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Abstract
Normalizing flows (NF) use a continuous generator to map a simple latent (e.g. Gaussian) 
distribution, towards an empirical target distribution associated with a training data set. 
Once trained by minimizing a variational objective, the learnt map provides an approxi-
mate generative model of the target distribution. Since standard NF implement differen-
tiable maps, they may suffer from pathological behaviors when targeting complex distri-
butions. For instance, such problems may appear for distributions on multi-component 
topologies or characterized by multiple modes with high probability regions separated by 
very unlikely areas. A typical symptom is the explosion of the Jacobian norm of the trans-
formation in very low probability areas. This paper proposes to overcome this issue thanks 
to a new Markov chain Monte Carlo algorithm to sample from the target distribution in the 
latent domain before transporting it back to the target domain. The approach relies on a 
Metropolis adjusted Langevin algorithm whose dynamics explicitly exploits the Jacobian 
of the transformation. Contrary to alternative approaches, the proposed strategy preserves 
the tractability of the likelihood and it does not require a specific training. Notably, it can 
be straightforwardly used with any pre-trained NF network, regardless of the architecture. 
Experiments conducted on synthetic and high-dimensional real data sets illustrate the effi-
ciency of the method.
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1  Introduction

Normalizing flows (NF) are known to be very efficient generative models to approximate 
probability distributions in an unsupervised setting. For example, Glow (Kingma & Dha-
riwal, 2018) is able to generate very realistic human faces, competing with state-of-the-
art algorithms of variational inference (Papamakarios et  al., 2021). Despite some early 
theoretical results about their stability (Nalisnick et al., 2018) or their approximation and 
asymptotic properties (Behrmann et  al., 2019), their training remains challenging in the 
most general cases. Their capacity is limited by intrinsic architectural constraints, resulting 
in a variational mismatch between the target distribution and the actually learnt distribu-
tion. In particular Cornish et al. (2020) pointed out the capital issue of target distributions 
with disconnected support featuring several components. Since NF provide a continuous 
differentiable change of variable, they are not able to deal with such distributions when 
using a monomodal (e.g., Gaussian) latent distribution. Even targeting multimodal distri-
butions featuring high probability regions separated by very unlikely areas remains prob-
lematic. The trained NF is a continuous differentiable transformation so that the transport 
of latent samples to the target space may overcharge low probability areas with (undesired) 
samples. These out-of-distribution samples will correspond to smooth transitions between 
different modes, which leads to out-of-distribution samples, as discussed by Cornish et al. 
(2020).

Figure 1 illustrates this behavior on a archetypal example considering a bimodal two-
dimensional two-moon target measure and a latent Gaussian measure. It is worth noting 
that, for this toy example, the target measure is not only empirically described by data 
points but also admits an explicitly known distribution. The NF is first trained on a large set 
of data points drawn from the true target distribution. Figure 1a shows the latent distribu-
tion pZ actually learnt by the NF and computed after applying the (inverse) pushforward 
operator to the explicitly known target distribution pX , i.e., pZ = f −1

♯
pX . It appears that the 

NF splits the expected Gaussian latent space into two sub-regions separated by an area of 
minimal likelihood. This area corresponds, in the target domain, to the low probability area 
between the two modes of the target distribution, which is somewhat expected.

Fig. 1   a True latent measure pZ given the explicit target measure pX (chosen as a double-moon in this toy 
example); b Tempered distribution q̃Z = qZ |Jf |−1 learnt by the NF when the instrumental latent measure qZ 
is Gaussian; c Outputs 

{
x(n)

}N

n=1
 drawn from the learnt target measure qX with a naive sampling procedure, 

i.e., x(n) = f (z(n)) and z ∼ qZ . The reader is also invited to refer to Fig. 2 for an explicit description of the 
relationships between these measures
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Figure 1c shows the result of a naive sampling from the Gaussian model latent distribu-
tion when the generated Gaussian samples are translated into the target domain thanks to the 
mapping learnt by the NF. The purple line represents the 97.5% level set. It appears that many 
samples generated by this naive sampling procedure are out-of-distribution in the low prob-
ability area between the two moons, see the top of the plot. They correspond to samples drawn 
from the latent Gaussian distribution in the low-likelihood area (depicted in dark blue in 
Fig. 1a) located between the two modes (represented in yellow and light green). Note that this 
illustrative example and in particular Fig. 1b will be more deeply discussed in the contributive 
Sects. 3 to 5 in the light of the findings reported along the paper.

The observations made above illustrate a behavior that is structural. NF are diffeomor-
phisms that preserve the topological structure of the support of the latent distribution. If the 
information about the structure of the target distribution is ignored, many out-of-distribution 
samples will be generated. This effect is reinforced by the fact that the NF is trained on a finite 
data set so that in practice there exist close to empty areas in low probability regions. In other 
words, since the latent distribution is usually a simple Gaussian unimodal distribution, there is 
a topological mismatch with the often much more complex target distribution (Cornish et al., 
2020), in particular when it is multimodal.

A first contribution of this paper is a theoretical study of the impact of a topological mis-
match between the latent distribution on the Jacobian of the NF transformation. We prove that 
the norm of the Jacobian of a sequence of differentiable mappings between a unimodal distri-
bution and a distribution with disconnected support diverges to infinity (see Proposition 1). 
This observation suggests that one should consider the information brought by the Jacobian 
when sampling from the target distribution with a NF.

Capitalizing on this theoretical study, the second contribution of this paper is a new dedi-
cated Markov chain Monte Carlo algorithm to sample efficiently according to the distribution 
targeted by a NF. The proposed sampling method builds on a Langevin dynamics formulated 
in the target domain and translated into the latent space, which is made possible thanks to the 
invertibility of the NF. Interestingly the resulting Langevin diffusion is defined on the Rie-
mann manifold whose geometry is driven by the Jacobian of the NF. As a result, the proposed 
Markov chain Monte Carlo method is shown to avoid low probability regions and to produce 
significantly less out-of-distribution samples, even when the target distribution is multimodal. 
It is worth noting that the proposed method does not require a specific training procedure but 
can be implemented to sample from any pre-trained NF with any architecture.

The paper is organized as follows. Section 2 reports on related works. Section 3 recalls 
the main useful notions about normalizing flows. Section 4 studies the theoretical implica-
tions of a topological mismatch between the latent distribution and the target distribution. Sec-
tion 5 introduces the proposed sampling method based on a Langevin dynamics in the latent 
space. In Sect. 6, numerical experiments illustrate the advantages of the proposed approach 
by reporting performance results both for 2D toy distributions and in high dimensions on the 
usual Cifar-10, CelebA and LSUN data sets.

