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Abstract

Mediation analysis aims to identify and estimate the effect of an exposure on an
outcome that is mediated through one or more intermediate variables. In the pres-
ence of multiple intermediate variables, two pertinent methodological questions
arise: estimating mediated effects when mediators are correlated, and performing
high-dimensional mediation analysis when the number of mediators exceeds the
sample size. This paper presents a two-step procedure for high-dimensional medi-
ation analysis. The first step selects a reduced number of candidate mediators
using an ad-hoc lasso penalty. The second step applies a procedure we previ-
ously developed to estimate the mediated and direct effects, accounting for the
correlation structure among the retained candidate mediators. We compare the
performance of the proposed two-step procedure with state-of-the-art methods
using simulated data. Additionally, we demonstrate its practical application by
estimating the causal role of DNA methylation in the pathway between smoking
and rheumatoid arthritis using real data.

Keywords: mediation analysis, high-dimensional statistics, group lasso, variable
selection, methylation data.
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1 Introduction

Mediation analyses methods are widely used in biomedical and social sciences to dis-
entangle the causal effect of a treatment on an outcome through intermediate variables
called mediators. Modern causal mediation analysis is based on counterfactual vari-
ables and aims at decomposing the total effect into a direct effect and the mediated
effect(s) carried by the mediator(s) [1, 2].

In many practical problems, for instance in biomedical applications with intermedi-
ate variables of genomic nature, the number of potential mediators exceeds the sample
size, leading to the high-dimensional mediation problem. Several methods have been
proposed in recent years to address this challenging problem, for a review of the lit-
erature see [3, 4]. Existing methods can be can be broadly categorized into two main
families based on their approach to dimensionality reduction.

Methods in the first family build uncorrelated linear combinations of potentials
mediators, using PCA [5], sparse PCA [6] or PLS [7] approaches. In [8] a linear combi-
nations of candidate mediators is chosen by maximising a criterion based on the joint
likelihood of the treatment/mediator and mediator/outcome models. This approach is
extended in [9] using a generalized version of population value decomposition (PVD).
With any of these methods, the mediated effect carried by each linear combination
can be evaluated, and the weights of the mediators within these linear combinations
reveal their contribution to the mediated effects.

A second family of approaches, to which this paper belongs, involves screening the
candidate mediators to select a subset and subsequently estimating their mediation
effects. [10] proposes to explore the set of possible mediators by a coordinate descent
updating at each step the status of a small number of potential mediators. [11] reduces
the dimensionality by introducing a small set of latent variables governing both the
potential mediators and the outcome. To introduce further approaches, let us assume
linear (or logistic) regression models, and let α be the vector of the coefficients of the
exposure in the regression models of the candidate mediators given the exposure (one
model per mediator), and β the vector of the coefficients of the candidate mediators in
the model of the outcome given the mediators and the exposure. With these notations,
a third way to select mediators is to suppose that α and β follow Gaussian mixture
models whose base distributions are centered and with either small or large variance.
[12] proposes a Bayesian Sparse Linear Mixed Model for high-dimensional mediation
analysis which is a one-step method. In contrast, the HDMAX2 method [13] makes
no distributional assumption. For each mediator Mk, the HDMAX2 method tests the
nullity of αk and βk, and the squared maximum of the two corresponding p-values is
considered as a new p-value used as a selection criterion.

Other methods for the selection of mediators rely on penalized likelihood opti-
mization with the selection method varying according to the considered model and
penalization. After reducing the pool of mediators from a large number to a mod-
erate number by employing the sure independence screening, [14], and its extension
[15], conduct variable selection with the minimax concave penalty, or a de-biased lasso
procedure respectively, and finally carry out joint significance testing for mediation
effect. Interestingly, [16] considers a different definition of the mediated effect, called
interventional indirect effect, that needs less stringent hypothesis on the joint law of
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the mediators. The selection strategy relies on two penalized regression, for α and β,
respectively.

In this article, we propose a new two-step approach for the selection of candi-
date mediators and the estimation of individual indirect effects. The first filtering step
reduces the number of candidate mediators by solving a penalized optimization prob-
lem with group lasso penalty that takes simultaneously the parameters of interest α
and β into account. Moreover, the first step also allows to consider a predefined group
structure among the possible mediators. Once the number of candidate mediators is
lower than the sample size, the second step consists in running the algorithm devel-
oped in [17] to estimate and test the indirect effects of the retained mediators, together
with the direct effect.

This article is organized as follows. Section 2 defines the problem of high-
dimensional mediation analysis and introduces the notations and underlying hypothe-
ses. Our algorithm is detailed in Section 3. The results of the comparisons with
previously published methods on synthetic dataset are reported in Section 4. An
illustration on a real dataset is shown in Section 5. Section 6 discusses our results.

2 A high-dimensional mediation analysis model

We consider a mediation model with P binary exposures (or treatments) (T1, . . . , TP ),
K candidate mediators (M1, . . . ,MK) and an outcome Y . An example is shown in
Figure 1. Let (X1, . . . , XL) be the vector of pretreatment confounders. If K is large, in
particular larger than the sample size n, the problem of identifying and inferring the
direct and indirect effects in the model is referred to as high-dimensional mediation
analysis. In this high-dimensional setting, the aim of our algorithm is to identify which
candidate mediators truly have a mediation effect and to estimate the corresponding
direct and indirect effects. The inclusion of multiple treatments is furthermore designed
to promote the selection of mediators that are common across different treatments.
Both the candidate mediators and the outcome are assumed to be either Gaussian or
binary, and are therefore modeled using either Gaussian or logistic regression models,
respectively. We consider the following data structures:

• n× P matrix T, where the entry tip is the ith observation of Tp
• n×K matrix M, where the entry mik is the ith observation of Mk

• n× 1 column vector y, where the entry yi is the i
th observation of Y

• n× L matrix X, where the entry Xil is the i
th observation of the lth pretreatment

variable Xl.

