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Abstract

A harmonious k-coloring of a graph G is a 2-distance proper k-coloring of its vertices such
that each edge is uniquely identified by the colors of its endpoints. Here, we introduce its game
version: the harmonious coloring game. In this two-player game, Alice and Bob alternately select
an uncolored vertex and assigns to it a color in {1, . . . , k} with the constraint that, at every
turn, the set of colored vertices induces a valid partial harmonious coloring. Alice wins if all
vertices are colored; otherwise, Bob wins. The harmonious game chromatic number χhg(G) is the
minimum integer k such that Alice has a winning strategy with k colors. In this paper, we prove
the PSPACE-hardness of three variants of this game. As a by-product, we prove that a variant
introduced by Chen et al. in 1997 of the classical graph coloring game is PSPACE-hard. We also
obtain lower and upper bounds for χhg(G) in graph classes, such as paths, cycles, grids and forests
of stars.

1 Introduction

A k-coloring of a graph G is a function c which associates to each vertex v a “color” c(v) ∈ {1, . . . , k}
in such a way that adjacent vertices have distinct colors. The chromatic number χ(G) is the minimum
k such that G has a k-coloring. The graph coloring game is the game version of the coloring problem:
given a graph G and a positive integer k, two players Alice and Bob alternate turns, starting with
Alice, in selecting a non-colored vertex to be colored by a “color” in {1, . . . , k} not already used in
one of its neighbors. Alice wins if every vertex is successfully colored at the end; otherwise, Bob wins.
The game chromatic number χg(G) is the minimum k such that Alice has a winning strategy. Clearly,
χ(G) ≤ χg(G) ≤ ∆(G) + 1 where ∆(G) is the maximum degree of G.

The graph coloring game was introduced by Brams in the context of coloring maps and was de-
scribed by Gardner in 1981 in his “Mathematical Games” column of Scientific American [13]. It
remained unnoticed until Bodlaender [2] reinvented it in 1991 as the “Coloring Construction Game”,
and its computational complexity was left as “an interesting open problem”.

After this, many papers were published investigating the graph coloring game and the game chro-
matic number [3, 6, 10, 17]. Only in 2020, it was finally proved that the graph coloring game (deciding
if χg(G) ≤ k) is PSPACE-complete [5]. Thereafter, many games based on classical variants of the col-
oring problem were proved PSPACE-complete, such as the greedy coloring game [19] and the connected
coloring game [20].

In this paper, we propose the game version of the harmonious coloring of a graph. A harmonious
k-coloring of G is a k-coloring c of G such that {c(u), c(v)} ̸= {c(x), c(y)} for every two edges uv
and xy of G [12]. That is, each edge is uniquely determined by the colors of its endpoints. The
harmonious chromatic number χh(G) is the smallest k such that G admits a harmonious k-coloring.
The computational complexity of determining the harmonious chromatic number was considered in [9]
where it has been shown that the problem is already NP-complete in the class of forest of stars. General
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upper bounds on this parameter were provided in [8] and particular graph classes were considered such
as paths, cycles [21, 14], bounded degree trees [7], etc. (e.g., see the recent work [11]).

In order to define the harmonious coloring game, we observe that a harmonious coloring is not only
a proper coloring, but also a 2-distance proper coloring. That is, vertices at distance at most two must
receive distinct colors. For example, in the path P3 with vertices v1, v2, v3, the vertices v1 and v3 must
receive distinct colors, independently of the color of v2, since otherwise the edges v1v2 and v2v3 will
have the same colors in their endpoints.

We then say that a partial coloring of a graph is harmonious if there is no pair of colored vertices at
distance at most two with the same color1 and there is no pair of edges whose endpoints are colored and
the sets of colors of the endpoints are equal. With this, we can define the harmonious coloring game
(HCG). Given a graph G and a positive integer k, Alice and Bob (starting with Alice) alternately colors
uncolored vertices of G in such a way that the partial coloring obtained in each turn is harmonious.

In other words, at each turn, the current player chooses an uncolored vertex v and assigns to it
a color c(v) ∈ {1, . . . , k} such that: (a) there is no vertex colored c(v) at distance at most two from
v, and (b) there is no edge whose endpoints are already colored with colors c(v) and c(v′) for every
colored neighbor v′ of v.

Alice wins if every vertex is successfully colored at the end; otherwise, Bob wins. The harmonious
game chromatic number χhg(G) is the least k such that Alice wins the harmonious coloring game in
G with k colors. Clearly, χ(G) ≤ χh(G) ≤ χhg(G).

Our Contributions. We start by focusing in Section 2 on the computational complexity of the
harmonious coloring game, that is, the problem of deciding if χhg(G) ≤ k. Although we were unable
to prove that the original problem is PSPACE-complete, we were able to prove that three variants
are. The first variant is related to a variant of the graph coloring game, named as sequential coloring
construction game by Bodlaender [2] in 1981: the vertices must be colored following a predefined
given sequence, with players only being able to choose the color to be used. Bodlaender proved that
this variant is PSPACE-complete [2] and we use this fact to prove in Section 2 that the sequential
harmonious coloring game is also PSPACE-complete even for split graphs.

The second variant considers that some vertices of the input graph are pre-colored before the
beginning of the game. We then prove that the pre-colored harmonious coloring game is PSPACE-
complete even for split graphs in which the pre-colored vertices induce a maximum clique. The third
variant is related to another variant of the graph coloring game, named as Chromatic Game II by
Chen [4] in 1997, in which Bob can color a vertex v with a new color (that was not used previously)
only if v cannot be colored with an already used color. Although this game was introduced almost
thirty years ago, to the best of our knowledge, it was not proved PSPACE-hard before. We then prove
that the Chromatic Game II is PSPACE-complete and use this to prove that the corresponding variant
of the harmonious coloring game is also PSPACE-complete.

