides an analogue for future very high 
emission scenarios3. It was characterised by atmospheric CO2 concentrations of ~1,500 ppmv4 and global mean 
surface temperatures (GMSTs) 10 to 16°C warmer than pre-industrial5. Several modelling studies have focused 
on improving our understanding of the mechanisms and implications of EECO warmth6–10 and ultimately moti-
vated the formulation of the Eocene Modelling Intercomparison Project (EoMIP)11. While limited due to its 
opportunistic design, EoMIP nonetheless highlighted the possibility of using multi-model ensembles to system-
atically assess model-model and model-data differences in our understanding of Eocene climate.

Building on this potential, DeepMIP - the Deep-Time Model Intercomparison Project - was designed to pro-
vide a consistent framework to carry out coordinated EECO model experiments12. Eight modelling groups per-
formed a total of 35 model simulations using the same paleogeographic and vegetation boundary conditions at a 
range of atmospheric CO2 concentrations (Table 1). These new simulations showed more consistent global mean 
surface temperatures across the ensemble and larger climate sensitivities compared to the EoMIP results13. The 
coordinated experiment set-up allowed a separation of the relative influence of changes in CO2 concentrations and 
non-CO2 boundary conditions (i.e. removal of land ice and prescribed vegetation) on the simulated surface tem-
peratures. Non-CO2 boundary conditions alone lead to 3-5°C overall warming and contribute substantially to the 
reduced meridional temperature gradient, while higher CO2 levels drive global mean warming due to decreases in 
atmospheric emissivity. Importantly, three models (CESM1.2-CAM5, GFDL-CM2.1 and NorESM1-F) were able 
to produce absolute GMSTs and reduced meridional temperature gradients consistent with the geological record 
at CO2 concentrations within the reported range of EECO reconstructions (1170 to 2490 ppmv14).

The DeepMIP-Eocene ensemble has already been used in multiple studies, analysing specific aspects of the 
Eocene climate in more detail, e.g. the meridional temperature gradient15, the surface to deep ocean temperature 
relationship16, ocean circulation17, sea ice18, hydroclimate19–23, and the impact of mountains24,25. We anticipate 
continued interest in the DeepMIP-Eocene model data, both for model intercomparisons and for model-data syn-
theses, and aim to document the design of the dataset and streamline access to improve future reuse of the data. 
Although the use of large model ensembles is helpful in quantifying the influence of uncertainties in boundary 
conditions and limitations in model performance on the simulated Eocene climate, it also presents a technical 
hurdle in accessing and fully utilising the available data. The use of model-specific data standards, post-processing 
workflows and variable naming schemes can make the analysis and comparison of multi-model ensembles a tedi-
ous process or even lead to processing errors. The need for significant data processing expertise can therefore limit 
the benefits and wider use of these important data, particularly in non-modelling paleoclimatology disciplines.

Here, we build on the DeepMIP framework to address these issues and present standardised, quality-checked 
EECO model output to facilitate multi-model processing and analysis, both for model intercomparisons and 
model-data comparisons. We have reprocessed the output of a total of 26 EECO simulations at CO2 concentra-
tions between ×1 and ×9 pre-industrial levels, together with their nine pre-industrial reference experiments, 
to generate a dataset of common climate variables with consistent temporal averaging, variable names and units 
across the ensemble. We follow the CMIP convention for variable names and units as closely as possible to take 
advantage of existing processing workflows, and use the ensemble spread to quantify the internal consistency of 
the output fields.

We provide two complementary ways of accessing the dataset, tailored to the most likely future use cases. 
First, the entire dataset is stored as global, gridded netCDF (network Common Data Form) files in the Centre 
for Environmental Data Analysis (CEDA) Archive and can be downloaded as individual files or in batch mode26. 
Combined with the consistent DeepMIP naming convention, this provides a more traditional, scriptable starting 
point for further analysis. This approach shares the goals of other existing infrastructure projects for sharing 
climate model data such as the Earth System Grid Federation (ESGF)27, but the limited scope and overall much 
smaller file sizes of this dataset allow us to use centralised, rather than distributed, data storage for greater user con-
venience. Second, we present an interactive web application to facilitate model-data comparisons of EECO sur-
face temperatures and precipitation. This is a very common use case for paleoclimate model data, but also involves 
multiple processing steps and potential pitfalls, especially when working with a large model ensemble. Modern 
web technologies provide the opportunity for intuitive, browser-based access to complex data and, therefore, 

