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Abstract

Ontology-based query answering is a problem that takes as
input an ontology R (typically expressed by existential rules),
a set F of facts, and a Boolean conjunctive query (CQ) q, and
asks whether R,F |= q. This problem is undecidable in gen-
eral, and a widely investigated approach to tackle it in some
cases is query rewriting: given some “rule query” ⟨R, q⟩, we
compute a Boolean query qR such that, for any fact set F ,
it holds that R,F |= q if and only if F |= qR. Insofar,
previous work has mostly focused on output queries qR ex-
pressed as union of Boolean conjunctive queries (UCQs), and
an effective algorithm that computes such a query qR when-
ever it exists has been proposed in the literature. However,
UCQ-rewritability is not a very general notion and many real-
world interesting rule queries do no admit UCQ-rewritings.
This raises the question whether such a generic algorithm can
be designed for a more expressive target language, such as
datalog. We solve this question by the negative, by study-
ing the difference between datalog-expressibility and datalog-
rewritability. More precisely, we show that query answering
under datalog-expressible rule queries is undecidable.

1 Introduction
Efficiently accessing data is an important step in many real-
world applications. Ontologies have been identified as an
important tool to help a user to express their information
needs, allowing them to use a vocabulary they are famil-
iar with, while enabling a system to perform automated rea-
soning, leading to more complete answers. Ontology-based
query answering (OBQA) is a core problem therein, where a
set of facts is queried while taking into account the domain
knowledge expressed in an ontology. These ontologies may
be expressed in a variety of formalisms, such as Description
Logics or existential rules. The OBQA problem is typically
framed as, given a fact set F , an ontology R, and a Boolean
CQ q, check if F ,R |= q, where |= denotes the classical
first-order logic entailment.

This problem is undecidable when the ontology can range
over any set of existential rules. Thus, a lot of research has
focused on finding decidable and even tractable classes of
rule sets; see (Mugnier and Thomazo 2014) for an introduc-
tion to these. Particularly relevant to us are classes based
on the so-called query rewriting approach. Given an ontol-
ogy R and a Boolean CQ q, one computes a Boolean UCQ
qR such that for any fact set F , it holds that F ,R |= q if

and only if F |= qR. As most data is stored in relational
databases, which have been designed to efficiently process
CQs, most research has focused on rewriting the output
query qR as a UCQ. A natural question is then, given an on-
tology R and a BCQ q, is there a UCQ-rewriting qR for R
and q? In other terms, is that true that the rule query ⟨R, q⟩
is UCQ-expressible? This does not always hold, and it is ac-
tually undecidable to check whether it is the case (Baget et
al. 2011). However, there exists an effective procedure algo-
rithm that computes a UCQ-rewriting when given as input
a UCQ-expressible rule query (König et al. 2015). In other
terms, the UCQ-expressibility of every rule query (the exis-
tence of a UCQ-rewriting) in a class and UCQ-rewritability
of that class (the computability of UCQ-rewritings for all
rule queries in that class) are two notions that coincide,
which possibly explains why they have not been introduced
separately in the literature.

Syntactic conditions such as linearity (Calı̀, Gottlob, and
Kifer 2013) or stickiness (Calı̀, Gottlob, and Pieris 2010)
guarantee the existence of UCQ-rewritings for any BCQ.
Moreover, there is also DL-Lite (Artale et al. 2009), which
is a widely used Description Logic that can be translated
into existential rules. However, the expressivity of these lan-
guages is too limited for many real-world ontologies. A nat-
ural task is to consider a more expressive target query lan-
guage for the rewritings. It is known that considering first-
order queries instead of union of conjunctive queries does
not allow covering more classes of existential rules (Ross-
man 2008). We then focus on another classical language,
namely datalog. Note that all UCQ-expressible rule queries
are also datalog-expressible but the converse is not true.

As discussed in Section 5, there are many known and
interesting classes for which specific datalog-rewriting al-
gorithms have been designed. However, no generic algo-
rithm, such as in the case of UCQ-expressibility, is known
so far. The contribution of this paper is to show that, unfor-
tunately, no such algorithm exists. This is done by proving
that the problem of checking R,F |= q under the assump-
tion that ⟨R, q⟩ is datalog-expressible is undecidable, con-
tradicting the existence of a rewriting algorithm for datalog-
expressible queries. We prove the result by reduction from
the halting problem of Turing machines to OBQA, where the
difficulty lies in ensuring that rule queries produced by the
reduction are datalog-expressible.



2 Preliminaries
We assume that the reader is familiar with first-order logic
and basic concepts from computability theory. We only pro-
vide a brief recap of these topics in this section.

2.1 First-Order Logic
We define Preds, Funs, Cons, and Vars to be mutually dis-
joint and countably infinite sets of predicates, function sym-
bols, constants, and variables, respectively. We associate
every s ∈ Preds ∪ Funs with some arity ari(s) ≥ 0. For
every n ≥ 0, the sets of all n-ary predicates and all n-ary
function symbols are also countably infinite. The set Terms
includes Cons, Vars, and the set of all nullary function sym-
bols; and contains f(t1, . . . , tn) for every n ≥ 1, every n-
ary f ∈ Funs, and every t1, . . . , tn ∈ Terms. We write lists
t1, . . . , tn of terms as t⃗ and often treat these lists as sets.

An atom is a first-order formula of the form P(⃗t) with t⃗ a
list of terms and P a |⃗t|-ary predicate. An atom that features
a predicate P is a P-atom. A fact is a function- and variable-
free atom. For a nullary predicate P, we write P as a shortcut
for the nullary atom P(). For a first-order formula F and a
list x⃗ of variables, we write F [x⃗] to indicate that x⃗ is the set
of all free variables occurring in F .
Definition 1. An (existential) rule R is a function- and
constant-free first-order formula of the form ∀x⃗.(B[x⃗] →
∃z⃗.H[y⃗, z⃗]) where B and H are atom conjunctions, H is
non-empty, and all variables in y⃗ occur in x⃗. We refer to y⃗
as the frontier of R, and to B and ∃z⃗.H as the body and the
head of R, respectively. Such a rule is datalog if it does not
feature existential variables; that is, if z⃗ is the empty list.

We omit universal quantifiers when writing rules. Also,
we replace wedges with commas when writing atom con-
junctions, which we often identify with sets.

A substitution π is a function from variables to terms.
For an atom P(⃗t), let π(P(⃗t)) be the atom that results from
replacing all occurrences of every variable x in P(⃗t) with
π(x) if the latter is defined. For some atom sets A to B,
a homomorphism π from A to B is a substitution such that
π(A) ⊆ B. Often, we abuse notation and consider substi-
tutions (and thus homomorphisms) that map terms to terms.
An isomorphism π from A to B is an injective homomor-
phism A to B such that π(A) = B and (π−(B) = A).

A Boolean conjunctive query (BCQ) is a function-free
first-order formula of the form ∃z⃗.B[z⃗] with B a non-empty
conjunction of atoms. A union of BCQs (UBCQs) is defined
in the obvious manner. Under standard first-order seman-
tics, a fact set F entails a UBCQ

∨n
i=1 ∃z⃗i.Bi if there exists

a homomorphism from Bk to F for some 1 ≤ k ≤ n.
A knowledge base is a pair ⟨R,F⟩ with R a finite rule

set and F a finite fact set. Without loss of generality, we
assume that (†) existentially quantified variables do not re-
occur across different rules in the same rule set. For a BCQ
q, we write ⟨R,F⟩ |= q to indicate that R ∪ F entails q
under standard first-order semantics.

2.2 The Chase Algorithm
We use the chase to define entailment procedurally. More
precisely, we present a chase variant previously considered

by (Urbani et al. 2018) in which datalog rules are applied
with higher priority, and non-datalog rules are applied in
parallel and only if they are not already satisfied. The use
of this specific variant, which produces a single chase se-
quence from an input knowledge base, simplifies some of
the proofs presented later.

Consider a rule ∀x⃗.∀y⃗.B[x⃗] → ∃z⃗.H[y⃗, z⃗]. For every
z ∈ z⃗, let fz be a fresh |y⃗|-ary function symbol unique for
z. Moreover, let Sk(∃z⃗.H) be the atom set that results from
replacing all occurrences of every z ∈ z⃗ in H with the term
fz(y⃗); note that, because of (†), this symbol is also unique
for a rule within a given rule set. In the following, we sim-
ply write z as a shortcut for a (nullary) function symbol of
the form fz . Moreover, we write w(t) or w1(t) as a short-
cut for a unary term such as fw(t), w2(t) as a shortcut for
fw(fw((t))), and so on.

A trigger t is a pair ⟨R, π⟩ where R = ∀x⃗.∀y⃗.B → ∃z⃗.H
is a rule and π is a homomorphism with domain x⃗ ∪ y⃗. Let
support(t) = π(B) and output(t) = π(Sk(∃z⃗.H)). The
trigger t is applicable to an atom set A if support(t) ⊆ A
and A does not include π̂(H) for all extensions π̂ of π. A
trigger is datalog if it features a datalog rule.

For a rule R and an atom set A, let R(A) be the set that
includes output(t) for every trigger t with R that is applica-
ble to A. For a rule set R, let R(A) =

⋃
R∈R R(A) ∪ A.

Moreover, let R∀ and R∃ be the sets of all datalog and
non-datalog rules in R, respectively. The datalog closure
of A and R is the minimal superset A′ of A such that
R∀(A′) = A′; that is, A′ is the (unique) minimal super-
set of A that satisfies all of the rules in R∀ under standard
first-order semantics. Note that an atom set satisfies a rule if
no trigger with the latter is applicable to the former.

Definition 2. For a knowledge base K = ⟨R,F⟩; let
Ch1(K) = F , let Chi(K) be the datalog closure of R
and Chi−1(K) for every even i ≥ 1, and let Chi(K) =

R∃(Chi−1(K)) for every odd i ≥ 2. Also, let Ch(K) =⋃
i≥1 Chi(K) be the chase of K.

The chase is a handy tool to answer conjunctive queries
over a knowledge base.

Proposition 3. A knowledge base K entails a UBCQ q if
and only if Ch(K) entails q.

The above holds because Ch(K) is a universal model for
K = ⟨R,F⟩. That is, there is a homomorphism from the
chase of K to every model of this first-order theory.

