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Rigidity of random stationary measures and

applications to point processes

Raphaël Lachièze-Rey∗

Abstract The mass rigidity of a stationary random measure M on Rd or Zd (called
number rigidity for a point process) entails that for a bounded set A the knowledge of
M on Ac determines M(A); the k-order rigidity for an integer k means we can recover
the moments of the restriction of M onto A up to order k. We show that the k-rigidity
properties of a random stationary measure M can be characterised by the integrability
properties around 0 of s, the continuous part of the spectral measure, by exploiting a
connection with Schwartz’ Paley-Wiener theorem for analytic functions of exponential
type.

If s−1 is not integrable in zero, M is mass rigid, and similarly if s has a zero of order 2k
in 0, then M is k-rigid. In the continuous setting, these local conditions are also necessary
if s has finitely many zeros, or is isotropic, or is at the opposite separable. This explains
why no model seems to exhibit rigidity in dimension d > 3, and allows to efficiently
recover many recent rigidity results about point processes. In the discrete setting, these
results hold provided #A > 2k.

For a continuous Determinantal point process with reduced kernel κ, k-rigidity is
equivalent to (1− κ̂2)−1 having a zero of order 2k in 0, which answers questions on com-
pleteness and number rigidity. We also explore the consequences of these statements in
the less tractable realm of Riesz gases.

Keywords: Rigidity, point processes, random measures, hyperuniformity, Determi-
nantal point processes, Riesz gases

1 Introduction

The first instance of a linear prediction problem for a stationary process dates back to
Szegö [1921], about a century ago, for a random time series {Xk; k ∈ Z}. He proved that
the process is deterministic, i.e. the future is entirely determined by the past

σ(Xk; k > 0) ⊂ σ(Xk; k 6 0)

through a linear predictor iff the continuous part s of the spectral measure satisfies

∫ 2π

0

ln(|s(u)|) = −∞.
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Kolmogorov [1941] further studies the non-deterministic case, and in particular addresses
the weaker linear interpolation problem of whether X0 ∈ σ(Xk; k 6= 0). He proves that it
is so iff

∫ π

−π

s
−1(u)du = ∞. (1)

A detailed account of the line of research obout randomx linear interpolation can be found
in Rozanov [1967].

Much more recently, other similar problems emerged for higher-dimensional continuous
models with the notion of rigidity for a stationary point process, i.e. a random locally finite
set of points P ⊂ Rd which law is invariant under spatial translations. The oldest such
result might be that of Aizenman and Martin [1980], about 1D Coulomb gases, but the
systematic study of rigidity really started with the introduction of the notion of tolerance

(Lyons and Steif [2003], Holroyd and Soo [2013]), then Ghosh and Peres [2017] coined the
term number rigidity as the property that

#P ∩ B(0, 1) ∈ σ(P ∩ B(0, 1)c).

This obviously holds for shifted lattices, e.g. P = {m+U ;m ∈ Zd} (where U is uniform in
[0, 1]d and ensures that P is invariant under translations with non-integer coordinates), as
one can easily deduce the number of lattice points “hidden” in B(0, 1) by only observing
P ∩B(0, 1)c. They realised that somehow surprisingly also some strongly non-lattice like
models, the infinite Ginibre ensemble Pgin, and the zero set PGAF of the planar Gaussian

Analytic Function, satisfy number rigidity. As it turns out, these two processes possess
also the property of hyperuniformity, i.e.

Var (#P ∩B(0, r))

Vol(B(0, r))
−−−→
r→∞

0, (2)

at the difference of standard disordered systems such as Poisson processes, this property
also is strongly reminiscent of lattice-like models. The surprising fact that it occurs for
locally disordered, amorphous random measures, like PGin,PGAF , or other Coulomb sys-
tems, has been systematically studied by physicists since the 90’s. This property requires
some sort of long distance dependency, compatible with locally disordered configurations,
often referred to as global order and local disorder. The activity around hyperuniformity
has not stopped growing until now, as this property concerns a large diversity of models
involving Coulomb systems, Gaussian analytic functions, eigenvalues of random matrices,
Determinantal Point processes, and has many applications. The literature is too wide to
be cited exhaustively, see for instance the survey of Torquato [2018] for materials science,
of Ghosh and Lebowitz [2017] for statistical physics, or the more mathematical discussion
of Coste [2021].

Many models have been proven to be rigid since then, mostly in the realm of hyperuni-
formity: some Determinantal Point Processes (DPPs) (Bufetov [2016], Bufetov and Qiu
[2018], Bufetov et al. [2018]), Pfaffian processes (Bufetov et al. [2019]), Coulomb and
Riesz systems (Dereudre et al. [2020], Chhaibi and Najnudel [2018], Chatterjee [2019],
Dereudre and Vasseur [2023]), zeros of Gaussian processes (Ghosh and Peres [2017], Ghosh and Krishnapur
[2021], Lachièze-Rey [2020]), stable matchings (Klatt et al. [2020]), and others (Ghosh and Lebowitz
[2018], Klatt and Last [2020]). Besides the striking nature of rigidity and its link with
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hyperuniformity, it has proven to be a useful property in other types of problems, such as
continuous percolation Ghosh et al. [2016]; Osada [2024] recently proved a relation with
diffusive dynamics of particle systems, Ghosh [2015] also exploited number rigidity to
show the completeness of random sets of exponential functions, Lyons and Steif [2003]
study this property to show phase uniqueness for some models from statistical physics.

Stronger forms of rigidity have also emerged. For instance, for the PGAF model,
Ghosh and Peres [2017] showed that not-only the number of particles in B(0, 1) can be
determined, but also their first moment, or center of mass

∑
x∈PGAF∩B(0,1) x, corresponding

to 1-rigidity, and no further moment can be determined from the observation of PGAF ∩
B(0, 1)c. They proved similarly that for the Ginibre process no moment can be determined
beyond order 0. Another such result appears in Dereudre et al. [2020] for Sineβ processes
above order 0.

Until now, both in the physics and mathematics litterature, the precise nature of the
connection between rigidity and hyperuniformity is not precisely understood, see the dis-
cussions in Ghosh and Lebowitz [2017], Coste [2021]. It seems in particular that rigidity
is not understood in dimensions d > 3, with the exception of the work Chatterjee [2019],
where he discusses at length this question and proves that the hierarchical Coulomb gas,
a simplified version of the actual 3D Coulomb gas which is not formally stationary, is not
number rigid. Dereudre and Vasseur [2023] conjecture that the number rigidity of a Riesz
gas of index s occurs iff s 6 d− 1.

Necessary and sufficient conditions. In the current article, we study the rigidity
properties of a L2 (wide-sense) stationary measure M on Rd or Zd. We shall establish for
k ∈ Z a characterisation of k-th order linear rigidity, which is the property that the k-th
order moments of M restricted to B(0, 1) can be a.s. recovered (linearly) from M\B(0, 1),
in terms of the behaviour around the origin of the structure factor S, the generalised
Fourier transform of the correlation measure, and more precisely of its continuous part
s(u)du. The deep relation between the behaviour of S around 0 and hyperuniformity
emerges from the fact that (2) is the equivalent in the Fourier domain to the vanishing
of S near 0. We show that the decay exponent of s near 0 is related to its degree of
rigidity, i.e. the number of moments of M∩B(0, 1) that can be determined by the outside
configuration M ∩ B(0, 1)c.

More precisely, on a bounded set A, it is sufficient for k-rigidity that s
−1 has a pole

of order 2k in 0 (Theorem 1). For number rigidity (k = 0) or if d = 1, or if s is isotropic,
it exactly means that for any neighbourhood U of 0,

∫

U

s(u)−1‖u‖2kdu = ∞, (3)

the condition can be more complicated in higher dimensions or without isotropy. This
explains most results cited above about number rigidity and 1-rigidity, and also gener-
alises the sufficient conditions of Ghosh and Lebowitz [2017] and Bufetov et al. [2018] for
number rigidity.

We show that this condition is necessary under some structural assumptions such as
finite number of zeros, isotropy or separability (Proposition 2 and Theorem 2). It also
explains why rigidity does not seem to occur in dimension d > 3: if s(u) ∼ σ‖u‖2 for
some σ > 0 as u → 0, as it is expected for many hyperuniform systems with integrable
correlation measure, if d > 3, for k > 0, the left hand member of (3) is finite. Hence one
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must find processes where the structure factor decreases faster to 0 to find higher order
rigidity. We exhibit in Lachièze-Rey [2024+] a class of processes Pn, for n arbitrarily
large, which are not shifted lattices and such that s(u) ∼u→0 c‖u‖

n for some c > 0.
The converse part also allows to assess the correlation properties of a point pro-

cess based on its rigidity behaviour: it is shown by Dereudre and Vasseur [2023] and
Dereudre et al. [2020] that some β-ensembles are not k-rigid for some k, which implies
non-integrability results on their correlation functions (see Section 4.2).

We give counter-examples of spectral measures showing that these results are optimal
in full generality.

Determinantal point processes. These results apply efficiently to stationary DPPs.
Theorem 1 yields that a DPP on Rd with kernel K is k-rigid iff (1−F(|K|2))−1 has a pole
of order 2k in 0, retrieving for k = 0 the results of Ghosh and Peres [2017], Ghosh [2015],
Bufetov et al. [2018], and also completes the answer of Ghosh [2015] to a question of
[Lyons, 2014, Section 4] on completeness of complex exponentials. In the discrete setting,
a pole of order 2k indeed implies k-rigidity, but the converse is only true in dimension 1,
or under some additional assumption.