In Section 3, we obtain lower and upper bounds for general graphs. In Section 4, we obtain for

paths and cycles the lower bound 4
⌊

n
12

⌋
+ 1 and the upper bound 2(n+3)

3 for the harmonious game
chromatic number. In Section 5, we use our results in paths to obtain lower and upper bounds for the
Cartesian grid, the triangular grid an the king grid. Finally, motivated by the fact that computing the
harmonious chromatic number of forest of stars in NP-complete [9], we give, in Section 6, lower and
upper bounds for the harmonious game chromatic number in this graph class. We conclude with some
open problems.

2 PSPACE-hardness of three variants

2.1 Sequential variant and Pre-colored variant

When Bodlaender first introduced the graph coloring game, he also defined a sequential version of the
problem that he called Sequential Coloring Construction Game [2]. In this variant, the instance is
a graph G, a positive integer k and an ordering (v1, v2, . . . , vn) of the vertices of G. Alice and Bob
alternate color the vertices of G in such a way that, on turn i, the current player (Alice if i is odd and

1The reason for adding this constraint is that, without it, a simple winning strategy for Bob (in any connected graph
with diameter at least two) would be to color a vertex at distance two from the first vertex colored by Alice, with the
same color.
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Bob if i is even) must color the vertex vi with a color in {1, . . . , k} distinct from the ones appearing
on its neighborhood. As usual, Alice wins if all the vertices of G are colored, and Bob wins otherwise.
The goal is to decide whether Alice has a winning strategy. Bodlaender [2] proved that this problem
is PSPACE-complete even for k = 3.

Here we introduce the sequential harmonious coloring game similarly except that the coloring
constructed by Alice and Bob must always induce a harmonious partial coloring of G. The next
theorem proves PSPACE-hardness even for split graphs, which are graphs whose vertex set has a
partition (K,S), where K is a maximum clique and S is an independent set.

Theorem 1. Deciding if Alice wins the sequential harmonious coloring game is PSPACE-complete
even when the input graph is a split graph with partition (K,S) and k = |K|+ 3.

Proof. We obtain a reduction from the sequential coloring construction game, which is PSPACE-
complete [2]. Given a graph G = (V,E), let Ĝ be the graph obtained from G by subdividing each

edge exactly once and adding an edge between each pair of new vertices. Note that Ĝ is a split graph
with partition (K|E|, V ), such that each vertex of the clique is adjacent to exactly 2 vertices of the
independent set. This construction was proposed previously in [1] to prove that deciding if χh(G) ≤ k
is NP-complete for split graphs.

Let I be an instance of the sequential coloring construction game in a graph G = (V,E) with
ordering (v1, v2, v3 . . . , vn) and k = 3 colors. We assume that G has an even number of edges. If this
is not the case, one can add an isolated edge to G and append both of its endpoints to the end of the
ordering without changing the outcome of I.

We claim that Alice has a winning strategy for the sequential harmonious coloring game on Ĝ with
ordering (e1, e2, e3, . . . , e|E|, v1, v2, v3, . . . , vn) with |E|+ 3 colors if and only if she also has a winning
strategy on I, where e1, e2, e3, . . . , e|E| is any ordering of the vertices in the clique K|E|.

Suppose that Alice has a winning strategy on I. When playing the sequential harmonious coloring
game on Ĝ, for the first |E| turns each player has to color his\her vertex using a new color, since

{e1, · · · , e|E|} is a clique in Ĝ. In turn |E|+ 1, Alice starts coloring v1 (recall that E is even) and use
the same strategy of the sequential coloring construction game to color the remaining vertices with
the 3 remaining colors.

That is possible because, given that the clique is already completely colored, no vertex vi can receive
a color already used in any vertex ej of the clique, since they are at distance at most 2. Furthermore,

if a pair of vertices vi and vj are adjacent in G, they share a common neighbor in Ĝ, namely the vertex
resulting of the subdivision of the edge with endpoints vi and vj , and must receive distinct colors on

a harmonious coloring of Ĝ. Since these are the only restrictions when coloring the vertices of the
independent set of Ĝ, Alice and Bob can make exactly the same moves as if they were playing on I.

The same arguments of the last two paragraphs can be applied in the case when Bob has a winning
strategy on I. Thus, in that case, Bob also wins when playing the sequential harmonious coloring
game on Ĝ with ordering (e1, e2, e3, . . . , e|E|, v1, v2, v3, . . . , vn) with |E|+ 3 colors.

In the proof of the last theorem, note that it is not necessary to have an ordering among the vertices
of the clique. In fact, since the coloring game, without the ordering, has been proven PSPACE-complete
[5], we could use the same arguments, just requiring that the vertices of the clique are pre-colored at
the beginning of the game, to prove that the harmonious coloring game is also PSPACE-complete
when some vertices are pre-colored.

Theorem 2. Given a split graph G with a pre-coloring of the vertices of its maximum clique and a
positive integer k, deciding if Alice has a winning strategy for the harmonious coloring game on G with
k colors is PSPACE-complete.

2.2 Bob restricted variant

In 1997, Chen et al. [4] introduced a new variation of the classical graph coloring game, that they
called Chromatic Game II. This version is played exactly the same way except that, in each turn, Bob
can color a vertex v with a new color (that was not used previously) only if v cannot be colored with
an already used color. The minimum number of colors for which Alice has a winning strategy on a
graph G in this variation of the game is denoted by χ∗

g(G). Clearly χ(G) ≤ χ∗
g(G) ≤ χg(G) since Bob

has more constraints.
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Although this variant was introduced almost thirty years ago, to the best of our knowledge, it was
not proved PSPACE-hard before. The next theorem obtains this result and later we use this fact to
prove the PSPACE-hardness of the corresponding variant of the harmonious coloring game.