Regression models for the candidate mediators Mk

If the kth potential mediator is continuous, we assume the following Gaussian model:

Mk = α0k +

P∑
p=1

αpkTp +

L∑
l=1

ξlkXl + ϵk with ϵk ∼ N (0, σ2
k)
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Fig. 1: Example of a high-dimensional mediation model with three treatments. Direct
effects from (T1, T2, T3) on the outcome are included in the model but omitted from
the figure for readability. Candidate mediators M1 to M9 are true mediators, while
M10 to MK are not. Pretreatment confounders are not shown for clarity.

We denote by m̂ik(α, ξ) the associated prediction for the ith individual seen as a

function of the model parameters: m̂ik(α, ξ) = α0k+
∑P

p=1 αpktip+
∑L

l=1 ξlkxil. If the

kth potential mediator is binary, we assume the following logistic regression model:

log

(
P(Mk = 1)

1− P(Mk = 1)

)
= α0k +

P∑
p=1

αpkTp +

L∑
l=1

ξlkXl
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We then denote m̂ik(α, ξ) the associated prediction for P(mik = 1), that is m̂ik =

eνik/(1 + eνik) with νik(α, ξ) = α0k +
∑P

p=1 αpktip +
∑L

l=1 ξlkxil. All predictions m̂ik

are compiled into the matrix M̂(α, ξ).

Regression model for the outcome Y

If the outcome is continuous, we assume the following Gaussian model

Y = γ0 +

P∑
p=1

γpTp +

K∑
k=1

βkMk +

L∑
l=1

ψlXl + ϵ with ϵ ∼ N (0, σ2).

We denote ŷi(β,γ,ψ) the prediction for the ith individual:

ŷi(β,γ,ψ) = γ0 +

P∑
p=1

γptip +

K∑
k=1

βkmik +

L∑
l=1

ψlxil.

If the outcome is binary, we consider the following logistic model

log

(
P(Y = 1)

1− P(Y = 1)

)
= γ0 +

P∑
p=1

γpTp +

K∑
k=1

βkMk +

L∑
l=1

ψlXl.

In this case, ŷi(β,γ,ψ) = ezi/(1 + ezi) with zi = γ0 +
∑P

p=1 γptip +
∑K

k=1 βkmik +∑L
l=1 ψlxil. In both cases, all predictions ŷi are compiled into the vector ŷ(β,γ,ψ).

3 MAHI: a two-step algorithm for Mediation
Analysis with HIgh-dimensional data

3.1 Step 1: from high to low dimension

The goal of the first step of our MAHI algorithm is to select a number K0 < n of
candidate mediators to avoid the high-dimensional setting while retaining as many
true mediators as possible. This step relies on an ad hoc loss function depending of
the parameters (α,β,γ, ξ,ψ) and on a group lasso procedure with stability selection.

Definition of the loss functions

We consider the following loss functions for the regression models of the candidate
mediators and the outcome:

ℓMk
(α, ξ) =

{
1
2

∑n
i=1(m̂ik −mik)

2 if Mk is Gaussian∑n
i=1(−mikνik + log(1 + eνik)) if Mk is binary

and

ℓY (β,γ,ψ) =

{
1
2

∑n
i=1(ŷi − yi)

2 if Y is Gaussian∑n
i=1(−yizi + log(1 + ezi)) if Y is binary.
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The loss function associated to the whole model is then defined as

f(α,β,γ, ξ,ψ) =
1

n

K∑
k=1

wkℓMk
(α, ξ) +

wY
n
ℓY (β,γ,ψ),

where w = (w1, . . . , wK) is a vector of weights that allows to tune the relative impor-
tance of the treatment-mediator relationships and, the weight wY allows to tune the
relative importance of the treatment-outcome and mediators-outcome relationships.

The group lasso and the proximal operator

The group lasso [18, 19] is used to select mediators by minimizing a penalized version
of f , with a penalty that promotes sparsity by encouraging the nullity of some pre-
defined groups of parameters. More precisely, let G = (G1, . . . , GR) be a user-specified
partition of the candidate mediators. For a group Gr, denote α|Gr

and β|Gr
the subsets

of the model coefficients corresponding to the candidate mediators in Gr, namely

α|Gr
= {αpk|k ∈ Gr, p ∈ 1, . . . , P} and β|Gr

= {βk|k ∈ Gr}.

Note that if P = 1 (i.e., there is only one treatment) and all candidate mediators form
a single group, the overall idea is to employ a procedure where the coefficients αk and
βk of each candidate mediator Mk are jointly selected either out of the model (false
mediators) or into the model (promising candidate mediators that deserve further
inspection). In the general case, with P treatments and any pre-specified groups of
candidate mediators, the method will favor the selection of groups having a common
mediation effect across the treatments.

The considered problem can then be written, for a given regularization parameter
λ > 0, as

argmin
α,β,γ,ξ,ψ

f(α,β,γ, ξ,ψ) + λ

R∑
r=1

∥(α|Gr
,β|Gr

)∥2. (1)

To solve this optimization problem, we employ the proximal method as described in
[20]. This method relies on an iterative procedure described in Appendix A.

Stability selection and parameter choices

We emphasize that the goal of Step 1 is to transform the initial problem into a small-
dimensional problem while discharging as few true mediators as possible. The selection
of some false mediators is not problematic because Step 2 will test individual indirect
effects. As a consequence, the values of the penalty parameter λ do not need to be
fine-tuned and can be chosen loosely. Moreover, lasso selection is known to be highly
unstable, a problem that can be addressed using the stability selection procedure
introduced in [21]. The idea behind stability selection is to select variables based on
the number of times they are chosen when running the original selection procedure
on multiple bootstrap samples. Based on these two considerations, we propose the
following procedure for the first selection step:
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• The user chooses the vector w of the relative weights of the candidate mediators.
By default, a constant vector is chosen, meaning that each candidate mediator is
given the same importance.