2 � Related works

Geometry in neural networks Geometry in neural networks as a tool to understand local gen-
eralization was first discussed by Bengio et al. (2013). As a key feature, the Jacobian matrix 
controls how smoothly a function interpolates a surface from some input data. As an exten-
sion, Rifai et  al. (2011) showed that the norm of the Jacobian acts as a regularizer of the 



	 Machine Learning

deterministic autoencoder. Later Arvanitidis et al. (2018) were the first to establish the link 
between push forward generative models and surface modeling. In particular, they showed 
that the latent space could reveal a distorted view of the input space that can be characterized 
by a stochastic Riemannian metric governed by the local Jacobian.

Distribution with disconnected support As highlighted by Cornish et  al. (2020), when 
using ancestral sampling, the structure of the latent distribution should fit the unknown struc-
ture of the target distribution. To tackle this issue, several solutions have been proposed. These 
strategies include augmenting the space on which the model operates (Huang et al., 2020), 
continuously indexing the flow layers (Cornish et  al., 2020), and including stochastic (Wu 
et al., 2020) or surjective layers (Nielsen et al., 2020). However, these approaches sacrifice the 
bijectivity of the flow transformation. In most cases, this sacrifice has dramatic impacts: the 
model is no longer tractable, memory savings during training are no longer possible (Gomez 
et al., 2017), and the model is no longer a perfect encoder-decoder pair. Other works have pro-
moted the use of multimodal latent distributions (Izmailov et al., 2020; Ardizzone et al., 2020; 
Hagemann & Neumayer, 2021). Nevertheless, rather than capturing the inherent multimodal 
nature of the target distribution, their primary motivation is to perform a classification task 
or to solve inverse problems with flow-based models. Papamakarios et al. (2017) has shown 
that choosing a mixture of Gaussians as a latent distribution could lead to an improvement of 
the fidelity to multimodal distributions. Alternatively, Pires and Figueiredo (2020) have stud-
ied the learning of a mixture of generators. Using a mutual information term, they encourage 
each generator to focus on a different submanifold so that the mixture covers the whole sup-
port. More recently, Stimper et al. (2022) predicted latent importance weights and proposed 
a sub-sampling method to avoid the generation of the most irrelevant samples. However, all 
these methods require to implement elaborated learning strategies which handle several sensi-
tive hyperparameters or impose specific neural architectures. On the contrary, as emphasized 
earlier, the proposed approach does not require a specific training strategy, is computationally 
efficient, and can be implemented to any pre-trained NF.

Sampling with normalizing flows Recently NF have been used to facilitate the sampling from 
explicitly known distributions with non-trivial geometries. To solve the problem, samplers that 
combine Monte Carlo methods with NF have been proposed. On the one hand, flows have been 
used as reparametrization maps that improve the geometry of the target distribution before run-
ning local conventional samplers such as Hamiltonian Monte Carlo (HMC) (Hoffman et  al., 
2019; Noé et al., 2019). On the other hand, the push-forward of the NF base distribution through 
the map has also been used as an independent proposal in importance sampling (Müller et al., 
2019) and Metropolis-Hastings steps (Gabrié et al., 2022; Samsonov et al., 2022). In this con-
text, NF are trained using the reverse Kullback-Leiber divergence so that the push-forward dis-
tribution approximates the target distribution. These approaches are particularly appealing when 
a closed-form expression of the target distribution is available explicitly. In contrast, this paper 
does not assume an explicit knowledge of the target distribution. The proposed approach aims at 
improving the sampling from a distribution learnt by a given NF trained beforehand.

3 � Normalizing flows: preliminaries and problem statement

3.1 � Learning a change of variables

NF define a flexible class of deep generative models that seeks to learn a change of variable 
between a reference Gaussian measure qZ and a target measure pX through an invertible 
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transformation f ∶ Z → X  with f ∈ F  where F  defines the class of NF. Figure 2 sum-
marizes the usual training of NF that minimizes a discrepancy measure between the target 
measure pX and the push-forwarded measure qX defined as

where f♯ stands for the associated push-forward operator. This discrepancy measure is gen-
erally chosen as the Kullback-Leibler (KL) divergence DKL(pX‖qX) . Explicitly writing the 
change of variables

where Jf−1 is the Jacobian matrix of f −1 , the training is thus formulated as the minimization 
problem

Note that the term log pX(x) does not appear in the objective function since this term does 
not depend on f. In this work, the class F  of admissible transformations is chosen as the 
structures composed of coupling layers ((Papamakarios et  al., 2021; Dinh et  al., 2016; 
Kingma & Dhariwal, 2018)) ensuring the Jacobian matrix of f to be lower triangular with 
positive diagonal entries. Because of this triangular structure, the Jacobian Jf  and the 
inverse of the map f −1 are available explicitly. In particular the Jacobian determinant |||Jf (z)

||| 
evaluated at z ∈ Z measures the dilation, the change of volume of a small neighborhood 
around z induced by f, i.e., the ratio between the volumes of the corresponding neighbor-
hoods of x and z.

In practice, the target measure pX is available only though observed samples {
x(1), x(2),… , x(N)

}
 . Adopting a sample-average approximation, the objective function in 

(3) is replaced by its Monte Carlo estimate. For this fixed set of samples per data batch, the 
NF training is formulated as

It is important to note that the obtained solution f̂  is only an approximation of the exact 
transport map for two main reasons. First, the feasible set F  (the class of admissible NF) 

(1)qX = f♯qZ

(2)qX(x) = qZ(f
−1(x))

|||Jf−1 (x)
|||

(3)min
f∈F

�pX
[− log qZ(f

−1(x)) + log |Jf−1 (x)|]

(4)f̂ ∈ min
f∈F

1

N

N∑

n=1

[
− log qZ(f

−1(x(n))) + log |Jf −1 (x(n))|
]
.

Fig. 2   NF learns a mapping f from data points 
{
x(n)

}N

n=1
 assumed to be drawn from pX towards the latent 

Gaussian measure qZ . The training consists in minimizing the KL divergence between pX and qX = f♯qZ . 
Once trained, the learnt map permits to go from qZ to qX , which is an approximation of the true target distri-
bution pX (Color figure online)
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is restricted to continuous, differentiable, and bijective functions. There is no guarantee 
that at least one transformation from this set will achieve DKL(pX‖qX) = 0 . Second, even 
if such a transformation exists in F  , the solution f̂  obtained by (4) only asymptotically 
matches the minimizer of (3) as N → ∞.

The main issues inherent to the NF training and identified above would still hold for 
more refined training procedures (Coeurdoux et al., 2022), i.e., that would go beyond to the 
crude minimization problem (3). However, the work reported in this paper does not address 
the training of the NF. Instead, one will focus on the task which consists in generating 
samples from the learnt target measure. Thus one will assume that a NF has been already 
trained to learn a given change of variable. To make the sequel of this paper smoother to 
read, no distinction will be made between the sought transformation and its estimate, that 
will be denoted f in what follows.

3.2 � A Gaussian latent space?