Theorem 3. The Chromatic Game II is PSPACE-complete. That is, given a graph G and an integer
k, deciding if χ∗

g(G) ≤ k is PSPACE-complete.

Proof. We obtain a reduction from the graph coloring game, which was proved PSPACE-complete in
[5]. Let (G, k) be an instance of the graph coloring game and let G′ be the graph obtained from G by
adding, for every 1 ≤ i ≤ k, an induced P4 Qi = (ai, bi, ci, di) such that bi and di are adjacent to all
vertices of G and every two vertices in distinct P4’s Qi and Qj are adjacent. We prove that χg(G) = k
if and only if χ∗

g(G
′) = 2k. That is, Alice has a winning strategy in the graph coloring game with k

colors in G if and only if she also has in the Chromatic Game II with 2k colors in G′.
Note that if ai and di have the same color for some i at any moment of the Chromatic Game II in

G′, Alice has already lost the game, since Qi will receive at least 3 distinct colors and any other P4

Qj will have at least 2 distinct colors each. Therefore, at least 2k + 1 colors will be needed to finish
the coloring.

Suppose that Alice wins the graph coloring game on G using k colors. Let us describe a winning
strategy for her on G′ on the Chromatic Game II with 2k colors. Alice starts coloring a vertex of
G using her winning strategy (for the graph coloring game). From now on, each time Bob colors a
vertex of Qi, Alice colors the closest non-neighbor of it in Qi with the same color. Otherwise, if Bob
colors a vertex of G, Alice proceeds playing according to her winning strategy in G. From this, Alice
assures that each Qi is colored with exactly 2 colors and one of those colors are available to be used
on the vertices of G. Since Alice wins the graph coloring game in G with k colors, she can complete
the coloring of the vertices of G in G′ by using her winning strategy.

Now suppose that Bob wins the graph coloring game on G using k colors. The main idea of Bob’s
strategy to win on G′ is to ensure that (except possibly for her first or second move) Alice will always
be forced to use a new color in the P4’s Qi so that, after her (k+1)-th move, k distinct colors are used
on ai or ci for every 1 ≤ i ≤ k, and those colors are available for Bob to play in G.

If Alice first colors ai (resp. di), Bob colors di (resp. ai) with the same color and wins. If Alice
first colors ci, then Bob colors di, forcing Alice to color ai or bi, since otherwise Bob can color ai with
the same color of di, winning the game. If Alice first colors bi, then Bob colors ai, forcing Alice to
color di with the color of bi or to color ci or a vertex of G with the color of ai, since otherwise Bob
can color di with the same color of ai, winning the game. If Alice’s first move is to color some vertex
of G, then Bob colors ai, forcing Alice to color ci or di on her next move.

Thus, from Bob’s second move until his k-th move, he colors for some Qj with no colored vertices
the vertex aj with a new color, since aj is adjacent to all colors used previously. From this, he forces
Alice to color either cj or dj .

After Alice’s (k+1)-th turn, aj or dj is colored for every 1 ≤ j ≤ k, and therefore there are exactly
k colors already used in the game, which are now available to color the vertices of G. Furthermore
either (i) Alice has colored a vertex of G on her first two moves and there is exactly 2 uncolored vertices
in each Qj or (ii) she did not color any vertex in G and there is one P4 with exactly one uncolored
vertex while all the others have exactly two.

After that, if (i) Alice has colored a vertex of G on her first or second move, then Bob follows his
winning strategy on G, since all k colors are now available to him. If Alice plays on a vertex outside
G at some turn, Bob colors any uncolored vertex outside of G, which is possible since the number of
uncolored vertices outside G is always even after Alice’s turn.

If (ii) Alice has colored no vertex in G after her (k + 1)-th turn, Bob colors an uncolored vertex
in some Qj , until Alice finally colors a vertex in G, which is possible since the number of uncolored
vertices outside of G is odd after Alice’s turn. After Alice colors a vertex in G, Bob just use the same
strategy of the previous paragraph.

Consequently, Alice has a winning strategy for the graph coloring game with k colors in G if and
only if χ∗(G′) = 2k. Since deciding if Alice has a winning strategy with k colors in G is PSPACE-
complete [5], we are done.

Motivated by this variant by Chen et al. [4] of the graph coloring game, we introduce the Restricted
Harmonious Coloring Game (HCG∗). This variant of the game plays exactly as the harmonious
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coloring game except that Bob can color a vertex v with a new color (that was not used previously) only
if v cannot be colored with an already used color. The minimum number of colors for which Alice has
a winning strategy on a graph G on HCG∗ is denoted by χ∗

hg(G). Clearly, χh(G) ≤ χ∗
hg(G) ≤ χhg(G).

We remark that the results of the upcoming Lemma 2 and Theorems 5, 6 and 7 also hold for χ∗
hg(G),

since Bob’s strategy to achieve the lower bounds is to use the same color repeatedly.
We use Theorem 3 to prove that this version of the harmonious coloring game is also PSPACE-

complete even for split graphs.

Theorem 4. The Restricted Harmonious Coloring Game HCG∗ is PSPACE-complete even in split
graphs. That is, given a split graph G and an integer k, deciding if χ∗

hg(G) ≤ k is PSPACE-complete.