Model Family PI ×1 ×1.5 ×2 ×3 ×4 ×6 ×9 Geography Reference

CESM1.2-CAM5 CESM ×  ×  ×  ×  ×  29 13,32

COSMOS-landveg-r2413 COSMOS ×  ×  ×  ×  29 13

GFDL-CM2.1 GFDL ×  ×  ×  ×  ×  ×  29 13

HadCM3B-M2.1aN HadCM3 ×  ×  ×  ×  29 13

HadCM3BL-M2.1aN HadCM3 ×  ×  ×  ×  29 13

INM-CM4-8 INMCM ×  ×  29 13

IPSLCM5A2 IPSL ×  ×  ×  29 13,40

MIROC4m MIROC ×  ×  ×  ×  29 13

NorESM1-F NorESM ×  ×  ×  30 13

Table 1.  Summary of the available DeepMIP-Eocene model simulations in version 1.0 of the dataset. 
Experiment short names are defined in Table 2 and paleogeographies are shown in Fig. 1.
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the possibility to assist users in extracting subsets of relevant information for them. Recent examples include 
the Interactive Atlas28 of the Intergovernmental Panel on Climate Change (https://interactive-atlas.ipcc.ch,  
last access: 26 June 2024) and the Copernicus Interactive Climate Atlas created by the Copernicus Climate 
Change Service (https://atlas.climate.copernicus.eu/atlas, last access: 26 June 2024). The DeepMIP web appli-
cation follows a similar approach by providing intuitive data access and custom workflows to simplify common 
model-data comparison tasks. The web application automatically calculates paleolocations for a single site or 
a list of present-day locations, extracts the corresponding model data from the various model grids and plots 
a summary of the results. The resulting data can be exported for further offline analysis, while the underlying 
Python code can be used as a starting point for custom analysis.

The dataset and tools provided are designed to enable data access for non-programmers and to streamline 
analysis for more advanced users to routinely evaluate existing and emerging paleoclimate data against the full 
DeepMIP-Eocene model ensemble. This will help to bridge the gap between modelling and data communities to 
ultimately advance our understanding of early Eocene climate and could potentially serve as a reference frame-
work for similar projects of other geological time periods in the future.

Methods
DeepMIP-Eocene experiments.  All EECO simulations that follow the DeepMIP-Eocene experimen-
tal design protocol12 and were completed by September 2023 form the input data for version 1.0 of the dataset 
(Table 1). These simulations are identical to those described in the DeepMIP overview paper13, with the exception 
of the new MIROC ×1 and ×2 experiments. The DeepMIP framework provides standardised model boundary 
conditions and experimental designs to allow a coordinated model intercomparison of the simulation results. 
All groups have used one of the two reference paleogeographic reconstructions29,30 (Fig. 1a-b) interpolated to 
their respective model grids. The main difference between the two available paleogeographies is the choice of 
the applied rotation reference frame leading to slight differences in the relative positions of individual plates 
(Fig. 1c). Prescribed vegetation and river runoff follow a published reconstruction29, while globally homogene-
ous soil parameters based on the global mean of the respective pre-industrial simulation were used. All groups 
provided a pre-industrial reference simulation and performed a series of EECO experiments, differing only in the 
concentration of atmospheric CO2, summarised in Table 2. Other greenhouse gas concentrations and the solar 
constant were held constant at their pre-industrial levels.

A complete overview of the modelling framework is given in the DeepMIP experimental design paper12, 
and detailed descriptions of its implementation in the individual models can be found in the analysis of the 
large-scale climatic features13. We also provide a full description of each model setup based on their pub-
lished method sections13 as a README file in the dataset itself. This is intended to make the downloaded files 
self-describing and to allow dynamic addition of new experiments and models in the future. In the following, 
for each model included in version 1.0 of the dataset, we provide a brief summary of the initialisation and 
spin-up strategies, as this step required individual decisions by each modelling group. The DeepMIP experimen-
tal design provides an idealised equation for initialising the ocean temperatures as: 

Experiment Name Short Name CO2 [ppmv] Geography

deepmip-eocene-p1-PI PI 280 modern

deepmip-eocene-p1-x1 x1 280 29 or30

deepmip-eocene-p1-x1.5 x1.5 420 29 or30

deepmip-eocene-p1-x2 x2 560 29 or30

deepmip-eocene-p1-x3 x3 840 29 or30

deepmip-eocene-p1-x4 x4 1120 29 or30

deepmip-eocene-p1-x6 x6 1680 29 or30

deepmip-eocene-p1-x9 x9 2520 29 or30

Table 2.  Overview of the DeepMIP-Eocene experiments included in version 1.0 of the dataset.