As noticed by Marzouk et al. (2016), learning the transformation f by variational inference 
can be reformulated with respect to (w.r.t.) the corresponding inverse map f −1 . Since the 
KL divergence is invariant to changes of variables, minimizing DKL(pX‖qX) is equivalent 
to minimizing DKL(pZ‖qZ) with pZ = f −1

♯
pX . The training procedure is thus formulated in 

the latent space instead of the target space. In other words, the NF aims at fitting the target 
measure pZ expressed in the latent space to the latent Gaussian measure qZ . However, due 
to inescapable shortcomings similar to those highlighted above, the target measure pZ in 
the latent space is only an approximation of the latent Gaussian measure qZ . This mismatch 
can be easily observed in Fig.  1a where the depicted actual measure pZ is clearly not 
Gaussian. This issue may be particularly critical when there is a topological mismatch 
between the respective supports of the target and latent distributions. This will be discussed 
in more details in Sect. 4.

3.3 � Beyond conventional NF sampling

Once the NF has been trained, the standard method to sample from the learnt target distri-
bution is straightforward. It consists in drawing a sample zk from the latent Gaussian dis-
tribution qZ and then applying the learnt transformation f to obtain a sample x(n) = f

(
z(n)

)
 . 

This method will be referred to as “naive sampling” in the sequel of this paper.
Unfortunately, as discussed in Sect.  3.2 (see also Fig.  1), the latent distribution qZ is 

expected to be different from the actual target distribution pZ expressed in the latent space. 
As suggested in the next section, this mismatch will be even more critical when it results 
from topological differences between the latent and target spaces. As a consequence the 
naive NF sampling is doomed to be suboptimal and to produce out-of-distribution samples, 
as illustrated in Fig. 1c. In contrast, the approach proposed in Sect. 5 aims at devising an 
alternative sampling strategy that explicitly overcomes these shortcomings.
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4 � Implications of a topological mismatch

The push-forward operator f♯ learnt by an NF transports the mass allocated by qZ in Z 
to X  , thereby defining qX by specifying where each elementary mass is transported. This 
imposes a global constraint on the operator f if the model distribution qX is expected to 
match a given target measure pX perfectly. Let supp(qZ) = {z ∈ Z ∶ qZ(z) > 0} denote the 
support of qZ . Then the push-forward operator f♯ can yield qX = pX only if

where B is the closure of set B. The constraint (5) is especially onerous for NF because of 
their bijectivity. The operators f and f −1 are continuous, and f is a homeomorphism. Con-
sequently, for these models, qZ and pX are isomorphic, i.e., homeomorphic as topological 
spaces (Runde et al. 2005, Def. 3.3.10). This means that supp(qZ) and supp(pX) must share 
exactly the same topological properties, in particular the number of connected components. 
This constraint may be unlikely satisfied when learning complex real-world distributions, 
leading to an insurmountable topological mismatch. In such cases, this finding has serious 
consequences on the operator f learnt and implemented by a NF. Indeed, the following 
proposition states that if the respective supports of the latent distribution qZ and the target 
distribution pX are not homeomorphic, then the norm of the Jacobian |Jf | of f may become 
arbitrary large. Here D

−→ denotes weak convergence.

Proposition 1  Let qZ and pX denote distributions defined on ℝ
d . Assume that 

supp(qZ) ≠ supp(pX) . For any sequence of measurable, differentiable Lipschitz functions 
ft ∶ ℝ

d
→ ℝ

d , if ft♯qZ
D

�������→ pX when t → +∞ , then

The proof is reported in Appendix A.
It is worth noting that training a generative model is generally conducted by minimizing 

a statistical divergence. For most used divergence measures, (e.g., KL and Jensen-Shannon 
divergences, Wasserstein distance), this minimization implies a weak convergence of the 
approximated distribution qX towards the target distribution pX (Arjovsky et al., 2017). As 
a consequence, Proposition 1 states that in practice, when training a NF to approximate pX 
with an iterative (e.g., stochastic gradient descent) algorithm, the learnt mapping ft along 
the iterations (denoted here by t) is characterized by a Jacobian supremum which tends to 
explode in some regions as the algorithm approaches convergence. This result is in line 
with the experimental findings early discussed and visually illustrated by Fig. 1. Indeed, 
Fig. 1b depicts the heatmap of the log-likelihood

given by (2) after training an NF. The impact of the term governed by the determinant of 
the Jacobian is clear. It highlights a boundary separating two distinct areas, each associated 
with a mode in the target distribution pX . This result still holds when qZ and qX are defined 
on ℝdZ and ℝdX , respectively, with dZ ≠ dX . This shortcoming is thus also unavoidable 
when learning injective flow models (Kumar et al., 2017) and other push-forward models 
such as GANs (Goodfellow et al., 2020).

(5)supp(pX) = f
(
supp(qZ)

)

lim
t→∞

sup
z∈Z

(
‖‖‖Jft (z)

‖‖‖) = +∞.

(6)log qX(f (z)) = log qZ(z) − log
|||Jf (z)

|||
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In practice, models are trained on a data set of finite size. In other words, the underly-
ing target measure pX is available only through the empirical measure 1

N

∑N

n=1
�x(n) . During 

the training defined by (4), areas of low probability possibly characterizing a multi-modal 
target measure are likely interpreted as areas of null probability observed in the empiri-
cal measure. This directly results in the topological mismatch discussed above. Thus, even 
when targeting a distribution pX defined over a connected support with regions of infinites-
imal support, the learnt mapping is expected to be characterized by a Jacobian with explod-
ing norm in these regions, see Fig 1.

This suggests that these regions correspond to the frontiers between cells defining a 
partition of the latent space. Specifically, when targeting a multi-modal distribution, the 
learned model implicitly partitions the Gaussian latent space into disjoint subsets associ-
ated with different modes. The boundaries of these subsets correspond to regions with a 
high Jacobian norm, which must be avoided during sampling to prevent out-of-distribution 
samples. The Gaussian multi-bubble conjecture was formulated when looking for a way to 
partition the Gaussian space with the least-weighted perimeter. This conjecture was proven 
recently by Milman and Neeman (2022). Recently, Issenhuth et al. (2022) leveraged on this 
finding to assess the optimality of the precision of GANs. They show that the precision 
of the generator vanishes when the number of components of the target distribution tends 
towards infinity.

5 � NF sampling in the latent space

5.1 � Local exploration of the latent space

As explained in Sect. 3.3, naive NF sampling boils down to drawing a Gaussian variable 
before transformation by the learnt mapping f. This strategy is expected to produce out-
of-distribution samples, due to the topological mismatch between qX and pX discussed in 
Sect. 4. The proposed alternative elaborates directly on the learnt target distribution qX.

