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Abstract

Byte-Pair Encoding (BPE) is an algorithm com-
monly used in Natural Language Processing to
build a vocabulary of subwords, which has been
recently applied to symbolic music. Given that
symbolic music can differ significantly from
text, particularly with polyphony, we investi-
gate how BPE behaves with different types of
musical content. This study provides a qualita-
tive analysis of BPE’s behavior across various
instrumentations and evaluates its impact on
a musical phrase segmentation task for both
monophonic and polyphonic music. Our find-
ings show that the BPE training process is
highly dependent on the instrumentation and
that BPE “supertokens” succeed in capturing
abstract musical content. In a musical phrase
segmentation task, BPE notably improves per-
formance in a polyphonic setting, but enhances
performance in monophonic tunes only within
a specific range of BPE merges.

1 Introduction

A major similarity between text and music lies in
their nature as semiotic systems, as they can be rep-
resented as sequences of elements (Lerdahl, 2013).
This common characteristic has led to numerous
adaptations of Natural Language Processing (NLP)
methods in the domain of symbolic music analy-
sis and generation (Le et al., 2024). Mirroring the
view of a text as a sequence of tokens represent-
ing words, subwords or characters, tokenization
practices have also been adopted to process sym-
bolic music. Several choices of types of musical
"characters" and various tokenization algorithms to
segment the sequence of musical "characters" have
been proposed (Kumar and Sarmento, 2023).

However, music profoundly differs from text,
notably because of some structural characteristics
such as rhythm or polyphony (Jackendoff, 2009).
We can, thus expect tokenization algorithms such as
Byte-Pair Encoding (BPE) (Sennrich et al., 2016)

to behave differently when applied to text or mu-
sic. The aim of this study is to highlight some
commonalities and differences in BPE behaviors
with multiple types of music as compared to text.
This work is twofold: we first propose a statistical
description of the vocabulary of tokens obtained
when BPE is applied to text compared to the vocab-
ularies obtained with various types of music. This
comparison highlights some musical properties cap-
tured by this tokenization algorithm (Section 3).
Informed by these observations, we then focus on
a downstream task, musical phrase segmentation,
to quantitatively compare the impact of BPE on
monophonic and polyphonic music (Section 4).

2 Subword tokenization in symbolic
music

Subword tokenization, where tokens are subwords
instead of characters or words, is a common
practice in NLP. It is used to deal with out-of-
vocabulary words that are obtained by combin-
ing multiple subwords. Multiple algorithms have
been proposed to build from a corpus the most
representative vocabulary of subwords, including
Byte-Pair Encoding (BPE) (Sennrich et al., 2016),
WordPiece (Schuster and Nakajima, 2012) or Uni-
gram (Kudo, 2018). BPE was initially developed
as a compression algorithm (Gage, 1994) before
being applied to text as a tokenization method. The
algorithm relies on creating new subword tokens by
iteratively merging the most recurring pairs of suc-
cessive tokens in a corpus until a chosen vocabulary
size is reached. In the following, we call atomic
elements the tokens from the initial vocabulary and
supertokens the tokens added through BPE.

Some recent MIR studies have applied these al-
gorithms to symbolic music (Kumar and Sarmento,
2023). BPE was first implemented to shorten to-
ken sequences (Liu et al., 2022). Fradet et al.
(2023) specifically analyzed BPE for MIDI gen-

1



0 500 1000 1500 2000 2500 3000
10−5

10−3

10−1

Vocabulary size

Su
pe

rt
ok

en
fr

eq
ue

nc
y

[REMI] folk (187)
[REMI] piano (187) [text] english (77)
[REMI] quartets (187) [text] swedish (87)
[REMI] orchestra (187) [text] vietnamese (137)
[PitchOnly] folk (89)

0 500 1000 1500 2000 2500 3000

2

3

4

5

6

BPE merges

Su
pe

rt
ok

en
av

er
ag

e
le

ng
th

Figure 1: (Top) Frequency of the created supertokens
through the vocab size increasing with the BPE steps,
for different styles of music and multilingual text data.
(Bottom) Average length of already created supertokens
through BPE iterations for musical and text data. The
initial vocabulary size of each tokenization is indicated.

eration purposes and showed that the learned em-
bedding spaces are more structured. However,
when applied to piano analysis tasks, a BPE with
4 times the initial vocabulary size does not seem
to show any downstream improvement in model
performance (Zhang et al., 2023). In contrast, Park
et al. (2024) focus on specifically applying BPE on
monophonic tunes using a pitch/duration-only rep-
resentation and show that BPE enables the retrieval
of style-specific motifs.

To date, research on BPE for symbolic music has
focused on its evaluation on generation or global
sequence classification tasks. Its behaviour has not
been analyzed in depth, in particular when applied
to various instrumentations. This work specifically
focuses on these issues, with a descriptive analysis
of BPE vocabularies followed by a quantitative
evaluation of BPE on monophonic and polyphonic
music on a musical phrase segmentation task.