Proof. We obtain a reduction from the Chromatic Game II, which was proved PSPACE-hard in Theo-
rem 3. Let G = (V,E) and k be an instance of Chromatic Game II. Let Ĝ be the split graph obtained
from G as in the proof of Theorem 1 (subdividing each edge exactly once and adding an edge between
each pair of new vertices). Again, we can assume that |E| is even. We prove that Alice has a winning

strategy in the Chromatic Game II on G with k colors if and only if she also has in HCG∗ on Ĝ with
k + |E| colors.

Let C be the clique of Ĝ with the new vertices. Notice that every color of a vertex v of C is used
only once, since every vertex of Ĝ is at distance at most 2 from v.

If a vertex v ∈ V is colored, then its color cannot be used in any vertex of the clique C and any
u ∈ NG(v) since v and u have a common neighbor in C (the new vertex corresponding to their edge).
Therefore, the partial coloring after each move must induce a coloring of G.

Furthermore, if Bob can color a vertex v ∈ V with a new color c, it means that for every color
a already used on a vertex of V there is an edge with endpoints colored a and b for some color b
appearing in the neighborhood of v in Ĝ. Since the neighborhood of v is composed only by the vertices
of the clique, which have a unique color each, that means that for every color a already used in the
vertices of V there is a vertex u ∈ NG(v) with color a. Therefore Bob is restricted when he colors a

vertex of V in the HCG∗ on Ĝ in the exact same fashion he is on the Chromatic Game II on G.
If Alice has a winning strategy for the Chromatic Game II on G with k colors, then, to win in

HCG∗ on Ĝ with k + |E| colors, she always colors a vertex of G following her winning strategy on it,
unless Bob just colored a vertex of the clique C on his last turn, which, in this case, Alice just colors
another vertex of the clique. Consequently, Alice never allows Bob to “pass” his turn in G.

The case in which Bob has a winning strategy for the Chromatic Game II on G with k colors is
analogous to the one in the previous paragraph, except that it is Bob that uses his winning strategy
to color the vertices of V .

3 General upper bounds

Fact. χhg(G) ≤ n for every graph G with n vertices.

Proof. At her turn, Alice may always use the smallest unused color (i.e., a new color).

We say that Alice plays greedily if, at her turn, she can choose an arbitrary uncolored vertex and
colors it with any possible (i.e., satisfying the constraints of the game) color.

We will often use the following easy result for the lower bounds.

Lemma 1. If, at the end of a game, there exists a monochromatic set X of vertices and all vertices
in N(X) have been colored, then at least |N(X)|+ 1 colors have been used.

Next we obtain an upper bound on χhg in general graphs with bounded maximum degree. This
result will be used later in particular graph classes.

Lemma 2. Let y ≥ max
{

∆·(n+∆+1)
∆+1 ,∆ · (∆− 1) + 1

}
. Then Alice greedily wins the harmonious

coloring game with y colors in a graph G with n vertices and maximum degree ∆.

Proof. Alice plays greedily until she cannot play anymore. We show that actually all vertices have
been colored. By contradiction, suppose that Alice loses. Let Y be the set of colored vertices after the
end of the game. Then |Y | < n, since some vertices remain uncolored and cannot receive any available
color.
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Let v be an uncolored vertex. If there are no colored vertices in N(v), then the set of colors
forbidden to v are exactly the ones used at distance 2 from v. Since y ≥ ∆(∆− 1)+ 1, there’s at least
one color available for v, a contradiction.

Otherwise, let C ̸= ∅ be the set of colors received by the neighbors of v. Let X ⊆ V (G) be the set of
all vertices colored with a color in C. Since v cannot be colored, for each color c /∈ C, there must be a
vertex colored with c adjacent to a vertex ofX. Note that there are at least y−|X| ≥ y−∆ such colors c
and so |N(X)| ≥ y−∆. Since the vertices in X have degree at most ∆, then |X| ≥ y−∆

∆ . Furthermore,
each color not appearing on N(v) was used at least once. Hence, we obtain a contradiction:

|Y | ≥ |N(X)|+ |X| ≥ y −∆+
y −∆

∆
=

(∆+ 1)(y −∆)

∆
≥

(∆ + 1)(∆(n+∆+1)
∆+1 −∆)

∆
= n.

Corollary 1. Let G be any n-node graph with maximum degree ∆, then

χhg(G) ≤ max

{
(n+∆+ 1)∆

∆+ 1
, (∆− 1)∆ + 1

}
.

4 Paths and cycles

Let Pn and Cn be the path and the cycle with n vertices, respectively.

Lemma 3. χhg(Pn) ≥ 4
⌊

n
12

⌋
+ 1

Proof. The strategy for Bob is to create a color class with size at least 2
⌊

n
12

⌋
. Indeed, assume that Bob

manages to create a monochromatic set X of size at least 2
⌊

n
12

⌋
. By Lemma 1, at least |N(X)| + 1

colors are used. Below, we show how Bob creates such a set X with all vertices with degree two,
leading to the use of at least 4

⌊
n
12

⌋
+ 1 colors.

Let Pn = (u1, u2, . . . , un). Assume, for simplicity’s sake, that n is divisible by 12 and let P i =
(vi1, v

i
2, . . . , v

i
12) be the i-th subpath of order 12 of Pn, with 1 ≤ i ≤ n

12 , that is v
i
k = u12(i−1)+k. Bob’s

strategy is the following (note that Bob colors a vertex of some subpath P i if and only if Alice has
just colored a vertex of P i) :

i) If Alice plays on P i for the first time on some vertex vij with color c ̸= 1, then Bob colors vij−2

with color 1 if he can do so and j − 2 > 1. Otherwise, Bob colors vij+2 with color 1.

ii) If Alice plays on P i for the first time on some vertex vij with color c = 1, then Bob colors vij−3

with color 1 if he can do so and j − 3 > 1. Otherwise, Bob colors vij+3 with color 1.

iii) If Alice plays on some P i that already has colored vertices, then Bob colors any vertex v ∈
V (P i) \ {vi1, vi12} with color 1 if he can do so. Otherwise, Bob colors any uncolored vertex
v ∈ V (P i) with a color c ̸= 1.

iv) If Alice plays on some P i, the only vertex left to color on P i is v ∈ {vi1, vi12} and the only color
available for v is 1, then Bob colors v with 1.