Fig. 1  Comparison of available DeepMIP-Eocene paleogeographic boundary conditions. Orography and 
bathymetry are based on published reconstructions29 (a) and are also available based on a palaeomagnetic 
reference frame30 (b) with differences in the relative positions of plates (c).
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where φ is latitude, and z is ocean depth. The parameters A, B and D are specified in the experimental design 
as 25, 15 and 5000, respectively12. The resulting warm ocean temperatures caused numerical problems in some 
model spin-ups and have therefore been modified for individual models. An overview of the parameters used for 
each model is given in Table 3. Any other deviations for the model initialisation are listed below.

CESM.  Ocean temperatures and salinities in all Eocene simulations are initialised from the same 
Palaeocene-Eocene Thermal Maximum (PETM; ~55 million years ago) experiment using a previous version of 
CESM31,32. The ×1 simulation was integrated for a further 2600 years, while all other experiments were run for 
2000 years. The mean top of the atmosphere (TOA) imbalance over the last 100 model years for the PI, ×1, ×3, 
×6 and ×9 experiments are −0.05, −0.25, −0.32, 0.34 and 0.64 Wm−2, respectively.

COSMOS.  The ×3 integration was initialised with a homogeneous temperature and salinity of 10°C and 34.7 
psu, respectively, and integrated for an initial 1000 years, after which the ×1 and ×4 simulations were branched. 
After an initial 8000 years with transient orbital parameters, a constant, pre-industrial orbital configuration 
was used for the final 1500 years of all simulations. Instead of using the proposed river routing scheme29, the 
simulations use a hydrological discharge model that follows the model orography33. The mean TOA imbalance 
over the last 100 model years for the PI, ×1, ×3 and ×4 experiments are 1.75, 1.91, 1.78, and 1.95 Wm−2, 
respectively.

GFDL.  The ×1, ×2, ×3, and ×4 simulations were started with a globally homogeneous salinity of 34.7 psu 
and a slightly cooler version of the DeepMIP temperature equation (Eq. (1); Table 3). After 1500 and 2000 years 
of integration, an acceleration technique was applied. Specifically, the linear temperature trends of the last 100 
years for each model level below 500 m were calculated and the level-by-level temperatures were then extrapo-
lated by 1000 years following this trend. After the second application of this technique at year 2000, the model 
was run out normally for a further 4000 years for a total of 6000 years. The ×6 simulation was initialised with a 
globally uniform temperature of 19.32°C and continously integrated for 6000 years. The mean TOA imbalance 
over the last 100 model years for the PI, ×1, ×2, ×3, ×4 and ×6 experiments are 0.31, 0.10, −0.08, −0.14, 
−0.19, and −0.28 Wm−2, respectively.

HadCM3.  Initial ocean temperatures for HadCM3BL were derived from an idealised temperature profile with 
lowered, CO2 dependent deep ocean temperatures based on previous Eocene simulations. HadCM3B experi-
ments were branched from the respective HadCM3BL simulations after 4400 to 4900 years and integrated for a 
further 2950 years. Multiple ocean gateways in the original paleogeography were widened to allow unrestricted 
ocean circulation and to guarantee the same gateway widths on both the low and high-resolution ocean grids 
of HadCM3BL and HadCM3B, respectively. In addition, maximum water depths in parts of the Arctic Ocean 
were reduced to improve numerical stability. The mean TOA imbalance per century averaged over the last 50 
model years for the PI, ×1, ×2 and ×3 experiments for HadCM3B are −0.08, −0.02, −0.08 and −0.08 Wm−2, 
respectively.