2.3 Computability Theory
Definition 4. A transition function for a set Q of states is a
(total) function from (Q \ {qf})×{0, 1, B} to (Q \ {qs})×
{0, 1} × {L,R} where qs and qf are two different states. A
(Turing) machine is a pair ⟨Q, δ⟩ where Q is a set of states
that contains qs and qf , and δ is a transition function for Q.

As per our definition, all machines reuse the same initial
qs and final qf states, as well as the same binary alphabet
{0, 1, B}. Moreover, machines do not write blanks, may not
reenter the starting state after the initial configuration, and
halt if they reach the final state.



Definition 5. A configuration is a tuple ⟨n, t, p, q⟩ where
n ≥ 1 is a natural number, t is a function from {1, . . . , n} to
{0, 1, B} that maps n to B, p is some number in {1, . . . , n},
and q is a state. The starting configuration on some word
w1, . . . , wn ∈ {0, 1}∗ is the tuple ⟨n + 1, t, 1, qs⟩ where t
is the function that maps every i ∈ {1, . . . , n} to wi, (and
n+ 1 to B).

Given some configuration ⟨n, t, p, q⟩, we use t to encode
the contents of the tape at each position; moreover, we use p
and q to encode the position of the head and the current state
of the machine, respectively.

Definition 6. Consider a machine M = ⟨Q, δ⟩, a config-
uration C = ⟨n, t, p, q⟩ with q ∈ Q \ {qf}, and the tuple
δ(t(p), q) = ⟨r, a,D⟩. Then, let NextM (C) be the configu-
ration ⟨n+ 1, t′, p′, r⟩ such that:

• For every 1 ≤ i ≤ n with i ̸= p, let t′(i) = t(i). More-
over, let t′(p) = a and t′(n+ 1) = B.

• If D = L; then p′ = p−1 if p ≥ 2, and p′ = p otherwise.
If D = R, then p′ = p+ 1.

As described above, any given machine defines a function
that maps non-final configurations to configurations. An ex-
haustive iteration through these consecutive configurations
that begins with a starting configuration yields a run.

Definition 7. Consider a machine M and a word w⃗.

• Define RunM (w⃗) as the (possibly infinite) sequence
C0, . . . , Cn, . . . of configurations such that C0 is the start
configuration on w⃗, and Ci+1 = NextM (Ci) for all i such
that Ci does not feature the final state.

• The machine M halts on w⃗ if RunM (w⃗) is finite.

Note that, as per our definition, a machine halts on some
word if and only if it reaches the final configuration. We
do not discuss acceptance or rejection of a word by a ma-
chine; this is unnecessary for our purposes since the halting
problem is already undecidable.

Proposition 8. The problem of checking if a machine halts
on the empty word is undecidable.

3 Query Languages and Expressivity
The focus of this paper is on the query rewriting approach.
To address it, we must first introduce the notions of rule
query and of a L-rewriting for some query language L.

Definition 9. A rule query is a pair ⟨R, q⟩ where R is a rule
set and q is a BCQ. A datalog query is a rule query with a
datalog rule set.

The expressivity of rule queries has been studied from
both a complexity viewpoint and a model-theoretic one
(Rudolph and Thomazo 2015; Bourgaux et al. 2021). A clas-
sical and practically important question is whether a given
rule query can be expressed within a less expressive query
language. This question is formalized with the notion of
L-rewriting of a rule query ⟨R, q⟩, for a query language L
(such as UCQ, datalog, first-order logic,...). We will con-
sider only Boolean queries, hence we regard each query q as
a set of fact sets, and we denote F |= q if F ∈ q.

Definition 10 (L-rewriting). Let L be a query language. An
L-rewriting of a rule query ⟨R, q⟩ over a set of predicates
Pe is a query q′ ∈ L such that for any finite fact set F over
Pe, ⟨R,F⟩ |= q if and only if F |= q′.

Unless specified otherwise, we set Pe = Preds, and dis-
cuss the other cases in the related work section. This means
we consider rewritings that preserve BCQ entailment with
respect to the the initial rule query over any fact set.
Definition 11 (L-Expressibility). Given some query lan-
guage L, a rule query ⟨R, q⟩ is L-expressible if it admits
an L-rewriting.

Related to L-expressibility, but possibly a stronger re-
quirement, is the notion of of L-rewritability: an L-rewriting
must not only exist, but we should be able to compute it.
Definition 12 (L-Rewritability). Let L be a query language.
A set Q of rule queries is L-rewritable if there exists a pro-
cedure, which given q, computes an L-rewriting q′ of q if
q ∈ Q, and whose behavior is not specified (and may even
not terminate) if q ̸∈ Q.

Note that the absence of condition on the behavior of
the algorithm in the case where q ̸∈ L allows us to con-
sider query languages whose membership is not decidable
– this is in particular the case of UBCQ-expressible rule
sets (Baget et al. 2011). In that case, L-expressibility and
L-rewritability are identical notions: this is a direct conse-
quence of the algorithm presented in (König et al. 2015) (see
Algorithm 1 and Theorem 7).
Theorem 13. The class of all UBCQ-expressible rule
queries is UBCQ-rewritable.

From this theorem, we can derive a useful corollary:
Corollary 14. There is a procedure to check if a knowledge
base ⟨R,F⟩ entails a BCQ q that is sound, complete, and
terminates if ⟨R, q⟩ is UBCQ-expressible.

Proof. First, we compute a UBCQ-rewriting q′ of ⟨R, q⟩ us-
ing the procedure described by (König et al. 2015), which
is guaranteed to terminate if ⟨R, q⟩ is UBCQ-expressible.
Then, we can simply check if F |= q′; the result of this
check indicates if ⟨R,F⟩ |= q.

The very same reasoning procedure described in the proof
of Corollary 14 can be applied off-the-shelf for any class
of rule queries that is UBCQ-expressible such as linear
(Calı̀, Gottlob, and Kifer 2013), sticky (Calı̀, Gottlob, and
Pieris 2010), non-local rule sets (Ostropolski-Nalewaja et
al. 2022), DL-Lite (Artale et al. 2009), or any other class
of UCQ-expressible rule queries yet to be defined.

In this paper, we investigate whether analogous generic
procedures can be developped for more expressive query
languages. As it is known that BFO-rewritability and
UBCQ-rewritability coincide (Rossman 2008) for rule
queries, we set L to datalog and turn our attention to the
relationships between datalog-expressibility and datalog-
rewritability. As datalog is a major query language, its ex-
pressivity has been studied (Feder and Vardi 2003; Dawar
and Kreutzer 2008; Rudolph and Thomazo 2016), and
it has served as a target query language for numerous



classes of rule queries (see related work). So far, however,
the relationship between datalog-expressibility and datalog-
rewritability remains unclear. We prove that:

Theorem 15. The class of all datalog-expressible rule
queries is not datalog-rewritable.

Proof. If the above result does not hold, then we can define a
procedure that solves BCQ entailment for datalog-rewritable
inputs analogous to the one discussed in Corollary 14. This
clashes with Theorem 16 to be proven in the next section,
and hence, this theorem follows by contradiction.

4 Entailment for Datalog-Expressible
Queries is Undecidable

Our only goal in this section is to show that:

Theorem 16. There is no procedure to check if a knowledge
base ⟨R,F⟩ entails a BCQ q that is sound, complete, and
terminates if ⟨R, q⟩ is datalog-expressible.

Here is our high-level strategy to prove this result:

In Definition 18, we introduce a reduction that takes a ma-
chine M as input and produces the rule set RM .

We show that a machine M halts on the empty word ε
if and only if ⟨RM , ∅⟩ |= Halt where Halt is a nullary
predicate occurring in RM ; see Lemma 22. The knowl-
edge base ⟨RM , ∅⟩ will be denoted by KM .

We show that, if a machine M does not halt on ε,
then the rule query ⟨R∀

M , Halt⟩ is a datalog-rewriting of
⟨RM , Halt⟩;1 see Lemma 24.

Once we establish all the above claims, we can readily prove
the main result in this section:

Proof of Theorem 16. First, we prove that the rule query
⟨RM , Halt⟩ is datalog-expressible for any given machine
M . If M halts on ε, then ⟨RM , ∅⟩ |= Halt by . There-
fore, ⟨RM ,F⟩ |= Halt for every fact set F since first-
order logic entailment is monotonic, and the rule query ⟨{→
Halt}, Halt⟩ is a valid datalog-rewriting of ⟨RM , Halt⟩
in this case. Otherwise, we conclude that ⟨RM , Halt⟩ is
datalog-expressible by .

Now suppose for a contradiction that there is a procedure
such as the one discussed in Theorem 16. Given a machine
M , we can first compute RM and then use such a procedure
to effectively decide if ⟨RM , ∅⟩ |= Halt since ⟨RM , Halt⟩
is datalog-expressible. Moreover, we can use the result of
this check to verify if M halts on ε by . Note the clash
with Proposition 8.

We address Points , , and separately in each of fol-
lowin subsections.

1Remember that R∀
M is the set of all datalog rules in RM . We

introduced this notation in Section 2.2.

→ ∃s.qs(s, s) (Rqs )

qs(x, x) → RS(x) (RRS
qs

)

N(ℓi, ℓi+1) → N+(ℓi, ℓi+1) (RN+

init)

N(ℓi, ℓi+1), N
+(ℓi+1, ℓj) → N+(ℓi, ℓj) (RN+

tr )

qs(ℓ1, ℓ1), N
+(ℓ1, ℓi) → RS(ℓi) (RRS)

RS(x) → B(x, x) (RB
RS)

qf(p, c) → Halt (RHalt
final )

Eq(x, y) → Eq(y, x) (REq
sym)

Eq(x, y), Eq(y, z) → Eq(x, z) (REq
tr )

Chaos → Halt (RHalt
Chaos)

N+(ℓi, ℓi) → Chaos (RCh
loop)

N+(ℓ−i, ℓ1), qs(ℓ1, ℓ1) → Chaos (RCh
N+·qs

)

qf(p, ci), N
+(ci, cj) → Chaos (RCh

qf ·N+
)

N(ℓi, ℓi+1), N(ℓi, ℓ
′
i+1) → Eq(ℓi+1, ℓ

′
i+1) (REq

<2N)

N(ℓi, ℓi+1), N(ℓ
′
i, ℓi+1) → Eq(ℓi, ℓ

′
i) (REq

<2N− )

qs(ℓ1, ℓ
′
1), qs(ℓ

′′
1 , ℓ

′′′
1 ) → Eq(ℓ1, ℓ

′′′
1 ) (REq

<2qs
)

Figure 1: Some of the Rules in RM

4.1 Point : The Reduction

Before presenting our reduction in Definition 18, we define
the signature of the output rule set:

Definition 17. For a machine M = ⟨Q, δ⟩; let Preds(M)
be the set of predicates that contains the nullary predicates
Halt and Chaos; the unary predicate RS; the binary predi-
cates N, N+, 0, 1, B, and Eq; and a fresh binary predicate q
unique for every q ∈ Q.2

Before reading ahead, remember that rules are function-
and constant-free by Definition 1. Hence, all terms occur-
ring in these formulas are variables.