• wY is not fixed. The default procedure is to use a grid of values.
• For each value of wY , the optimization procedure is run Nboot times on data sub-
samples, with Nboot large. For each of these subsamples, a value of λ is chosen by
dichotomy such that the number of candidate mediators kept is in a pre-defined
interval, by default [n/2, n] where n is the sample size.

• Candidate mediators are then ranked from most to least frequently selected across
all obtained lists. The rationale is that a true mediator should be selected more
often than a non-mediating variable, which will only be selected occasionally as a
false positive. Finally, the Kmax best ranked mediators are selected by Step 1.

• The choice of Kmax is guided by the fact that Step 2 is based on estimating the
parameters of “classic” (i.e., non-penalized) regression models and that the number
of the explanatory variables has to be chosen accordingly. For a continuous outcome
the default value is 2n/ log(n). For a binary outcome Kmax must at most be equal
to the integer part of −2 + n/50 according to [22].

3.2 Step 2: estimation of direct and indirect effects

The second step of MAHI involves estimating and testing, for each treatment, the
direct effect and the indirect effects through each of the selected candidate interme-
diate variables, which we denote M1, . . . ,MKmax

(up to a permutation of the original
indices). This is accomplished using the identifiability assumptions and method for
low-dimensional multiple mediation analysis described in [17]. For clarity, we recall
the corresponding quasi-Bayesian algorithm adapted from [2] and refer the reader to
[17] for its theoretical justification.

Algorithm for low-dimensional multiple mediation analysis:

1. Fit parametric models for the outcome and the retained candidate mediators as
in the previous section. We denote the vectors of parameter estimates as Θ̂Y and

Θ̂Z =
(
Θ̂1, . . . , Θ̂Kmax

)
, respectively.

2. For each model, sample N times its parameters according to their multivariate
sampling distribution, and obtain the vectors or parameters Θ̂Y (n) and Θ̂Z(n) =(
Θ̂1

(n), . . . , Θ̂
Kmax

(n)

)
, for n = 1, . . . , N . As in [2], the law of the parameters is

approximated by a multivariate normal distribution, with mean and variance equal
to the estimated parameters and their estimated asymptotic covariance matrix,
respectively.

3. For each candidate mediator Mk, with k = 1, . . . ,Kmax, repeat I times the
followings steps:

• Simulate the counterfactual values of each mediator. In particular, for each

pair t, t′ ∈ {0, 1}, sample the vector of counterfactual variables Z
(i)
k (t, t′) =(

M
(i)
k (t),W

(i)
k (t′)

)
, where Wk denotes the vector of all mediators but Mk.
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• Simulate the counterfactual outcomes given the simulated values of the coun-

terfactual mediators, denoted by Y (i)
(
t, Z

(i)
k (t′, t)

)
for each k and t, t′ ∈

{0, 1}.
• Estimate the individual mediation effects:

δ̂k(r)(t) =
1

I

I∑
i=1

{
Y(ri)

(
t, Zk(ri)(1, t)

)
− Y(ri)

(
t, Zk(ri)(0, t)

)}
4. From the empirical distribution of each effect above, obtain point estimates together

with p-values and confidence intervals.

The final selection of mediators consists of the set of candidate mediators whose
confidence intervals do not contain 0 after correction for the Kmax multiple compar-
isons. Note that, as detailed in [17], this algorithm also allows for the estimation of
the direct and joint mediated effects.

4 Simulation study

We ran simulations to validate MAHI and to compare it to methods recently
introduced in the literature.

4.1 Models for simulated data

4.1.1 Continuous outcome

We simulated 100 datasets, including n = 100 observations and K = 500 candidate
mediators each, according to the model

Mik = µk + αkTi + ϵik
Yi = 20 + 50Ti +

∑
k βkMik + ϵi0

(2)

where 1 ≤ i ≤ n and 1 ≤ k ≤ K. The only exposure variable T follows a Bernoulli
distribution, T ∼ B(0.3), µk is drawn uniformly in the interval [−2, 2] for each vari-
able Mk, and ϵk ∼ N (0, 1) for k ∈ (0, . . . , 500). Note that variables Mk are causally
unrelated one to each other. Table 1 shows the values of αk and βk for the first 50
variables Mk. The higher the absolute value of αkβk, the greater the indirect effect
through Mk. As such, the first 10 mediators have strong indirect effects (and are, in
principle, easier to select), the next 10 have mild indirect effects (less easy to detect)
and the next 10 have weak indirect effects (hard to detect). All other 470 variables
Mk are not true mediators because either αk = 0 or βk = 0.

8



k 1 2 3 4 5 6 7 8 9 10
αk -95 90 95 95 -100 95 -95 85 -95 -100
βk 185 -195 190 185 -190 185 195 -190 100 185

k 11 12 13 14 15 16 17 18 19 20
αk -2.75 3.25 -3.50 2.50 -3.75 3.00 -3.25 2.75 3.00 3.50
βk 3.25 -2.50 3.75 -3.00 3.50 -2.75 3.75 -3.25 3.25 -2.75

k 21 22 23 24 25 26 27 28 29 30
αk -0.875 0.625 -0.375 -0.25 0.50 -0.875 0.125 -1.125 0.375 -0.25
βk 0.375 -0.625 0.625 -1.125 0.75 0.25 -0.50 0.375 -0.625 0.75

k 31 32 33 34 35 36 37 38 39 40
αk 25 25 25 25 25 25 25 25 25 25
βk 0 0 0 0 0 0 0 0 0 0

k 41 42 43 44 45 46 47 48 49 50
αk 0 0 0 0 0 0 0 0 0 0
βk 45 45 45 45 45 45 45 45 45 45

Table 1: Values of αk and βk for k = 1, . . . , 50. For k = 51, . . . , 500, αk = βk = 0.