Discrete processes. Stationary discrete processes X = {Xm;m ∈ Zd} show a similar
connection between rigidity and the behaviour around 0 of the spectral measure S, defined
on [−π, π]d. We show in Theorem 3 for A = JmKd := {−m, . . . ,m}d that X is not
maximally rigid on A, meaning {X(m); |m| 6 m} 6⊂ σ({Xm, |m| > m}), iff there exists a
trigonometric polynomial ψ(u) =

∑
|m|6m ame

im·u such that,

∫

Td

|ψ(u)|2

s(u)
du <∞,

and not k-rigid if furthermore the derivatives of ψ up to order k do not vanish in 0. Besides
the seminal work of Kolmogorov [1941] in dimension 1, this unifies some results established
in the context of discrete DPPs, such as the result of Lyons and Steif [2003] regarding
the strong full K property for uniqueness of phase transition in statistical physics. The
condition can be made more explicit in dimension 1: X is maximally rigid on JmK iff
the number of poles of s counted with multiplicity is > m, as for the condition (1) of
Kolmogorov [1941] in the case d = 1, m = 0, k = 0, or the generalisation of Bufetov et al.
[2018] in the case d = 1, k = 0, m ∈ N: X is 0-rigid, i.e.

∑
|m|6m Xm ∈ σ({Xk; |m| > m}),

iff 0 is a pole, i.e.

∫

B(0,ε)

s
−1(u)du = ∞, ε > 0,

or (obviously) if X is maximally rigid (Proposition 5).

Rigidity of the class of functions of exponential type. Let us sketch here the
method to derive these results, formally developped at Section 5. The basic idea is the
following: given a function γ bounded on some compact A, the linear statistic

∫
γdM is

completely determined by M ∩Ac if

inf
h∈C∞

c (Ac)
Var

(∫
γdM−

∫
hdM

)
= 0,

4



and this translates in the Fourier domain as

inf
h∈C∞

c (Ac)

∫
|γ̂ − ĥ|2dS = 0.

In other words, γ must be in the L2(S)-closure of the space HA spanned by the ĥ for h
in C

∞
c (Ac), or equivalently it must be orthogonal to any function ϕ ∈ H⊥

A . The crucial
observation is that for such ϕ, the tempered distribution ϕS has by definition a spectrum
bounded (by A). This conveys a very strong form of regularity, namely ψ := ϕs =
ϕS has no singular part and must be an analytic function of exponential type on Cd

by an application of the Schwartz-Paley-Wiener theorem (Theorem 5). We have also
immediately ψ ∈ L2(s−1) because

∫
ψ2

s
−1 =

∫
ϕ2S. If such ψ do not exist besides the null

function, H⊥
A = {0} and all γ can be predicted, meaning the process is maximally rigid.

Number rigidity means that γ ≡ 1 is orthogonal to ψ̂ for all such ψ, i.e. for all entire
function ψ with bounded spectrum, being in L2(s−1) implies

ψ(0) = 〈1, ψ̂〉 = 0,

thus s
−1 is non-integrable around 0, otherwise we could find such ψ non-vanishing in 0.

These high regularity and integrability requirement on ψ are in some sense the source
of the rigidity phenomenon. It is then easier to characterise whether all such ψ ∈ L2(s−1)
must satisfy 〈γ̂, ψ〉Rd = 0, meaning γ-rigidity, and it mostly depends on the zeros of s, or
more generally on how often s(u) is close to 0. What we study is not mere rigidity, but
linear rigidity, meaning that

∫
γdM should be approximated by linear functionals IM(h),

not by any functional on M ∩ Ac.

Let us present the rest of the paper. In Section 2, we introduce the spectral measure
S necessary to state the main results. In Section 3, we formally introduce the concepts of
rigidity and k-poles and derive the announced necessary and sufficient condition, and show
how they apply to some particular examples; we also give the corresponding results for
discrete processes. Section 4 is devoted to the applications to DPPs and Gibbs measure.
Finally, Section 5 gives the formal framework about distributions, Schwarz’ Paley-Wiener
Theorem and the proofs. In the companion paper Lachièze-Rey [2024+], we explore higher
order rigidity, and in particular stealthy systems and maximal rigidity, and give several
examples of models satisfying a phase transition in the observation window A, or other
surprising rigidity behaviours, such as short range rigidity, where M∩B(0, 1) is completely
determined by M∩ (B(0, 2)\B(0, 1)) despite the covariance being smooth and integrable.

2 Spectral measure

Let E be either Rd or Zd. Even though our main motivation is the class of point processes,
we consider a random L2 wide-sense stationary signed measure M, i.e. a collection of
real L2 random variables IM(f) on a probability space (Ω,P), for f in the space C

b
c(E) of

measurable bounded and compactly supported functions, satisfying a.s. the σ-additivity
axiom, and Var (IM(θxf)) = Var (IM(f)) where θx is the operator of translation by x ∈ Rd.

For E = R
d, the second order behaviour of M is described by the correlation measure

C, characterised by

Cov (IM(f), IM(g)) = λ

∫

Rd

f(y)g(x+ y)C(dx)dy, f, g ∈ C
b
c(E),
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where λ is the mean intensity

λ = E(M(B(0, 1))).

By convention λ is assumed to be λ = 1 in all the article (achievable through a
deterministic rescaling). The spectral measure S is defined as the Fourier transform FC

in the sense of tempered distributions, i.e. for f ∈ C
b
c(E)

Var (IM(f)) =

∫

Rd

|f̂ |2S, (4)

it is indeed a non-negative measure thanks to Bochner’s Theorem (see Coste [2021], fol-
lowing Berg and Frost [1975]). In any case, the only relation formally needed in this work
is that (4) holds for some measure S. The local square integrability of M directly yields
that S is a non-negative tempered measure (Lemma 2), and its inverse Fourier transform
C is a signed positive definite tempered measure.

Informally, the behaviour of S at infinity represents the regularity of M; for instance
if M is a smooth Gaussian field, then S will experience fast decay, whereas if P is a point
process, S has likely infinite mass; the regularity of S around 0 is related to the long range
dependency of M.

Example 1 (Discrete fields). If E = Zd, rather consider Xm := IM({m}),m ∈ Zd, and
impose the convention EX0 = 0,Var (X0) = 1. Then

C(m) = E(X0Xm)

is bounded by C(0) = 1. Since C is positive definite, C := FS where S satisfies (4) but
with T

d as integration domain. The previous formulae hold with the counting measure
on Zd.

Example 2 (Point processes). Point processes are the prominent examples motivating
the current work and related line of literature about rigidity. A configuration is an atomic
measure on E = Rd without accumulation points in its support, and a random point
process is a random variable P in the space of configurations endowed with the counting σ-
algebra generated by mappings P 7→ #P∩A for A compact. The integrability assumption
means E(#P ∩A2) <∞ for bounded measurable A.

For instance if P is the unit intensity homogeneous Poisson process, C = δ0, S = L the
Lebesgue measure on Rd, but this example is not of great interest for us because, due to
its spatial independence, P does not experience rigidity or hyperuniformity.

For point processes, long range interaction is measured through the truncated correla-

tion measure ρ
(2)
tr (dt) satisfying

C = ρ
(2)
tr + δ0.

The Dirac mass δ0 comes from the diagonal terms in the double summation of the co-
variance, reflecting the purely atomic nature of the point process. Informally, ρ

(2)
tr (dx)

describes the probability that there is a point close to x given that there is a point close
to 0.
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Example 3 (Gaussian process). Let Ê = R
d if E = R

d, or Ê = T
d if E = Z

d. Given
any non-negative measure S with finite mass on Ê, the spectral representation theo-
rem ( [Adler and Taylor, 2007, Th. 5.4.2]) gives a stationary centred Gaussian pro-
cess X = {X(x), x ∈ E} such that S is the spectral measure of the random measure
IM(f) =

∫
f(x)X(x)dx, X is furthermore strongly stationary in the sense where θyX =

{X(x + y); x ∈ E} has the same law as X, y ∈ E. Since S is finite, C = (2π)−d
ḞS = cL

where Ḟ is the inverse Fourier transform, and the covariance function c is defined by

E(W (0)W (x)) = c(x), x ∈ E.

3 Rigidity of random stationary measures

For A ⊂ E, the notation MA indicates the collection IM(f) for f ∈ C
b
c(A). The general

problem of rigidity for a random signed measure M is to be able to infer a functional
F (MA) knowing only MAc . The mass rigidity, for instance, called number rigidity for
point processes, means that M(A) ∈ σ(MAc). Maximal rigidity means that any bounded
functional F MA-measurable can be predicted by MAc , or equivalently

σ(MA) ⊂ σ(MAc).

For γ : E → C, bounded with bounded support, we are interested here in predicting
IM(γ), i.e. in determining if IM(γ) ∈ σ(MAc), called γ-rigidity on A, and maximal rigidity
(MR) on A means that γ-rigidity holds for all such γ, and in particular allows to recover
the entirety of MA. Define furthermore linear rigidity if IM(γ) can be approximated by
such linear statistics of MAc , i.e. if a.s. and in L2(P), for some hn ∈ C

b
c(A

c), n > 1,

IM(γ) = lim
n
IM(hn),

which we write IM(γ) ∈ σlin(MAc), and maximal linear rigidity if IM(γ) ∈ σlin(MAc) for
all γ bounded. The term linear is sometimes omitted in this article, but all methods
employed here pertain to linear rigidity.

We will be particularly interested in (linear) k-rigidity for k = (ki) ∈ N
d, i.e. γk-rigidity

for γk(t) = tk with tk =
∏d

i=1 t
ki
i , t ∈ Rd. For k ∈ N, say that M is k-rigid if it is k-rigid

for every k with |k| 6 k (in particular, number rigidity corresponds to 0-rigidity).
Call convex body A a compact convex set with non-empty interior. In the heart of

the paper, Theorem 6 provides an abstract necessary and sufficient condition for linear k-
rigidity on A in terms of S, and shows in particular that linear γ-rigidity only depends on
the spectral density s, the density of the continuous part of S; s is even and non-negative,
as S. For this reason, we sometimes talk about the rigidity of s instead of the linear
rigidity of M, but it means exactly the same thing.