INMCM.  The ocean temperature and salinity in the ×6 simulation follow the idealised equations of the 
DeepMIP protocol, but with equatorial surface temperatures lowered by 5°C (Eq. (1); Table 3). The simulation 
was integrated for a total of 1150 years. The mean TOA imbalance over the last 100 model years for the PI and 
×6 experiments are 4.37 and 2.87 Wm−2, respectively.

IPSL.  A modified version of Eq. (1) with overall reduced subsurface temperatures (Table 3) and a globally 
homogeneous salinity of 34.7 psu were used to initialise the ×3 simulation. The ×1.5 simulation is branched 

Model A B D Comment

CESM1.2-CAM5 — — — from previous CCSM3 simulation31

COSMOS-landveg-r2413 — — — 10 °C globally

GFDL-CM2.1 25 10 5000

HadCM3B-M2.1aN — — — branched from HadCM3BL

HadCM3BL-M2.1aN — — — custom equations13

INM-CM4-8 20 15 5000

IPSLCM5A2 25 10 1000

MIROC4m 25 0 5000

NorESM1-F — — — from previous NorESM-L simulation34

experimental design12 25 15 5000

Table 3.  Overview of initial ocean temperature strategies. Coefficients A, B and D refer to Eq. (1).
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from the ×3 experiment after 1500 years. Both simulations are run for a total of 4000 years. The ocean bathym-
etry around individual ocean straits has been manually adjusted to guarantee the minimum gateway width 
necessary to allow throughflow. The mean TOA imbalance over the last 100 model years for the PI, ×1.5 and ×3 
experiments are 0.08, 0.59 and 0.76 Wm−2, respectively.

MIROC.  All three simulations have been initialised with a modified version of the idealised DeepMIP tem-
perature equation, with ocean temperatures globally reduced by 15°C (Eq. (1); Table 3), and integrated for 
5000 model years. The ×1 and ×2 experiments are new and have not been included in the DeepMIP overview 
paper13. The mean TOA imbalance over the last 100 model years for the PI, ×1, ×2 and ×3 experiments are 0.96, 
0.79, 0.91 and 0.96 Wm−2, respectively.

NorESM.  Initial ocean temperatures for the ×2 simulation were used from a previous NorESM-L simulation34, 
while salinities were set to 25.5 psu in the Arctic and 34.5 elsewhere. The ×4 simulation was branched off after 
100 model years, and both simulations have been run for a further 2000 years. The NorESM simulations were 
performed with a different paleogeographic reconstruction than the rest of the DeepMIP ensemble (Table 1). 
The mean TOA imbalance per century at the end of the PI, ×2 and ×4 experiments are −0.02, 0.03 and 0.24 
Wm−2, respectively. Note that the PI imbalance is calculated over the last 1000 years, while the Eocene values are 
averaged over the last 100 years.

Data processing.  We use the raw output of the last 100 years of each of the 35 model simulations as input for 
our post-processing. For each variable, we generate up to three netCDF output files to facilitate common analy-
sis workflows. We always produce a mean file representing either the monthly mean climatology or the annual 
mean averaged over the last 100 model years, depending on the temporal resolution of the model output. In case 
of monthly mean output data, the std file contains the standard deviation over the same averaging period for 
each month of the year and can be used for significance testing. Where feasible, we also store the full monthly 
mean output of the last 100 model years as a time_series file to investigate temporal trends or interannual 
variability.

Alongside this standard output, we provide a generic script to interpolate model fields from their native 
grids to a common resolution for model intercomparisons. The processing workflow requires a local installa-
tion of the Climate Data Operator (CDO) software35 for bilinear or nearest-neighbour interpolation for atmos-
phere and ocean variables, respectively. The processing script is distributed as part of the dataset (see Data  
Records section).