4.1.2 Binary outcome

We simulated 100 datasets, including n = 1350 observations and K = 2000 candidate
mediators each, according to the model

Mik = 1 + αkTi + ϵik
Y ∗
i = −65 + Ti +

∑
k βkMik + ϵi0

Yi = 1Y ∗
i >0

(3)

where 1 ≤ i ≤ n and 1 ≤ k ≤ K. The only exposure variable T follows a Bernoulli
distribution, T ∼ B(0.3), the residual ϵ0 follows a logistic distribution, ϵ0 ∼ L(0, 1),
and ϵk ∼ N (0, 1) for k ∈ (1, . . . , 2000). Note that mediators are causally independent.
As shown in Table 2, the 15 true mediators M1, . . . ,M15 are split in three groups of
5 mediators each, with strong, mild and weak mediated effects respectively.

k 1 2 3 4 5 6 7 8 9 10
αk 2 2 2 2 2 1 1 1 1 1
βk 2 2 2 2 2 1 1 1 1 1

k 11 12 13 14 15 16 17 18 19 20
αk 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
βk 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0

k 21 22 23 24 25 26 27 28 29 30
αk 0 0 0 0 0 0 0 0 0 0
βk 5 5 5 5 5 0 0 0 0 0

Table 2: Values of αk and βk for k = 1, . . . , 30. For k =
31, . . . , 2000, αk = βk = 0.
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4.2 Methods settings

We implemented our method in the mahi function of the GitHub R package
AllanJe/mahi. For our simulation study, we considered Nboot = 30 and selected λ to
retain between n/2 and n candidate mediators. This constraint ensures that the sec-
ond step no longer deals with a high-dimensional setting. For the second step, p-values
were adjusted using the Hochberg correction with a threshold of 0.05.

4.2.1 Comparison to state-of-the-art methods for continuous
outcomes

We compared MAHI to the following six alternative methods on simulated data with
continuous outcomes:

1. [10] introduced an approach for high-dimensional mediation analysis, called the
Coordinate-wise Mediation Filter (CMF). The CMF implementation consists of two
components: an internal algorithm which performs the selection of mediators by
coordinate descent using a decision function D, and an external algorithm that runs
several times the internal algorithm and aggregates the corresponding outputs. The
entire procedure is implemented in the GitHub R package vankesteren/cmfilter.
In our simulations, the decision function is the Sobel test. The external algorithm is
run 1000 times. Once the selection rate for each mediator is calculated, a mediator
is chosen if its selection rate is greater than 0.079, the value recommended by the
authors.

2. [14] introduced the HIMA (HIgh-dimensional Mediation Analysis) algorithm, which
is based on penalized regressions and uses a lasso-type penalty function called the
concave minimax penalty (MCP) [23]. The HIMA implementation consists of three
steps: first the set of candidate mediators is reduced by means of the sure inde-

pendent screening (SIS) method [24], then the estimates β̂k are calculated using
the MCP penalization criterion, and at last indirect effects are tested and p-values
are adjusted according to the Bonferroni correction. The entire procedure is imple-
mented and available in the R package hima. In our simulations, we chose the first
n/ log(n) mediators obtained with the SIS method, as recommended by the authors.

3. [25] proposed a variation of HIMA allowing the selection of correlated candidate
mediators, called HDMA (High-Dimensional Mediation Analysis). The HDMA
method differs from HIMA in the second step, where debiased estimates of

β̂k are calculated. The entire procedure is available in the GitHub R package
YuzhaoGao/High-dimensional-mediation-analysis-R. In our simulations the
settings are the same as for HIMA.

4. [12] introduced the BAMA (Bayesian Mediation Analysis) approach. It is a
Bayesian inference method using continuous shrinkage priors to extend previous
causal mediation analyses techniques to a high-dimensional setting. For each candi-
date mediator, the posterior inclusion probability (PIP) is estimated measuring the
association strength between exposure and mediators and between mediators and
outcome. The candidate mediators with the highest PIP are selected as the active
mediators. The entire procedure is implemented and available in the R package
bama. In our simulations we chose a PIP threshold of 0.1 for selection.

10



5. [26] introduced the SPCMA (Sparse Principal Component Mediation Analysis)
algorithm. When candidate mediators are potentially causally related to one
another, one approach is to perform a principal component analysis (PCA) to obtain
orthogonal principal components (PCs), which can be treated as new, conditionally
independent mediators. However, these new candidate mediators, which are linear
combinations of the original candidate mediators, can be difficult to interpret. The
sparse high-dimensional mediation analysis approach proposed in [26] applies PCA
with sparse loadings, making the principal components more interpretable as they
are linear combinations of a few original candidate mediators. The entire procedure
is implemented in the GitHub R package zhaoyi1026/spcma. In our simulations,
variables Mk are causally independent so we used the function recommended by
the authors in this case, which performs marginal causal mediation analysis under
the linear structural equation modeling framework.

6. [27, 28] introduced the HDMAX2 procedure (High Dimensional mediation analysis
with max2 test). The selection procedure of HDMAX2 involves fitting latent factor
mixed models (LFMMs, [29]) to estimate the effects of exposure on mediators and
the effect of each mediator on the outcome. For each candidate mediator, two p-
values (Px and Py) are derived from these models, testing the null hypotheses of no
effect of exposure on the mediator and no effect of the mediator on the outcome,
respectively. Candidate mediators are then selected using the max2 test, a novel test
that uses the p-value p = max{Px, Py}2. Similar to the Sobel test, the max2 test
rejects the null hypothesis that either the effect of exposure on the mediator or the
effect of the mediator on the outcome is null. The selected candidate mediators are
subsequently ranked by significance, and only those below a given threshold proceed
to the second step. This step consists of performing simple mediation analyses for
each selected candidate mediator using the mediation package [30] to estimate and
test their indirect effects. The threshold can be determined using data-adaptive
approaches, such as false discovery rate (FDR) control, or set manually by the
user. In our study, we retained the 50 candidate mediators with the lowest max2

p-values. HDMAX2 is available in the GitHub R package bcm-uga/hdmax2.