The starting point of our rational consists in expressing a Langevin diffusion in the tar-
get space. This Markov chain Monte Carlo (MCMC) algorithm would target the distribu-
tion qX using only the derivative of its likelihood ∇x log qX(x) . After initializing the chain 
by drawing from an arbitrary distribution x0 ∼ �0(x) , the updating rule writes

where � ∼ N(0, I) and 𝜖 > 0 is a stepsize. When � → 0 and the number of samples K → ∞ , 
the distribution of the samples generated by the iterative procedure (7) converges to qX 
under some regularity conditions. In practice, the error is negligible when � is sufficiently 
small and K is sufficiently large. This algorithm referred to as the unadjusted Langevin 
Algorithm (ULA) always accepts the generated sample proposed by (7), neglecting the 
errors induced by the discretization scheme of the continuous diffusion. To correct this 
bias, Metropolis-adjusted Langevin Algorithm (MALA) applies a Metropolis-Hastings 
step to accept or reject a sample proposed by ULA (Grenander & Miller, 1994).

Again, sampling according to qX thanks to the diffusion (7) is likely to be inefficient due 
to the expected complexity of the target distribution possibly defined over a subspace of 
ℝ

d . In particular, this strategy suffers from the lack of prior knowledge about the location 
of the mass. Conversely, the proposed approach explores the latent space by leveraging on 

(7)xk+1 ← xk +
�2

2
∇x log qX(xk) + ��
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the closed-form change of variable (2) operated by the trained NF. After technical deriva-
tions reported in Appendix C.2, the counterpart of the diffusion (7) expressed in the latent 
space writes

where

and

Note that the distribution q̃Z in (9) originates from the change of variable that defines qX 
in (2) and has been already implicitly introduced by (6) in Sect. 4. Interestingly, the matrix 
G(⋅) is a positive definite matrix (see Appendix B). Thus the diffusion (8) characterizes a 
Riemannian manifold Langevin dynamics where G(⋅) is the Riemannian metric associated 
with the latent space (Girolami & Calderhead, 2011; Xifara et al., 2014). More precisely, 
it defines the conventional proposal move of the Riemannian manifold adjusted Langevin 
algorithm (RMMALA) which targets the distribution q̃Z defined by (9). This distribution is 
explicitly defined through the Jacobian Jf (⋅) of the transformation whose behavior has been 
discussed in depth in Sect. 4. It can be interpreted as the Gaussian latent distribution qZ 
tempered by the (determinant of the) Jacobian of the transformation. It has also been evi-
denced by depicting the heatmap of (6) in Fig. 1b, which shows that it appears as a better 
approximation of pZ than qZ . Since it governs the drift of the diffusion through the gradient 
of its logarithm, the diffusion is expected to escape from the areas where the determinant 
of the Jacobian explodes, see Sect. 4.

The proposal kernel g(z�|z) associated with the diffusion (8) is a Gaussian distribution 
whose probability density function (pdf) can be conveniently rewritten as (see Property 5 
in Appendix C.2)

where s̃Z(⋅) denotes the so-called latent score

The sample proposed according to (8) is then accepted with probability

It is worth noting that the formulation (11) of the proposal kernel leads to a significantly 
faster implementation than its canonical formulation. Indeed, it does not require to com-
pute the metric G−1(⋅) defined by (10), which depends on the inverse of the Jacobian matrix 
twice. Moreover, the evaluation of the latent score (12) can be achieved in an efficient man-
ner, bypassing the need for evaluating the inverse of the Jacobian matrix, as elaborated in 

(8)z� = zk +
𝜖2

2
G−1(zk)∇z log q̃Z(zk) + 𝜖

√
G−1(zk)𝜉

(9)q̃Z(z) = qZ(z)
|||Jf (z)

|||
−1

(10)G−1(z) =
[
J−1
f
(z)

]2
.

(11)g
(
z� ∣ zk

)
∝ |Jf (zk)| exp

[
−

1

2𝜖2

‖‖‖‖
Jf (zk)(z

� − zk) +
𝜖2

2
s̃Z(zk)

‖‖‖‖

2]
.

(12)s̃Z(z) = J−1(z)∇z log q̃Z(z).

(13)𝛼RMMALA(zk, z
�) = min

(
1,

q̃Z
(
z�
)
g
(
zk ∣ z

�
)

q̃Z
(
zk
)
g
(
z� ∣ zk

)

)
.



	 Machine Learning

Appendix C.3.2. Finally, only the Jacobian associated with the forward transformation is 
required to compute (11). This approach enables a streamlined calculation of the accept-
ance ratio (13), ensuring an overall computational efficiency.

Besides, the proposal scheme (8) requires to generate high dimensional Gaussian vari-
ables with covariance matrix �2G−1(⋅) (Vono et  al., 2022). To lighten the corresponding 
computational burden, we take advantage of a 1st order expansion of f −1 to approximate 
(8) by the diffusion (see Appendix C.3.1)

According to (14), this alternative proposal scheme requires to generate high dimensional 
Gaussian variables with a covariance matrix which is now identity, i.e., most cheaper. 
Moreover, it is worth noting that i) the latent score s̃Z(⋅) can be evaluated efficiently 
(see above) and ii) using J−1

f
(z) = Jf−1 (f (z)) (see Property 2 in Appendix C.1), sampling 

z′ according to (14) only requires to evaluate the Jacobian associated with the backward 
transformation. Proofs and implementation details are reported in Appendix C. The algo-
rithmic procedure to sample according to this kernel denoted KRMMALA(⋅) is summarized in 
Algorithm 1.

Algorithm 1   Sampling kernel K
RMMALA

(⋅).

5.2 � Independent Metropolis‑Hastings sampling

Handling distributions that exhibit several modes or defined on a complex multi-compo-
nent topology is another major issue raised by the problem addressed here. In practice, 
conventional sampling schemes such as those based on Langevin dynamics fail to explore 
the full distribution when modes are isolated since they may get stuck around one of these 
modes. Thus, the samples proposed according to (8) in areas with high values of ‖Jf (⋅)‖ 

(14)z� = f −1
(
f (zk) + 𝜖𝜉

)
+

𝜖2

2
J−1
f
(zk)s̃Z(z).
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are expected to be rejected. These areas have been identified in Sect. 4 as the low prob-
ability regions between modes when targeting a multimodal distribution. To alleviate this 
problem, one strategy consists in resorting to another kernel to propose moves from one 
high probability region to another, without requiring to cross the low probability regions. 
Following this strategy, this paper proposes to combine the diffusion (8) with an independ-
ent Metropolis-Hastings (I-MH) with the distribution qZ as a proposal. The corresponding 
acceptance ratio writes

It is worth noting that this probability of accepting the proposed move only depends on 
the ratio between the Jacobians evaluated at the current and the candidate states. In par-
ticular, candidates located in regions of the latent space characterized by exploding Jaco-
bians in case of a topological mismatch (see Sect. 4) are expected to be rejected with high 
probability. Conversely, this kernel will favor moves towards other high probability regions 
not necessarily connected to the regions of the current state. The algorithmic procedure is 
sketched in Algorithm 2.