3.1 Local sufficient condition

We consider a random stationary measure M on Rd with spectral density s. The crucial
concept is that of a k-pole.

Definition 1. Given k ∈ Nd, say that s
−1 has a pole of order k in zero, or k-pole, if

it is locally uk-incompatible around 0: for every polynomial Q =
∑

m
amu

m such that∫
B(0,ε)

|Q|2s−1 <∞ for some ε > 0, we have ak = 0.
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For k, k′ ∈ N
d, say that k

′ � k if k
′
i 6 ki for i = 1, . . . , d. Remark that, through

multiplication of Q by uk−k′ , a k-pole is a k′-pole for k′ � k. Let us state our most general
sufficient condition.

Theorem 1. If s−1 has a pole of order k in 0, M is k-rigid on any bounded measurable
A ⊂ Rd.

All the proofs of results of this subsection are at Section 5.4. In many situations, 0
being a k-pole is equivalent to

∫

B(0,ε)

u2k

s−1(u)
du = ∞ (5)

for all ε > 0 :

• In dimension d = 1, we can also say that s has a zero of multiplicity 2k: for every
non-zero polynomial Q on R, we have Q(u) = auq(1 + o(1)) as u → 0 for some
q ∈ N, a 6= 0, and Q ∈ L2(s−1;B(0, ε)) iff

∫
B(0,ε)

u2qs−1 <∞, a k-pole indeed means

(5).

• If k = 0 (number rigidity), a 0-pole, or just pole, is indeed equivalent to (5) because
if Q(0) 6= 0, Q(u) ∼ Q(0) as u→ 0.

This is unfortunately not always the case:

Example 4. Let s(u) = (u1 − u2)
2, u ∈ R2. Hence

∫
B(0,ε)

u2is
−1(u)du = ∞, i = 1, 2 for

ε > 0, but it does not mean that s−1 has a (1, 0)-pole because Q(u) := (u1 − u2) satisfies
∂1Q(0) 6= 0 and

∫
B(0,ε)

Q2
s
−1 <∞.

We have the following more general proposition, allowing in particular to treat isotropic
spectral measures.

Proposition 1. Define s̃(u) = supv:‖v‖=‖u‖ s(v). Let k ∈ Nd. Then M is k-rigid on any
bounded measurable A if for ε > 0

∫

B(0,ε)

s̃
−1(u)u2kdu = ∞ or equivalently

∫

B(0,ε)

s̃
−1(u)‖u‖2|k|du = ∞, (6)

where |k| =
∑

i ki.

Let us illustrate this result by deriving the two seminal results about number rigidity
by Ghosh and Peres [2017].

Example 5. Let P be either PGIN , the infinite Ginibre ensemble or PGAF , the zero set of
the planar Gaussian analytic function (see Ghosh and Peres [2017] for precise definitions).
P is an isotropic process in dimension d = 2 where C has a density decaying exponentially
fast, hence

s(u) = s(0) +
1

2
‖u‖2

∫
‖t‖2C(dt) +O(‖u‖4).
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Ghosh and Peres [2017] start from the facts that for a twice differentiable function f ∈
Cb
c(R

2), for some finite C,

Var(IPGIN
(f)) 6C

∫
‖∇f‖2,

Var(IPGAF
(f)) 6C

∫
|∆f |2.

Since Var(IP(f)) =
∫
|f̂(u)|2s(u)du, this readily implies that in both cases s(0) = 0

(hyperuniformity), hence by Theorem 1 for k = 0, s−1 has a 0-pole in 0 and both processes
are number rigid. For P = PGAF , it also implies that

∫
‖t‖2C(dt) = 0, hence

∫
‖u‖2s−1(u)du = ∞,

and s is isotropic. Using also Proposition 1 it has a pole of order 1 in 0, hence PGAF is
1-rigid (also proved in Ghosh and Peres [2017]).

Up to date, PGAF is to my knowledge the only stationary point process which is not
a shifted lattice and for which it is rigourously proven that s(u) = o(‖u‖2), see the
companion paper for toy models vanishing at arbitrary order. The process PGIN is an
instance of the class of projector determinantal point processes, the general case is treated
at Section 4.1.

For k = 0, i.e. for number rigidity, our sufficient condition is
∫

B(0,ε)

1

s(u)
du = ∞. (7)

Let us explain why it allows to recover the sufficient condition of Ghosh and Lebowitz
[2017] in dimensions d = 1, 2. In dimension 1, they prove that a (unit intensity) point

process P is number rigid if the truncated correlation measure ρ
(2)
tr has a density c =

F(s− 1) satisfying
∫
c = −1 (hyperuniformity) and

|c(t)| 6 c(1 + |t|)2, t ∈ R.

It implies that s is Lipschitz in 0 :

2|s(u)| = |s(u) + s(−u)| =

∫
(eitu + e−itu)c(t)dt+ 2

∫
c

6

∫

R

|eitu + e−itu − 2||c(t)|dt

6

∫
4c

sin(tu/2)2

(1 + |t|)2
dt

=4c|u|

∫
sin(z/2)2

(|z|+ |u|)2
dz

6C|u| with C = 4c

∫
sin(z/2)2

|z|2
dz <∞.

Hence (7) is satisfied. In dimension 2, with similar definitions, the condition is

|c(t)| 6 c(1 + ‖t‖)−4−ε
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which gives that ‖t‖2c(t) ∈ L1(R2), hence s := ĉ + 1 is twice differentiable in 0, and by
parity s

′(0) = 0, meaning s(u) 6 c‖u‖2, and (7) holds again.

Bufetov et al. [2018] also give a sufficient condition, but depending on the structure
factor of the discretised version, which is not the same as the original one, see the discus-
sion at Section 3.4.

Let us conclude this subsection with an example illustrating the possible complexity
of the concept of k-pole:

Example 6. Assume that some s : R2 → R+ satisfies s(u) ∼ u41 as u → 0. Let Q a
non-zero polynomial in L2(s−1, B(0, ε)) for some ε > 0. We put Q under the form

Q(u) = P (u2) + u1R(u2) + u21S(u1, u2)

where P,R, S are polynomials. We have u21S(u) ∈ L2(s−1, B(0, 1)), hence, by isolating
dominating terms of P and R, there are exponents p, q ∈ N and constants cP , cR such
that in polar coordinates

∫ ε

0

[∫ 2π

0

(cPρ
p sin(θ)p + cRρ cos(θ)ρ

q sin(θ)q)2

ρ4 cos(θ)4
dθ

]
ρdρ <∞.

Examining the point θ = π/2 in the inner integral, it first implies cP = 0 , and then
cR = 0, which means P = R = 0.

We indeed proved that for a polynomial Q =
∑
amu

m in L2(s−1, B(0, ε)), all terms of
exponent m = (0, m), m ∈ N or m = (1, m), m ∈ N must vanish. This means that 0 is a
pole of order (1, m) for all m ∈ N (and a fortiori of order (0, m)), and it does not admit
other orders.

3.2 Necessary conditions

We investigate what non-rigidity implies on the spectral density s, and in particular wether
a k-pole is necessary for k-rigidity. Maximal rigidity really depends on the behaviour of
s on all Rd, and is rather studied in the companion paper Lachièze-Rey [2024+]. We
nevertheless give a context where maximal rigidity and k-rigidity are easier to handle.

Say that a pole u0 ∈ Rd has finite order for s−1 if for some ε > 0, q ∈ N,

∫

B(u0,ε)

‖u− u0‖
2q

s(u)
du <∞.

Definition 2. Say that s is simple if s−1 has finitely many poles, all with finite order,

and s(u) > c(1 + ‖u‖)−p for some p ∈ N, c > 0, at distance ε from these poles.

Proposition 2. Assume that s is simple. Then M is not linearly maximally rigid on
B(0, η) for η > 0. Furthermore, for k ∈ Nd, M is linearly k-rigid on B(0, η) iff 0 is a pole
of order k.

The proof is at Section 5.6. This proposition in particular serves to treat stationary
Determinantal Point Processes as their structure factor vanishes only in 0, see Section
4.1.
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Apart from the simple case, we can give converse statements under stronger structural
assumptions: for s isotropic (i.e. s(u) only depends on ‖u‖) or separable (i.e. s(u) =
s1(u1) . . .sd(ud), u ∈ Rd for some even functions si : R → R+) and by assuming upfront
that maximal rigidity does not hold, which often can be proved by other means. Remark
4 yields that if rigidity does not hold for some s

′ 6 s, then it does not hold either for s,
hence one can investigate the largest separable/isotropic function s

′ 6 s.

Theorem 2. Let M with spectral density s with either

• s is isotropic and A = B(0, R), R > 0

• s is separable and A = [−R,R]d, R > 0.

Assume M is not maximally rigid on A and (5) does not hold. Then for η > 0, M is not
k-rigid on A+η in the following cases:

Proof at Section 5.7 .

Remark 1. Under these hypotheses, if it can be established by other means that M is
linearly 0-rigid or 1-rigid, one can reverse the reasoning of Example 5 and deduce similar
bounds on the variance of linear statistics.

In view of Proposition 2, Theorems 1 and 2, (5) is necessary and sufficient for k-rigidity
on A in the following cases

• s is “simple”,

• M is not LMR and s is quasi-isotropic, i.e. there is c−, c+ > 0 such that

c−s(‖u‖) 6 s(u) 6 c+s(‖u‖), u ∈ R
d,

• M is not LMR and s is quasi-separable, i.e. 0 6 c−s
′ 6 s 6 c+s

′ for some separable
s
′.

Remark 2 (No phase transition). For M which is not LMR on any convex body, linear
number rigidity happens either on every convex body or none.