4.2.2 Comparison to state-of-the-art methods for binary outcomes

We compared MAHI to HIMA, HDMA and HDMAX2, all of which can also be applied
to binary outcomes. After the first step of MAHI, we retained the top

⌊
n
50 − 2

⌋
can-

didate mediators to proceed to the second step. For the three other methods we
proceeded as follows :

1. For HIMA, we chose the first ⌈n/(2 log(n))⌉ candidate mediators obtained with the
SIS method, as recommended by the authors for a binary outcome.

2. For HDMA, we also chose the first ⌈n/(2 log(n))⌉ mediators obtained with the SIS
method, as recommended by the authors for a binary outcome.

3. For HDMAX2, we retained the top 25 candidate mediators at the end of the first
step to proceed to the second step. We then applied the Hochberg correction to the
results of the second step at a threshold of 0.05.
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Note that the implementations of HIMA and HDMA allow to choose different
penalisation methods to obtain sparsity. We run them all, which explains the multiple
results for each of the methods in Table 4.

4.3 Results

Table 3 and Table 4 show, for each method, the mean of three performance metrics,
namely precision (or positive predictive value), recall and specificity, over 100 repli-
cates, for continuous and binary outcomes respectively. In particular, the metrics are
defined with respect to four selection problems:

• the selection of all true mediators,
• the selection of strong mediators,
• the selection of mild mediators,
• the selection of weak mediators.

Figure B1 and Figure B3 show the distribution of the three metrics over 100 replicates,
for continuous and binary outcomes respectively. Figure B2 and Figure B4 show the
false discovery rate (1-precision), the false negative rate (1-recall) and the false positive
rate (1-specificity). We considered three selection problems:

• the selection of false mediators,
• the selection of false mediators with αk ̸= 0 and βk = 0,
• the selection of false mediators with αk = 0 and βk ̸= 0.

4.3.1 Results, continuous outcomes

Table 3 shows that our method MAHI had an overall precision, or positive predictive
value, close to 100%, meaning the almost all selected candidate mediators were true
mediators, and that it was the most precise method among the tested approaches.
The mean recall of MAHI was 35%, meaning that 35% of the true mediators were
actually selected. In particular, MAHI detected only a few mild mediators and no weak
mediators at all. The precision of HDMAX2 was close to 100% and its recall was as low
as 16%, as it only selected 50% of the true strong mediators and none of the mild and
weak mediators. Similarly, the precision of CMF was greater than 80% but its recall
was as low as 17%. BAMA had the fourth best precision (67%), but achieved the best
recall (64%). Indeed almost all strong and, notably, true mild mediators were selected
by BAMA. Even though MCMA ranked fifth according to precision (53%), it did not
performed well on model (2) as its recall was as low as 6%. HIMA was slightly less
precise (41%) but selected 31% of the true mediators. HDMA had the lowest precision,
as in average only 24% of the selected mediators were true mediators, but its recall
(34%) was close to those of the best performing methods. The specificity was close to
100% for all methods, which is expected given the small proportion of true mediators.

4.3.2 Results, binary outcome

Table 4 shows that MAHI and HDMAX2 had the best precision, nearly 100%. MAHI
also achieved the best recall, with an average of only 23% of the true mediators not
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Method Precision Recall Specificity

A
ll
tr
u
e
m
ed

ia
to
rs

MAHI 0.998 0.355 0.999
CMF 0.820 0.167 0.997
HIMA 0.412 0.306 0.970
HDMA 0.236 0.346 0.928
BAMA 0.673 0.639 0.980
MCMA 0.535 0.058 0.944

HDMAX2 0.991 0.161 1.000

S
tr
o
n
g
m
ed

ia
to
rs

MAHI 0.933 0.988 0.998
CMF 0.671 0.410 0.996
HIMA 0.374 0.828 0.969
HDMA 0.197 0.868 0.928
BAMA 0.326 0.926 0.961
MCMA 0.535 0.026 0.981

HDMAX2 0.989 0.482 1.000

M
ed

iu
m

m
ed

ia
to
rs

MAHI 0.064 0.076 0.980
CMF 0.139 0.084 0.989
HIMA 0.025 0.061 0.953
HDMA 0.025 0.111 0.912
BAMA 0.327 0.930 0.961
MCMA 0.465 0.019 0.981

HDMAX2 0.001 0.001 0.990

W
ea

k
m
ed

ia
to
rs

MAHI 0.000 0.000 0.978
CMF 0.011 0.008 0.987
HIMA 0.013 0.029 0.953
HDMA 0.014 0.060 0.911
BAMA 0.020 0.060 0.943
MCMA 0.465 0.019 0.981

HDMAX2 0.000 0.000 0.990

Table 3: Comparison of high-dimensional
mediation analysis methods with regards to
the ability to select the true mediators
M1, . . . ,M15: mean precision, recall and speci-
ficity over the 100 data sets simulated with
continuous outcomes according to model (2).

being selected. More specifically, the selection of weak true mediators was particularly
challenging, as more than 63% of them were not selected. In comparison, the recalls
of HDMA lasso, HIMA MCP, and HDMAX2 were 62%, 30%, and 30%, respectively.
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Method Precision Recall Specificity

A
ll
tr
u
e
m
ed

ia
to
rs

MAHI 0.992 0.767 1.000
HIMA lasso 0.760 0.153 0.999
HIMA MCP 0.742 0.304 0.999
HIMA SCAD 0.687 0.225 0.998
HDMA lasso 0.717 0.619 0.998
HDMA ridge 0.709 0.522 0.998
HDMAX2 0.991 0.295 1.000

S
tr
o
n
g
m
ed

ia
to
rs

MAHI 0.438 1.000 0.997
HIMA lasso 0.583 0.324 0.999
HIMA MCP 0.547 0.622 0.998
HIMA SCAD 0.500 0.430 0.998
HDMA lasso 0.390 0.994 0.996
HDMA ridge 0.448 0.962 0.997
HDMAX2 0.837 0.732 1.000