Claim 1. If, at the end of the game, c(vi−1
12 ) ̸= 1 and c(vi+1

1 ) ̸= 1 then, after Bob’s second move in
P i, there are at least 2 vertices with color 1 in V (P i) \ {vi1, vi12}.

Proof of Claim. Observe that initially, since c(vi−1
12 ) ̸= 1 and c(vi+1

1 ) ̸= 1, all 10 vertices in V (P i) \
{vi1, vi12} can receive color 1.

If Alice’s first move on P i is to color a non-extremity vertex of P i with color 1, Bob will apply rule
ii) and we are done.

If Alice’s first move on P i is to color a vertex x with a color c ̸= 1 she forbids color 1 for at most 3
vertices (x and its neighbors) in V (P i) \ {vi1, vi12}. Furthermore, after Bob applies rule i) (let z be the
vertex he colored 1), he forbids color 1 for at most 3 more vertices (z, the neighbor y of z that is not
a neighbor of x and the other neighbor of y) in V (P i) \ {vi1, vi12}. After that, on Alice second move
in P i if she colors a non-extremity vertex of P i with color 1 we are done. If she colors a vertex with
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a color distinct from 1 she forbids at most 3 more vertices from receiving color 1 in V (P i) \ {vi1, vi12},
therefore there is at least one vertex that can still receive color 1 and it will receive this color after
Bob applies rule iii).

Now suppose that Alice colors vi1 (resp., vi12) with color 1 in her first move in P i. Then, in his first
move on P i, Bob will color vi4 (resp., vi9) and on his second move either Alice will color a vertex in
V (P i) \ {vi1, vi12} with color 1 or, after her move, there will be at least one vertex that can be colored
with 1 in V (P i) \ {vi1, vi12} (even if Alice colored the other extremity of P i with color 1). If the later is
true then Bob applies rule iii) on his second move in P i and colors such vertex with 1. The argument
is analogous if we assume that Alice colors a extremity of the path with 1 only on her second move on
P i.

Therefore, at the end of the game, for each P i such that c(vi−1
12 ) ̸= 1 and c(vi+1

1 ) ̸= 1, there are at
least 2 vertices with color 1 in V (P i) \ {vi1, vi12}. ⋄

Observe that, in the case c(vi−1
12 ) ̸= 1 and c(vi+1

1 ) ̸= 1, if Alice or Bob colors either vi1 or vi12 with
color 1, then P i will have at least 3 vertices colored 1. If Alice and Bob color both vi1 and vi12 with
color 1, then P i will have exactly 4 vertices colored 1.

Claim 2. If, at the end of the game, c(vi−1
12 ) = 1 or c(vi+1

1 ) = 1, then after Bob first move in P i,
there is at least 1 vertex colored 1 in V (P i) \ {vi1, vi12}.

Proof of Claim. Assume that, in her first move on P i, Alice colors a vertex v with color 1. If v ̸= vi12
and v ̸= vi1 we are done. Otherwise, Alice’s move forbids color 1 either for the vertices vi11 and vi10 or
vi2 and vi3. After that Bob, will apply rule ii) and color vi9 with color 1 in the first case or color vi4
with color 1 on the second case.

If in her first move on P i Alice colors a vertex vij with a color c ̸= 1, she forbids color 1 for at most

3 vertices on V (P i) \ {vi1, vi12}. After that, Bob certainly can apply rule i) and color vij−2 or vij+2 with
color 1. ⋄

Let c1(P
i) denote the number of vertices with color 1 in P i at the end of the game. From both

claims, by the end of the game, for each 1 ≤ i ≤ n
12 , either c1(P

i) ≥ 2 or (c1(P
i) = 1 and (c(vi−1

12 ) = 1

or c(vi+1
1 ) = 1)).

Assume that c1(P
i) = 1 and, w.l.o.g., that c(vi+1

1 ) = 1. Therefore either c1(P
i+1) ≥ 3 or c1(P

i+1) =
2 and c(vi+2

1 ) = 1. Since the graph is finite the second case cannot happen indefinitely. Let k > i be
the smallest integer such that c1(P

k) ≥ 3. Then,

k∑
j=i

c1(P
j) = c1(P

i) +

k−1∑
j=i+1

c1(P
j) + c1(P

k)

≥ 1 + 2(k − i− 1) + 3 = 2(k − i+ 1)

Consequently, for each path in P i, . . . P k we can “count” at least 2 vertices with color 1. Furthermore,
this bound holds even if k = n

2 and c(vk12) ̸= 1, for that reason, all these vertices have degree 2.

Now suppose that there is a path P i′ , with i < k < i′, such that c1(P
i′) = 1, c(vi−1

12 ) = 1 and k is
the greatest integer smaller than i′ such that c1(P

k) ≥ 3. By the same reasons of the last paragraph,
we can conclude that for every k < j < i′, c1(P

j) = 2 and c(vk12) = 1. Since c(vk1 ) = 1 and c(vk12) = 1
then c1(P

k) = 4. For that reason,

i′∑
j=i

c1(P
j) = c1(P

i) +

k−1∑
j=i+1

c1(P
j) + c1(P

k) +

i′−1∑
j=k+1

c1(P
j) + c1(P

i′)

= 1 + 2(k − i− 1) + 4 + 2(i′ − k − 1) + 1 = 2(i′ − i+ 1)

Therefore, for each path in P i, . . . P i′ we can “count” exactly 2 vertices with color 1.