On the other hand, we show in the companion paper Lachièze-Rey [2024+] examples
of point processes which are maximally rigid for R 6 Rc for some Rc > 0, and not even
number rigid for R > Rc. There are examples of processes obtained as lattice perturba-
tions, such as in Klatt et al. [2020], Peres and Sly [2014], where number rigidity occurs
in dimension d > 3, but it does not enter in the current framework as it can be proved
that this rigidity is non-linear, and the tools employed strongly depend on the underlying
lattice structure.

The structural conditions on s are necessary as there exists random measures which
are linearly k-rigid without s vanishing around 0. We give an example for mass rigidity.

Proposition 3. Any random measure which spectral density satisfies s(u) = u22 in some
neighbourhood of (1, 0) is mass rigid.
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Proof at Section 5.6.
We can therefore build examples which are completely standard, i.e. with fast decay

of the correlations, linear variance, and which are rigid; by the previous results, such
examples will never be isotropic or separable. To give a concrete example, take a mixture
of an isotropic and a separable density

s(u) =

{
1 if ‖u‖ 6 1/2

u2
2

1+u10
2

1
1+u10

1

otherwise,

not LMR because ψ(u) := u2(1 + ‖u‖100)−1 ∈ L2(s−1). To realise s, i.e. find M for
which such s is indeed the spectral density, use for instance Gaussian fields with Example
3. Whether there are such number rigid point processes with standard second order be-
haviour which are not hyperuniform depends on our ability to have such spectral densities
for random atomic measures, this relates to the general difficult problem of realisability

of point processes.

3.3 k-tolerance

Ghosh and Peres [2017] show that the infinite Ginibre ensemble PGIN is not rigid at
an order higher than 0, in the sense that if one determines N := #PGIN ∩ A from
PGIN ∩ Ac, then conditionnally to PGIN ∩ Ac and N , PGIN ∩ A’s law is continuous wrt
UN := {U1, . . . , UN} where the Ui are iid uniform on A. They similarly show that the zero
set PGAF of the planar GAF is 1-rigid and not more, in the sense that conditionnally to
(N := #PGAF ∩A,U :=

∑
x∈PGAF∩A x,PGAF ∩Ac), PGAF ∩A has a continuous law wrt to

the law of UN conditionned to
∑N

i=1 Ui = U. A similar result is proved by Dereudre et al.
[2020] for the sineβ processes Pβ, β > 0.

These strong distributional results rely on the determinantal nature of PGIN , the
Gaussian nature of PGAF , or the DLR equations defining Pβ, and cannot be extended in
the current general context. We can still investigate how “linearly tolerant” is a process
which is not rigid, i.e. whether the random moments mm(A) :=

∫
A
tmdM(t),m ∈ N

d are
tied by a finite linear relation

∑

m

ammm(A) ∈ σlin(M;Ac)

or equivalently if we have Q-rigidity on A for the polynomial Q(t) =
∑

m
amt

m. We show
that this holds for what we call a k-polynomial Q, i.e. such that for some k0 � k, ak0 6= 0
and the non-vanishing terms am 6= 0 are such that m � k0.

Proposition 4. Assume that 0 is not a pole of order k and the assumptions of Theorem
2 or of Proposition 2 hold. Then M is not Q-rigid for any k-polynomial Q.

The proof of this proposition is actually included in the proofs of resp. Proposition
2 and Theorem 2. As is apparent from the proofs, we will in fact have no Q-rigidity for
almost all polynomials having at least a non-vanishing term of order k0 � k, i.e. for a
linear combination Q =

∑
i αiQi where the Qi are k-polynomials, but some particular

combinations of αi are harder to discard.
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3.4 Rigidity for discrete processes

Let us derive similar results for a centred L2 discrete process X = {Xm;m ∈ Zd}. Define
for γ : Zd → R with compact support

X(γ) :=
∑

m

X(m)γ(m).

X is said to be linearly γ-rigid on A ⊂ Z
d if infh:Ac→C X(γ) − X(h) = 0 a.s. and in

L2(P), where h has finite support, and LMR if this holds for all γ with finite support. If
γ(m) = mk we talk about k-rigidity.

We assume X is wide-sense L2-stationary with spectral measure S, i.e.

Var (X(γ)) =

∫

Td

|γ̂(u)|2S(du)

where T = [−π, π], for the complex-valued trigonometric polynomial

γ̂(u) =
∑

m∈Zd

e−ım·uγ(m).

For A ⊂ Zd, the class of such trigonometric polynomials where γ(m) = 0 for m /∈ A is
denoted by E(A), by analogy with entire functions of exponential type (see Section 5).

Theorem 3. Let s(u)du the continuous part of S.

• X is not LMR on JmKd iff there is ψ ∈E(JmKd) such that

∫
|ψ(u)|2

s(u)
du <∞. (8)

• For k ∈ Nd, X is not k-rigid iff there is ψ ∈E(JmKd)∩L2(s−1) such that ∂kψ(0) 6= 0.

• If 0 is a pole of order k for s−1, then X is k-rigid.

Proposition 5 (Specialization to time series in dimension d = 1). X is not LMR on JmK
iff the number of poles of s−1 on [−π, π) counted with multiplicity is 6 2m. Also, X is
not 0-rigid iff there are 2m poles or less and 0 is not a pole.

The proof is at Section 5.1. We discuss the LMR result below, the other statements
seem to be the first dealing with partial rigidity, i.e. when one is concerned not in
retrieving all of X on JmKd, but only its restricted moments, by analogy to the continuous
case.

The line of research of linear interpolation in the 20th century was mainly concerned
with time series, and authors noted that a polynomial satisfying (8) means that perfect
linear interpolation is impossible, see (10.28) and Theorem 10.3 in Rozanov [1967], with
also an extension to processes taking values in Rq. Much later, Lyons and Steif [2003]
study the related problem of the strong full K property for {0, 1}-valued X, i.e. what does
it imply on the X(m), |m| 6 m, if we impose X(m) = 1 for m 6 |m| < m + k for m, k
arbitrarily large? It is clear indeed that if no polynomial ψ is in L2(s−1), then X is LMR
for all m, and as such for k large enough the external conditioning completely determines
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X(m), |m| 6 m. This strong resemblance explains why condition (iii) in their theorem 7.7
is exactly the same condition. None of these works seems to acknowledge that m must be
the degree of ψ. This result also completes the answer of Ghosh [2015] to the Question
9.9 of Lyons and Steif [2003] regarding rigidity on A = {0}.

Bufetov et al. [2018] studies the rigidity of continuous models through a discretisation
procedure. Given a stationary random measure M on Rd, one can consider the associated
stationary discrete process

Xm = M(m+ [−1/2, 1/2]d),m ∈ Z
d.

Bufetov et al. [2018] show number rigidity of M on [−1/2, 1/2]d by showing the rigidity
of X on {0}, and derive a necessary condition in terms of the covariance decay for X.

Remark 3. A reformulation of 0-rigidity in dimension 1 is the following: X is 0-rigid if
X is LMR or 0 is a pole, which means that either

∫
B(0,ε)

s
−1 = ∞ or that the poles are

away from zero and strictly more than m (counted with multiplicity), i.e. if one considers
only m points, necessarily at least one pole is not covered, i.e. for u1, . . . , um ∈ Cd \ {1},

∫ ∏
i |e

iu − eiui |2

s(u)
du = ∞.

This seems to correspond to the content of Remark 2.1 of Bufetov et al. [2018] for con-
tinuous measures S = sL.

At the contrary of the continuous case, k-rigidity is not monotonous in k, in the sense
that there are examples of 1-rigid processes that are not 0-rigid in dimension 1, due to
the constraint on the degree:

Example 7. Consider m = 1 in dimension d = 1, and s(u) = (u−1)2(u+1)2, u ∈ T. Let
ψ a degree 1 trigonometric polynomial of L2(s−1). In particular, there is a polynomial P
of degree 2 such that

eiuψ(u) = P (eiu) = a(eiu − z1)(e
iu − z2), u ∈ T,

for some a ∈ C \ {0}, z1, z2 ∈ C. Examining the neighbourhoods of 1 and −1 of s−1, we
necessarily have z1 = ei, z2 = e−i (or the other way around), this is also sufficient for
ψ ∈ L2(s−1), showing that L2(s−1) ∩E(J1K) 6= {0}, hence s is not LMR. It also implies
that every such ψ is even, hence ψ′(0) = 0, meaning that s is 1-rigid. On the other hand,
Q(0) 6= 0, hence s is not 0-rigid.

4 Applications

4.1 Determinantal processes and completeness

Determinantal points processes (DPPs), introduced in the context of quantum mechan-
ics, have gained popularity as many classes of essential models in Matrix theory, statisti-
cal physics, combinatorics and others have proven to be determinantal, see Hough et al.
[2009]. In the Euclidean context, we follow Soshnikov [2000]: a simple point process P on
Rd is determinantal with kernel K : Rd × Rd → C if for every k ∈ N∗,

ρk(x1, . . . , xk) := det((K(xi, xj))16i,j6k) > 0
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is the k point correlation function of P, i.e. for any non-negative ϕ : (Rd)k → R, we have

E

(
6=∑

x1,...,xk∈µ

ϕ(x1, . . . , xk)

)
=

∫
ρkϕ,

where the sum runs over k-tuples of pairwise distinct points. We put by convention
K(0, 0) = 1 to deal with unit intensity processes. Stationarity yields that ρk(x1, . . . , xk) =
ρk(x1 − xk, . . . , xk−1 − xk, 0). Not all functions K give rise to a DPP and in particular we
will require that K is Hermitian and positive definite, so that

ρ2(x− y) = 1− κ(x− y)2 ∈ R+

where κ(x) = |κ(0, x)|, 0 6 κ(x) 6 1, we also have to assume that κ is locally square
integrable for definiteness issues. See [Hough et al., 2009, Section 4.5] for unicity and
existence questions, and Soshnikov [2000] for a treatment of such stationary DPPs, it is
shown in particular that they are mixing and ergodic, and the trace-class property yields
that κ̂ is integrable and 0 6 κ̂ 6 1.