Our experiments rely on the MidiTok pack-
age (Fradet et al., 2021) to handle the tokenization
process and the HuggingFace library (Wolf et al.,
2020) implementing Transformer models. We pub-
licly release the datasets and source code, which
are available at http://algomus.fr/code/.

3 Analyzing music BPE

In this section, we present analyses of the vocabu-
lary produced by Byte-Pair Encoding when applied
to text and music. We first analyse supertokens in-
duced by various instrumentations as well as their
relation to high-level or abstract musical features.

3.1 Comparing text and music BPEs

Musical notes are often compared to text at the
level of characters (Hirata et al., 2022). Deep
learning models have been shown to be more ef-
ficient when dealing with characters grouped into
(sub)words (Shapiro and Duh, 2018; Tay et al.,
2022). Therefore, we study the BPE results when
processed, on text and music, in order to observe
common or distinctive operating regime on such
data with various languages and instrumentations.
Text data includes alphabetic1 languages from vari-
ous regions, extracted from the XLNI dataset (Con-
neau et al., 2018) on which we run BPE on 100k
premises. For music, we compare monophonic folk
tunes, classical piano, string quartet, and orches-
tral corpora with similar sizes and tokenize these
datasets using REMI (Huang and Yang, 2020) from
which Velocity tokens are removed.

We first study the occurrence frequency of the
newly created supertoken within the corpus, at each
step of the training (Figure 1, top). To make the
corpora and vocabularies comparable, supertoken
frequencies are normalized by the initial corpus
length, and the BPE iterations are aligned with the
resulting vocabulary size. Interestingly, the vocabu-
laries obtained on music or text through BPE do not
show major differences with respect to the decay
rate or the order of magnitude of the frequencies.

We also compute the mean length of the su-
pertokens through the BPE steps (Figure 1, bot-
tom). The evolution of supertoken length differs
between text and music, depending on the instru-
mentation. While monophonic supertokens are gen-
erally longer than polyphonic ones, orchestra super-
tokens surprisingly appear to be longer than piano
or string quartet ones. An in-depth study of the
constructed vocabulary shows that the orchestral
vocabulary predominantly consists of "harmonic"
supertokens formed of simultaneous notes. In con-
trast, piano and string quartet vocabularies include
both simultaneous and consecutive notes. This dif-
ference causes BPE to struggle to build long piano
or string quartet supertokens. On a separated exper-
iment, we observed that it takes over 10 times more
steps on a piano corpus to get an average length
comparable to that of the vocabulary obtained on
the monophonic corpus. Moreover, when consider-
ing an alphabet which only keeps pitch tokens, we

1Experiments have also been conducted on syllabic
(Japanese) and logographic (Chinese, Korean) languages, that
show major differences due to the different nature of the
atomic elements of their initial vocabulary.
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show that monophonic supertoken lengths have a
regime closer to that of text for this range of BPE
merges (Figure 1, "PitchOnly" curve), while poly-
phonic curves still stand out. We can thus posit that
the differences between the music and text curves
might be due to simultaneity and timing informa-
tion, which are inherent to music.

3.2 Musical content carried by supertokens
So far, we have drawn a broad characterisation
of the BPE vocabularies, let us now zoom in and
try to delineate which supertokens are present in
a specific context. Borrowed from text, the terms
“musical phrase” or “musical sentence” (Nattiez,
1990) denote a part of the music which can give the
impression of a complete statement by its own. The
TAVERN dataset (Devaney et al., 2015) include
such phrase annotations.

Using a Structured (Hadjeres and Crestel, 2021)
tokenization with pitches encoded as intervals (Ker-
marec et al., 2022) we analyzed the segmentation
induced on the sequences by a 1024-merge BPE.
This tokenization allows taking advantage of both
Structured’s relative encoding of rhythm with time-
shifts and the relative encoding of pitches through
intervals. A first observation is that only 4.2% of
the supertokens among the tokens of the sequences
do overlap phrases. In contrast, randomly splitting
the piece into the same number of chunks as BPE
segmentation results in 71% overlap ratio, indicat-
ing that supertokens are unlikely to span across
phrase boundaries.

We then analysed the supertokens occurring at
the beginning and end of musical phrases. In par-
ticular, our chosen tokenization allows this analysis
to be key signature-independent and bar position-
independent. The most recurrent start-of-phrase
supertoken appears to be a melodic rising perfect
fourth (Figure 2, top), which follows musicology
studies (Meyer, 1973, p.145): “an upbeat interval
of a perfect fourth, moving to the tonic [...] may
be understood as a rhythmic-harmonic event em-
phasizing the tonic on which the melody proper be-
gins.” Most represented end-of-phrase supertokens
include descending arpeggio patterns on the tonic
chord (Figure 2). This also verifies some musico-
logical observations (Huron et al., 1996): “Melodic
passages tend to exhibit an arch shape where the
overall pitch contour rises and then falls over the
course of a phrase or an entire melody”. There-
fore, similar to how BPE can capture syntactic rules
in text, we observe that musical supertokens also
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Figure 2: (Top) First most common start-of-phrase su-
pertoken from Mozart’s K.25 and Beethoven’s WoO.68.
(Bottom) 9-long common ending supertoken (10th most
common) from Beethoven’s WoO.73 and Mozart’s
K.179. The tokenization is Structured + intervals.

convey high-level musical information.