Finally, we can conclude that using the strategy above, by the end of the game

n
12∑
i=1

c1(P
i) ≥ 2 n

12 .

The above proof can be easily adapted for Cn. Note also that the strategy described for Bob also
works if Alice is allowed to skip her turn, i.e., Bob can ensure a monochromatic set of size at least 2 n

12
even if Alice is allowed to skip some of her turns.
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Theorem 5.

4
⌊ n

12

⌋
+ 1 ≤ χhg(Pn) ≤

2(n+ 3)

3
,

and

4
⌊ n

12

⌋
+ 1 ≤ χhg(Cn) ≤

2(n+ 3)

3
.

Proof. The upper bounds directly follow from Corollary 1. The lower bound for paths follows Lemma 3
and the lower bound for cycles follows a direct adaptation of the proof of Lemma 3.

5 Grids

A grid with n rows and m columns is a graph with vertex set V = {vi,j |1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}. We
say that the vertex vi,j is on row i and column j. For the Cartesian, triangular and king grids the set
of edges are respectively:

• E□ = {vi,jvl,k|(i = l ∧ j − k = ±1) ∨ (j = k ∧ i− l = ±1)}

• E△ = E□ ∪ {vi,jvl,k|i− l = k − j = 1}

• EK = E△ ∪ {vi,jvl,k|i− l = k − j = −1}

The results on paths may be somehow extended to grids. On this section we use the some of the
bounds already obtained to show bounds for the harmonious coloring game on Cartesian, triangular
and king grids.

Lemma 4. Let G be a grid graph with n rows and m columns, then:

• χhg(G) ≥ 8
⌊
n−2
5

⌋ ⌊
m
12

⌋
+ 1, if G is a Cartesian grid;

• χhg(G) ≥ 12
⌊
n−4
5

⌋ ⌊
m
12

⌋
+ 1, if G is a triangular grid;

• χhg(G) ≥ 16
⌊
n−6
5

⌋ ⌊
m
12

⌋
+ 1, if G is a king grid.

Proof. For each type of grid, let i and ji be the integers defined below:

• 1 ≤ i ≤
⌊
n−2
5

⌋
and ji = 5i− 3 for the Cartesian grid;

• 1 ≤ i ≤
⌊
n−4
5

⌋
and ji = 5i− 2 for the triangular grid;

• 1 ≤ i ≤
⌊
n−6
5

⌋
and ji = 5i− 1 for the king grid;

Let P i be the path induced by the vertices on row ji of the grid and let vik be the vertex of P i on
the k-th column of the grid.

To achieve the bounds described above, Bob plays using his strategy for the paths, described on
Lemma 3, on the vertices of each P i. That is, for each of these paths, Bob wants to have at least
2
⌊
m
12

⌋
internal vertices with color 1.

Notice that, in the proof of Lemma 3, Bob’s strategy is only concerned in the vertices for which
the color 1 is forbidden. Furthermore is worth noticing that Bob’s strategy works even when Alice can
skip her turn, since this cannot decrease the number of vertices colored with 1 by the end of the game.
In the case Alice does so, Bob can just choose an internal vertex of any of the subpaths and color it,
preferably with color 1, such that the number of vertices that can still receive color 1 in the subpath
are maximized after Bob’s move.

Observe that if Alice colors a vertex v at distance at most 2 from a vertex of some P i, Bob’s
strategy is not affected on any P k when k ̸= i. Therefore, when Alice colors a vertex v with color c
at distance at most 2 from the path P i, Bob can use a strategy analogous to the one on Lemma 3 as
if Alice had played on a vertex of P i. Obviously if Alice colors a vertex of P i, Bob just follows his
strategy as in Lemma 3.

More precisely, there are three cases depending on the type of the considered grid.
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Cartesian Grid. There are 2 possibilities when Alice colors a vertex at distance 1 or 2 from P i on
the Cartesian grid:

• If Alice colors a vertex on column k on rows ji ± 1 with any color c or on rows ji ± 2 with
color 1, she forbids, on the worst case, the vertices vik, v

i
k+1 and vik−1 from receiving color

1. Therefore, for Bob’s strategy on P i, is equivalent for her to have colored vik with a color
c′ ̸= 1.

• If Alice colors a vertex on rows ji ± 2 with color c ̸= 1, she does not forbid the use of color
1 for any new vertices on P i. Bob plays in P i as if Alice had passed her turn.

Clearly this strategy leads to at least 2
⌊
m
12

⌋
vertices with color 1 for each P i on the Cartesian

grid.

Triangular Grid. For the triangular grid, there are 3 possibilities when Alice colors a vertex at
distance 1 or 2 from P i:

• If Alice colors a vertex on column k on rows ji ± 1 with color c ̸= 1 or on rows ji ± 2 with
c = 1, she forbids, in the worst case, the color 1 from being used on the vertices vik−2, v

i
k−1

and vik. Therefore, for Bob’s strategy on P i, is equivalent for her to have colored the vertex
vik−1 with a color c′ ̸= 1.

• If Alice colors a vertex on column k on rows ji ± 1 with color c = 1, she forbids color 1 for
the vertices vik−2, v

i
k−1, v

i
k and vik+1. Then Bob can just assume that Alice colored vik with

color 1 and follow his strategy on P i. Note that, in this case, the vertex colored by Alice
and vik have the same degree.