The main result of this section is a characterisation of k-rigidity in the continuous
setting:

Corollary 1. Let P be a stationary DPP on Rd with Hermitian positive kernel K and

κ(x) = |K(0, x)| is square integrable. Then for k ∈ Nd, P is k-rigid on a convex body A

iff (1 − κ̂2)−1 has a pole of order k in 0. When it is not the case, P is k-tolerant in the

sense that it is not Q-rigid for any k-polynomial Q.

We see that s := (1− κ̂2) must vanish in 0 to have some rigiditiy. That is because, by
Soshnikov [2000], s(u)du is indeed the spectral measure of P, and s(0) = 0 exactly means
that P is HU (see (2)); hyperuniform DPPs are a very import class in statistical physics
and matrix theory, and also used for tasks of numerical integration Bardenet and Hardy
[2020] or machine learning Kulesza and Taskar [2012].

Proof. Since s(u) > 0,
∫
κ2 6 1, and s(u) = 0 is only possible if u = 0. Since κ2

is integrable, the Riemann-Lebesgue lemma ( [Duistermaat and Kolk, 2006, Th. 14.2])

yields that |κ̂2(u)| < 1/2 for |u| > T for some T. By Theorem 1, P is k-rigid on A if s−1

has a pole of order k in 0. If it is not satisfied, it follows by Proposition 4 that M is not
Q-rigid for a polynomial Q having non zero coefficients ak for some |k| > k.

Linear number rigidity is therefore equivalent to the non-integrability of (1 − κ̂2)−1.

For many examples, κ̂2(u) = 1− σ2u2 + o(u2) for some σ > 0, hence there is k-rigidity iff
k = 0 and d ∈ {1, 2}, and no rigidity in higher dimensions. This applies for instance to
the infinite Ginibre ensemble on R2 ≈ C, defined by

K(x, y) = exȳ−
1

2
|x|2− 1

2
|y|2; x, y ∈ C,

i.e. κ(x) = e−
|x|2

2 , retrieving the result of Ghosh and Peres [2017], or the result of Ghosh
[2015], stating that the sine process in dimension 1 and Ginibre ensemble in dimension
2 are number rigid. Tensor kernels give non rigid examples: Bufetov et al. [2018] proves
non-rigidity for the DPP P which kernel is κ(x) = sinc(x1)sinc(x2) on A = [−1/2, 1/2]2
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with a discretisation (see Section 3.4). Theorem 1 yields that this P is not linear number
rigid in the continuous sense on any convex body A, any discrete average will not be
linearly rigid either.

This result also bears a connection to the question of finding random countable sets
of exponential functions spanning L2(A) for a compact A ⊂ Rd. For χ ⊂ Rd, call

Eχ = {t 7→ eıtx; x ∈ χ}.

Say that Eχ is complete if functions of L2([−π, π]) are L2 approximable by functions of Eχ.
Lyons and Steif [2003] investigated the question of completeness for a random set χ ⊂ Rd,
and more particularly if χ’s law is a DPP, leaving open several questions. Ghosh [2015]
established a connection between number rigidity and completeness, and a corollary of
[Ghosh, 2015, Th. 1.3] and Corollary 1 is the following result:

Corollary 2. If P is a DPP, then EP spans L2([−π, π]) if (1− κ̂2)−1 is not integrable in

0.

In particular it retrieves Th. 1.5 of Ghosh [2015] in dimension 1, which shows number
rigidity if κ̂ is the indicator function of an interval: Parseval equality yields

κ̂2(0) =

∫
κ2 =

∫
κ̂2 =

∫
κ̂ = κ(0) = 1,

hence s(0) = 0 (meaning P is hyperuniform), and κ̂2 is clearly Lipschitz, hence s(u) =
O(|u|) and we have number rigidity.

4.2 Consequences for the covariance of Gibbs measures

Gibbs measures are also a prominent class of point processes, appearing in random ma-
trices, statistical physics, and many other domains. It is known that in the case of short
range interactions, such processes are not hyperuniform, see Dereudre and Flimmel [2024],
hence S will not vanish around 0 and the process is most likely not rigid. On the other
hand, those with a very strong dependency at long range, such as Coulomb gases, or more
generally Riesz gases, form a very important class of models in statistical physics, and
are expected to be hyperuniform, see [Lewin, 2022, VI.C] and references therein.

Such models are usually defined for a finite but large number of particles interacting
through some physical equations, and defining an infinite stationary model compatible
with these equations is already a challenge, there can in many instances be distinct infinite
models compatible with local conditions. In dimension 1, Valkó and Viràg [2009] have
reached a universal explicit limit of 1D sineβ log gases, further studied in Dereudre et al.
[2020], Chhaibi and Najnudel [2018], where it is proved that it is number rigid. Not much
seems to be known in higher dimensions on the rigidity (or existence) of stationary models.

Summing up the current main results in this context, k-rigidity of a hyperuniform
isotropic (or 1D) model is equivalent to (5), which is already a rigourous statement on the
second order properties of the process through s, though sometimes difficult to connect
with the properties of the Fourier transform C if the correlations are not known to decay
fast. In particular, proving hyperuniformity is already a challenge, the only rigourous
result in dimension d > 2 is to my knowledge the work Leblé [2023], showing that 2D
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Coulomb gases are hyperuniform, but the obtained estimate is not sufficient to prove
rigidity.

In the other direction, Dereudre et al. [2020] and Dereudre and Vasseur [2023] have
established non-rigidity results, the latter managed to prove the existence of an infinite
stationary and isotropic model in all dimension d > 1 compatible with the s-Riesz DLR
equations for d − 1 < s < d, the circular Riesz gas, which is not number rigid. Hence
we can use the necessary condition of Theorem 2 to deduce rigourous statements about
S, and therefore C = FS. The fact that Riesz gases are hyperuniform is expected, see an
argument in [Lewin, 2022, VI.C], but there does not seem to be a rigourous proof.

Corollary 3. Let M a hyperuniform non-number rigid isotropic random stationary mea-

sure in dimension d ∈ {1, 2}. Then

∫
|t|d|C|(dt) = ∞.

Proof. If
∫

R

|t||C(dt)| <∞

in dimension 1, S = FC has a differentiable density s satisfying s(0) = 0 (hyperunifor-
mity), and

|s(u)| 6

∫
|u||t||C(t)|dt,

hence s
−1 is not integrable in 0, and according to Theorem 1, M is number rigid, we reach

a contradiction.
In dimension 2, if

∫

R2

‖t‖2|C|(dt) <∞,

S is twice differentiable, and by parity ∂1s(0) = ∂2s(0) = 0, hence

s(u) 6 c‖u‖2,

similarly s(u)−1 is not integrable in 0, M is number rigid, which is again a contradiction.

The sineβ gases in 1D are proved by Dereudre et al. [2020], Chhaibi and Najnudel
[2018] to be number rigid, and the proof of Chhaibi and Najnudel [2018] proves that this
rigidity is linear. Theorem 2 immediately gives the following result.

Corollary 4. For all β > 0, the spectral density sβ of the sineβ process satisfies

∫

B(0,ε)

1

sβ(u)
du = ∞.

Dereudre et al. [2020] prove that it is not further rigid, and in particular not (linearly)
1-rigid. This is actually expected, but it still rigourously prevents some behaviours.
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Corollary 5. Let M a not 1-rigid hyperuniform process in dimension 1. Then
∫
|t|3|C|(dt) = ∞ or

∫
t2C(t)dt 6= 0.

At first sight, the second moment vanishing seems unlikely, but this actually occurs for
the model PGAF (see Example 5), and hyperuniformity itself is the result of the vanishing
of a moment (of order 0). Such moment cancellations, are sometimes called sum rules by
physicists, and wether they occur and yield higher order rigidity is a fascinating topic of
mathematics, see again [Lewin, 2022, VI.C] for references.

5 Proofs

For S a non-negative measure on E = Rd or E = Td and A ⊂ E, write L2(S;A) as the
space of functions ψ : A→ C satisfying

∫

A

|ψ|2dS <∞,

simply note L2(S) = L2(S;E).

5.1 Proof of Theorem 3 (discrete processes)

We start with the discrete case, which does not require high level Fourier technology, and
can serve as a model for the proof of the main theoretical result, Theorem 6.

Proof. ForA ⊂ Zd, recall thatE(A) is the space of trigonometric polynomials
∑

m∈A ame
im·u

with am ∈ C. For γ : Zd → C, γ-rigidity means that for some hn compactly supported in
Ac, a.s. and in L2(P),

X(γ) = lim
n

X(hn),

and this is equivalent to

inf
h:(JmKd)c→C

Var (X(γ)− X(h)) = inf
h:(JmKd)c→C

∫

Td

S(du)|γ̂(u)− ĥ(u)|2 = 0,

where γ̂ ∈ E(JmKd) and ĥ ∈E((JmKd)c). The orthogonal space of E((JmKd)c) in L2(S) is

H⊥
m := {ϕ ∈ L2(S) :

∫

Td

ϕ̄ĥdS = 0; h : (JmKd)c → C with finite support }.

For such ϕ, Ψ(du) := ϕS(du) satisfies

am :=

∫
Ψ̄(du)eım·u =

{
0 if |m| > m∫
Td ϕ̄(u)e

im·uS(du) 6 ‖ϕ‖L2(S) for |m| 6 m,

recalling that S(Td) = Var (X0) = 1. It means that Ψ coincides as inverse Fourier transform
with

∑

|m|6m

ame
im·u,
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in particular Ψ has a density ψ ∈E(JmKd), and the negligible set supporting the singular
part Ss of S is not charged (i.e. ϕSs = 0). We must also have ϕ ∈ L2(S), i.e.