Naming convention.  We employ a consistent naming convention for variables, directories, and file names 
across all models to simplify the comparison of different models and to allow a scripted analysis of the entire data-
set. The list of output variables is an extended version of those proposed in the DeepMIP experimental design12 
and is shown in Tables 4-5. Variable names, units and signs of fluxes follow the naming convention of the Coupled 
Model Intercomparison Project 6 (CMIP6) data request (https://wcrp-cmip.github.io/WGCM_Infrastructure_
Panel/CMIP6/data_request.html, last access: 26 June 2024). Consistent standard names, long names and global 
attributes are directly added to the netCDF files following the Climate and Forecast metadata conventions (CF36) 
in version 1.8 (http://cfconventions.org, last access: 26 June 2024). All netCDF file have been automatically 
tested for CF-compliance with the cf-checker utility (https://github.com/cedadev/cf-checker, last access: 26 
June 2024) developed by the UK Met Office and the NCAS Computational Modelling Services (NCAS-CMS). 
Following the CMIP and CF community standards will both increase user familiarity with the new dataset and 
will allow the integration into existing analysis workflows and software. Each output variable is stored in a sepa-
rate file according to the following structure:

directory = deepmip-eocene-p1/<Family>/<Model>/<Experiment>/<Version>/<Av-
eraging>/

filename = <Variable>_<Model>_<Experiment>_<Version>.<Statistic>.nc

•	 <Family>, <Model> and <Experiment> are listed in Tables 1 and 2, respectively
•	 <Variable> represents the first column in Tables 4-5
•	 <Statistic> is either mean (1 or 12 timsteps), std (12 timsteps), time_series (1200 timsteps) or 

omitted for the time-independent boundary conditions
•	 the smaller mean and std files are stored in the <Averaging>=climatology directory and are sepa-

rated from the larger time_series files in the <Averaging>=time_series directory to enable more 
granular download options

Storing all relevant information in the file name itself also allows new phases of coordinated DeepMIP sim-
ulations to be integrated into a single dataset in the future.

Data Records
The full dataset has been deposited in the CEDA Archive, the UK national data centre for atmospheric and earth 
observation research26. This dataset contains the following types of files: 
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•	 model data: The directory deepmip-eocene-p1 contains all processed model output in CF compliant 
netCDF format37, a self-describing community standard for storing gridded simulation data, with a total file 
size of 168.0 GB. Directory and file structure follow the DeepMIP naming convention described above.

•	 model READMEs: Each <Family> top-level directory contains a single <Family>_README.md file that 
contains detailed information about the model, the simulation setup, and naming convention. This ensures 
the downloaded dataset is sufficiently self-described and allows the addition of new models and simulation 
results in the future.

In addition, the code of the web application38 and a collection of scripts and metadata to interact with the 
dataset39 are deposited in separate Zenodo repositories. The latter includes a collection of Python code to inter-
polate model data to a common grid (regrid_deepmip_data.py), recreate the validation tables of availa-
ble data (plot_z-scores.py) and Python dictionaries containing available DeepMIP models, experiments 
and variables to support scripted analysis of the dataset.

Technical Validation
An earlier version of the dataset has already been used in a number of publications13,15,16,18–21,24,25 to assess the 
scientific validity of the model simulations, both in terms of model-model and model-data comparisons. In this 

Name Long Name Units Dimensions

tas Near-Surface Air Temperature K time × lat × lon

ts Surface Temperature K time × lat × lon

pr Precipitation kgm−2s−1 time × lat × lon

evspsbl Evaporation Including Sublimation and Transpiration kgm−2s−1 time × lat × lon