Definition 18. For a machine M = ⟨Q, δ⟩, let RM be the
rule set over the predicates in Preds(M) that includes REm

M ,
REq

M , and RCh
M , which are defined below. In these defi-

nitions, we write ⟨x, y⟩+RS for some variables x and y as a
shortcut for the conjunction RS(x), N+(x, y), RS(y).

The rule set REm
M contains the first seven rules in Figure 1

plus all of the following:

• For every q ∈ Q \ {qf}, we add:

q(p, c), RS(c) → ∃n.N(c, n) (RN
q)

2Predicate names RS, N, and Eq are shortcuts for “reachable
from start state”, “next”, and “equality”, respectively.



• For every ⟨q, a⟩ 7→ ⟨r, b, L⟩ ∈ δ, we add:

q(pi, cj), a(pi, cj), N(pi−1, pi), N(cj , cj+1),

⟨pi, cj+1⟩+RS → r(pi−1, cj+1), b(pi, cj+1) (Rr,b,L
q,a )

q(p1, cj), a(p1, cj), qs(p1, p1), N(cj , cj+1),

⟨p1, cj+1⟩+RS → r(p1, cj+1), b(p1, cj+1) (Rr,b,S
q,a )

• For every ⟨q, a⟩ 7→ ⟨r, b, R⟩ ∈ δ, we add:

q(pi, cj), a(pi, cj), N(pi, pi+1), N(cj , cj+1),

⟨pi+1, cj+1⟩+RS → r(pi+1, cj+1), b(pi, cj+1) (Rr,b,R
q,a )

q(ℓi, ℓi), a(ℓi, ℓi), N(ℓi, ℓi+1), RS(ℓi+1)

→ r(ℓi+1, ℓi+1), b(ℓi, ℓi+1) (Sr,b,R
q,a )

• For every q ∈ Q \ {qf} and a ∈ {0, 1, B}, we add:

a(pi, cj), q(pk, cj), N(cj , cj+1), N
+(pi, pk),

⟨pk, cj+1⟩+RS, ⟨pi, cj+1⟩+RS → a(pi, cj+1) (Ra·L
copy)

q(pi, cj), a(pk, cj), N(cj , cj+1), N
+(pi, pk),

⟨pk, cj+1⟩+RS, ⟨pi, cj+1⟩+RS → a(pk, cj+1) (Ra·R
copy)

The rule set REq
M contains the two rules in the middle

of Figure 1 plus the following for every P ∈ Preds(M) \
{Eq, Chaos, Halt} and 1 ≤ i ≤ ar(P ):

P(x1, . . . , xn) → Eq(xi, xi) (REq
P,i)

P(x1, . . . , xn), Eq(xi, yi)

→ P(x1, . . . , xi−1, yi, xi+1, . . . , xn) (RP,i
cg )

The rule set RCh
M contains the last seven rules in Figure 1,

and includes all of the following rule sets:

{q(p, c), q(p′, c) → Eq(p, p′) | q ∈ Q} (REq
q )

{q(p, c), r(p′, c) → Chaos | q ̸= r in Q} (RCh
q ̸=r)

{s(p, c), N+(c, p) → Chaos | s ∈ {0, 1, B} ∪Q} (RCh
s·N+ )

{a(p, c), b(p, c) → Chaos | a ̸= b in {0, 1, B}} (RCh
a̸=b)

To ease the understanding, we first provide a high-level
explanation for each of the rule sets defined in Definition 3;
more detailed explanations specific to each rule will follow
in Sections 4.2 and 4.3.

For a machine M , the rule set REm
M ensures that the re-

sult of the chase on ⟨RM , ∅⟩ encodes the information in the
run of M on the empty word ε. Put differently, this rule
set ensures that the chase on ⟨RM , ∅⟩ becomes a procedure
that closely emulates the computation of M on this specific
input. This rule set is prominently used in the following sec-
tion to show Lemma 22.

The rule set REq
M ensures that Eq, which is just a regular

binary predicate, behaves as an axiomatization of first-order
equality; that is, of the special predicate ≈. In particular,
note the rules of type RP,i

cg , which ensure that Eq defines con-
gruent relation in the result of the chase. The other rules in
this rule set ensure that it defines an equivalence relation.

The rule set RCh
M allows us to derive Halt in many cases

only using datalog rules. For example, using these rules

we can readily show that Halt is in the result of the chase
on a knowledge base ⟨R∀

M ,F⟩ if F is a fact set that in-
cludes an N-cycle; that is, a non-empty set of facts of the
form {N(d1, d2), . . . , N(dn−1, dn), N(dn, d1)}. Thus, we can
show that ⟨RM ,F⟩ |= Halt if and only if ⟨R∀

M ,F⟩ |=
Halt for such a fact set F . In turn, this greatly simplifies
the proof of Lemma 24.

4.2 Point : Machine Emulation
Our only goal in this subsection is to show that RM correctly
simulates M on the empty word (Lemma 22). Let us clarify
this intuition with the following example.

Example 19. Consider a state q and a machine M = ⟨Q, δ⟩
such that Q = {qs, qf , q}, δ(qs, B) = ⟨q, 1, R⟩, and
δ(q,B) = ⟨qf , 0, L⟩. We depict RunM (ε) and the chase of
⟨RM , ∅⟩ in Figure 2; note how the latter structure encodes
the information in the former.

For instance, the alphabet symbol 1 occurs in the second
position of the tape in the third configuration of RunM (ε);
this information is encoded in Ch(KM ) with the atom
1(n(s), n2(s)).3 The alphabet symbol 1 is encoded using the
corresponding binary predicate 1; the fact that this symbol
occurs in the second position of the tape in the third config-
uration is encoded using the second n(s) and third n2(s) el-
ements of the N-chain, respectively. In other words, the first
and second arguments of an 1-atom encode the information
about the position and configuration of some occurrence of
the alphabet symbol 1, respectively. Note that this intuition
is reflected in the naming of the variables appearing in rules,
where p stands for position and c stands for configuration.

Information pertaining to the position of the head as well
as the state of the machine is analogously encoded using
binary atoms over q, qs, and qf. For instance, the atom
qf(s, n

2(s)) ∈ Ch(KM ) is used to encode that, in the third
configuration, the machine enters the final state qf and its
head is in the first position of the tape. Finally, note that the
nullary fact Halt is in Ch(KM ) since this set contains an
atom over the predicate qf.

After the previous example, we can now elucidate the pur-
pose of the rules in the rule set REm

M for a given machine M .
Roughly speaking, we can divide this rule set into five mu-
tually disjoint partitions:

• First, we have the first six rules in Figure 1 as well
as the rules of type RN

q , which instantiate the N-chain
in Ch(KM ). Moreover, these rules also materialize the
atoms encoding the starting configuration on the empty
word as well as every new blank symbol at the end of ev-
ery subsequent configuration.

• Second, we have all rules of type Rr,b,L
q,a , Rr,b,S

q,a , Rr,b,R
q,a ,

or Sr,b,R
q,a . These rules instantiate the only rewritten alpha-

bet symbol in every non-starting configuration, and up-
date the state of the machine and move the head to the left
(Rr,b,L

q,a and Rr,b,S
q,a ) or right (Rr,b,R

q,a and Sr,b,R
q,a ).

3Remember that n2(s) is a shortcut for the unary term
fn(fn(fs)). We introduced this notation in Section 2.2.
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Figure 2: The Sequence RunM (ε) and the Chase of ⟨RM , ∅⟩ where M is the machine from Example 19

• Fourth, the rules of type Ra·L
copy and Ra·R

copy take care of copy-
ing the alphabet symbols that are to the left and to the
right of the head to every subsequent configuration, re-
spectively. Note the use of the predicate N+ to detect if a
position for a given configuration is to the left or the right.

• Finally, Rule RHalt
final , which produces Halt if the machine

reaches the final configuration in the run.
All other rules in RM are mostly inactive during the com-

putation of the chase on ⟨RM , ∅⟩. Namely, these rules solely
derive facts of the form Eq(t, t) and thus have no impact on
deriving Halt when we only consider the knowledge base
⟨RM , ∅⟩ with the empty set.

We are ready to formalize the intuition presented in Ex-
ample 19. Namely, for a machine M , we first define some
atom sets that encode the information in every configuration
in RunM (ε), and then show that the union of all of these sets
is the result of the chase on ⟨RM , ∅⟩.
Definition 20. Consider a machine M , some 1 ≤
k ≤ |RunM (ε)|, and the k-th configuration ⟨k, t, p, q⟩
of RunM (ε). Let CM(k) be the atom set that includes
CM(k − 1) if k > 1, contains Halt if q = qf , and includes

{N(ni(s), ni+1(s)) | 0 ≤ i < k − 1} ∪
{N+(ni(s), nj(s)) | 0 ≤ i < j < k} ∪
{RS(ni(s)), Eq(ni(s), ni(s)) | 0 ≤ i < k} ∪
{Pred(t(i+ 1))(ni(s), nk−1(s)) | 0 ≤ i < k}

where Pred(0) = 0, Pred(1) = 1, and Pred(B) = B. More-
over, let CM be the atom set that includes CM(i) for every
1 ≤ i ≤ |RunM (ε)|.

Lemma 21. For a machine M , we have Ch(KM ) = CM.