∫
|ψ|2

s
<∞.

We proved indeed that in L2(S,C),

H⊥
m ⊂ {ψs : ψ ∈E(JmKd) ∩ L2(s−1)}.

For the converse, we clearly have for such ψ vanishing on the negligible singular part’s
support, ϕ := ψs−1 ∈ L2(S), and for h ∈ E((JmKd)c)

∫
ϕ̄ĥs =

∫
ψ̄ĥ = 0.

Since LMR is equivalent to H⊥
m = {0}, this part of the proof is complete.

Mass rigidity (or 0-rigidity) means γ-rigidity for γ = 1JmKd , i.e. 〈ϕ, γ̂〉 = 0 for ϕ ∈ H⊥
m.

Hence it means, for all ψ =
∑

m
ame

iu·m ∈E(JmKd) ∩ L2(s−1),

0 = 〈ψs, γ̂〉S = 〈
∑

m∈JmKd

δ̂m, ψ〉 =

∫

Td

∑

m

e−ım·u
∑

m′

am′eim
′·udu =

∑

m

am = ψ(0).

k-rigidity means the same with

0 = 〈
∑

m

m
kδ̂m, ψ〉 =

∑

m

m
kam = ik∂kψ(0).

Assume now that s−1 has a pole of order k. Let ϕ ∈ H⊥
m\{0}, ψ = ϕs−1. In particular,∫

B(0,ε)
ψ2

s
−1 <∞, hence since 0 is a k-pole, ∂kψ(0) = 0. We indeed proved k-rigidity.

Proof of Proposition 5. Assume the poles of s−1 in [−π, π) have finite orders ki, i.e. for
ε > 0 sufficiently small,

∫ ui+ε

ui−ε

|u− ui|
2ki

s(u)
du <∞

or equivalently

∫ ui+ε

ui−ε

|eiu − eiui |2ki

s(u)
du <∞

with
∑

i ki 6 2m. Since s is even, for ui a pole, −ui is also a pole (with same order). Let
u1, . . . , up the poles 6= 0 (repeated according to multiplicity), with p 6 m. If p = m, 0 is
not a pole otherwise there are more than 2m poles. If p < m, if 0 is a pole, its order is
2(m− p) or less by the hypothesis. We hence define ψ ∈ E(JmK) by

ψ(u) = |eiu − 1|2(m−p)

p∏

i=1

(eiu − eiui)(e−iu − eiui).
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ψ is by construction of degree m, non null, and in L2(s−1), hence X is not LMR by
Theorem 3.

Conversely, assume not LMR: by Theorem 3 there is

ψ(u) =
∑

|m|6m

ame
im·u 6≡ 0

in L2(s−1), and since s(u) = s(−u), ψ(−u) ∈ L2(s−1). Now, either ψ(u) = −ψ(−u),
or ψ(u) + ψ(−u) is a non-zero even function of L2(s−1). In any case, we can assume
|ψ(u)| = |ψ(−u)| without loss of generality. Let

P (z) = zm
∑

m

amz
m =

2m∏

i=1

(z − zi)

for some z1, . . . , z2m ∈ C, which is a polynomial of degree 2m, and ψ(u) = P (eiu)e−imu.
A zero of ψ is necessarily a root of P with norm 1, zi = eiui , and −ui is also a zero,

hence e−iui is also a root of P . Since P has at most 2m roots, ψ has at most 2m zeros,
which means that s has at most 2m poles (all counted with multiplicity).

For the converse sense for 0-rigidity, assume that X is not LMR, meaning there are
less than 2m poles. If 0 is not a pole, then indeed with the previous notation ψ(1) =
P (eiu·0) 6= 0, whence |ψ(u)| = |P (eiu)| is in E(JmK) ∩ L2(s−1) \ {0} with

〈
∑

|k|6m

δk, ψ̂〉 = ψ(1) 6= 0,

it gives the equivalence for 0-rigidity.

5.2 The Schwartz-Paley-Wiener Theorem

The Fourier transform used here relies on the space of tempered distributions, denoted
by S

′(Rd) as the dual of the Schwart space S(Rd) of smooth functions with rapid de-
cay; there is no need to enter into technical details in this article, see for instance
Duistermaat and Kolk [2006] for a theoretical exposition. We only consider in this paper
complex-valued measures, that is a distribution Ψ on R

d such that for some non-negative
measure |Ψ| on Rd,

|Ψ(f)| 6

∫
|f ||Ψ|(dx), f ∈ C

b
c(R

d);

we use the notation Ψ(f) =
∫
fΨ when it makes sense. Such Ψ is indeed tempered if for

instance for some p > 0

∫

Rd

(1 + ‖u‖)−p|Ψ|(du) <∞, (9)

it is in particular locally finite. We actually only consider measures of the form Ψ = ψS
where ψ : Rd → C and S is a non-negative measure.
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One can then define the Fourier transform FΨ ∈ S
′(Rd) through

〈ϕ,FΨ〉 = 〈ϕ̂,Ψ〉

for ϕ ∈ C∞
c (Rd) and ϕ̂(u) =

∫
Rd e

−i〈u,t〉dt is the usual Fourier transform on L2(Rd). Recall
the Fourier inversion:

Theorem 4 (Duistermaat and Kolk [2006], Th.14.18). For Ψ ∈ S
′(Rd),

F(FΨ̇) = (2π)dΨ

where Ψ̇(·) = Ψ(−·) in the distributional sense. Call spectrum of Ψ, denoted by sp(Ψ),
the support of FΨ as a distribution, i.e. the largest closed set A such that 〈FΨ, ϕ〉 = 0
for ϕ supported by Ac.

For a compact A, define for ζ ∈ Rd

sA(ζ) = sup
x∈A

〈ζ, x〉.

In the case A = B(0, R), we have sA(ζ) = R‖ζ‖. One can also notice that sA = sconv(A)

characterises the closed convex hull conv(A) of A.
Call analytic function on Cd any function

ψ(z) =
∑

m

amz
m1

1 . . . zmd

d , z ∈ C
d

where am ∈ C and the series is absolutely convergent on Cd. Recall that by Hartog’s
theorem (see [Krantz, 1992, Sec.0.2]), this is equivalent to the analycity of ψ in each
variable zi separately. The scalar product on Cd is 〈x, z〉 =

∑
i x̄izi. For z = (z1, . . . , zd) ∈

Cd, write ‖z‖2
C
= 〈z, z〉, not to be mistaken with the entire function ‖u‖2 =

∑
i u

2
i , mostly

used on R
d.

Theorem 5. [Schwartz’ Paley-Wiener Theorem]Let A ⊂ Rd bounded. Let Ψ a tempered
complex-valued measure on R

d. Then sp(Ψ) ⊂ conv(A) iff Ψ has a density ψ wrt L on
Rd that can be extended as an analytic function on Cd such that for some finite C,

|ψ(z)| 6 C exp(sA(Iz)), z ∈ C
d.

Such functions are denoted by E(A), which is therefore a subclass of the class of entire
functions of Rd, and also a subclass of the class of (restrictions to R

d of) analytic functions
with exponential type, and the extension to Cd is still denoted ψ.

An important observation is that for ψ ∈ E(A), for a polynomial Q, Qψ ∈ E(A),
hence it still has spectrum in A, and if ψQ−1 is analytic, it is also in E(A).

A more general version of the previous theorem for all S′(Rd) is proved at [Duistermaat and Kolk,
2006, Th. 17.1, Theorems 17.3].

See the companion paper Lachièze-Rey [2024+] for an elementary proof of a result
slightly more general than the direct implication.

The construction of some functions of E(A) rely on the following technique, involving
Jd the Fourier transform of the unit sphere indicator:

Jd(u) =
Bd/2(‖u‖)

‖u‖d/2
, u ∈ R

d, (10)

where Bd/2 is the Bessel function of the first kind of order d/2.
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Lemma 1. Let ψ ∈ E(A) for some bounded A. Then for every non-constant polynomial
P and η > 0, p > 0, the function

ψ̃(u) = P (u)ψ(u)Jd(ηu/M)M

with M = 2
d+1

(deg(P ) + p) satisfies |ψ̃(u)| 6 c|ψ(u)|‖u‖−p for some finite c and u ∈ Rd,
and ψ ∈E(A+η) where A+η := ∪t∈AB(t, η).

Proof. By Theorem 5, Jd is an analytic function with spectrum in B(0, 1), hence Jd(η ·
/M)M ∈ E(B(0, η)). Hence ψ̃ is analytic as well, and using again Theorem 5, it proves
that

|ψ̃(z)| 6 c exp(sA(z)) exp(η‖z‖).

Then, for some x0 ∈ A,

sA(z) + η‖z‖ = 〈x0, z〉+ η‖z‖ 6 sup
x∈A,t∈B(0,η)

〈x+ t, z〉 = sA+η(z)

hence ψ ∈E(A+η). We have the classical equivalent as u→ ∞, for some c, cd > 0,

Jd(u) = c‖u‖−(d+1)/2 cos(‖u‖ − cd)(1 +O(‖u‖−1)), (11)

which gives |ψ̃(u)| 6 c|ψ(u)|‖u‖−p.

5.3 Characterisation of γ-rigidity

Let us translate the general rigidity problem in the Fourier space. Let A ⊂ Rd. For
γ ∈ Cb

c(R
d), γ-rigidity on A means

inf
h∈C∞

c (Ac)
Var

(∫

A

γ(t)M(dt)−

∫

Ac

h(t)M(dt)

)
=0.

It implies that for some sequence hn, IM(γ) − IM(hn) → 0 in L2(P), hence for some
subsequence we have a.s. I(γ) = limn′→∞ I(hn′), meaning I(γ) ∈ σlin(MAc). By (4),
γ-rigidity is equivalent to

inf
h∈C∞

c (Ac)

∫
S(du)|γ̂(u)− ĥ(u)|2 =0.