hfls Surface Upward Latent Heat Flux Wm−2 time × lat × lon

hfss Surface Upward Sensible Heat Flux Wm−2 time × lat × lon

ps Surface Air Pressure Pa time × lat × lon

psl Sea Level Pressure Pa time × lat × lon

snc Snow Area Percentage % time × lat × lon

rsds Surface Downwelling Shortwave Radiation Wm−2 time × lat × lon

rlds Surface Downwelling Longwave Radiation Wm−2 time × lat × lon

rsus Surface Upwelling Shortwave Radiation Wm−2 time × lat × lon

rlus Surface Upwelling Longwave Radiation Wm−2 time × lat × lon

rsdt TOA Incident Shortwave Radiation Wm−2 time × lat × lon

rsut TOA Outgoing Shortwave Radiation Wm−2 time × lat × lon

rlut TOA Outgoing Longwave Radiation Wm−2 time × lat × lon

rsdscs Surface Downwelling Clear-Sky Shortwave Radiation Wm−2 time × lat × lon

rldscs Surface Downwelling Clear-Sky Longwave Radiation Wm−2 time × lat × lon

rsuscs Surface Upwelling Clear-Sky Shortwave Radiation Wm−2 time × lat × lon

rluscs Surface Upwelling Clear-Sky Longwave Radiation Wm−2 time × lat × lon

rsutcs TOA Outgoing Clear-Sky Shortwave Radiation Wm−2 time × lat × lon

rlutcs TOA Outgoing Clear-Sky Longwave Radiation Wm−2 time × lat × lon

tauu Surface Downward Eastward Wind Stress Pa time × lat × lon

tauv Surface Downward Northward Wind Stress Pa time × lat × lon

uas Eastward Near-Surface Wind ms−1 time × lat × lon

vas Northward Near-Surface Wind ms−1 time × lat × lon

clh High Level Cloud Percentage % time × lat × lon

clm Mid Level Cloud Percentage % time × lat × lon

cll Low Level Cloud Percentage % time × lat × lon

clt Total Cloud Cover Percentage % time × lat × lon

cl Percentage Cloud Cover % level × time × lat × lon

hus Specific Humidity 1 level × time × lat × lon

ta Air Temperature K level × time × lat × lon

ua Eastward Wind ms−1 level × time × lat × lon

va Northward Wind ms−1 level × time × lat × lon

wap Omega (=dp/dt) Pas−1 level × time × lat × lon

zg Geopotential Height m level × time × lat × lon

orog Surface Altitude m lat × lon

sftlf Percentage of the Grid Cell Occupied by Land % lat × lon

Table 4.  Atmosphere output variables included in version 1.0 of the dataset. Naming conventions follow the 
CMIP6 data request. 

https://doi.org/10.1038/s41597-024-03773-4


7Scientific Data |          (2024) 11:970  | https://doi.org/10.1038/s41597-024-03773-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

section, we verify the internal consistency of the dataset, ensuring that the naming convention has been applied 
correctly and that the resulting variable names, units and fluxes are consistent across all models. To do this, we 
automatically parse all mean and time_series files in the dataset for any given experiment, interpolate 
them to a common grid, calculate the global mean, minimum and maximum values and compare these values 
across all models. We use annual mean fields for the validation of mean files and the last 12 available months of 
the time_series files. For variables with multiple vertical levels (see Tables 4-5), we select the vertical index 
nearest to the 500 hPa pressure level or 1000 m depth for atmospheric and ocean data, respectively. Example 
tables for atmospheric and ocean mean variables from the ×3 simulations are shown in Figs. 2 and 3, tables for 
all other experiments as well as for time_series files are uploaded to the web application. This testing pro-
cedure simulates a standard analysis workflow and is able to detect any deviations from the expected DeepMIP 
naming convention, while the resulting tables provide a visual overview of the available model fields for each 
experiment. We further calculate the median and standard deviation for each variable and metric across all 
available models (i.e. for each row in the table) to flag potential outliers that may arise due to inconsistent units 
or different directions of energy or mass fluxes. For this, we calculate a z-score for each model, variable and 
statistic which quantifies the number of standard deviations an individual model statistic is above or below the 
ensemble median. We use the ensemble median instead of the mean as the reference point to reduce the influ-
ence of potential outliers in our small sample sizes and calculate the adjusted z-scores as: 

σ
= −z x M

(2)

where z is the computed z-score, x is the individual model value, M is the median across all available models 
for the respective variable and statistic (i.e., across each table row), and σ is the standard deviation across the 
ensemble. A z-score > 3 is commonly used as a cut-off to identify outliers in a distribution. Due to the small 
sample sizes (N ≤ 9) the z-score threshold was not used to exclude any data from the dataset, but rather to find 
and resolve inconsistencies in the data processing between the models. For this, the background of each cell in 
Figs. 2 and 3 has been coloured by their computed z-score to visually identify model results substantially different 
from the ensemble median. Note that all modelling groups have performed slightly different sets of simulations 
(Table 1) and not all models provide all requested output variables. These fields are indicated by gray “nan” cells 
in the overviw tables. For example, INM and NorESM did not perform a ×3 experiment and are therfore not 
included in Fig. 2 and Fig. 3. In the final dataset, all available model fields are within ±3 standard deviations 
around the respective ensemble median, although we note that the small sample sizes allow only an indicative 
analysis. The Python processing code is included in the online dataset (see Data Records section) and can be used 
to develop a custom analysis workflow or to validate any regridding and global averaging performed by the user.