• If Alice colors a vertex on rows ji ± 2 with color c ̸= 1, she does not forbid the use of color
1 for any new vertices on P i. Bob plays in P i as if Alice had passed her turn.

Clearly this strategy leads to at least 2
⌊
m
12

⌋
vertices with color 1 for each P i on the triangular

grid.

King Grid. There are 3 possibilities when Alice colors a vertex at distance 1 or 2 from P i on the
king grid:

• If Alice colors a vertex on column k on rows ji ± 1 or ji ± 2 with color c = 1, she forbids
color 1 for the vertices vik−2, v

i
k−1, v

i
k, v

i
k+1 and vik+2. Then Bob can just assume that Alice

colored vik with color 1 and follow his strategy on P i. Note that, in this case, the vertex
colored by Alice and vik have the same degree.

• If Alice colors a vertex on column k on rows ji±1 with color c ̸= 1, she forbids, on the worst
case, the vertices vik, v

i
k+1 and vik−1 from receiving color 1. Therefore, for Bob’s strategy

on P i, is equivalent for her to have colored vik with a color c′ ̸= 1.

• If Alice colors a vertex on rows ji ± 2 with color c ̸= 1, she does not forbid the use of color
1 for any new vertices on P i. Bob plays in P i as if Alice had passed her turn.

Clearly this strategy leads to at least 2
⌊
m
12

⌋
vertices with color 1 for each P i on the king grid.

Since each of the vertices colored with 1 for each P i have degrees 4, 6 and 8 for the Cartesian,
triangular and king grids respectively, we obtain the desired bounds by Lemma 1.

Theorem 6. Let G be a grid graph with n > 3 rows and m > 1 columns, then:

• 8
⌊
n−2
5

⌋ ⌊
m
12

⌋
+ 1 ≤ χhg(G) ≤ 4nm

5 + 4, if G is a Cartesian grid;

• 12
⌊
n−4
5

⌋ ⌊
m
12

⌋
+ 1 ≤ χhg(G) ≤ 6nm

7 + 6, if G is a triangular grid;

• 16
⌊
n−6
5

⌋ ⌊
m
12

⌋
+ 1 ≤ χhg(G) ≤ 8nm

9 + 8, if G is a king grid;

Proof. The upper bounds directly follow Corollary 1. The lower bounds come from Lemma 4.
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6 Forest of Stars

We are interested in this graph class because it is known that computing the harmonious chromatic
number of a forest of stars is NP-complete [9]. For any graph G = (V,E) and v ∈ V , let deg(v) denote
the degree of the vertex v.

Claim 3. Let S and S′ be two stars with n and m leaves respectively, n ≥ m. Then, χhg(S) = n+ 1
and χhg(S ∪ S′) = n+ 1 if n > m and χhg(S ∪ S′) = n+ 2 otherwise.

Proof of Claim. Since any harmonious coloring must be proper at distance 2, and χhg(G) ≤ |V (G)|
for any graph G, we get χhg(S) = n+ 1.

In the disjoint union S ∪ S′, Alice starts by coloring a leaf of S with color 1. If, at his first turn,
Bob has not colored the center of S′, Alice colors it with the smallest possible color. If Bob has colored
the center of S′ with a color distinct from 1, then Alice colors a leaf of S′ with 1. From now, Alice
plays greedily. This strategy is winning with n+ 1 (or n+ 2 if n = m) colors which is optimal since it
equals the harmonious number of S ∪ S′. ⋄

Lemma 5. Let G = S1 ∪ S2 ∪ S3 ∪ . . .∪ Sn where each Si is a star with center si such that deg(s1) ≥
deg(s2) ≥ deg(s3) ≥ . . . ≥ deg(sn). Then:

χhg(G) ≥ 1 +

⌈n
2 ⌉∑

i=1

deg(s2i−1)

Proof. Let 1 be the color used by Alice at her first turn. If Alice colored the center of a star at her first
turn, let c = 1 and let c = 2 otherwise. While it is possible, the strategy of Bob consists of coloring
the vertex sj with color c, where j is the smallest integer such that sj is uncolored.

Claim 4. After the j-th move of Bob (0 < j ≤ ⌈n
2 ⌉), s1 is colored with color c and, for every 0 < i ≤ j,

at least i− 1 vertices are colored with c in {s2, s3, · · · , s2j−1}.

Proof of Claim. The proof is by induction on j. If j = 1, if Alice’s first move colors a center s (with
color 1), then c = 1 and either s = s1 or s ̸= s1 and Bob’s first move consists in coloring s1 with c. If
Alice does not color a center, then Bob colors s1 with c. In all cases, we are done.

Let us assume by induction that the result holds for the jth turn. If, at the (j + 1)-th turn of
Bob, s2j or s2j+1 can be colored with c, then Bob colors a vertex sk, k ≤ 2j + 1, with color c. Then,
the result holds. Otherwise (if none of s2j or s2j+1 can be colored with c), it implies that Alice has
already colored one vertex in each of S2j and S2j+1. Therefore, some star in {S2, · · · , S2j−1} has no
vertex colored yet. Then, Bob colors a vertex sk, k ≤ 2j − 1, with color c. This concludes the proof
of the claim. ⋄

It follows that the centers colored with color c are (all together) adjacent to at least
⌈n

2 ⌉∑
i=1

deg(s2i−1)

vertices. Therefore, χhg(G) ≥ 1 +
⌈n

2 ⌉∑
i=1

deg(s2i−1).