The heart of this article lies in the current characterisation of γ-rigidity. Recall that
the spectral density s > 0 is the density of the continuous part of S.

Theorem 6. Let A a convex body. M is linearly γ-rigid on A iff for all ψ ∈E(A)∩L2(s−1),
∫

A

γ̄ψ̂ = 0.

Before the proof, an instructive immediate remark:

Remark 4. For 0 6 s 6 s
′, γ-rigidity for s

′ on a bounded set A implies γ-rigidity for s

on A.
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We also need a lemma:

Lemma 2. For any spectral measure S of a wide-sense L2 stationary random measure M,

∫

Rd

(1 + ‖u‖)−2(d+1)
S(du) <∞.

In particular, S is a tempered measure.

Proof. Let Jd the Fourier transform of the indicator of the unit ball (see (10)), satisfying
in particular (11). Let

ψ(u) = Jd(u)
2 + Jd(u+ π/2)2.

It satisfies ψ > 0 and is larger than some κ > 0 outside B(0, R) for some R <∞ because
‖u‖ and ‖u + π/2‖ cannot be simultaneously close to πZ + π/2. Hence ψ satisfies for
‖u‖ > R

c−
‖u‖d+1

6 ψ(u) 6
c+

‖u‖d+1
.

Also ψ̂(x) is bounded by 2 and sp(ψ) ⊂ sp(J2
d ) ⊂ B(0, 2). Therefore, by (4)

∫
S(du)(1 + ‖u‖)−2(d+1)

6S(B(0, R)) +

∫

B(0,R)c
cS(du)ψ(u)2

6S(B(0, R)) + cVar
(
IM(ψ̂)

)
<∞.

Proof of Theorem 6 . Denote by H̄S the closure of some subspace H of L2(S), and let

HA = {ĥ : h ∈ C
∞
c (Ac)}.

This is indeed a subspace of L2(S) because for h ∈ C
∞
c (Ac), ĥ ∈ S(Rd) has rapid decay,

and
∫

Rd

|ĥ|2S 6 c

∫

Rd

(1 + ‖u‖)−2(d+1)
S(du) <∞

by Lemma 2.
Hence M is γ-rigid iff γ̂ ∈ H̄S

A, iff
∫
γ̂ϕ̄S = 0 for ϕ ∈ H⊥

A where

H⊥
A = {ϕ ∈ L2(S) :

∫

Rd

ϕ̄ĥdS = 0; h ∈ C
∞
c (Ac)}.

The proof of the theorem is concluded by the following lemma:

Lemma 3. Let A ⊂ Rd bounded measurable.

H⊥
A = {ψs−1 : ψ ∈E(conv(A)) ∩ L2(s−1)}.
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Proof of Lemma 3. Let ϕ ∈ H̄⊥
A . Let Ψ = ϕS. The measure Ψ is tempered because by

Cauchy-Schwarz inequality in L2(S),

∫

Rd

|ϕ|S(du)(1 + ‖u‖)−(d+1)
6 ‖ϕ‖L2(S)

√∫
(1 + ‖u‖)−2(d+1)S(du)

and the latter is finite with Lemma 2. Let FΨ its Fourier transform in the sense of
S

′(Rd). Let h ∈ C
∞
c (Ac) ⊂ S(Rd) , then ĥ ∈ S(Rd) ∩ L2(S). By definition of H⊥

A ,

0 =

∫
h̄ϕdS =

∫
h̄dΨ = 〈FΨ, h〉.

Since 〈FΨ, h〉 = 0 for h C
∞ with compact support in Ac, we have sp(Ψ) ⊂ A. By the

SPW Theorem 5, Ψ has a density ψ :

Ψ = ψL = ϕsL

and ψ is a function of E(conv(A)). Also, since ϕ ∈ L2(S),

∫
ψ2

s
=

∫
ϕ2

s =

∫
ϕ2

S <∞,

indeed ψ ∈ L2(s−1) (with 1/0 = ∞).
For the converse, let ψ ∈ L2(s−1) ∩E(conv(A)), in particular sp(ψ) ⊂ conv(A), and

let ϕ = ψs−1 ∈ L2(S). For h ∈ C
∞
c (Ac) ⊂ S(Rd),

0 = 〈Fψ, h〉Rd = 〈ψ, ĥ〉 =

∫
ϕ̄ĥdS,

indeed ϕ ∈ H⊥
A .

5.4 Proof of Theorem 1

We assume here that s has a pole of order k in 0. Let us prove γ-rigidity for γ(t) = tk.
We actually prove that it is k-rigid on conv(A), which in turns implies k-rigidity on A : if
γ ∈ σlin(Mconv(A)c),

∫

A

γdM =

∫

conv(A)

γdM−

∫

conv(A)\A

γdM ∈ σlin(MAc).

Hence without loss of generality we assume A is convex. We use Lemma 6: we must prove
that γ̂ is orthogonal to all ψ ∈ L2(s−1) ∩E(A). Since sp(ψ) ⊂ A, we have

∫

Rd

ψγ̂ =

∫

A

tkFψ =

∫

Rd

tkFψ = (−i)|k|∂kψ(0).

Lemma 4. There exists Q a polynomial equivalent to ψ(u) =
∑

m
amu

m in the neigh-
bourhood of 0 with ∂kQ(0) = ∂kψ(0).

24



Proof. Let I = {m : am 6= 0} ⊂ N
d. It is easy to see that there is a finite set I0 ⊂ I that

dominates I in the sense that for all m′ ∈ I, there is some m ∈ I0 with m′ � m. Said
differently, there does not exist infinite I0 ⊂ Nd made up of extremal points, i.e. such
that every m ∈ I0 is not �-smaller than all others m′ ∈ I0.

Define
Q(u) =

∑

m∈I0∪{k}

amu
m

so that Q,ψ have the same term of order k. Also, by uniform convergence of the series,
as u→ 0,

ψ(u) =
∑

m∈I0

[amu
m(1 + o(1))] = Q(u)(1 + o(1)).

Since ψ ∈ L2(s−1), we have in particular for ε sufficiently small

∫

B(0,ε)

|Q(u)|2

s(u)
du <∞,

by definition of k-incompatibility it means ∂kQ(0) = 0 = ∂kψ(0) = 〈tk, ψ̂〉. We proved
that M is k-rigid.

Proof of Proposition 1. Let Q ∈ L2(s−1, B(0, ε)) a polynomial, q the degree of lowest
order terms, meaning Q = Qh + R with Qh a non-null homogeneous polynomial, i.e.
veryfying for some q ∈ N, u 6= 0,

Qh(u) = ‖u‖qQh(θ), θ =
u

‖u‖
∈ S

d−1,

R(u) = o(‖u‖q) as u→ 0. We have

∫

B(0,ε)

s
−1(u)|Q|2(u)du >

∫

B(0,ε)

s̃(‖u‖)−1‖u‖2q(|Qh(θ)|+ o(1))2du

> σd

∫ ε

0

s̃(ρ)−1ρ2q
(∫

Sd−1

|Qh(θ)|
2dθ + o(1)

)
ρd−1dρ.

Therefore, if q 6 k, indeed s
−1|Q|2 is not integrable around 0, which means Q cannot

have terms of degree 6 k, and s is k-rigid for |k| 6 k.

5.5 Necessity lemma

The necessity proofs rely on the following technique.

Lemma 5. Let Q a k-polynomial (for instance Q(u) = uk), A ⊂ R
d bounded measurable.

Assume for some ε > 0 there is ψ ∈ L2(s−1,Rd \B(0, ε)) ∩E(A) and ψ(0) 6= 0, and that
0 is not a pole of order k for s−1. Then M is not Q-rigid on A+η for η > 0.
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Proof. Since 0 is not a pole of order k, it means that there exists a polynomial P =∑
k′
bk′u

k′ with the term bku
k 6= 0 and for some ε > 0

∫

B(0,ε)

|P |2s−1 <∞.

If there is also a term bk′u
k′ 6= 0 for some k′ ≺ k, (i.e.k′ � k, k′ 6= k), we have

P̃ = uk−k′P ∈ L2(s−1, B(0, ε)),

we can assume without loss of generality that there is no term strictly smaller than k. Let
then

ψ̃(u) = ψ(u)Jd(uη/ deg(P ))
deg(P ),

satisfying ψ̃(0) 6= 0. By Lemma 1, Pψ̃ ∈ E(B(0, A+η)) and |Pψ̃| 6 c|ψ|, hence also
Pψ̃ ∈ L2(s−1, B(0, ε)c). We also have Pψ̃ ∈ L2(s−1, B(0, ε)) because Pψ̃(u) ∼ P (u) as
u→ 0, hence Pψ̃ ∈ L2(s−1) ∩E(A+η).

Since Q is a k-polynomial, Q(u) =
∑

m�k0
amu

m for some k0 � k with ak0 6= 0. Since
0 is also a pole of order k0 (because k0 � k), the whole proof can be done with k0 instead
of k, and we assume without loss of generality k = k0. Then we have

∂Q(Pψ̃)(0) :=
∑

m�k

∑

k′ 6≺k

bk′am∂
m(uk

′

ψ̃)(0) = akbk∂
k(ukψ̃)(0) +

∑

m�k,k′ 6≺k

bk′am∂
m(uk

′

ψ̃)(0).

The proof is complete if we prove that ∂Q(Pψ̃)(0) 6= 0, because since Pψ̃ ∈ L2(s−1) ∩
E(A+η) \ {0}, M is not Q-rigid by Theorem 6. Let us prove this claim.