Algorithm 2   Sampling kernel KI−MH(⋅).

Finally, the overall proposed sampler, referred to as NF-SAILS for NF SAmpling In the 
Latent Space and summarized in Algorithm 3, combines the transition kernels KRMMALA 
and KI−MH , which permits to efficiently explore the latent space both locally and globally. 
At each iteration k of the sampler, the RMMALA kernel KRMMALA associated with the 
acceptance ratio (13) is selected with probability p and the I-MH kernel KI−MH associated 
with acceptance ratio (15) is selected with the probability 1 − p . Again, one would like to 
emphasize that the proposed strategy does not depend on the NF architecture and can be 
adopted to sample from any pretrained NF model.

(15)

𝛼I-MH(zk, z
�) = min

(
1,

q̃Z
(
z�
)
qZ(zk)

q̃Z
(
zk
)
qZ(z

�)

)

= min

(
1,

|Jf (zk)|
|Jf (z�)|

)
.
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Algorithm 3   NF-SAILS: NF SAmpling In the Latent Space

6 � Experiments

This section reports performance results to illustrate the efficiency of NF-SAILS thanks to 
experiments based on several models and synthetic data sets. It is compared to state-of-the-
art generative models known for their abilities to handle multimodal distributions. These 
results will show that the proposed sampling strategy achieves good performance, without 
requiring to adapt the NF training procedure or resorting to non-Gaussian latent distribu-
tions. We will also confirm the relevance of the method when working on popular image 
data sets, namely Cifar-10 (Krizhevsky et al., 2010), CelebA (Liu et al., 2015) and LSUN 
(Yu et al., 2015).

To illustrate the versatility of proposed approach w.r.t. the NF architecture, two types 
of coupling layers are used to build the trained NF. For the experiments conducted on the 
synthetic data sets, the NF architecture is RealNVP (Dinh et al., 2016). Conversely, a Glow 
model is used for experiments conducted on the image data sets (Kingma & Dhariwal, 
2018). However, it is worth noting that the proposed method can apply on top of any gen-
erative model fitting multimodal distributions. Additional details regarding the training 
procedure are reported in Appendix D.1.

6.1 � Figures‑of‑merit

To evaluate the performance of the NF, several figures-of-merit have been considered. 
When addressing bidimensional problems, we perform a Kolmogorov-Smirnov test to 
assess the quality of the generated samples w.r.t. the underlying true target distribution 
(Justel et al., 1997). The goodness-of-fit is also monitored by evaluating the mean log-
likelihood of the generated samples and the entropy estimator between samples, which 
approximates the Kullback–Leibler divergence between empirical samples (Kraskov 
et al., 2004).
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For applications to higher dimensional problems, such as image generation, the per-
formances of the compared algorithms are evaluated using the Fréchet inception dis-
tance (FID) (Heusel et al., 2017) using a classifier pre-trained specifically on each data 
set. Besides, for completeness, we report the bits per dimension (bpd) (Papamakarios 
et al., 2017), i.e., the log-likelihoods in the logit space, since this is the objective opti-
mized by the trained models.

6.2 � Results obtained on synthetic data set

As a first illustration of the performance of NF-SAILS, we consider to learn a mixture 
of k bidimensional Gaussian distributions, with k ∈ {2, 3, 4, 6, 9} . The NF model f (⋅) 
is a RealNVP (Dinh et  al., 2016) composed of M = 4 flows, each composed of two 
three-layer neural networks ( d → 16 → 16 → d ) using hyperbolic tangent activation 
function. We use the Adam optimizer with learning rate 10−4 and a batch size of 500 
samples.

Table  1 reports the considered metrics when comparing the proposed NF-SAILS 
sampling method to a naive sampling (see Sect.  3.3) or to state-of-the-art sampling 
techniques from the literature, namely Wasserstein GAN with gradient penalty 
(WGAN-GP) (Gulrajani et  al., 2017) and denoising diffusion probabilistic models 
(DDPM) (Ho et al., 2020). These results show that NF-SAILS consistently competes 
favorably against the compared methods, in particular as the degree of multimodality 
of the distribution increases. Note that WGAN-GP exploits a GAN architecture. Thus, 
contrary to the proposed NF-based sampling method, it is unable to provide an explicit 
evaluation of the likelihood, which explains the N/A values in the table.

Figure  3 illustrates this result for k = 6 and shows that our method considerably 
reduces the number of out-of-distribution generated samples. Additional results are 
reported in Appendix D.2.

Figure 4 depicts the samples generated when using a single kernel of the proposed 
NF-SAILS algorithm independently, i.e., when a single I-MH kernel KI−MH (left panel) 
or a single RMMALA KRMMALA (middle and right panels) is used. It also shows the 
impact of the stepsize on the local exploration performed by the RMMALA kernel. For 
various tuning of the parameters, the effective sample size (ESS) and the rate of rejec-
tion ( preject ) are reported in the associated table. Using the single I-MH kernel ( p = 0 ) 
leads to a good exploration and good effective sample size (ESS); however it is not 
very efficient due to high number of rejection ( preject = 0.5 ). On the other hand, using 
only the RMMALA kernel ( p = 1 ) leads to a higher efficiency ( preject = 0.1 ) and lower 
ESS but fails to explore all the modes. Besides, regarding the stepsize � , the smaller 
the less efficient the sampling, as shown in the middle and right panels. In the experi-
ments described in this paper, this stepsize has been adjusted following the heuristic 
of the order of magnitude of d1∕3 , where d is the dimension of the problem, as advo-
cated in Pillai et al. (2012). Combining the two kernels in NF-SAILS (with p = 0.7 and 
� = 0.2 , see last line of the table) seems to be the most efficient strategy to explore all 
the modes of the targeted distribution, with the best ESS-preject trade-off.
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6.3 � Results obtained on real image data sets

Moreover, we further study the performance of NF-SAILS on three different real image 
data sets, namely Cifar-10 (Krizhevsky et  al., 2010), CelebA (Liu et  al., 2015) and 
LSUN (Yu et al., 2015). Following the same protocol as implemented by Kingma and 

Table 1   Goodness-of-fit of the 
generated samples w.r.t. the 
number k of Gaussians

Reported scores (means and standard deviations) result from the aver-
age over 50 Monte Carlo runs

↑ log p
X

↓ KL ↓ KS

k = 2

Naive sampling −4.08 ±0.19 0.258 ±0.08 0.178 ±0.17
NF-SAILS −�.�� ±0.08 �.��� ±0.02 �.��� ±0.01
WGAN-GP N/A 0.311 ±0.07 0.287 ±0.06
DDPM −2.98 ±0.18 0.121 ±0.04 0.066 ±0.04
k = 3