M
ed

iu
m

m
ed

ia
to
rs

MAHI 0.406 0.936 0.997
HIMA lasso 0.180 0.102 0.999
HIMA MCP 0.173 0.224 0.997
HIMA SCAD 0.206 0.180 0.998
HDMA lasso 0.241 0.632 0.995
HDMA ridge 0.198 0.456 0.995
HDMAX2 0.126 0.128 0.998

W
ea

k
m
ed

ia
to
rs

MAHI 0.148 0.366 0.995
HIMA lasso 0.097 0.030 0.998
HIMA MCP 0.072 0.066 0.997
HIMA SCAD 0.131 0.062 0.997
HDMA lasso 0.085 0.230 0.994
HDMA ridge 0.064 0.148 0.995
HDMAX2 0.028 0.026 0.998

Table 4: Comparison of high-dimensional media-
tion analysis methods with regards to the ability
to select the true mediators M1, . . . ,M15: mean
precision, recall and specificity over the 100 data
sets simulated with binary outcomes according
to model (3).

5 Illustration on real data : mediation of smoking
on rheumatoid arthritis outcomes

5.1 Biological context

Rheumatoid Arthritis (RA) is a chronic inflammatory disease influenced by both
genetic and environmental factors. Smoking has been identified as one of the most
important extrinsic risk factor for its development and severity [31]. DNA methylation
(DNAm), an epigenetic mechanism that involves the methylation of specific bases in
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the DNA strand, can regulate gene transcription, thereby affecting disease develop-
ment. The relationship between DNAm levels and RA occurence was first investigated
in [32]. In addition, several association studies have already established the impact of
tobacco consumption on DNAm [33]. As a case study, we explored to which extent
DNAm mediates the effect of tobacco consumption on the occurrence of RA. The
dataset was collected from the Gene Expression Omnibus (GEO) database using the
accession number GSE42861 [32]. It consists of Illumina HumanMethylation450 Bead-
Chip array in peripheral blood leukocytes (PBLs) from RA patients (n = 354) and
normal controls (n = 333). Clinical data including age, gender, smoking status and
residential area were provided for each sample. Two patients were excluded from the
analysis because their smoking status was unknown.

5.2 Mediation analysis

To proceed with the mediation analysis, the categorial smoking status variable was
transformed into a binary variable: 0 for never and non-regular cigarette smokers
and 1 for former and current cigarette smokers. Additionally, age and gender were
included as adjustment variables in the model. Due to the very large initial number
of probes and the resulting computational issues, a preliminary selection was done
using the HDMAX2 method. This method has shown its effectiveness in identifying
DNAm markers in a high-dimensional mediation analysis [27]. First, we used the
hdmax2 step1 approach to run association studies for all potential mediators and to
test the significance of the estimated indirect effects. Then we applied a filter to select
the top 1000 probes with the most significant P -values (Figure 2A). The resulting
subset of DNAm probes is still high-dimensional but computationally less expensive.
Subsequently, the MAHI method was applied to this refined subset of DNAm probes.
Mediated ORs, corresponding to the indirect effect mediated by DNAm probes, were
estimated for the selected subset of CpGs along with their CI. The top 50 CpGs
mediators are depicted in Figure 2B.

5.3 Biological interpretation

Table 5 summarizes the results and relevant biological information for the selected
CpG mediators that show ORs greater than 1.10 and lower than 0.9. When OR
values are lower than 0.9, occurrence of RA is significantly reduced. In this context,
our method identified two CpG mediators (cg04332373 and cg16854986) for which
methylation appears to decrease in RA patients. When OR values are greater than
1.1, the occurence of RA is significantly increased. Interestingly, we observe varying
scenarios in terms of indirect effects for ORs ≥ 1.1. In some instances, the methylation
of CpG mediators decreases in RA patients compared to controls (e.g. cg23314866,
cg15702277 and cg22446264), while in other cases, it increases (e.g. cg07119168,
cg12916723 and cg15956469). This illustrates complex mediation pathways, suggest-
ing that different biological processes are likely at play. We also examined whether
some genes associated with the selected CpG mediators were previously known in the
literature to be linked to RA (Table 5, “Pubmed hits” column). Interestingly, our
approach not only identified known candidates (i.e. CD38 ) but also discovered new
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A.

B.

Fig. 2: Summary of mediation analysis of smoking on RA occurrence through DNA
methylation. A Manhattan plot displaying the –log10 transformed P values estimated
using the max-squared method (HDMAX2) for each CpG site. Each dot represents an
individual CpG, ordered on the x-axis according to their genomic position. The red
line indicates the threshold for the top 1, 000 CpGs selected for further analysis, on
which MAHI was applied. Red squares represent probes with MAHI ORs greater than
1.10, while green triangles represent probes with MAHI ORs lower than 0.9. Labels
correspond to genes associated with the selected probes, if any. Chromosome numbers
are labeled in white. B Mediated ORs for the top 50 mediators. The estimate effect is
represented by a dot and its 95% CI by the bar. Symbols correspond to the significance
cut off of 5% (square for P -value ≥ 0.05, circle P -value < 0.05). Colors correspond to
the sign and importance of the effect (dark green for estimated OR under 0.9, light
green for estimated OR between 0.9 and 1, pink for estimated OR between 1 and 1.1
and dark red for estimated OR over 1.1).



probes that had not previously been associated with RA, opening the way to new
research perspectives and experimental validation.