Sketch. First, we verify that Ch2j+2(RM ) = CM(j) for
every 1 ≤ j ≤ |RunM (ε)| by induction on j. Further-
more, we show that, if M halts on the empty word ε, then
Ch(KM ) = Ch2|RunM (ε)|+2(⟨RM , ∅⟩).

For a machine M , the previous lemma establishes the for-
mal correspondence between the information in RunM (ε)
and the result of the chase of ⟨RM , ∅⟩. Applying this result,
we can readily show the main result of this subsection.
Lemma 22. A machine M halts on the empty word if and
only if the knowledge base ⟨RM , ∅⟩ entails Halt.

Proof. If ⟨RM , ∅⟩ entails Halt for some machine M , then
the nullary atom Halt is in the result of the chase on
⟨RM , ∅⟩ by Proposition 3. Therefore, Halt is in CM(k) for
some 1 ≤ k ≤ |RunM (ε)| by Lemma 21. By Definition 20,
this is the case only if the k-th configuration in RunM (ε)
features the final state qf .

If a machine M halts on ε, then the nullary atom Halt is
in CM(|RunM (ε)|) by Definition 20. Hence, Halt is in the
result of the chase on ⟨RM , ∅⟩ by Lemma 21.

If our only goal was to show Lemma 22, we could reuse
classical machine simulations relying on a grid structure,
as done for instance in (Baget et al. 2011). However, to
prove datalog-expressibility of ⟨RM , Halt⟩, it is convenient
to have a simpler structure of Skolem terms: RM has only
two existential rules, Rqs of empty frontier and RN

q of fron-
tier one. This facilitates the detection (through datalog rules)
of fact sets that either do not encode a valid run of a machine.

4.3 Point : Datalog-Expressibility
For the remainder of the subsection, we fix a machine M =
⟨Q, δ⟩ and a fact set F . Moreover, we define another fact
set that results from collapsing every set of constants in
Ch(R∀

M ,F) mutually interconnected by Eq.

Definition 23. Since rules REq
P,i, REq

sym, and REq
tr are in

R∀
M , the Eq predicate defines an equivalence relation in

Ch(R∀
M ,F). For a constant c occurring in this atom

set, let [c] be a fresh constant unique for the equivalence
class of c induced by Eq. Let FEq

M = {P([c1], . . . , [cn]) |
P(c1, . . . , cn) ∈ Ch(R∀

M ,F)}.

The fact set FEq
M is isomorphic to the chase of ⟨R∀

M ,F⟩
if we had used first-order equality in RM instead of an ax-
iomatization of this special predicate. If Chaos /∈ FEq

M , then
this fact set has a clean structure that is quite useful in our
proofs. After this short preamble, let us consider the main
result of this subsection:

Lemma 24. If M does not halt on ε, then ⟨R∀
M , Halt⟩ is a

datalog-rewriting of ⟨RM , Halt⟩

Proof. Since RM includes R∀
M and first-order entailment

is monotonic, we conclude that ⟨R∀
M ,F⟩ |= Halt implies

⟨RM ,F⟩ |= Halt. If the premise of the lemma holds, then



we conclude that ⟨R∀
M ,F⟩ ̸|= Halt implies ⟨RM ,F⟩ ̸|=

Halt from Lemmas 25 and 33.

Because of the rules in REq
M , the predicate Eq behaves

as an axiomatization of equality in the chase of ⟨R∀
M ,F⟩.

Hence, when we collapse constants interconnected via Eq to
create FEq

M , we preserve entailment of nullary facts and do
not violate existing datalog rules.

Lemma 25. We have that ⟨RM ,FEq
M ⟩ ̸|= Halt if and only

⟨RM ,F⟩ ̸|= Halt. Moreover, FEq
M satisfies all rules in R∀

M

(and therefore, Ch(R∀
M ,FEq

M ) = FEq
M ).

Intuitively, the above lemma implies that we can disregard
F and focus on FEq

M for the remainder of the section. Now,
let us explore the structure of the latter, which is not evi-
dent in the former. Namely, we show that, if Chaos /∈ FEq

M ,
then the set of all constants in FEq

M can be partitioned into a
disjoint union of N-chains.

Definition 26. An N-chain C is a non-empty (finite) list
c1, . . . , cn of constants such that ci ̸= cj for every 1 ≤ i <

j ≤ n; N(ci, ci+1) ∈ FEq
M for every 1 ≤ i ≤ n − 1; and,

if there is a fact of the form N(d, e) ∈ FEq
M such that either

d or e occur in C, then d = ci and e = ci+1 for some
1 ≤ i ≤ n − 1. A starting chain is an N-chain c1, . . . , cn
such that qs(c1, c1) ∈ FEq

M .

Lemma 27. If Chaos /∈ FEq
M ; then the set of all constants

occurring in FEq
M is a disjoint union of chains, there is at

most one qs-atom in FEq
M (and hence is at most one starting

chain), and there is one starting chain if and only if FEq
M

contains some qs-atom.

Sketch. The first, second, and third implications hold
because R∀

M includes {RN+

init, R
N+

tr , RCh
loop, R

Eq
<2N, REq

<2N−},

{REq
<2qs

}, and {RN+

init, R
Ch
N+·qs

, R
Eq
<2qs

}, respectively. Note

that FEq
M satisfies all rules in R∀

M by Lemma 25, and c = d

if Eq(c, d) ∈ FEq
M for some constants c and d.

Furthermore, we can show that, if there is a starting chain,
then the fact set associated to this structure is isomorphic to
a finite prefix of the chain in Ch(KM ).

Definition 28. Let πS be the (injective) substitution that
maps s to the first element of (the starting chain) S, n(s)
to the second, n2(s) to the third, and so on. For a list t⃗ of
terms, let Facts(⃗t) be the set of all facts in FEq

M that can be
defined using some non-nullary predicate and some terms
occurring in t⃗.

Remember that, since we slightly abuse notation, substi-
tutions may be defined for non-variable terms.

Lemma 29. If Chaos /∈ FEq
M and there is a starting chain

S, then the substitution πS is an isomorphism from CM(|S|)
to Facts(S).4

4Remember that CM(|S|) was introduced in Definition 20.

Sketch. We can use an argument analogous to the one in the
proof of Lemma 21 to show that πS is a homomorphism
from CM(|S|) to Facts(S). Then, for the other direction,
we use Rules RCh

loop, RCh
N+·qs

, RCh
qf ·N+

, REq
<2N, REq

<2N− , REq
<2qs

,

RCh
q ̸=r, REq

q , RCh
a̸=b and RCh

s·N+ to show that Facts(S) only con-
tains atoms in πS(CM(|S|)). For instance, if an atom of the
form N+(c, d) is in Facts(S) but not in πS(CM(|S|)), then
either c = d, or c comes after d in the starting chain.

• If c = d, then RCh
loop implies that Chaos ∈ Facts(S),

which contradicts the premise of the lemma.
• If c comes after d in the starting chain, then there is a

list c1, . . . , cn of constants such that c1 = d, cn = c,
and N(ci, ci+1) ∈ Facts(S) for every 1 ≤ i < n.
Then, N+(d, d) ∈ Facts(S) because of Rule RN+

tr , and
Chaos ∈ Facts(S) because of Rule RCh

loop, which contra-
dicts the premise of the lemma.

Thus, there are no N+-atom in Facts(S) \ πS(CM(|S|)). A
careful analysis of all the other predicates then concludes the
proof.

Now that we understand the structure and content of FEq
M ,

we can declaratively describe how to extend this fact set to
obtain the chase of ⟨RM ,FEq

M ⟩.
Definition 30. An N-chain C = c1, . . . , cm is incom-
plete if the set FEq

M contains RS(cm) and some fact of the
form q(d, cm) such that q ̸= qf . Given such an N-chain,
let Compl(C) be the atom set that contains N(cm, n(cm)),
Eq(n(cm), n(cm)), and N+(ci, n(cm)) for every 1 ≤ i ≤ m.
Let Compl(FEq

M ) be the atom set that includes Compl(C) for
every incomplete chain C.

Lemma 31. If Chaos /∈ FEq
M , then

Ch(RM ,FEq
M ) = FEq

M ∪ Compl(FEq
M ) ∪ πS(Ch(KM )).

Roughly speaking, if Chaos /∈ FEq
M , we can define the

chase of ⟨RM ,FEq
M ⟩ by taking FEq

M , completing every in-
complete chain, and appending the (possibly infinite) chain
in Ch(KM ) to the starting chain in FEq

M . To understand why
this suffices, see the following example.

Example 32. Consider a machine that has three states, qs,
q and qf , that always goes right, and that goes to state q
whenever it reads a blank, and goes to qf whenever it reads
a 0 or a 1. Obviously, this machine does not halt on the
empty word, but does on every other word. The fact set on
the left of Figure 3 contains two N-chains: the starting chain
at the top, and another at the bottom. After one existential
step and one datalog step, note that the atom qf(n(d), n(d))
has not been derived: this is due to the fact that RS(n(d)) is
not derivable, as n(d) is not reachable through an N-chain
from c0, the unique element for which qs(c0, c0) holds. This
blocks the application of Rule Sr,b,R

q,a .
If ones try to circumvent that problem as on the right of

Figure 3, with two N-chains connected by a q atom, the atom



RS : c0 RS : c1 n(c1)

qs, B q, B q, B

RS : d n(d)

q, 1

RS : c0 RS : c1
RS : n(c1)

qs, B q, B q, B

RS : d n(d)

q, 1

Figure 3: Fact sets from Example 32 after one existential step and one closure under datalog rules. Dots represent constants occurring in the
fact set, and crosses represent Skolem terms. Solid atoms are in the original fact set, dashed ones created by rule applications. Unlabelled
arrows represent the N predicate. Predicates N+ and Eq are not represented.

N+(n(d), n(c2)) cannot be mapped, hence Rule Rr,b,R
q,a can-

not be applied. In turn, this prevents the instantiation of the
atom qf(n(c2), n(c2)).

These two examples illustrate the use of predicates RS and
N+, allowing to block the development of simulations that do
not correspond to the empty word.

Leveraging the contingent definition of the chase of
⟨RM ,FEq

M ⟩ given in Lemma 31, we can better understand
when Halt is not entailed by this knowledge base:

Lemma 33. If Halt /∈ FEq
M and M does not halt on ε, then

⟨RM ,FEq
M ⟩ does not entail Halt.