Naive sampling −3.54 ±0.15 0.886 ±0.09 0.242 ±0.1
NF-SAILS −�.�� ±0.14 �.��� ±0.03 �.��� ±0.04
WGAN-GP N/A 0.981 ±0.07 0.237 ±0.07
DDPM −2.97 ±0.17 0.364 ±0.04 0.124 ±0.04
k = 4

Naive sampling −3.08 ±0.16 0.961 ±0.08 0.289 ±0.08
NF-SAILS −�.�� ±0.14 �.��� ±0.01 �.��� ±0.01
WGAN-GP N/A 1.012 ±0.09 0.317 ±0.08
DDPM −1.81 ±0.16 0.427 ±0.04 0.127 ±0.03
k = 6

Naive sampling −2.06 ±0.15 1.219 ±0.08 0.205 ±0.06
NF-SAILS −�.�� ±0.13 �.��� ±0.01 0.309 ±0.01
WGAN-GP N/A 1.392 ±0.09 0.212 ±0.04
DDPM −1.99 ±0.14 1.004 ±0.06 �.��� ±0.03
k = 9

Naive sampling −2.297 ±0.13 1.764 ±0.1 0.215 ±0.06
NF-SAILS −�.��� ±0.12 �.��� ±0.01 �.��� ±0.01
WGAN-GP N/A 1.939 ±0.15 0.340 ±0.07
DDPM −1.258 ±0.13 0.906 ±0.07 0.205 ±0.05

Fig. 3   Mixture of k = 6 Gaussian distributions (green), and 1000 generated samples (blue). The proposed 
NF-SAILS method in Fig. 3b does not generate samples in-between modes
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Dhariwal (2018), we use a Glow architecture where each neural network are composed 
of three convolutional layers. The two hidden layers have ReLU activation functions and 
512 channels. The first and last convolutions are 3 × 3 , while the center convolution is 
1 × 1 , since its input and output have a large number of channels, in contrast with the 
first and last convolutions. Details regarding the implementation are reported in Appen-
dix D.3.

We compare the FID score as well as the average negative log-likelihood (bpd), keep-
ing all training conditions constant and averaging the results over 10 Monte Carlo runs. 
The results are depicted in Fig. 5 reports the results when compared to those obtained 
by naive sampling or WGAN-GP (Gulrajani et  al., 2017). As shown by the different 
panels of this figure, the proposed NF-SAILS method considerably improves the qual-
ity of the generated images, both quantitatively (in term of FID) and semantically. Our 
methodology compares favourably w.r.t. to WGAN-GP for the two data sets CelebA and 
LSUN.

Fig. 4   Mixture of k = 3 Gaussian distributions (green): impact of the kernels and the hyperparameters p 
and � . Left: p = 0 , i.e., using the single KI−MH kernel. Middle and right panels: p = 1 , i.e., using the single 
K

RMMALA
 kernel for two values of the stepsize � . The table reports the ESS and the rate of rejection for vari-

ous combinations of the hyperparametervalues. The last line of the table corresponds the implementation of 
NF-SAILS adopted for this toy example (Color figure online)

Fig. 5   Tables report quantitative and perceptual metrics computed from the samples generated by the 
compared methods. The figures show some samples generated from Glow using the proposed NF-SAILS 
method



	 Machine Learning

7 � Conclusion

This paper discusses the sampling from the target distribution learnt by a normalizing 
flow. Architectural constraints prevent normalizing flows to properly learn disconnect 
support measures due to the topological mismatch between the latent and target spaces. 
Moreover, we theoretically prove that Jacobian norm of the transformation become 
arbitrarily large to closely represent such target measures. The conducted analysis 
exhibits the existence of pathological areas in the latent space corresponding to points 
with exploding Jacobian norms. Using a naive sampling strategy leads to out of distri-
bution samples located in these areas. To overcome this issue, we propose a new sam-
pling procedure based on a Langevin diffusion directly formulated in the latent space. 
This sampling is interpreted as a Riemanian manifold Metropolis adjusted Langevin 
algorithm, whose metrics is driven by the Jacobian of the learnt transformation. This 
local exploration of the latent space is complemented by an independent Metropolis-
Hastings kernel which allows moves from one high probability region to another while 
avoiding crossing pathological areas. One particular advantage of the proposed is that 
it can be applied to any pre-trained NF model. Indeed it does not require a particular 
training strategy of the NF or to adapt the distribution assumed in the latent space. The 
performances of the proposed sampling strategy show to compare favorably to state-
of-the art, with very few out-of-distribution samples.

Appendix A: Proof of Proposition 1

The proof of Proposition 1 in Sect. 4 combines existing results from topology and real 
analysis. The complete background can be found in (Dudley, 2002) and (Cornish et al., 
2020). The proof is mainly based on the following results.

Theorem 1  (Cornish et al., 2020) Let qZ and qX define probability measures on ℝd , with 
supp(qZ) ≠ supp(qX) . For any sequence of measurable, differentiable Lipschitzian functions 
fn ∶ ℝ

d
→ ℝ

d , if the sequence weakly converges as fn#qZ
D

−→qX , then

Moreover, Behrmann et al. (2019) showed the relation between the Lipschitz con-
stant and the Jacobian of a transformation, as stated below.

Lemma 1  (Rademacher’s theorem) If f ∶ ℝ
m
→ ℝ

n is Lipschitzian, then f is continuous 
and differentiable at almost all points of ℝm and

Both Theorem 1 and Lemma 1 rely on the same starting hypothesis, i.e., f is required 
to be continuous, differentiable and Lipschitzian. Combining these two results yields 
Proposition 1 following a development of the proof of the results by Cornish et  al. 
(2020) and Behrmann et al. (2019).

(A1)lim
n→∞

Lipfn = ∞.

(A2)Lipf = sup
z∈Z

‖Jf (z)‖op



Machine Learning	

Appendix B: Properties of the Jacobian of coupling layer‑based NF

B.1 Structure of the Jacobian matrix and computation of its determinant

RealNVP model defines a NF by implementing a sequence of M invertible bijective trans-
formation functions, herein referred to as coupling layers (Dudley, 2002). In other words, 
the mapping f writes as f = f (M)

◦f (M−1)
◦f (2)◦f (1) . Each bijection f (m) ∶ u ↦ v associated to 

the mth layer splits the input u ∈ ℝ
D into two parts of sizes d and d − D ( d ≤ D ), respec-

tively, such that the output v ∈ ℝ
D writes

where hm(⋅) ∶ ℝ
d
→ ℝ

D−d and tm(⋅) ∶ ℝ
d
→ ℝ

D−d are scale and translation functions 
implemented as deep networks and ⊙ stands for the Hadamard product. The Jacobian of 
the above transformation is a lower triangular matrix

where Id and 0d×(D−d) are the identity and zero matrices with indexed sizes, respectively, 
and

Thanks to the chain rule, it follows that the Jacobian of the overall NF is

with u(m) = f (m−1)(u(m−1)) and z = u(0).
Moreover, because of the structure of each layer, the determinant of the Jacobian J(m)(u) 

associated with the mth layer is

The determinant of the Jacobian Jf (⋅) characterizing the overall NF can be easily computed 
from (B6) and (B7).