4 Evaluating BPE on musical phrase
segmentation

BPE applied to MIDI-derived tokenization has
been mainly evaluated through classification tasks
with composer classification, on a general multi-
track dataset (Fradet et al., 2023) or specifically
piano music (Zhang et al., 2023). Inspired by sen-
tence segmentation tasks in NLP (Read et al., 2012)
and given our preliminary results showing that su-
pertokens can play a role in musical phrase bound-
aries, we aim to quantitatively evaluate BPE on
a task of musical phrase segmentation for mono-
phonic and polyphonic datasets.

4.1 Musical phrase segmentation
We consider a musical phrase segmentation task,
where a model is trained to tag each token of a se-
quence as being a start-of-phrase or not (Guan et al.,
2018). For BPE sequences, if a start-of-phrase oc-
curs within a supertoken, the whole supertoken is
annotated as being a start-of-phrase.

We first performed this task on the MTC
dataset (Van Kranenburg et al., 2014) composed of
monophonic Dutch folk tunes and including phrase
annotations. The MTC dataset contains 100 times
more phrase annotations than TAVERN. Moreover,
the nature of classical-style musical phrases, gen-
erally based on cadences (Spencer and Temko,
1994), may differ from folk music phrases, based
on melodic contours (Huron et al., 1996). There-
fore, for a fairer comparison, we discard TAVERN
as our polyphonic dataset and we build and release
a synthetic dataset of folk music piano arrange-
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Figure 3: f1-score for start-of-phrase classification on
the polyphonic (top) and monophonic dataset (bottom).

ments from the MTC dataset generated by the Ac-
coMontage model (Zhao and Xia, 2021) aligned
with the original phrase annotations. We tokenize
both datasets using REMI (Huang and Yang, 2020)
and remove the Velocity tokens, for simplicity.

Note that the non-BPE dataset is by design more
unbalanced than the BPE one. In the polyphonic
setting, the proportion of start-of-phrases increases
from 1.2% in the whole dataset to 3.3% after 128k
merges, respectively from 2% to 27% in the mono-
phonic dataset.

4.2 Experiments

We trained a 2-layer Transformer encoder-only
model with 8 heads per layer and a common embed-
ding size between BPE and non-BPE vocabularies
on each dataset. We evaluate each model on 3 dif-
ferent splits of the datasets, using the F1-score of
the start of phrase label prediction. As our exper-
iments focus on representation impact, we chose
to have light models rather than ones achieving
optimal performance.

The polyphonic setting of our experiment seems
to indicate that BPE can have an impact on per-
formance. Indeed, unlike Zhang et al. (2023) also
focusing on piano music, who demonstrated on a
sequence global classification task that a BPE (with
the initial vocabulary size ×4) does not result in
significant improvements, we see on this local clas-
sification task that the performance increases with
the number of merges (Figure 3, top).

Our results on the monophonic dataset show
even that BPE with too few number of merges
can degrade the performance (Figure 3, bottom).
This surprising behavior also occurs in NLP tasks,
where character-based models can outperform
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atomic elements in the vocabulary for each number of
BPE merges.

subword-based models (Chung et al., 2016).
Figure 4 describes the "melodic" content of the

supertokens created along BPE steps. An analysis
of supertokens reveals that early merges tend to pro-
duce structural supertokens, such as combinations
of Bar and Beat (Figure 4 gray area: proportion
of created supertokens with 0 <Pitch> atomic el-
ement), while melodic patterns emerge later, and
at different rates for monophonic and polyphonic
datasets. At 128 merges (Figure 4, dashed line),
26% of monophonic supertokens do not include
any <Pitch> atomic element (gray area) while this
ratio is only 9% for polyphonic and 7% contain
2 <Pitch> atomic element (green area). Fewer
melodic patterns, which are more likely to indicate
phrase boundaries in monophonic tunes (Huron
et al., 1996), may explain why the BPE model per-
forms better only after a certain number of merges.

In the monophonic dataset we also see that, after
too many merges, the model performance drops.
An analysis of the supertoken length shows that,
after 128k merges, monophonic supertokens are on
average 38.6-long (compared to 8.4 for polyphonic
ones). Indeed, the smaller size of the monophonic
dataset (3× smaller than the polyphonic one) leads
late steps supertokens to capture long but rare pat-
terns that might be less relevant for this task of
phrase segmentation.

5 Conclusion

In this work, we show that Byte-Pair Encoding be-
haves differently depending on the type of music it
is trained on. With a descriptive approach, we high-
light that the resulting vocabulary highly depends
on the type of instrumentation, and supertokens can
carry high-level musical content. On a downstream
task, we confirm the impact of instrumentation on
the model performance and show that the number
of BPE merges should be chosen carefully. For fu-
ture work, we think the initial tokenization impact
over BPE performance should be investigated.
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