CpG
Probes

mediated OR mean
DNAm
cases

mean
DNAm
controls

Chr Associated
genes

Pubmed hits

OR less than 0.90

cg04332373 0.85[0.72, 0.97]** 0.20 ± 0.03 0.22 ± 0.03 chr4 CD38 147

cg16854986 0.86[0.73, 0.97]** 0.12 ± 0.03 0.13 ± 0.04 chr4 SEPT11 0

OR more than 1.10

cg23314866 1.15[1.00, 1.36]** 0.24 ± 0.05 0.29 ± 0.04 chr19 NAPA 1

cg07119168 1.11[0.94, 1.35] 0.81 ± 0.03 0.78 ± 0.04 chr14 SPTB 3

cg12916723 1.20[1.04, 1.43]*** 0.63 ± 0.03 0.61 ± 0.04 chr19 NKG7 2

cg15702277 1.14[0.99, 1.44]* 0.25 ± 0.05 0.31 ± 0.05 chr1 RERE 0

cg15956469 1.18[1.04, 1.43]** 0.89 ± 0.04 0.85 ± 0.05 chr12 KLRD1 8

cg22446264 1.13[1.01, 1.30]** 0.47 ± 0.07 0.54 ± 0.07 chr6 - -

Table 5: For each selected probes: mediated OR (with CI, *, **, *** , res. significant
OR at 5%, 1% and 0.1% type I error), DNAm mean ± standard deviation for cases
group and controls group, chromosome in which probe is located, nearest gene (identi-
fied using Illumina annotations), and the number of Pubmed matching hits with gene
symbol and RA.

6 Discussion and conclusion

In this article we introduced MAHI, a two step-procedure for high-dimensional medi-
ation analysis where the candidate intermediate variables outnumbers the available
observations. MAHI first performs variable selection in the pool of candidate mediators
through a group lasso penalty that we adapted specifically to the mediation problem.
Then, MAHI estimates and tests the direct and indirect causal effects in the resulting
lower-dimensional mediation model using the multiple mediation analysis method we
developed in [17].

On simulated data, MAHI achieved better results compared to competing methods.
More precisely, it outperformed existing methods in precision, recall and specificity
when applied to binary outcomes. On simulated data with continuous outcomes, MAHI
had the best precision and specificity but a lower recall than BAMA. More specifically,
MAHI missed the true mediators with a mild effect, which were still selected by BAMA.
However, BAMA also selected false mediators, particularly those causally linked to the
exposure but not to the outcome. Indeed, the posterior inclusion probabilities of false
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mediators not linked to the outcome were similar to those of true mediators (data not
shown). On the contrary, MAHI almost never selected such false mediators. Moreover,
it is important to stress that the performance of BAMA depends on a user-specified
PIP threshold, for which the choice criterion is not straightforward.

The principal methodological novelty of this work is the mediator selection step of
MAHI. Our simulation results suggest that integrating this initial step with our previ-
ously developed inferential algorithm yields highly satisfactory performance. However,
it is important to note that our mediation selection procedure can, in principle, be
implemented prior to any method designed for low-dimensional analysis. Neverthe-
less, when handling correlated candidate mediators, we suggest following through with
the second step of MAHI, as detailed in this article. When dealing with an extremely
large number of candidate mediators, such as hundreds of thousands, the current R
implementation of MAHI may become computationally ineffective. In these cases, we
recommend running mediator pre-selection with the fast first step of the HDMAX2
approach. We employed this strategy combining the first step of HDMAX2 and MAHI
to detect and assess the role of DNA CpG site methylation in mediating the impact of
smoking on the occurrence of rheumatoid arthritis and identified 8 significant probes.
Remarkably, one of the 8 selected probes was associated with the CD38 gene, which
shows a strong association with RA in PubMed research, with 147 hits. CD38 is impor-
tant in the regulation of innate immunity [34] and has already been identified as a
potential therapeutical target for autoimmune diseases such as RA, but also systemic
lupus or multiple sclerosis [35].

In the first step, MAHI can take into account user-defined groups of candidate
mediators. This ability is especially valuable for genomic applications, where the focus
is frequently on evaluating the mediated effects of specific genomic regions. Note that
[36] had already proposed a multiple testing procedure to determine which groups had
a significant mediating effect. However, MAHI is to our knowledge the first screening
method capable of taking group structure into account, as well as considering several
treatments simultaneously and promoting the selection of common mediators. This
interesting features allows to select candidate mediators with indirect effects with
respect to all exposures and to discharge intermediate variables that act as mediators
only with respect to some of the exposures.

Several methodological questions remain open and constitute challenging tasks for
the future. Notably, it would be interesting to adapt MAHI to other types of data,
in particular to longitudinal data and/or survival models. A second major question is
the sensitivity of the method to violations of the conditional independence conditions
upon which the identification of mediated effects relies (see, for instance, [17]). To
the best of our knowledge, this challenge has not yet been addressed in the setting of
high-dimensional mediation analysis.

Method availability:

The MAHI method is available as an R package at
https://github.com/AllanJe/mahi.
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Appendix A Theoretical details

We describe how we solve the optimization problem 1 with the proximal method. This
method can be written, with v = (α,β,γ, ξ,ψ) and Ω(v) =

∑R
r=1 ∥(α|Gr

,β|Gr
)∥2, as

vt+1 = argmin
v

f(vt)+ < ∇f(vt), v − vt > +λΩ(v) +
L

2
∥v − vt∥22

for a well-chosen L. It can also be rewritten as

vt+1 = argmin
v

1

2

∥∥∥∥v − (vt − 1

L
∇f(vt)

)∥∥∥∥2
2

+
λ

L
Ω(v)

= Prox λ
LΩ

(
vt − 1

L
∇f(vt)

)
where the proximal operator is defined as

ProxµΩ(u) = argmin
w

1

2
∥w − u∥22 + µΩ(w).

When Ω is a group lasso penalty, the proximal operator is known. In the present
case, denoting by uGr the subvector of u whose coordinates correspond to those of
α|Gr

and β|Gr
, it is computed by replacing for each Gr the vector uGr by

[ProxµΩ(u)]Gr = max

{
0,

(
1− µ

∥uGr∥2

)
uGr

}
.

The choice of L is again made according to [20] by increasing it until the former
proximal solution verifies

f(vt+1) ≤ f(vt)+ < ∇f(vt), vt+1 − vt > +
L

2
∥vt+1 − vt∥22.