B.2 Positive definiteness of the Jacobian

Property 1  The product of two lower triangular matrices with strictly positive diagonal 
elements is a positive definite lower triangular matrix.

Proof  Let A =
[
aij
]
 and B =

[
bij
]
 be two n × n lower triangular matrices with positive diag-

onal entries, i.e.,

(B3)
{

v1∶d = u1∶d
vd+1∶D = ud+1∶D ⊙ exp

(
h(m)

(
u1∶d

))
+ t(m)

(
u1∶d

)

(B4)J(m)(u) =

[
Id 0d×(D−d)

A(m)(u) E(m)(u)

]

(B5)

{
A(m)(u) = ud+1∶D ⊙

𝜕 exp h(m)(u1∶d)

𝜕u1∶d
+

𝜕t(m)(u1∶d)

𝜕u1∶d

E(m)(u) = diag
(
exp

(
h(m)

(
u1∶d

)))
.

(B6)Jf (z) =

J∏

j=1

J(m)(u(m))

(B7)|J(m)(u)| =
d∏

k=1

exp
(
h(m)

(
uk
))
.
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Let C =
[
cij
]
 denote the product matrix C = AB with cij =

∑n

k=1
aikbkj . The upper elements 

cij ( i < j ) of C can be computed as

In the right hand side of (B10), if k ≤ i then bkj=0 . Moreover if k > i then aik = 0 . As a con-
sequence, cij = 0 and C is triangular.

Moreover, the eigenvalues of a triangular matrix is its diagonal elements. It follows that 
C is positive definite. 	�  ◻

Thanks to the structure of coupling layer-based NF discussed in Appendix B.1, we have the 
two following corollaries.

Corollary 1  The Jacobian matrix Jf (⋅) and its inverse J−1
f
(⋅) of coupling layer-based NF are 

positive definite.

Corollary 2  The matrix G(⋅) and its inverse G−1(⋅) are positive definite.

Appendix C: Diffusion in the latent space

C.1 Preliminaries

The Langevin diffusion is a particular instance of the Itô process defined in the following 
Lemma of which a proof is given in (Øksendal & Øksendal, 2003).

Lemma 2  (Itô’s lemma) Let Xt denote an Iô drift-diffusion process defined by the stochastic 
differential equation

If f ∶ ℝ
2
→ ℝ is a differentiable scalar function, then

It yields that f
(
t,Xt

)
 is an It drift-diffusion process itself.

The following property shows that for any bijective transformation, the Jacobian of the 
inverse transformation is equal to the inverse of the Jacobian of the transformation. This 
result will be useful later.

(B8)∀i, j such that i < j, then aij = bij = 0.

(B9)∀i aii > 0 and bii > 0

(B10)cij =

i∑

k=1

aikbkj +

n∑

k=i+1

aikbkj.

(C11)dXt = �tdt + �tdBt.

(C12)df
(
t,Xt

)
=

(
�f

�t
+ �t

�f

�x
+

�2
t

2

�2f

�x2

)
dt + �t

�f

�x
dBt.
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Property 2  Let f ∶ Z → X  denote a bijective transformation and Jf (⋅) its Jacobian, then

Proof  Let h and g denote two multivariate functions. The chain rule writes

thus

Moreover, for any multivariate bijective function f, we have

Combining (C14) and (C15) with h = f −1 and g = f  yields

	�  ◻

The following property demonstrates that the gradient of the score of qX can be 
expressed over the latent space Z using q̃Z defined in (9).

Property 3  Let f ∶ Z → X  be a bijective transformation which maps a latent measure qZ 
towards a target measure qX . Then the score of qX(x) is given by

where q̃Z(z) = qZ(z)
|||Jf (z)

|||
−1

.

Proof  From the definition of qX(x) in equation (2), the score of qX(x) writes

and, from Property 2,

The chain rule now leads to

which, using Property 2, can be finally rewritten as

Jf−1 (f (z)) = J−1
f
(z).

(C13)Jh◦g(⋅) = Jh(g(⋅))Jg(⋅)

(C14)Jh(g(⋅)) = Jh◦g(⋅)J
−1
g
(⋅).

(C15)Jf◦f−1 (⋅) = Jf−1◦f (⋅) = Id.

(C16)Jf −1 (f (z)) = Jf−1◦f (z)J
−1
f
(z) = IdJ

−1
f
(z) = J−1

f
(z).

∇x log qX(x) = J−1
f
(z) ⋅ ∇z log q̃Z(z)

(C17)∇x log qX(x) = ∇x

[
log qZ(f

−1(x)) + log |Jf −1 (x)|
]

(C18)∇x log qX(x) = ∇f (z)

[
log qZ(z) + log

|||Jf (z)
|||
−1
]

(C19)= ∇f (z) log q̃Z(z)

(C20)∇x log qX(z) = ∇xf
−1(x) ⋅ ∇z log q̃Z(z)

(C21)= Jf−1 (f (z)) ⋅ ∇z log q̃Z(z)
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	�  ◻

C.2 Derivation of the proposal distribution

The following property shows that the Lanvegin diffusion which targets the distribution qX 
can be rewritten as a diffusion over the latent space Z.

Property 4  We consider the overdamped Langevin Itô diffusion

driven by the time derivative of a standard Brownian motion Bt . In the limit t → ∞ , this 
probability distribution Xt approaches a stationary distribution qX . Let f ∶ Z → X  be a 
bijective transformation which maps a latent measure qZ towards the target measure qX . A 
counterpart Langevin diffusion expressed over the latent space Z writes

Proof  The Langevin diffusion is a particular instance of the Itô process where the drift �t in 
(C11) is given by the gradient of the log-density ∇x log qX(Xt) , i.e.,

We are interested in the diffusion process of f −1(Xt) when f (⋅) is a NF which is continuous, 
differentiable and bijective such that f (Zt) = Xt and f −1(Xt) = Zt . The Îto’s Lemma 2 states

Neglecting the second-order terms yields

Using Property 2, Eq. (C27) can be rewritten as

Finally, by denoting G−1(z) =
[
J−1
f
(z)

]2
 and using Property 3, the diffusion in the latent 

space writes

	�  ◻

The discretization of the stochastic differential equation (C29) using the Euler-Maruy-
ama scheme can be written as in (8). This discretized counterpart of the diffusion cor-
responds to the proposal move of a Riemann manifold Metropolis-Adjusted Langevin 

(C22)∇x log qX(x) = J−1
f
(z) ⋅ ∇z log q̃Z(z).