Usage Notes
We present two primary routes to access the dataset, either via downloading the netCDF files for local process-
ing or via an interactive website for online model-data comparisons.

netCDF repository.  First, processed netCDF files for all simulations are available from the CEDA Archive26. 
The full directory structure can be accessed via the browser and files can be downloaded via HTTP, Wget, FTP 

Name Long Name Units Dimensions

tos Sea Surface Temperature °C time × lat × lon

siconc Sea-Ice Area Percentage (Ocean Grid) % time × lat × lon

mlotst Ocean Mixed Layer Thickness Defined by Sigma T m time × lat × lon

zos Sea Surface Height Above Geoid m time × lat × lon

hfds Downward Heat Flux at Sea Water Surface Wm−2 time × lat × lon

wfo Water Flux Into Sea Water kgm−2s−1 time × lat × lon

tauuo Sea Water Surface Downward X Stress Nm−2 time × lat × lon

tauvo Sea Water Surface Downward Y Stress Nm−2 time × lat × lon

msftbarot Ocean Barotropic Mass Streamfunction kgs−1 time × lat × lon

msftmz Ocean Meridional Overturning Mass Streamfunction kgs−1 time × depth × lat

so Sea Water Salinity 0.001 depth × time × lat × lon

thetao Sea Water Potential Temperature °C depth × time × lat × lon

uo Sea Water X Velocity ms−1 depth × time × lat × lon

vo Sea Water Y Velocity ms−1 depth × time × lat × lon

wo Sea Water Vertical Velocity ms−1 depth × time × lat × lon

difvmo Ocean Vertical Momentum Diffusivity m2s−1 depth × time × lat × lon

difvtrbo Ocean Vertical Tracer Diffusivity Due to Background m2s−1 depth × time × lat × lon

deptho Sea Floor Depth Below Geoid m lat × lon

Table 5.  Ocean output variables included in version 1.0 of the dataset. Naming conventions follow the CMIP6 
data request. 
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or OPeNDAP. This allows easy access to the data via the browser, as well as scriptable interfaces for bulk down-
loading. The OPeNDAP (Open-source Project for a Network Data Access Protocol) protocol allows the remote 
subsetting and exploration of datasets directly in e.g. Python, R, IDL, and Matlab. The CEDA Archive website 
(https://help.ceda.ac.uk/article/99-download-data-from-ceda-archives; last access: 26 June 2024) provides an 
up-to-date overview of all available access options.

Interactive web application.  Second, simulated surface temperatures and precipitation from any location 
can be extracted, visualised and downloaded at https://data.deepmip.org. This allows model-data comparisons 
via a simple user interface without the need to download the netCDF files locally. The website is designed to 
extract surface temperature and precipitation for any user-defined location from all available model simulations 
and either visualise the results or download them for offline use. All processing code is written in Python and 

Fig. 2  Technical validation of atmospheric global model fields of the ×3 experiment across the ensemble. 
Variables with multiple vertical levels are shown for the respective model pressure level closest to 500 hPa. 
Tables for other experiments and “time_series” files can be found in the web application at https://data.deepmip.
org/Validation_tables. Note that the INM and NorESM models did not perform the ×3 experiment (Table 1) 
and are therefore excluded from this analysis.

Fig. 3  Technical validation of ocean global model fields of the ×3 experiment across the ensemble. Variables 
with multiple vertical levels are shown for the respective model depth closest to 1000 m. Tables for other 
experiments and “time_series” files can be found in the web application at https://data.deepmip.org/Validation_
tables. Note that the INM and NorESM models did not perform the ×3 experiment (Table 1) and are therefore 
excluded from this analysis.

https://doi.org/10.1038/s41597-024-03773-4
https://help.ceda.ac.uk/article/99-download-data-from-ceda-archives
https://data.deepmip.org
https://data.deepmip.org/Validation_tables
https://data.deepmip.org/Validation_tables
https://data.deepmip.org/Validation_tables
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bundled into a web application via the Streamlit library (https://streamlit.io; last access: 26 June 2024). The code 
makes full use of the naming conventions described above and is therefore general enough to serve as a template 
for further in-depth analysis. The sidebar of the web application can be used to choose between three different 
analysis pages: 