Computing the gradient

In order to run the proximal method to select a subset of candidate mediators, the
only step still needed is to compute the gradient of the loss function, which is easily
done by the following result.
Theorem 1. Let ∇αf (respectively ∇ξf) be the matrix regrouping all the partial

derivatives ∂f
∂αpk

(respectively ∂f
∂ξlk

). Similarly, denote by ∇βf , ∇γf and ∇ψf the

partial gradients relative to the βk , the γp and the ψl coefficients. Finally, let W be the

diagonal matrix with the weight vector w on the diagonal and T̃ the matrix obtained
by adding a column of 1’s on the left of T (i.e., with a slight abuse of notation, we
introduce t̃ip such that, for all 1 ≤ i ≤ n, t̃i0 = 1 and t̃ip = tip for 1 ≤ p ≤ P ). Then

∇αf =
1

n
T̃′(M̂(α, ξ)−M)W
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∇ξf =
1

n
X′(M̂(α, ξ)−M)W

∇βf =
wY
n

M′(ŷ(β,γ,ψ)− y)

∇γf =
wY
n

T̃′(ŷ(β,γ,ψ)− y)

∇ψf =
wY
n

X′(ŷ(β,γ,ψ)− y).

Proof of Theorem 1. α and ξ play symmetric roles in the mediator models, whether
the Gaussian or logistic model is chosen. It is therefore sufficient to prove the equalities
for α and the same result holds for ξ by changing T̃ into X. The same holds for γ on
one hand and β and ψ on the other hand, by changing T̃ into M and X respectively.
Only the proofs for α and γ are therefore fully developed. Their adaptation to β, ξ
and ψ are straightforward.

Consider k such that Mk is gaussian. Then, for every 0 ≤ p ≤ P ,

∂f

∂αpk
=

1

n

∂wkℓMk

∂αpk

=
1

2n
wk

∂

∂αpk

 n∑
i=1

(
P∑
q=0

αqk t̃iq +

L∑
l=1

ξlkxil −mik

)2


=
1

n
wk

n∑
i=1

t̃ip

(
P∑
q=0

αqk t̃iq +

L∑
l=1

ξlkxil −mik

)

=
1

n
wk

n∑
i=1

t̃ip(m̂ik −mik)

=
1

n

(
T̃′(M̂−M)W

)
pk
.

The same reasoning applies when k is such that Mk is binary:

∂f

∂αpk
=

1

n

∂wkℓMk

∂αpk

=
1

n
wk

∂

∂αpk

(
n∑
i=1

−mik

(
P∑
q=0

αqk t̃iq +

L∑
l=1

ξlkxil

)
+ log

(
1 + e

∑P
q=0 αqk t̃iq+

∑L
l=1 ξlkxil

))

=
1

n
wk

n∑
i=1

(
−t̃ipmik +

t̃ipe
∑P

q=0 αqk t̃iq+
∑L

l=1 ξlkxil

1 + e
∑P

q=0 αqk t̃iq+
∑L

l=1 ξlkxil

)

=
1

n
wk

n∑
i=1

t̃ip(m̂ik −mik)

=
1

n

(
T̃′(M̂−M)W

)
pk
.
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The claim concerning ∇αf is therefore true.

Let us now consider Y to be Gaussian. For every 0 ≤ p ≤ P ,

∂f

∂γp
=
wY
n

∂ℓY
∂γp

=
wY
2n

∂

∂γp

 n∑
i=1

(
P∑
q=0

γq t̃iq +

K∑
k=1

βkmik +

L∑
l=1

ψlxil − yi

)2


=
wY
n

n∑
i=1

t̃ip

(
P∑
q=0

γq t̃iq +

K∑
k=1

βkmik +

L∑
l=1

ψlxil − yi

)

=
wY
n

n∑
i=1

t̃ip(ŷi − yi)

=
wY
n

(
T̃′(ŷ − y)

)
k
.

In the case of a binary outcome,

∂f

∂γp
=
wY
n

∂ℓY
∂γp

=
wY
n

(
∂

∂γp

n∑
i=1

−yi

(
P∑
q=0

γq t̃iq +

K∑
l=1

βlmil +

L∑
l=1

ψlxil

)
+

+ log
(
1 + e

∑P
q=0 γq t̃iq+

∑K
l=1 βlmil+

∑L
l=1 ψlxil

))
=
wY
n

n∑
i=1

(
−yit̃ip +

t̃ipe
∑P

q=0 γq t̃iq+
∑K

l=1 βlmil+
∑L

l=1 ψlxil

1 + e
∑P

q=0 γq t̃iq+
∑K

l=1 βlmil+
∑L

l=1 ψlxil

)

=
wY
n

n∑
i=1

t̃ip(ŷi − yi)

=
wY
n

(
T̃′(ŷ − y)

)
p
.

The claims on ∇γf are therefore true in both cases.

Appendix B Additional simulation results
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Fig. B1: Comparison of high-dimensional mediation analysis methods with regards to
the ability to select the true mediators M1, . . . ,M30. The results are displayed in the
form of boxplots showing the distribution over 100 replicates simulated with model (2)
for continuous outcomes. Variables M1, . . . ,M10 are strong mediators, M11, . . . ,M20

mild mediators with medium indirect effects, and M21, . . . ,M30 weak mediators.



Fig. B2: Comparison of high-dimensional mediation analysis methods with regards
to the selection of false mediators (variables M31, . . . ,M50). The results are displayed
in the form of boxplots showing the distribution over 100 replicates simulated with
model (2) for continuous outcomes.



Fig. B3: Comparison of high-dimensional mediation analysis methods with regards to
the ability to select true mediators (variables M1, . . . ,M15). The results are displayed
in the form of boxplots showing the distribution over 100 replicates with binary out-
comes simulated with model (3).



Fig. B4: Comparison of high-dimensional mediation analysis methods with regards
to the selection of false mediators M16, . . . ,M25. The results are displayed in the
form of boxplots showing the distribution over 100 replicates with binary outcomes
simulated with model (3).
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