(C23)dXt = ∇x log qX(Xt)dt + �tdBt

(C24)dZt = G−1(Zt)∇z log q̃Z(Zt)dt + 𝜎t

√
G−1(Zt)dBt

(C25)dXt = ∇x log qX(Xt)dt + �tdBt

(C26)df −1(Xt) =

(
Jf−1 (Xt)∇x log qX(Xt) +

�2
t

2
tr(Hf −1 (Xt))

)
dt + �tJf −1 (Xt)dBt.

(C27)df −1(Xt) = Jf−1 (Xt)∇x log qX(Xt)dt + �tJf−1 (Xt)dBt.

(C28)dZt = J−1
f
(Zt)∇x log qX(Xt)dt + �tJ

−1
f
(Zt)dBt.

(C29)dZt = G−1(Zt)∇z log q̃Z(Zt)dt + 𝜎t

√
G−1(Zt)dBt
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algorithm which targets q̃Z . The following property shows that the associated proposal ker-
nel can be rewritten as (11).

Property 5  The discrete Langevin diffusion given by

with � ∼ N(0, I) is defined by the transition kernel

Proof  From the Gaussian nature of � , the conditional distribution of z′ is a Gaussian distri-
bution whose mean is governed by the drift and covariance matrix is parametrized by the 
(inverse of) the Jacobian, namely

with

The corresponding pdf writes

First, let notice that Σ−1 = 𝜖−2J⊤
f
(z)Jf (z) . Then we have

Finally, using |Σ|1∕2 = �|J−1
f
(z)| = �|Jf (z)|−1 yields

	�  ◻

It is worth noting that the pdf of this transition kernel should be computed when evalu-
ating the acceptance ratio (13). When using the canonical writing (C35), evaluating this 

(C30)z� = z +
𝜖2

2
⋅ G−1(z)∇z log q̃Z(z) + 𝜖 ⋅

√
G−1(z)𝜉

(C31)q
(
z� ∣ z

)
∝ |Jf (z)| exp

[
−

1

2𝜖2

‖‖‖‖
Jf (z)(z

� − z) +
𝜖2

2
J−1
f
(z)∇z log q̃(z)

‖‖‖‖

2]
.

(C32)z� ∣ z ∼ N(�,Σ)

(C33)𝜇 = z +
𝜖2

2
⋅ G−1(z)∇z log q̃Z(z)

(C34)Σ = 𝜖2J−1
f
(z)J−⊤

f
.

(C35)q
(
z� ∣ z

)
=

(
1

2𝜋

) d

2 1

|Σ|1∕2
exp

(
−
1

2
(z� − 𝜇)⊤Σ−1(z� − 𝜇)

)
.

(C36)(z� − 𝜇)⊤Σ−1(z� − 𝜇) = 𝜖−2
[
z� − z −

𝜖2

2
⋅

[
J−1
f
(z)

]2
∇z log q̃Z(z)

]⊤
J⊤
f
(z)

(C37)
× Jf (z)

[
z� − z −

𝜖2

2
⋅

[
J−1
f
(z)

]2
∇z log q̃Z(z)

]

= 𝜖−2
‖‖‖‖
Jf (z)(z

� − z) −
𝜖2

2
J−1
f
(z)∇z log q̃(z)

‖‖‖‖

2

(C38)q
(
z� ∣ z

)
∝ |Jf (z)| exp

[
−

1

2𝜖2

‖‖‖‖
Jf (z)(z

� − z) −
𝜖2

2
J−1
f
(z)∇z log q̃(z)

‖‖‖‖

2]
.
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pdf would require to compute G−1(z) in (C33) and J−1
f
(z)J−⊤

f
(z) in (C34). Instead, evaluat-

ing this pdf with the specific form (C38) only requires to compute Jf (z) since the latent 
score s̃Z(z) = J−1

f
(z)∇z log q̃(z) can be computed efficiently, as discussed later in Appendix 

C.3.2.

C.3 Efficient implementation

C.3.1 Approximation of the proposal move

Generating high dimension Gaussian variables according to (8) is expected to be very 
costly because of the covariance matrix, even if the corresponding Cholesky factor �J−1

f
(⋅) 

is lower triangular and explicit (see Appendix B.1). Alternatively, to lighten the computa-
tion, we take advantage of the 1st order expansion

Using Property 2, this amounts to approximate (8) by the diffusion

According to (C41), this alternative proposal scheme only requires to generate high dimen-
sional Gaussian variables whose covariance matrix is now identity.

C.3.2 Fast computation of the latent score

The latent score s̃Z(z) is a critical quantity in the proposed method, as it contributes to the 
drift term in the proposal move (14) and to the proposal kernel (11). Property 3 shows that 
the latent score is equal to the score of qX expressed in the target domain, i.e.,

The adopted implementation bypasses the costly evaluation and storage of the inverse Jaco-
bian by directly computing the latent score as ∇x log qX(x) . The evaluation of the score of 
qX can be conveniently performed thanks to the auto-differentiation modules provided by 
numerous deep learning frameworks.

Appendix D: Experiments

D.1 Training

In all experiments we trained our models to maximize either the log-likelihood using the 
ADAM optimiser with default hyperparameters and no weight decay. We used a held-out 
validation set and trained each model until its validation score stopped improving, except 
for the synthetic data experiments where we train for a fixed number of 1000 epochs.

(C39)f −1
(
f (zk) + ��

)
≃ f −1◦f (zk) + �Jf −1 (f (zk))�.

(C40)z� = f −1
(
f (zk) + 𝜖𝜉

)
+

𝜖2

2
G−1(zk)∇z log q̃(z)

(C41)= f −1
(
f (zk) + 𝜖𝜉

)
+

𝜖2

2
J−1
f
(zk)s̃Z(z).

∇x log qX(x) = J−1
f
(z) ⋅ ∇z log q̃Z(z)



Machine Learning	

D.2 Complementary results for the synthetic experiments

Figure 6 shows the difference of sampling quality between naive sampling and the pro-
posed NF-SAILS method for RealNVP model trained on k-mixtures of Gaussians for 
k ∈ {2, 3, 4, 9} . See also Table 1 in Sect. 6.2 of the main document.

D.3 Implementation details for the image experiments

The hyperparameters used in the experiments conducted on images (see Section 6.3 of 
the main document) are reported in Table 2.

Fig. 6   Mixture of k Gaussian distributions (green), and 1000 samples (blue) generated by the naive sam-
pling (top) and the proposed NF-SAILS method (bottom) with, from left to right, k = 2 , k = 3 , k = 4 and 
k = 9 (Color figure online)

Table 2   Architectures of the 
Glow model implemented for the 
experiments conducted on the 
image data sets

Dataset Minibatch size Levels (L) Depth 
per level 
(K)

Coupling

CIFAR-10 512 3 32 Affine
LSUN, 64 × 64 128 4 48 Affine
LSUN, 96 × 96 320 5 64 Affine
LSUN, 128 × 128 160 5 64 Affine
CelebA, 96 × 96 320 5 64 Affine
CelebA, 128 × 128 160 6 32 Affine
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