Lemma 6. Let G = S1 ∪ S2 ∪ S3 ∪ . . .∪ Sn where each Si is a star with center si such that deg(s1) ≥
deg(s2) ≥ deg(s3) ≥ . . . ≥ deg(sn). Then:

χhg(G) ≤ 2 +
⌊n
2

⌋
+ deg(s1) +

⌊n
2 ⌋∑

i=1

deg(s2i)

Proof. Note that we may assume that deg(sj) > 0 for any j ≤ n since isolated vertices do not create
any constraint. Hence, deg(sj) ≥ 1 for every 1 ≤ j ≤ n.

Let y = 2 +
⌊
n
2

⌋
+ deg(s1) +

⌊n
2 ⌋∑

i=1

deg(s2i) and let us show that Alice has a winning strategy using

y colors. Note that y ≥ n.
Alice first colors s1 with color 1. While there is an uncolored center, at her turn:
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• if Bob has just colored a center si with {i, i′} = {2k, 2k + 1} and si′ is uncolored, then Alice
colors si′ with a new color (a color she has not used yet).

• otherwise, Alice colors the uncolored center with smallest index with a new (a color she has not
used yet) color (note that this color could have been used by Bob).

Once all centers have been colored, Alice greedily colors any uncolored vertex with the smallest
possible color.

First, let us show that, while all centers are not colored, then the Alice’s strategy is valid, i.e., there
is a color available for Alice. Consider such a turn j (so 1 < j ≤ n) when Alice has to color some
center si. Up to this turn, at most j−1 leaves may have been colored (by Bob, since Alice only colored
centers until now) and so at most j − 1 < n ≤ y forbidden pairs of colors are forbidden. Therefore,
there must be a color available for Alice.

Note that the same argument holds for Bob, and so, while not all centers have been colored, Bob
can always play.

For purpose of contradiction, let us assume that the Alice’s strategy is not winning. So, at some
turn j, Alice (or Bob) cannot color any vertex with any of the y colors. By above paragraph, all centers
must have been colored (and so j > n). Let f be any uncolored leaf and let si be the center of the
star containing f and let c be the color of si. Let X = Xc ∪Xf be the set of vertices colored with c
before turn j where Xc is the set of centers colored with c and Xf is the set of leaves colored with c
(at most one vertex per star with the center not colored c). The number of forbidden pairs of colors
containing c is then at most 1 + |Xf |+

∑
sk∈Xc

deg(sk)− 1. Note that |Xc|+ |Xf | ≤ n.

Note that Alice’s strategy ensures that, for every color c and every integer i ∈ [1,
⌈
n
2

⌉
] but at most

one such integer, c(s2i) ̸= c or c(s2i+1) ̸= c. Note also that for c = 1 all i ∈ [1,
⌈
n
2

⌉
] satisfies such

condition.
Therefore, by previous sentence,

|Xf |+
∑

sk∈Xc

deg(sk)− 1 ≤ |Xf |+ deg(s1) +

|Xc|∑
i=1

deg(s2i)− 1

.
Hence, since |Xc|+ |Xf | ≤ n,

|Xf |+
∑

sk∈Xc

deg(sk)− 1 ≤ n− |Xc|+ deg(s1) +

|Xc|∑
i=1

deg(s2i)− 1

.
Therefore, because deg(s) > 0 for every center s,

|Xf |+
∑

sk∈Xc

deg(sk)− 1 ≤
⌈n
2

⌉
− 1 + deg(s1) +

⌊n
2 ⌋∑

i=1

deg(s2i),

and so

|Xf |+
∑

sk∈Xc

deg(sk)− 1 ≤
⌊n
2

⌋
+ deg(s1) +

⌊n
2 ⌋∑

i=1

deg(s2i)

and so
1 + |Xf |+

∑
sk∈Xc

deg(sk)− 1 < y

which contradicts the fact that Alice (or Bob) cannot color a vertex at her turn.

Theorem 7. Let n ≥ 3. For any forest G of n stars with centers with degree d1 ≥ d2 ≥ · · · ≥ dn:

1 +

⌈n
2 ⌉∑

i=1

d2i−1 ≤ χhg(G) ≤ 2 +
⌊n
2

⌋
+ d1 +

⌊n
2 ⌋∑

i=1

d2i
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7 Conclusions and Open Problems

In this paper, we have introduced the Harmonious Coloring Game (HCG), a new two player game
related to the harmonious coloring problem. We proved that three variants of this game are PSPACE-
complete: Sequential HCG, Pre-Colored HCG and Bob-Restricted HCG. As a by-product, we also
proved that the Chromatic Game II, a game introduced in 1997 by Chen et al. [4], is also PSPACE-
complete.

Despite that, we were unable to prove the computational complexity of the original HCG. One
of the difficulties is that, for a given graph G = (V,E) and the constructed graph Ĝ in the proof of

Theorems 1 and 4, it is not true that χg(G) = k if and only if χhg(Ĝ) = k + |E|, since Bob can, at

each of his turns on Ĝ, use a new color on a vertex of V . If k is small enough compared to |E|, Bob
can use k + 1 distinct colors on the vertices of V at some point of the game and the clique cannot be
fully colored anymore. Nevertheless, the following seems reasonable.

Conjecture 1. The harmonious coloring game is PSPACE-complete. That is, given a graph G and
an integer k, deciding if χhg(G) ≤ k is PSPACE-complete.

We also obtained lower and upper bounds for general graphs and for some graph classes. However,
we were unfortunately unable to determine the exact value of the harmonious game chromatic number
even for paths and cycles.

Question 1. What is the exact value of χhg(Pn) and χhg(Cn) for every n ≥ 1?
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