For k′ 6≺ k,m � k, we have k′ 6� m, hence the conclusion comes from the fact that
ψ̃(0) 6= 0 and the following identity: We have for k′ 6≺ m

∂m(uk
′

ψ̃)(0) = δm=k′m!ψ̃(0)

with m! = m1 . . .md. Let us finally prove this identity.
The assumption yields that we either have m = k′ , or mi < k′i for some i. Then the

Leibniz formula for functions of one argument yields

∂m(uk
′

ψ̃(u)) =(
∏

j 6=i

∂
mj

j )∂mi

i (u
k′i
i u

k′
î

î
ψ̃(ui, uî)) with k

′
î
= (k′1, . . . , 0︸︷︷︸

i

, . . . , k′d), uî = (u1, . . . , 0︸︷︷︸
i

, . . . , ud)

=(
∏

j 6=i

∂
mj

j )(
∑

a>0

λau
a
i ψ̃a(u) + 1k′i=mi

u
k′
î

î
mi!ψ̃(ui, u

î)) for some λa ∈ R, functions ψ̃a,

=
∑

a>0

λau
a
i (
∏

j 6=i

∂
mj

j )(ψ̃a(u)) + 1k′i=mi
mi!(

∏

j 6=i

∂
mj

j )(u
k′
î

î
ψ̃(u))

∂m(uk
′

ψ̃(u))|u=0

{
= 0 if mi < k

′
i

= m!ψ̃(0) if m = k′ (with an induction on j).
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5.6 Necessary conditions

Proof of Proposition 2. Let u1, . . . , um ∈ Rd the poles of s−1, let ε, q such that P (u) :=∏
i ‖u− ui‖

2q is in L2(s−1, B(ui, ε)) for all i, ε > 0. Introduce

ψ(u) = P (u)Jd(u/ηM)M

with M = d+1
2
(deg(P ) + p + d). Lemma 1 (with 1 ∈ E({0})) yields ψ ∈ E(B(0, η)) and

|ψ(u)| 6 c(1 + ‖u‖)−p−d (ψ is smooth hence bounded around 0). We have

∫

Rd

|ψ(u)|2

s(u)
du 6c

∫

Rd\∪iB(ui,ε)

|ψ(u)|2(1 + ‖u‖)p +
∑

i

ci,ε

∫

B(ui,ε)

‖u− ui‖
4q

s(u)
du

6

∫
(1 + ‖u‖)−2d−2p(1 + ‖u‖)pdu+ C

<∞,

hence ψ ∈ L2(s−1) ∩E(B(0, η)) \ {0}. Let γ = ψ̂, bounded and supported by B(0, η). M

is not γ-rigid on B(0, η) by Theorem 6 because with Parseval’s identity

∫
γ̄ψ̂ =

∫
|ψ|2 6= 0.

In particular, M is not linearly maximally rigid.
The sufficiency part about k-rigidity is Theorem 1. For the necessity, define instead

ψ̃(u) =
∏

i:ui 6=0

‖u− ui‖
2qJd(u/ηM)M .

A similar reasoning shows that ψ̃ is in L2(s−1,Rd \ B(0, ε)) ∩E(B(0, η)) for some ε > 0
with ψ̃(0) 6= 0. We can then conclude with Lemma 5.

Proof of Proposition 3. Let ψ ∈ L2(s−1) analytic. Since for some ε > 0, for u1 ∈ [−ε, ε],

∫

B((1+u1,0),ε)

1

s(u)
du >

∫

[1+u1−ε,1+u1+ε]×[−ε,ε]

u−2
2 du1du2 = ∞,

ψ must vanish on {(1 + u1, 0); |u1| 6 ε}. Hence λ : v 7→ ψ(v, 0) is an entire function
vanishing on an interval. Therefore λ ≡ 0, in particular ψ(0) = 0. With γ = 1A for A
bounded, we showed that any ψ ∈ L2(s−1) ∩E(A) satisfies

〈γ, ψ̂〉 =

∫

A

ψ̂ =

∫

Rd

ψ̂ = ψ(0) = 0,

showing that M is γ-rigid (i.e. 0-rigid on A) with Theorem 6.

5.7 Proof of Theorem 2

Isotropic case

We prove that there is no Q-rigidity for some polynomial Q =
∑

m�k0
amu

m for some

k0 � k. For k-rigidity, simply take Q(u) = uk.
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Since M is not LMR, there exists ψ0 ∈ L2(s−1)∩E(A) \ {0}. Let then P a polynomial
such that ψ0(u) ∼ P (u) as u → 0, and

ψ1(u) = P (u)ψ0(u)Jd(uη/ deg(P ))
deg(P ).

By Lemma 1, ψ1 ∈ L2(s−1) ∩E(A+η).
Then define on Cd the rotational average, using the analytic extension of ψ1 on Cd,

ψ(z) =

∫

O(d)

ψ1(θz)dθ, z ∈ C
d

with the Haar measure on the orthogonal groupO(d) of Rd. Still denote by ψ its restriction
to Rd, which is in particular isotropic. By definition, ψ1(u) ∼ P (u)2 as u → 0 and
P (u)2 > 0 for u ∈ Rd, hence ψ does not vanish identically in the neighbourhood of 0, so
that ψ 6≡ 0. We have with the triangle inequality and the Cauchy-Schwarz inequality in
L2(s−1)

∫

Rd

|ψ(u)|2

s(u)
du 6

∫

Rd

∫

O(d)×O(d)

|ψ1(θu)||ψ1(θ
′u)|

s(u)
dθdθ′du

6

∫

O(d)×O(d)

√∫

Rd

|ψ1(θu)2|

s(u)
du

√∫

Rd

|ψ1(θ′u)2|

s(u)
dudθdθ′

6

∫

O(d)×O(d)

(√∫

Rd

|ψ1(u)|2

s(u)
du

)2

dθdθ′ <∞

by isotropy of s, using ψ1 ∈ L2(s−1).
For z, ζ ∈ Cd, since ψ1 is analytic on Cd,

ψ(z + ζ) =

∫

O(d)

[ψ1(θz) + ψ′
1(θz)ζ +O(ζ)]dθ = ψ(z) +

(∫
ψ′
1(θz)dθ

)
ζ +O(ζ),

using that the quantities involved in the O(·) are locally bounded; hence ψ is analytic as
well.

Also, for z ∈ Cd, θ ∈ O(d),

‖θz‖2C = ‖θRz‖2 + ‖θIz‖2 = ‖z‖2C.

Using both implications of Theorem 5 on A+η = B(0, R + η),

|ψ(z)| 6 c

∫

O(d)

exp((R + η)‖z‖C)dθ

and sp(ψ) ⊂ B(0, R+η). Finally, ψ is an isotropic element of L2(s−1)∩E(B(0, R+η))\{0}.
Hence non isotropic terms vanish and for some q ∈ N, κ 6= 0, ψ(u) = κ‖u‖2q(

∑
l>0 al‖u‖

2l),

where ‖u‖2l = (
∑

i u
2
i )

l. Hence ψ̃ := ψ(u)‖u‖−2qψ is analytic and isotropic as well, with

spectrum in B(0, R + η) with Theorem 5 again, and ψ̃(0) 6= 0. We then can use directly
Lemma 5 to conclude that M is not Q-rigid on B(0, R + η). This holds for all R > 0,
hence also for R− η for η sufficiently small.
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Separable case. We assume that s is not (linearly) maximally rigid, hence there
is ψ ∈ L2(s−1) ∩E(A) \ {0}. Let us build a separable version. Recall that, as analytic
function, ψ has an extension on Cd. For zi ∈ Cd−1,

ψzi

i (zi) = ψ(zi; z
i), zi ∈ C,

where (zi; z
i) consists in zi at the i-th position, surrounded by the d − 1 components of

zi. Let the domain D ⊂ Rd−1 of ui where ψui

i is not identically 0. We have

0 <

∫
|ψ|2

s
=

∫

Rd−1

∫

R

|ψui

i (ui)|
2

si(u)

1∏
j 6=i sj(u)

duidui =

∫

D

∫

R

|ψui

i (ui)|
2

si(u)

1∏
j 6=i sj(u)

duidui <∞

hence there exists ui ∈ D such that ψui

i ∈ L2(s−1
i ) \ {0}. Clearly ψui

i is analytic as
analycity in several complex variables implies analycity in each variable. Let qi ∈ N, κi 6= 0
the dominating power and coefficient in 0 : ψui

i (z) ∼ κiz
qi as z → 0. Define ψi(z) :=

z−qiψui

i (z), z ∈ C, still analytic. Define finally

ψ̃(z) =
∏

i

ψi(zi), z = (zi) ∈ R
d.

Let ε > 0. We have for some finite κ > 0, ψi(z) 6 κ if ‖z‖C 6 ε, otherwise |ψi(z)| 6
cε|ψ

ui

i (zi)|. Since for each i, ψui

i ∈ L2(s−1
i ), we have ψ̃ ∈ L2(s−1, B(0, ε)c) (as functions

on Rd).
Let AR = [−R,R]d. It remains to show ψ̃ ∈E(AR). We have

sAR
(ζ) = R sup

x:|xi|61

∑

i

xiζi = R
∑

i

sign(ζi)ζi = R
∑

i

|ζi|, ζ ∈ R
d.

Since ψ ∈E(AR), for z ∈ C,

|ψui

i (z)| = |ψ(z; ui)| 6C exp(sAR
(I(z; ui)))

6C exp(Rcui +R|Iz|)

6c′ui exp(R|Iz|).

Furthermore, ψ̃ is analytic, satisfies ψ̃(0) 6= 0 and for ‖z‖C > ε,

|ψ̃(z)| 6
∏

i

c′i exp(R|Izi|) = c′ exp(R
∑

i

|Izi|) = c′ exp(sAR
(Iz)).

Theorem 5 again yields that ψ̃ ∈ E(AR). Then one can conclude with Lemma 5 that we
do not have Q-rigidity on AR.
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