Fig. 4  Example user input and extracted model data for a single site in the web application.
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Fig. 5  Example graphical output of the web application for the model-data comparison of the Store Bælt 
(Denmark) site defined in Fig. 4. (a) Simulated annual cycle of sea surface temperatures at the respective 
grid point closest to the reconstructed paleoposition of the site. Solid lines show the ensemble mean for each 
CO2 concentration with individual models represented by the dashed lines. (b) Scatter plot of the simulated 
annual mean sea surface temperature at the proxy site compared to the global mean surface temperature of the 
respective simulation. Lines connect results of the same model. Reconstructed proxy temperature is based on 
the TEX86 paleothermometer2.
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	 1.	 Extract local model data: Finds the model data closest to a user-specified site (see example in Fig. 4). The 
minimum inputs are the modern location of the site and the variable of interest (either near-surface air 
temperature, sea surface temperature, or total precipitation). The application will automatically reconstruct 
the site’s EECO paleo-position on both the mantle29 and paleomagnetic30 reference frames and extract 
the respective monthly and annual mean simulation data from the closest grid point for all models in the 
dataset. Model data is interpolated to a common 1°  × 1° grid (see Data processing section for details) prior 
to the data selection to eliminate the influence of different model resolutions on the results. In the end, the 

Fig. 6  Maps of local boundary condition differences between some of the models around the the Store 
Bælt (Denmark) site defined in Fig. 4 produced by the web application. Note the different paleogeographic 
reconstruction used in NorESM (panel j-l).

https://doi.org/10.1038/s41597-024-03773-4


1 1Scientific Data |          (2024) 11:970  | https://doi.org/10.1038/s41597-024-03773-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

ensemble means for each experiment are calculated and the results are listed in an interactive table. Data 
can be downloaded in CSV, Excel or JSON format for direct import into spreadsheets for further offline 
analysis. The extraction can be performed for a single site or a list of locations and all sites from the Deep-
MIP proxy dataset2 are pre-loaded and available for comparison with the simulation results. Furthermore, 
the underlying Python functions get_paleo_locations() and get_model_point_data() 
are available in the deepmip_modules.py file of the application repository for reuse in any custom 
analysis. The get_paleo_locations() function uses the paleolocation lookup fields provided in the 
experimental design paper12 to find the respective early Eocene locations for a list of modern latitude/lon-
gitude pairs, using both the mantle29 and paleomagnetic30 reference frames. Results are saved in a Pandas 
DataFrame which can be directly passed to get_model_point_data() to extract the nearest model 
data for all reconstructed locations.

	 2.	 Plot local model data: Visualises the extracted results and optionally compares them to proxy reconstruc-
tions (see example in Fig. 5). Available visualisations include line plots of the annual cycle at the user-spec-
ified location, grouped by the various DeepMIP CO2 levels (Fig. 5a), and a scatter plot of all simulated an-
nual mean values against the respective GMSTs or CO2 concentrations of the model simulations. (Fig. 5b). 
The latter plot type can be useful to compare the sensitivity of the model results at the local site against 
global climate signals. The simulated monthly and annual mean model results can be visually compared 
against a local proxy reconstruction, either by manually specifying the mean and standard deviation of the 
proxy data or by loading the respective values for locations from the DeepMIP proxy dataset2. The user can 
zoom and pan within the interactive figures and download them in PNG and SVG format.

	 3.	 Map sites and boundary conditions: Plots paleogeographic maps of the chosen site. The user can choose 
between a global map indicating the location of the study site or regional maps of the bathymetry, orogra-
phy and land-sea mask on the various native model grids (Fig. 6). The latter can help with the interpreta-
tion of the model-data comparison result, e.g. by visualising local grid resolutions and associated inter-
model differences in the representation of mountain ranges or ocean gateways.

How to cite the dataset.  This Data Descriptor paper should be cited whenever any netCDF files from the 
dataset or results from the web application are reused in a publication. In addition, the user might want to cite the 
previously published overview of simulated large-scale climate features13 or the DeepMIP-Eocene experimental 
design12, as appropriate.

Code availability
Processing code to interpolate model fields and to create the validation overview tables is available via Zenodo39. 
The code for the web application is deposited in a separate Zenodo repository38.
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