Proof. By Proposition 3, we have that ⟨RM ,FEq
M ⟩ does

not entail Halt if Halt is not in the chase of ⟨RM ,FEq
M ⟩.

By Lemma 31, this is the case if Halt is not in FEq
M , in

Compl(FEq
M ), or in πS(Ch(KM )). Indeed, Halt is not in the

first set by the premise of the lemma, it is not in the second
by Definition 30, and it is not in the third by the premise
of the lemma and Lemma 22. Note that the premise of the
lemma implies that ⟨RM ,FEq

M ⟩ does not entail Chaos since
the Rule RHalt

Chaos is in RM .

5 Related Work
Let us first point out that there are several variations around
the notion of datalog-rewriting. A first dimension is that,
rather than rewriting a specific rule query ⟨R, q⟩, one can
wish to rewrite R into a datalog rule set R′, and use R′ to
compute answers for a class of queries. Another variation is
focused on the fact sets on which the rewriting should out-
put the same answer as the original rule query. In this paper,
we consider the strong version where answers should be the
same on every fact set over Pred. Quite often, defined dat-
alog rewritings only preserve answers over fact sets on the
original signature – this allows to introduce fresh predicates
which are known not to belong to fact sets on which the dat-
alog program is to be evaluated. There are cases for which
there exists datalog-rewritings of rule queries for this relaxed
definition but not for our restricted one; this is a consequence
of Theorem 3 in (Krötzsch 2011). Our undecidability result
implies undecidability of this more relaxed notion.

The use of datalog as a target language for rewritings has
been studied over the last 15 years. The goal was to reduce
reasoning task over expressive ontologies towards query an-
swering over datalog, for which optimization techniques
have been developed in the database community. This is
even more pregnant today, as a variety of efficient data-
log reasoners have been implemented (Nenov et al. 2015;
Urbani et al. 2018). Such an approach has been proposed
for providing disjunctive5 datalog rewritings for SHIQ for
fact entailment over the original signature (Hustadt, Motik,
and Sattler 2007), later generalized to SHIQbS (Rudolph,
Krötzsch, and Hitzler 2012). More recently, such reduc-
tions for Horn description logics have been implemented
and evaluated (Carral, Dragoste, and Krötzsch 2018; Car-
ral, González, and Koopmann 2019). Such datalog rewrit-
ings have also been studied for existential rules, for guarded
(Benedikt et al. 2022), nearly guarded (Gottlob, Rudolph,
and Simkus 2014), warded (Berger et al. 2022) and shy
(Leone et al. 2019) rule sets.

Beyond these fragment specific reductions, the limits
of datalog-rewritability have been explored. In (Marnette
2012), it is shown that whenever rule queries have bounded
depth (meaning that if they are entailed, they are entailed
by a portion of the chase that uses only Skolem terms of
bounded depth), they are datalog-rewritable. This result ap-
plies for all syntactic fragment for which the chase is known
to terminate (Grau et al. 2013), but datalog rewritability is
not guaranteed (and not always possible) for rule sets having
terminating restricted chase (Krötzsch, Marx, and Rudolph
2019) – this is proven by a data complexity argument.

Another question of interest is the size of the obtained
rewritings. In (Ahmetaj, Ortiz, and Simkus 2018), the au-
thors provide polynomial (disjunctive) datalog rewritings for
(disjunctive) guarded rules queries. Non-recursive datalog
has also been studied: while it does not increase the ex-
pressivity with respect to UCQs, the re-use of predicates al-
lows to significanlty reduce the size of rewritings, reaching
polynomiality in some cases (Gottlob and Schwentick 2012;
Gottlob et al. 2014).

All of these contributions are summarised in Table 1.
5For disjunctive existential rules and datalog, the reader is in-

vited to consult (Deutsch and Tannen 2003)



Source Language Target Language Arbitrary Query Sig. Implemented Reference

SHIQ disj. dat. × ✓ (Hustadt, Motik, and Sattler 2007)
SHIQbS disj. dat. × × (Rudolph, Krötzsch, and Hitzler 2012)

Horn-ALCHOIQ datalog × ✓ (Carral, Dragoste, and Krötzsch 2018)
Horn-SRIQ datalog × ✓ (Carral, González, and Koopmann 2019)

Bounded Detph rules datalog × × (Marnette 2012)
Frontier guarded rules datalog ✓ × (Bárány, Benedikt, and ten Cate 2013)
Nearly Guarded Rules datalog ✓ × (Gottlob, Rudolph, and Simkus 2014)

Guarded disj. rules disj. datalog × × (Ahmetaj, Ortiz, and Simkus 2018)
Guarded rules datalog ✓ ✓ (Benedikt et al. 2022)
Warded rules datalog ✓ ✓ (Berger et al. 2022)

Linear non rec. dat. × × (Gottlob and Schwentick 2012)
Sticky(-join) non rec. dat. × × (Gottlob and Schwentick 2012)

Table 1: Summary of datalog rewriting approaches applicable for fact entailment

6 Future Work
To conclude, we discuss two distinct lines for future re-
search, which naturally follow from our work.

Answer Expressible Rule Sets We intend to study an
even more restrictive class of rewritable rule sets: a rule
set R is answer datalog-expressible if, for every CQ q[x⃗],
the rule query ⟨R, q[x⃗]⟩ admits some datalog-rewriting that
preserves all answers. That is, a datalog query ⟨R′, q′[x⃗]⟩
such that, for every fact set F and every list a⃗ of constants
occurring in F , we have that ⟨R,F⟩ |= q[x⃗/a⃗] if and only if
⟨R′,F⟩ |= q[x⃗/a⃗]. With this definition in place, we wonder
about the following problem:

Open Problem 34. Consider a knowledge base K =
⟨R,F⟩, a CQ q, and a list a⃗ of constants occurring in F .
Is there a procedure to check if a⃗ is an answer of q with re-
spect to ⟨R,F⟩ that is sound, complete, and terminating if
R is answer datalog-expressible?

The above question is quite relevant for our field of re-
search, where we often study the theoretical properties of
classes of rule sets and not of rule queries.

At the moment, we believe that the answer to this open
problem is negative, which would yield a result strictly
stronger than Theorem 16. However, a different proof strat-
egy is required to show this since there are rule sets in the
range of the reduction described in Definition 18 that are not
answer datalog-rewritable.

Alternative Rewriting Languages In this paper, our pri-
mary focus is on datalog; in the future, we plan to study
alternative query languages for rewritings. For instance, one
could consider unions of Boolean conjunctive regular path
queries (UBCRPQs) (Florescu, Levy, and Suciu 1998) and
then consider the following problem:

Open Problem 35. Is the class of all UBCRPQ-expressible
queries is UBCRPQ-rewritable? Is there a procedure to
check if a knowledge base ⟨R,F⟩ entails a BCQ q that is
sound, complete, and terminates if the rule query ⟨R, q⟩ is
UCRPQ-expressible?

We can instantiate different versions of this open prob-
lem by considering different output rewriting languages. For
instance, we could consider as unions of (non-conjunctive)
regular path queries, monadic datalog, query languages
based on context-free grammars (Medeiros, Musicante, and
da Costa 2022), or any of the query languages considered by
(Bourhis, Krötzsch, and Rudolph 2015).

As a closing remark, note that the answers to the first and
second questions in Open Problem 35 might be negative and
positive, respectively. That is, it is possible that we can
solve entailment for UCRPQ-expressible rule queries even
if we cannot effectively compute rewritings for these. This
is an exciting possibility that may lead us to the discovery
of a novel kind of reasoning procedure for this expressive
class of rule queries. Or perhaps future research will just re-
sult in another undecidability result, which would be strictly
stronger than Theorem 16. Either way, we look forward to
researching (and hopefully settling!) these questions.
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A Proof of Lemma 21
The following is an auxiliary result that is used in the proof of Lemma 21.
Lemma 36. Consider a machine M , and a trigger τ with a rule from RM . If there is an
atom of the form Eq(t, t) ∈ support(τ), then τ is not applicable to any fact set.

Proof. Suppose that there is an atom of the form Eq(t, t) ∈ support(τ) for the trigger
τ = ⟨R, π⟩. Since R ∈ RM , this rule is equal to REq

sym or REq
tr , or it is of type RP,i

cg ; note that
none of the other rules in RM feature Eq-atoms in their bodies. We consider these three
possible cases separately:
• If R = REq

tr ; then π(x) = π(y) = t and π(z) ̸= t, π(x) ̸= t and π(y) = π(z) = t, or
π(x) = π(y) = π(z) = t. In either case, output(τ) ⊆ support(τ).

• If R = REq
sym, then π(x) = π(y) = t. Therefore, output(τ) = support(τ).

• If R is of type RP,i
cg for a predicate P and some 1 ≤ i ≤ ari(P),

then support(τ) = {P(t1, . . . , ti−1, t, ti+1, . . . , tn), Eq(t, t)} and output(τ) =
{P(t1, . . . , ti−1, t, ti+1, . . . , tn)} for some terms t1, . . . , ti−1, ti+1, . . . , tn.

In either case, we have that output(τ) ⊆ support(τ). Therefore, the trigger τ is not appli-
cable to any fact set.

Lemma 21. For a machine M , we have Ch(KM) = CM.

Proof. We define the knowledge base KM = ⟨RM , ∅⟩, and prove via induction that
Ch2i+2(KM) = CM(i) for every 1 ≤ i ≤ |RunM(ε)|.
• Base case. By Definition 2, we have that Ch1(KM) = ∅, Ch2(KM) = R∀

M(Ch1(KM)),
Ch3(KM) = R∃

M(Ch2(KM)), and Ch4(KM) = R∀
M(Ch3(KM)). Hence, Ch2(KM) = ∅,

Ch3(KM) = {qs(s, s)} since Rqs ∈ R∃
M , and {qs(s, s), RS(s), B(s, s)} ⊆ Ch4(KM)

since {RRS
qs
, RB

RS} ⊆ R∀
M . To show that Ch4(KM) = {qs(s, s), RS(s), B(s, s), Eq(s, s)} we

check that this atom set satisfies all of the rules in R∀
M with a case-by-case analysis:

– It satisfies rule RRS
qs

because it contains RS(s).
– It satisfies rules RN+

init, R
N+

tr , RRS, RCh
loop, RCh

N+·qs , RCh
qf ·N+

, REq
<2N, and REq

<2N− because it does
not contain any atoms over N or N+. Also, it satisfies rules of type Rr,b,L

q,a , Rr,b,S
q,a , Rr,b,R

q,a ,
Sr,b,R
q,a , Ra·L

copy, R
a·R
copy, and RCh

s·N+ for the same reason.
– It satisfies rule RB

RS because it contains B(s, s).
– It satisfies rule RHalt

final because it does not contain any atoms over qf. Note that qf ̸= qs
by Definition 4.

– It satisfies rules of type REq
P,i, R

P,i
cg , REq

<2qs , and REq
q because it contains Eq(s, s).

– It satisfies rules REq
sym and REq

tr by Lemma 36.
– It satisfies rule RHalt

Chaos because it does not contain Chaos.
– It satisfies rules of type RCh

q ̸=r because it does not contain any atoms over any predicate
in {q | q ∈ Q \ {qs}}.

– It satisfies rules of type RCh
a̸=b it does not contain any atoms over 0 or 1.

Therefore, for i = 1, we have that Ch2i+2(KM) = {qs(s, s), B(s, s), RS(s), Eq(s, s)},
which is equal to CM(i) by Definition 20, and the base case holds.

• Inductive step. By induction hypothesis, we assume that Ch2j+2(KM) = CM(j) for
some 1 < j < |RunM(ε)|; let’s show this for j + 1.



Rule Rqs is not applicable to Ch2j+2(KM), as it has an empty frontier and has been applied
in Ch3(KM). The only other rule featuring an existential is Rule RN

q , having as frontier
variable c. Triggers mapping c to an element from {nk(s)}0≤k≤j−1 have been applied at
previous steps. Only one trigger is left applicable, which maps c to nj−1(s) (recall that
by convention n0(s) = s), creating {N(nj−1(s), nj(s))}. We thus have Ch2j+3(KM) =
Ch2j+2(KM) ∪ {N(nj−1(s), nj(s))}. The atom set Ch2j+4(KM) is the datalog closure of
Ch2j+3(KM), which we now compute:
• There is exactly one new trigger for Rule RN+

init, which maps ℓi to nj−1(s) and ℓi+1 to nj(s),
which creates N+(nj−1(s), nj(s)).

• By induction on k, from 2 to j, there is a trigger of Rule RN+

tr mapping ℓi to nj−k(s), ℓi+1 to
nj−k+1(s), ℓj to nj(s), and creating N+(nj−k(s), nj(s)). Thus atoms {N+(nk(s), nj(s))}
are created for every k from 0 to j − 1. Note that no other rule application can create an
atom over N or N+ as qs(s, s) has been created in Ch1(KM), and N+(s, nj(s)) belongs to
Ch2j+2(KM) by the previous item.

• Rule RRS is applicable creating RS(nj(s)).
• Rule RB

RS is applicable by mapping x to nj(s), creating B(nj(s), nj(s)).
• Rules of type REq

P,i are applicable, creating Eq(nj(s), nj(s)).
• No trigger of rules Rr,b,L

q,a , Rr,b,S
q,a and Rr,b,R

q,a mapping cj+1 to nk(s) with k < j is applicable:
indeed, the atoms not already present in Ch2j+2(KM) all have nj(s) as last argument;
using such an atom in a new trigger imposes that the cj+1 is mapped to nj(s).

• By our definition of machines, as Halt is not entailed, there must be exactly one applica-
ble transition on the jth configuration in the run of M on ε. That transition may be: going
to the left, on any cell but the first (treated by Rule Rr,b,L

q,a ), from the first cell (Rule Rr,b,S
q,a ),

going to the right, on any cell but the last (Rule Rr,b,R
q,a ) or from the last (Rule Sr,b,R

q,a ). We
explicit the rule application in the first case, others cases being treated similarly. By in-
duction assumption, if a transition in state q reading an a in the ith (i ̸= 0) cell moves
to the left (writes b and goes into state r) is applicable on the jth configuration, then
{a(ni(s), nj−1(s)), q(ni(s), nj−1(s)) ∈ CM(j). Consider π defined as follows:

– π(pi) = ni(s);
– π(cj) = nj−1(s);
– π(pi−1) = ni−1(s), well defined as i ≥ 1;
– π(cj+1) = nj(s).
π is a homomorphism from the body of Rr,b,L

q,a into the atoms derived so far, and the atoms
r(ni−1(s), nj(s)), b(ni(s), nj(s)) are derived, which encode that the cell i contains b in
the jth configuration, the machine is in state r and the head is over the (i − 1)th cell in
the (j + 1)th configuration.

• By induction assumption, there exists a single i such that q(ni(s), nj−1(s)) is in
Ch2j+2(KM), which correspond to the index of the cell containing the head of the machine
in the jth configuration; Rule Ra·L

copy is thus applicable i times, creating a(nk(s), nj(s)), for
any 0 ≤ k < i. It thus creates a(nk(s), nj(s)) if the head is on the right of cell k in the jth

configuration, and cell k contains an a, effectively implementing a copying mechanism.
Rule Ra·R

copy creates similar atoms for any k > i.

• By Lemma 36, no rule from REq
M (except from the one application already described of

rules of type REq
P,i) is applicable.



• By induction assumption, no rule from RCh
M is applicable, as we added only one atom of

the shape q(p, nj(s)), with nj(s) not appearing in Ch2j , and exactly one atom of the shape
a(ni(s), nj(s)) for any i ≤ j.

We have shown that Ch2(j+1)+2(KM) \ Ch2j+2)(KM) = CM(j + 1), for all j < |RunM(ε)|.
Let us now notice that if M halts on ε, then Ch2|RunM (ε)|+2(KM) is a model of RM . By

the previous proof, it is a model of any datalog rule, and of Rqs . The only remaining rule
is RN

q , which has been applied for any mapping from c to a term of Ch2|RunM (ε)|+2(KM),
except n|RunM (ε)|(s). However, only a qf-atom has this term as argument, hence Rule RN

q is
not applicable, which concludes the proof.

B Proof of Lemma 25
Lemma 25. We have that ⟨RM ,FEq

M⟩ ̸|= Halt if and only ⟨RM ,F⟩ ̸|= Halt. Moreover,
FEq

M satisfies all rules in R∀
M (and therefore, Ch(R∀

M ,FEq
M) = FEq

M ).

Proof. Let us first prove that Eq is an equivalence relation.
Symmetry: By rule REq

sym, if Eq(x, y) ∈ Ch(⟨R∀
M ,F⟩), then Eq(y, x) ∈ Ch(⟨R∀

M ,F⟩).
Reflexivity: By rule REq

P,i, for all x, Eq(x, x) ∈ Ch(⟨R∀
M ,F⟩).

Transitivity: By rule REq
tr , if {Eq(x, y), Eq(y, z)} ⊆ Ch(⟨R∀

M ,F⟩), then Eq(x, z) ∈
Ch(⟨R∀

M ,F⟩).
We now prove that P (t1, . . . , tn) ∈ Ch(⟨R∀

M ,F⟩) if and only if P ([t1], . . . , [tn]) ∈ FEq
M .

If P (t1, . . . , tn) ∈ Ch(⟨R∀
M ,F⟩), then P ([t1], . . . , [tn]) ∈ FEq

M by definition of FEq
M .

If P (c1, . . . , cn) ∈ FEq
M , let us consider s1 ∈ c1, . . . , sn ∈ cn, and let us prove that

P (s1, . . . , sn) ∈ Ch(⟨R∀
M ,F⟩). By definition of FEq

M , there exists t1 ∈ c1, . . . tn ∈ cn
such that P (t1, . . . , tn) ∈ F . We show by induction on i that P (s1, . . . , si, ti+1, tn) ∈
Ch(⟨R∀

M ,F⟩), for any i between 1 and n.
For i = 1, if s1 ∈ c1 and t1 ∈ c1, we have that Eq(t1, s1) ∈ Ch(⟨R∀

M ,F⟩). By application
of Rule RP,i

cg , we also have that P (s1, t2, . . . , tn) ∈ Ch(⟨R∀
M ,F⟩).

If the result holds for i < n, let us show it for i + 1. By induction assumption
P (s1, . . . , si, ti+1, tn) ∈ Ch(⟨R∀

M ,F⟩). As si+1 and ti+1 are both in ci+1, Eq(ti+1, si+1) ∈
Ch(⟨R∀

M ,F⟩). By application of Rule RP,i
cg , we also have that P (s1, . . . , si+1, . . . , tn) ∈

Ch(⟨R∀
M ,F⟩).

Hence P (s1, . . . , sn) ∈ Ch(⟨R∀
M ,F⟩).

Let us now notice that the above property implies that π : ti → [ti] is a homomorphism
from Ch⟨R∀

M ,F⟩ into FEq
M , and that π′ : [ti] → ti ∈ [ti] is a homomorphism from FEq

M

into Ch⟨R∀
M ,F⟩. This is a slight abuse of language, as we allow constants to be renamed

here. However, as RM and Halt do not contain any constant, and as R∀
M ⊆ RM , it implies

that Ch(⟨RM⟩,F) and Ch(⟨RM⟩,FEq
M) are homomorphically equivalent (again, allowing to

rename constants), and hence ⟨RM ,F⟩ |= Halt if and only if ⟨RM ,FEq
M⟩ |= Halt.

Finally, let us show that FEq
M is a model of R∀

M . If note, there is a homomorphism that
maps a rule body in to FEq

M , creating atom P ([t1], . . . , [tn]). By composing with the ho-
momorphism from FEq

M into Ch⟨R∀
M ,F⟩, there is a homomorphism which would create

P (t1, . . . , tn) in Ch⟨R∀
M ,F⟩. Howver, Ch⟨R∀

M ,F⟩ is satured with respect to the applica-
tions of rules of R∀

M , hence P (t1, . . . , tn) ∈ Ch⟨R∀
M ,F⟩, and thus P ([t1], . . . , [tn]) ∈ FEq

M .



C Proof of Lemma 27
Lemma 27. If Chaos /∈ FEq

M ; then the set of all constants occurring in FEq
M is a disjoint

union of chains, there is at most one qs-atom in FEq
M (and hence is at most one starting

chain), and there is one starting chain if and only if FEq
M contains some qs-atom.

Proof. Remember that FEq
M satisfies the rules in R∀

M by Lemma 25.
1. The first implication of the lemma holds because N defines a relation in FEq

M that is (al-
ways) functional and inverse functional, and acyclic if Chaos /∈ FEq

M .
• Consider some constants c, d1, and d2, and suppose that FEq

M includes {N(c, d1), N(c, d2)}
or {N(d1, c), N(d2, c)}. Then, Eq(d1, d2) ∈ FEq

M since this fact set satisfies rules REq
<2N and

REq

<2N− . Therefore, d1 = d2.
• Suppose for a contradiction that FEq

M does not contain Chaos, and that it includes
{N(ci−1, ci) | 1 < i ≤ n} ∪ {N(cn, c1)} for some non-empty list c1, . . . , cn of con-
stants. Then, FEq

M includes {N+(ci, cj) | i, j ∈ {1, . . . , n}} since this fact set satisfies
rules RN+

init and RN+

tr , and it also contains Chaos since it satisfies RCh
loop.

2. To show that there is at most one qs-atom in FEq
M , we suppose that it contains some

facts of the form qs(c1, c2) and qs(c3, c4). Then, FEq
M contains Eq(ci, cj) for every i, j ∈

{1, . . . , 4} since it satisfies rule REq
<2qs as well as all rules in REq

M . Therefore, c1 = c2 =
c3 = c4.

3. By (2) above, there is only one starting chain by Definition 26. We now argue that there
is one such chain if there is an atom of the form qs(c, d) ∈ FEq

M and Chaos /∈ FEq
M . If this

is the case, we have c = d since Eq(c, d) ∈ FEq
M . Moreover, we conclude that there are no

facts of the form N(e, c) ∈ FEq
M because this fact set satisfies rules RN+

tr and RCh
N+·qs . Hence,

since every constant occurs in some chain by (1) above, c must be the first element of the
starting chain.

D Proof of Lemma 29
Lemma 29. If Chaos /∈ FEq

M and there is a starting chain S, then the substitution πS is an
isomorphism from CM(|S|) to Facts(S).

Proof. Consider the starting chain S = c1, . . . , cn and the list Si = c1, . . . , ci of constants
for every 1 ≤ i ≤ |S|. Moreover, remember that πS maps s to c1 and ni−1(s) to ci for every
2 ≤ i ≤ S. To prove the lemma we assume that Chaos /∈ FEq

M and then show by induction
that πS is an isomorphism from CM(i) to Facts(Si) for every 1 ≤ i ≤ n.
• Base case: we show that Facts(S1) = πS(CM(1)); that is, we prove that Facts(S1) is the

fact set {qs(c1, c1), B(c1, c1), RS(c1), Eq(c1, c1)}.
⊆. The set Facts(S1) contains qs(c1, c1) by Definition 26. Also, it also contains RS(c1),

Eq(c1, c1), and B(c1, c1) because FEq
M satisfies rules RRS

qs
, REq

qs,1, and RB
RS.

⊇. By Definition 28, the only term occurring in Facts(S1) is the constant c1. Hence, the
only other facts that this set could contain are N(c1, c1), N+(c1, c1), 0(c1, c1), 1(c1, c1), or
q(c1, c1) for some state q ̸= qs. If Facts(S1) contains either of these; then Halt ∈ FEq

M

because this fact set includes Facts(S1), and it satisfies the rules RN+

init, R
Ch
loop, and RHalt

Chaos

as well as all rules of type RCh
a̸=b and RCh

q ̸=r by Lemma 25. Note the clash with the the
premise of the lemma.



• Inductive step: we assume that Facts(Sk−1) = πS(CM(k − 1)) for some 1 < k ≤ n by
induction hypothesis, and then show that Facts(Sk) = πS(CM(k)).

⊆ . We can show that πS(CM(k)) ⊆ Facts(Sk) with an argument analogous to the one we
use to show the induction step in the proof of Lemma 21. Note how the datalog rules in
RM that produce the atoms in CM(k) \ (CM(1)∪ {N(t, u) | t, u ∈ Terms}) also produce
the corresponding atoms in Facts(Sk).

⊇ . To show that no other atoms are in Facts(Sk) we provide a case-by-case analysis in
which we consider all predicates separately. Before moving ahead, remember that FEq

M

includes Facts(Sk) and satisfies the rules in R∀
M by Lemma 25, and that we have just

proven that Facts(Sk) includes πS(CM(k)).
N: Note the contradiction with Lemma 27.
N+: If there is a fact of the form N+(c, d) ∈ Facts(Sk) \ πS(CM(k)), then either c = d
or d occurs before c in S. In either case, FEq

M contains N+(c, c) and Chaos since this set
satisfies RN+

tr and RCh
loop. Note the clash with the the premise of the lemma.

RS: Note that Facts(Sk) contains RS(c) for all constants c occurring in this set.
Eq: If there is a fact of the form Eq(c, d) ∈ Facts(Sk) \ πS(CM(k)), then c ̸= d since
Facts(Sk) contains Eq(e, e) for all constants e occurring in this set. Note the contradic-
tion since Eq(c, d) ∈ FEq

M implies c = d by the definition of this set.
q for some q ∈ Q: Suppose for a contradiction there is a fact of the form q(p, c) in
Facts(Sk) \ πS(CM(k)). By Definition 20, there is some atom of the form r(p′, c) ∈
πS(CM(k)). We consider two different possibilities:

– If q = r, then p ̸= p′ since q(p, c) /∈ πS(CM(k)). Moreover, Eq(p, p′) ∈ FEq
M since this

set satisfies REq
q and hence p = p′ by the definition of this set.

– If q ̸= r, then FEq
M contains Chaos since this set satisfies RCh

q ̸=r.
In either case, we obtain a contradiction.
a with a ∈ {0, 1, B}: If there is a fact of the form a(c, d) ∈ Facts(Sk) \ πS(CM(k)), we
consider two possible cases:

– If c occurs before d in S or c = d, then b(c, d) ∈ πS(CM(k)) for some b ∈ {0, 1, B}
different from a. Hence, Chaos ∈ FEq

M since this fact set satisfies RCh
a̸=b.

– If d occurs before c, then N+(d, d) ∈ Facts(Sk). Hence, Chaos ∈ FEq
M since this fact set

satisfies RCh
a̸=b.

Either case contradicts the premise of the lemma.

E Proof of Lemma 31
Lemma 31. If Chaos /∈ FEq

M , then

Ch(RM ,FEq
M) = FEq

M ∪ Compl(FEq
M) ∪ πS(Ch(KM)).

Proof. Let M = FEq
M ∪ Compl(FEq

M) ∪ πS(Ch(KM)). We proceed by double inclusion. In
particular, we show that M can be obtained during the chase from ⟨RM ,FEq

M⟩ (proving the
converse inclusion), and satisfies all the rules in RM (proving the direct inclusion). Indeed,
if M is a model of ⟨RM ,FEq

M⟩, then R∃
M(M) = R∀

M(M) = M. Hence, M is the result of
the chase on ⟨RM ,FEq

M⟩.
⊇ . We first show that Ch(RM ,FEq

M) includes FEq
M , Compl(FEq

M), and πS(Ch(KM)).



– By Definition 2, we have Ch1(RM ,FEq
M) = FEq

M and hence, Ch(RM ,FEq
M) includes FEq

M .
– Consider an incomplete chain C = {c1, . . . , cm}. We show that Compl(C) ⊆
Ch(RM ,FEq

M). Since C is incomplete, there are some state q and term t such that
{RS(cm), q(t, cm)} ⊆ FEq

M . Thus, there must be some term t such that N(cm, t) ∈
Ch(RM ,FEq

M) by rule RN
q . In addition, since there is no u such that N(cm, u) ∈ FEq

M ,
then t = n(cm). Then, by rule REq

N,2, the atom Eq(n(cm), n(cm)) must also be contained
in Ch(RM ,FEq

M). Finally, we prove by induction that N+(ci, n(cm)) ∈ Ch(RM ,FEq
M) for

all i ≤ m. First, since N(cm, n(cm)) ∈ Ch(RM ,FEq
M), by rule RN+

init, N
+(cm, n(cm)) ∈

Ch(RM ,FEq
M). Then, if N+(ci+1, n(cm)) ∈ Ch(RM ,FEq

M). Then since N(ci, ci+1) ∈
Ch(RM ,FEq

M) by Definition 26, we have N+(ci, n(cm)) ∈ Ch(RM ,FEq
M) by rule RN+

tr .
Thus, Compl(C) ⊆ Ch(RM ,FEq

M) for all incomplete chains C, which means that
Compl(FEq

M) ⊆ Ch(RM ,FEq
M).

– It remains to show that πS(Ch(KM)) ⊆ Ch(RM ,FEq
M). If FEq

M has a starting chain,
Lemma 29 states that Facts(S) is isomorphic to CM(|S|), through πS . Thus, whether
FEq

M has a starting chain or not, we can replicate the proof of Lemma 27 to show that
πS(Ch(KM)) ⊆ Ch(RM ,FEq

M), which concludes this inclusion.
⊆ . We then show the direct inclusion. To do so, we will often use the following facts about

applicable triggers over ⟨RM ,M⟩:
A. Since πS(Ch(KM)) satisfies all the rules in RM , if the support of a trigger τ is included

in πS(Ch(KM)), then τ is not applicable. Thus, the support of any applicable trigger
contains an atom in M\ πS(Ch(KM)).

B. Since FEq
M satisfies all the datalog rules in RM by Lemma 33, if the support of a trigger

τ is included in FEq
M , then τ is not applicable. Thus, the support of any applicable trigger

contains an atom in M\FEq
M .

C. The two previous points together imply that if t is a datalog trigger whose support con-
tains only one atom, then this atom is in Compl(FEq

M).
We present a case-by-case analysis to show that M satisfies every rule in RM . Assume
for a contradiction that there is an applicable trigger τ = ⟨R, π⟩.
If R = Rqs: The set πS(Ch(KM)) contains an atom of the form qs(t, t), so M satisfies
this rule.

If R = RN
q: Assume that support(τ) = {q(t, u), RS(u)} for some terms t, u. Then, since

τ is applicable, there is no term v such that N(u, v) ∈ M. Thus, in particular, there is no
v such that N(u, v) ∈ FEq

M , so the chain C containing u is incomplete. Hence, there is
some term n(cm) such that N(u, n(cm)) ∈ Compl(C), which gives a contradiction.

If R ∈ {RRS
qs
, RB

RS, R
Halt
final , R

Halt
Chaos, R

Ch
loop}: Since these rules only feature one atom in their

body, by Item C, we have support(τ) ⊆ Compl(FEq
M). However, this is impossible,

as Compl(FEq
M) only contains atoms over Eq, N and N+, and for all atoms N+(t, u) ∈

Compl(FEq
M), we have t ̸= u.

If R = RN+

init: Since this rule only features one atom in its body, by Item C, we have
support(τ) ⊆ Compl(FEq

M). However, there is only one N-atom in Compl(FEq
M), which

is N(cm, n(cm)) where cm is the last element of an incomplete chain. Thus, the atom
N+(cm, n(cm)) is also in Compl(FEq

M), contradicting the applicability of τ .
If R = RN+

tr : Assume that support(τ) = {N(t, u), N+(u, v)} for some terms t, u, v. This
rule is datalog, so by Item B, there must by an atom in support(τ) that is not in FEq

M .



We thus treat all the possible case.
– If N(t, u) ∈ Compl(FEq

M), then t is the last element of some incomplete chain, and
u = n(t). Thus, there is no atom N+(u, v) ∈ M.

– If N(t, u) ∈ πS(Ch(KM))\FEq
M , then the term u does not appear in FEq

M (by Lemma 29)
or in Compl(FEq

M). Thus, the atom N+(u, v) is contained in πS(Ch(KM)), which entails
that support(τ) ⊆ πS(Ch(KM)) and contradicts Item A.

– If N+(u, v) ∈ Compl(FEq
M), then there is some incomplete chain C that contains u,

and v = n(c) where c is C’s last element. Thus, the atom N+(t, v) is contained in
Compl(FEq

M), which contradicts the applicability of τ .
– If N+(u, v) ∈ πS(Ch(KM)) \ FEq

M , then v does not appear in FEq
M (by Lemma 29)

or in Compl(FEq
M). Thus, u appears in πS(Ch(KM)), which means that N(t, u) ∈

πS(Ch(KM)). Thus, we have support(τ) ⊆ πS(Ch(KM)) which contradicts Item A.
If R ∈ {RRS, RCh

N+·qs}: Assume support(τ) contains N+(t, u) for some terms t, u. There
is only one qs-atom in M, which is in πS(Ch(KM)), so by Item A, N+(t, u) is not in
πS(Ch(KM)).

– If N+(t, u)FEq
M , then FEq

M has a starting chain (by Lemma 29), and thus support(τ) ⊆
FEq

M , which contradicts Item B.
– If N+(t, u) ∈ Compl(FEq

M), then there is some incomplete chain C that contains t, and
u = n(c) where c is C’s last element. Thus, since qs(v, v) ∈ M with v = t or v = t,
C is the starting chain, meaning that N+(t, u) ⊆ πS(Ch(KM)), contradicting Item A as
mentioned earlier.

If R = REq
P,i: For all terms t in M, we have Eq(t, t) ∈ M already.

If R ∈ {REq
tr , R

Eq
sym, R

P,i
cg }: As all the Eq-atoms in M are of the form Eq(x, x), no trigger

t = (R, π) such that body(R) features an Eq-atom in its body is applicable on M, by
Lemma 36.

If R ∈ {REq
<2N, R

Eq

<2N−}: By Lemma 27, N and its inverse are both functional in M, so
|support(τ)| = 1. Thus, by Item C, support(τ) ⊆ Compl(FEq

M), so support(τ) =
{N(c, n(c))}, where c is the last element of some incomplete chain. Though, in this case,
Eq(c, c) ∈ FEq

M and Eq(n(c), n(c)) ∈ Compl(FEq
M), so these rules are satisfied.

If R = REq
<2qs: There is exactly one qs-atom in M, so |support(τ)| = 1. Thus, by Item

C, we have support(τ) ⊆ Compl(FEq
M). However, Compl(FEq

M) does not contain any
qs-atom, so τ is not applicable.

If R ∈ {Rr,b,L
q,a , Rr,b,R

q,a }: Assume that support(τ) contains the atoms N(u, v), N(t, t′) and
⟨v, t′⟩+RS = {RS(v), N+(v, t′), RS(t′)}. Note that N(u, v) and N(t, t′) contain all the terms
of the support.

– If N(u, v) ∈ Compl(FEq
M), then u is the end of an incomplete chain and v = n(u). Thus,

RS(v) /∈ M, so we do not have ⟨v, t′⟩+RS, contradicting the applicability of τ .
– If N(t, t′) ∈ Compl(FEq

M), then as the previous case, RS(t′) /∈ M, so τ is not applicable.
– If N(u, v) and N(t, t′) are both in πS(Ch(KM)), then all the terms of the support have an

occurrence in πS(Ch(KM)). We show that support(τ) ⊆ πS(Ch(KM)), contradicting
Item A. Consider an atom A ∈ support(τ). If some term of A does not appear in
FEq

M , then A ∈ πS(Ch(KM)). Otherwise, if all the terms of A appear in FEq
M , then

A ∈ πS(Ch(KM)) too, since πS(Ch(KM)) ∩ FEq
M = Facts(S) by Lemma 29.

– If N(u, v) and N(t, t′) are both in FEq
M , as in the previous case, we can show that



support(τ) ⊆ FEq
M , contradicting Item B.

– If N(u, v) ∈ πS(Ch(KM)) \ FEq
M and N(t, t′) ∈ FEq

M \ πS(Ch(KM)), then since
πS(Ch(KM)) ∩ FEq

M = Facts(S), v does not occur in FEq
M , and t′ does not oc-

cur in πS(Ch(KM)) (since t and t′ have to be on a non-starting chain). Thus,
N+(v, t′) ∈ Compl(FEq

M), which is impossible, as t′ occurs in FEq
M , and for all atom

N+(t1, t2) ∈ Compl(FEq
M), t2 occurs only in Compl(FEq

M).
– The case where N(t, t′) ∈ πS(Ch(KM)) \ FEq

M and N(u, v) ∈ FEq
M \ πS(Ch(KM)) is

treated similarly.
If R = Rr,b,S

q,a : Assume that support(τ) = {qs(u, u), q(u, t), c(u, t), N(t, t′), ⟨u, t′⟩+RS}.
Then, u is the first element of πS(Ch(KM)). If t occurs in πS(Ch(KM)), then the whole
support is in πS(Ch(KM)), contradicting Item A. We thus assume the opposite. Then,
if N(t, t′) ∈ FEq

M , then the whole support is in FEq
M , which contradicts Item B. However,

if N(t, t′) ∈ Compl(FEq
M), then as t′ only occurs in Compl(FEq

M), which does not contain
RS(t′), so τ is not applicable.

If R = Sr,b,R
q,a : Assume that support(τ) = {N(u, v), q(u, u), c(u, u), RS(v)}. As in the

previous case, if N(u, v) is in πS(Ch(KM)) or FEq
M , then we get a contradiction with Item

A or B, and if N(u, v) ∈ Compl(FEq
M), then RS(v) /∈ M.

If R ∈ {Ra·L
copy, R

a·R
copy}: Assume that support(τ) contains the atoms

{N+(u, v), N(t, t′), ⟨u, t′⟩+RS, ⟨v, t′⟩
+
RS}. This case is very similar to rules Rr,b,L

q,a and
Rr,b,R

q,a , we thus use the same case-by-case analysis.
– If N+(u, v) ∈ Compl(FEq

M) or N(t, t′) ∈ Compl(FEq
M), then as before, RS(v) or RS(t′) is

not in M, meaning τ is not applicable.
– If N+(u, v) and N(t, t′) are both in πS(Ch(KM)) or both in FEq

M , then as for rules Rr,b,L
q,a

and Rr,b,R
q,a , we can show that support(τ) ⊆ πS(Ch(KM)), contradicting Item A, or

support(τ) ⊆ FEq
M , contradicting Item B.

– If N(t, t′) ∈ πS(Ch(KM)) \ FEq
M and N(u, v) ∈ FEq

M \ πS(Ch(KM)), then since
πS(Ch(KM)) ∩ FEq

M = Facts(S), t′ does not occur in FEq
M , and either u or v does not

occur in πS(Ch(KM)). Thus, one atom among N+(u, t′) or N+(v, t′) is in Compl(FEq
M),

which is impossible as before.
– The case where N+(u, v) ∈ πS(Ch(KM)) \ FEq

M and N(t, t′) ∈ FEq
M \ πS(Ch(KM)) is

similar.
If R ∈ {REq

q , RCh
q ̸=r, R

Ch
a̸=b}: Assume that support(τ) contains the atoms q(u, t) and

r(v, t). Since Compl(FEq
M) does not contain any state or alphabet atom, support(τ)

is included in FEq
M ∪ πS(Ch(KM)). Thus, as before, one of the atoms is contained in

πS(Ch(KM))\FEq
M , meaning that t does not appear in FEq

M (as if s(t1, t2) ∈ πS(Ch(KM)),
t2 is further in the chain than t1). Thus, we can show as earlier that support(τ) ⊆
πS(Ch(KM)), contradicting Item A.

If R = RCh
s·N+: Assume that support(τ) = {N+(t, u), s(u, t)}.

– If N+(t, u) ∈ Compl(FEq
M), then u is a newly created variable occurring only in

Compl(FEq
M), which contains no state or character atom. Thus, s(x, t) /∈ M, so τ

is not applicable.
– Otherwise, both atoms are in πS(Ch(KM)) ∪ FEq

M . Thus, one atom is in πS(Ch(KM)) \
FEq

M , as otherwise it would contradict Item B. Then x or t does not appear in FEq
M ,

meaning that the whole support is included in πS(Ch(KM)), which contradicts Item A.



As stated before, we then get that M can be obtained through a chase derivation, and
satisfies all the rules. This concludes the proof of this lemma.
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